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Témavezető: Dr. Hajdu Lajos

Debreceni Egyetem
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Bibliography 90

A List of papers of the author 101

B List of conference talks of the author 103



Introduction

Our PhD dissertation consists of five chapters each containing new results con-
cerning Diophantine equations and Diophantine problems. Most problems have
certain combinatorial background. In the first chapter we present the main
method used in our studies namely the Ellog method together with an improve-
ment of ours [50]. In the second chapter we apply the Ellog method to solve
several Diophantine equations having certain combinatorial background. These
results can be found in [58]. In the third chapter we give several effective and
explicit results concerning the values of some polynomials in binary recurrence
sequences. These results are published in [59]. In the fourth chapter we intro-
duce the concept of balancing numbers in arithmetic progressions, and prove
several effective finiteness and explicit results about them. The results of Chap-
ter 4 are published in [60]. In the fifth chapter we prove that the product of k
consecutive terms of a primitive arithmetic progression is never a perfect fifth
power when 3 ≤ k ≤ 54. We also provide a more precise statement, concern-
ing the case where the product is an ”almost” fifth power. These results are
published in [51]. In what follows, we give an overview of the contents of the
chapters one by one.

I

Though we shall apply and combine several techniques to prove our results,
our main tool will be elliptic curves and elliptic equations. In particular, we
shall be interested in finding the integer points on such equations. The search
for integral solutions of elliptic equations has been initiated by Mordell. By
Siegel’s famous theorem [100], we know that any given elliptic equation has
at most finitely many integral solutions. Since this result is ineffective, the
determination of the solutions remained a challenge. Baker’s famous work on
linear forms in logarithms of algebraic numbers made Siegel’s theorem effective.
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Since then several improvements have been achieved, see e.g. [4], [19], [99], [102],
[27], [49] and the references given there. Besides these results a great variety
of methods and techniques have been successfully applied to solve particular
equations (see e.g. [71], [72], [2], [66], [3], [18], [119], [86] and the references
given there) until a powerful, general method has been developed simultaneously
and independently by Stroeker, Tzanakis [103] and Gebel, Pethő, Zimmer [41].
This approach uses the arithmetic properties of elliptic curves and combines
many deep ingredients, due to several authors, including an effective bound for
linear forms in elliptic logarithms obtained by David [36]. The most recent
version of the method, the so-called Ellog method is already capable to find (at
least in principle) all integral points on genus 1 curves (see [105], and also the
references given there). In Chapter 1, we describe in details the Ellog method
and present an improvement due to Hajdu and Kovács [50]. The method splits
up into three distinct parts. In the initial stage the basic characteristics of the
corresponding elliptic curve are gathered, like the torsion group, the rank r and
a basis (P1, . . . , Pr) for the free part of the Mordell-Weil group. Each rational
point P ∈ E(Q) has a unique representation of the form

P = P0 + n1P1 + . . .+ nrPr, (1)

where P0 is a torsion point and ni ∈ Z (i = 1, . . . , r). Put N = max1≤i≤r{|ni|}.
The first main step of the method is to derive an initial upper bound for N . At
this stage beside certain standard height estimates the above mentioned result
of David [36] plays a crucial role. Once an upper bound for N is obtained, all
points P satisfying relation (1) can be explicitly computed, at least in principle.

Typically, the initial upper bound obtained for N is rather huge, so it cannot
be used for practical purposes. In the second stage of Ellog this initial upper
bound is reduced drastically. At this step the key method relies on a result of
de Weger [120] which is based upon the LLL-algorithm.

The third step of the method seems to be trivial: using the final bound for N
(which is typically around 10 say) we simply enumerate all the possibilities and
then check whether they are solutions or not. However, this innocent looking
part may be the most troublesome point of the method. Indeed, if the rank r
is large then the size of the region to be checked for solutions can be extremely
huge. (At this point it is worth to mention that by a folklore conjecture there
exist elliptic curves of arbitrarily high rank.) So any further reduction of the
”final” bound for N or shrinking the region of possible solutions can be very
important in solving a particular equation completely. Hence this point deserves
extra attention.
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In [104], Stroeker and Tzanakis observed and gave convincing numerical and
heuristic evidence for that in their Ellog method a certain parameter λ plays a
decisive role in the size of the final bound Nfinal for the integral points on ellip-
tic curves. In fact this λ is the smallest eigenvalue of the height-pairing matrix
of the underlying Mordell-Weil basis. Further, they provided an algorithm to
determine that Mordell-Weil basis of the curve which corresponds to the optimal
choice of λ. Hence to minimize the final bound for the solutions, one should use
such a ”best” basis of the curve. We shall call such a basis Stroeker-Tzanakis
basis, or shortly ST-basis. In [104] it is shown through several examples that
using an ST-basis one can get a (much) better bound Nfinal than with other
bases. In Chapter 1 we show that even the ”best” final bound Nfinal received
by using an ST-basis, can be further improved if one uses more bases simultane-
ously, and combines the information obtained for the solutions in the different
bases. The results of the first chapter are published in [50].

II

Many Diophantine equations possess combinatorial background. A lot of
deep finiteness (both effective and ineffective) results are known about the solu-
tions of such equations. We refer to the papers [15], [16], [21], [88], [89] and the
references given there. One of the first results giving all integer solutions of a
combinatorial Diophantine equation is a theorem of Mordell [71], which provides
all integer solutions of the equation y(y+ 1) = x(x+ 1)(x+ 2). Later Avanesov
[2] resolved the equation

(
y
2

)
=
(
x
3

)
. MacLeod and Barrodale [66] considered the

problem when the product of two consecutive integers is equal to the product of
six consecutive integers, i.e. resolved the equation y(y+1) = x(x+1) · · · (x+5).
A similar result is due to Boyd and Kisilevsky [18]. They determined all integral
solutions of the equation y(y+ 1)(y+ 2) = x(x+ 1)(x+ 2)(x+ 3). Later among
others, mixed equations were considered, i.e. on one side there is a binomial co-
efficient and on the other side there is the product of l consecutive integers. For
example Tzanakis and de Weger [118] resolved the equation

(
y
2

)
= x(x+1)(x+2)

and Pintér [82] (see also [43], p. 225) found all integral solutions of the equation(
y
2

)
= x(x+ 1)(x+ 2)(x+ 3). Other scattered equations have been investigated

by several authors, see for example [3], [66], [86], [103], [119], [122]. Hajdu and
Pintér [52] systematically collected and solved those combinatorial equations of
the above types that can be reduced to Mordell-type equations. Our purpose
is to extend this result to more general combinatorial equations that can be
reduced to general elliptic equations. Namely, we collect those equations that
can be reduced to equations of genus 1 and then resolve them by the above
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described Ellog method. We mention that beside a lot of sparse results (see
e.g. [82], [83], [86], [106] and [121]), Stroeker and de Weger [107] solved all such
equations involving binomial coefficients. The results of the second chapter are
published in [58].

III

There are many papers about values of a polynomial p(x) ∈ Q[x] (taken
at integer values of x) in a binary linear recurrence sequence U . The first
such results dealt with the case where U is a special sequence and p(x) = xm

with some m ≥ 2. That is, we are interested in terms of U which are perfect
powers. In 1962 Ogilvy [77], one year later Moser and Carlitz [73], and Rollett
[92] proposed the following problem: determine all squares in the Fibonacci
sequence F . The problem was solved by Cohn [29, 30] and Wyler [125] who
independently proved with elementary methods that the only squares in the
Fibonacci sequence are F0 = 0, F1 = F2 = 1, F12 = 144. Later, Alfred [1] and
Cohn [31] determined the squares in the Lucas sequence L. Pethő [80] and
Cohn [32] independently determined the perfect powers in the Pell sequence.
Recently, Bugeaud, Mignotte and Siksek [28] showed that the perfect powers
in the Fibonacci and Lucas sequences are exactly F0 = 0, F1 = F2 = 1, F6 =
8, F12 = 144, and L1 = 1, L3 = 4, respectively.

Another branch of problems is about triangular numbers in recurrence se-

quences, i.e. we take the polynomial p(x) = x(x+1)
2 . Hoggatt stated the con-

jecture that there are only five triangular Fibonacci numbers. In 1989 Ming
[69] proved that this conjecture is true. Furthermore, Ming [70] and McDaniel
[68] determined the triangular numbers in the Lucas and Pell sequences, respec-
tively. In [108] Szalay described all values of the polynomials S2(x) and S3(x)
in the Fibonacci, Lucas and Pell sequences, where Sk(x) denotes the sum of the
first x− 1 kth powers (x ∈ N). Further, he listed all numbers of the form

(
x
4

)
in

the Fibonacci and Lucas sequences, as well. As a generalization of the previous
results, Tengely [114] determined the g-gonal numbers in the Fibonacci, Lucas,
Pell and Associated Pell sequences for g ≤ 20. Recently, Tengely [115] showed
that the only term of the form

(
x
5

)
of the Lucas sequence is L1 = 1.

The above mentioned results give complete solutions of the problem in case
of certain sequences U and polynomials p. Beside them there are several results
in the literature which provide effective upper bounds for the solutions under
certain assumptions. The most extensively investigated situation is again the
case of perfect powers, i.e. where p(x) = xm with some m ≥ 2. Instead of
trying to survey the extremely huge literature we only refer to the book [99]
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and the references given there. Finally, we mention that Szalay [108] provided
an algorithm for the complete description of the values of a polynomial p(x) of
degree 3 in a binary recurrence sequence U under some assumptions.

In Chapter 3 we prove three theorems concerning the values of some poly-
nomials in binary recurrence sequences. First we provide an effective finiteness
theorem for certain combinatorial numbers, namely for binomial coefficients,
products of consecutive integers, power sums and alternating power sums in bi-
nary recurrence sequences, under some assumptions. The proof of this theorem
is based on Baker’s method and results of Brindza [19], Ping-Zhi [81], Pintér
and Rakaczki [85] and Rakaczki [90]. Our second theorem is an extension of
the above mentioned result of Szalay. More precisely, it provides an efficient
algorithm for determining the values of certain degree 4 polynomials in binary
recurrence sequences, under some assumptions. We note that we implemented
our algorithm in Magma [17] as well. Finally, partly by the help of this algo-
rithm we give all combinatorial numbers mentioned above for the small values
of the parameter involved in the Fibonacci, Lucas, Pell and Associated Pell se-
quences. To prove the latter result we reduce the problem to elliptic and more
generally to genus 1 equations. We use the Ellog method and the program pack-
age Magma to resolve our particular equations. The results of the third chapter
are published in [59].

IV

A positive integer n is called a balancing number if

1 + · · ·+ (n− 1) = (n+ 1) + · · ·+ (n+ r)

holds for some positive integer r (see [7] and [39]). The sequence of balancing
numbers is denoted by Bm (m = 1, 2, . . . ). It is easily checked that B1 = 6 and
B2 = 35. By a result of Behera and Panda [7], we have the recurrence relation

Bm+1 = 6Bm −Bm−1 (m > 1).

In particular, there are infinitely many balancing numbers.

The literature of balancing numbers is very rich. In [62] and [63] Liptai
proved that there are no Fibonacci and Lucas balancing numbers, respectively.
Later, Szalay [111] derived the same results by a different method.

In [64] Liptai, Luca, Pintér and Szalay generalized the concept of balancing
numbers in the following way. Let y, k, l be fixed positive integers with y ≥ 4.
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A positive integer x with x ≤ y − 2 is called a (k, l)-power numerical center for
y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

In [64] several effective and ineffective finiteness results were proved for (k, l)-
power numerical centers.

Recently, the ”balancing” property has been investigated in recurrence se-
quences (see [14]). In this chapter we extend the concept of balancing numbers
to arithmetic progressions. Let a > 0 and b ≥ 0 be coprime integers. If for some
positive integers n and r we have

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

then we say that an + b is an (a, b)-balancing number. The sequence of (a, b)-

balancing numbers is denoted by B
(a,b)
m (m = 1, 2, . . . ). We mention that since

B
(1,0)
m = Bm for all m, we obtain a generalization of balancing numbers.

In Chapter 4 we prove several effective finiteness and explicit results con-

cerning polynomial values in the sequences B
(a,b)
m . That is, we consider the

equation
B(a,b)
m = f(x)

in integers m and x with m ≥ 1, where f is some polynomial with rational
coefficients, taking only integral values at integers. To prove our theorems,
beside the earlier mentioned results of Ping-Zhi [81], Pintér and Rakaczki [85]
and Rakaczki [90], we further need the modular method developed by Wiles
[124] and others and a deep result of Bennett [8] concerning binomial Thue
equations. Our results from Chapter 4 are published in [60].

V

A celebrated theorem of Erdős and Selfridge [38] states that the product of
consecutive positive integers is never a perfect power. A natural generalization
is the Diophantine equation

x(x+ d) . . . (x+ (k − 1)d) = byn (2)

in non-zero integers x, d, k, b, y, n with gcd(x, d) = 1, d ≥ 1, k ≥ 3, n ≥ 2 and
P (b) ≤ k. Here P (u) stands for the largest prime divisor of a non-zero integer
u, with the convention P (±1) = 1.

This equation has a long history with an extensive literature. For d = 1,
equation (2) has been completely solved by Saradha [94] (case k ≥ 4) and
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Győry [44] (case k < 4). Instead of trying to overview the huge number of
related results for d > 1, we refer to the excellent survey papers of Győry [45],
Shorey [96], [97] and Tijdeman [116]. Here we concentrate only on results where
all solutions of (2) have been determined when the number k of terms is fixed.

If (k, n) = (3, 2), equation (2) has infinitely many solutions even with b = 1
(c.f. [116]). Euler (see [37]) showed that (2) has no solutions if b = 1 and
(k, n) = (3, 3) or (4, 2). Obláth [75], [76] obtained similar results for (k, n) =
(3, 4), (3, 5) and (5, 2).

By a conjecture of Erdős, equation (2) has no solutions in positive integers
when k > 3 and b = 1. In other words, the product of k consecutive terms of a
primitive positive arithmetic progression with k > 3 should never be a perfect
power. By primitive arithmetic progression we mean one of the form

x, x+ d, . . . , x+ (k − 1)d,

with gcd(x, d) = 1. Erdős’ conjecture has recently been verified for certain
values of k in a more general form; see the papers [45], [46], [10], [47]. Now
we focus on the case n = 5. We give only the best known result for this
particular exponent. (Though the results mentioned are valid for any n ≥ 2.)
The following statement is a combination of results from [45] (case k = 3), [46]
(cases k = 4, 5), [10] (cases k = 6, 7) and [47] (cases 8 ≤ k ≤ 34).

Theorem A. The only solutions to equation (2) with n = 5, 3 ≤ k ≤ 34 and
P (b) ≤ Pk, with

Pk =



2, if k = 3, 4,

3, if k = 5,

5, if k = 6, 7,

7, if 8 ≤ k ≤ 22,
k−1

2 , if 23 ≤ k ≤ 34

are given by

(k, d) = (8, 1), x ∈ {−10,−9,−8, 1, 2, 3}; (k, d) = (8, 2), x ∈ {−9,−7,−5};

(k, d) = (9, 1), x ∈ {−10,−9, 1, 2}; (k, d) = (9, 2), x ∈ {−9,−7};

(k, d) = (10, 1), x ∈ {−10, 1}; (k, d, x) = (10, 2,−9).

Note that knowing the values of k, d and x, all solutions (x, d, k, b, y, n) of
(2) can be easily listed.
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Now we explain why the case n = 5 in equation (2) is special. In order
to do that, we need to give some insight into the method of solving (2) for
fixed k, in the general case n ≥ 2. One of the most important tools is the
modular method, developed by Wiles [124]. In [45], [46], [10], [47] all three
types of ternary equations (i.e. of signatures (n, n, 2), (n, n, 3), (n, n, n)) and
related results of Wiles [124], Darmon and Merel [35], Ribet [91], Bennett and
Skinner [12], Bennett, Vatsal and Yazdani [13] and others are used. However,
the modular technique works effectively only for ”large” exponents, typically for
n ≥ 7. Thus the ”small” exponents n = 2, 3, 5 must be handled separately. In
fact these cases are considered in distinct sections, or are covered by separate
theorems in the above mentioned papers.

Further, the exponents n = 2, 3 has already been considered in separate
papers. Equation (2) with n = 2 has a broad literature in itself; see e.g. [57]
and the references given there. Here we focus only on the resolution of (2) with
fixed k again. For n = 2 and positive x, equation (2) has been completely solved
up to a few exceptional cases by Hirata-Kohno, Laishram, Shorey and Tijdeman
[57] for k ≤ 100, and in case of b = 1, even for k ≤ 109. Their main tools were
elliptic curves and quadratic residues. Later, the exceptional remaining cases
have been handled by Tengely [113], by the help of the Chabauty method. At
this point we note that we shall refer to the Chabauty method frequently later
on. For the description of the method, and in particular how to use it in the
frame of the program package Magma [17], we refer to the papers of Bruin [23],
[24] and the references given there.

When n = 3, working mainly with cubic residues, however making use of
elliptic curves and the Chabauty method as well, Hajdu, Tengely and Tijdeman
[54] obtained all solutions to equation (2) with k < 32 such that P (b) ≤ k if
4 ≤ k ≤ 12 and P (b) < k if k = 3 or k ≥ 13. Further, if b = 1 then they could
solve (2) for k < 39.

The case n = 5 has not yet been closely investigated. In this case (in
the above mentioned papers considering equation (2) for general exponent n)
mainly classical methods were used, due to Dirichlet and Lebesgue (see e.g.
[47]). Apparently, for n = 5 elliptic curves are not applicable. In Chapter
5 we show that in this case the Chabauty method (both the classical and the
elliptic versions) can be applied very efficiently. As we mentioned, the Chabauty
method has been already used for the cases n = 2, 3 in [10], [113], [54]. However,
it has been applied only for some particular cases and equations. In our results
we solve a large number of genus 2 equations by Chabauty method, and then
build a kind of sieve system based upon them. The results of Chapter 5 are
published in [51].



Chapter 1

The E llog method and an
improvement

1.1 Introduction

As we have already mentioned in the introduction, the effective theory of elliptic
Diophantine equations has been started by the classical result of Baker [4].
However, since the bound provided for the solutions by this result is too large,
to solve a concrete elliptic equation some further or alternative considerations
are needed. For a long time, a great variety of methods and techniques have
been successfully applied to solve individual elliptic equations, see e.g. [72],
[99] until a new method was developed simultaneously and independently by
Stroeker, Tzanakis [103] and Gebel, Pethő, Zimmer [41]. This approach uses
the arithmetic properties of elliptic curves and combines many deep ingredients,
due to several authors. The most recent version of this so-called Ellog method is
already capable to find (at least in principle) all integral points on genus 1 curves
(see [105], and also the references given there). In Section 1.2, we describe in
details the Ellog method. We follow the discussion and terminology of [105]. In
Section 1.3, we present an improvement of the Ellog method due to Hajdu and
Kovács [50]. The Ellog method splits up into three distinct parts. In the initial
stage essential characteristics of the corresponding elliptic curve are gathered,
like the torsion group, the rank r and a basis (P1, . . . , Pr) for the free part of the
Mordell-Weil group. Each rational point P ∈ E(Q) has a unique representation

9
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of the form
P = P0 + n1P1 + . . .+ nrPr, (1.1)

where P0 is a torsion point and ni ∈ Z (i = 1, . . . , r). Put N = max1≤i≤r{|ni|}.
The first main step of the method is to derive an initial upper bound for N .

At this stage beside certain standard height estimates a deep result of David
[36] concerning linear forms in elliptic logarithms plays a crucial role. Once
an upper bound for N is obtained, all points P satisfying relation (1) can be
explicitly computed, at least in principle.

Typically, the initial upper bound obtained for N is rather huge, so it cannot
be used for practical purposes. In the second stage of Ellog this initial upper
bound is reduced drastically. At this step the key method relies on a result of
de Weger [120] which is based upon the LLL-algorithm.

The third step of the method seems to be trivial: using the final bound for N
(which is typically around 10 say) we simply enumerate all the possibilities and
then check whether they are solutions or not. However, this innocent looking
part may be the most troublesome point of the method. Indeed, if the rank r is
large then the size of the region to check for solutions can be extremely huge.
(At this point it is worth to mention that by a folklore conjecture there exist
elliptic curves of arbitrarily high rank.) So any further reduction of the ”final”
bound for N or shrinking the region of possible solutions can be very important
in solving a particular equation. Hence this point deserves extra attention.

In [104], Stroeker and Tzanakis observed and gave convincing numerical and
heuristic evidence for that in the Ellog method a certain parameter λ plays a
decisive role in the size of the final bound Nfinal for the integral points on
elliptic curves. Further, they provided an algorithm to determine that Mordell-
Weil basis of the curve which corresponds to the optimal choice of λ. Hence
to minimize the final bound for the solutions, one should use such a ”best”
basis of the curve. We shall call such a basis Stroeker-Tzanakis basis, or shortly
ST-basis. In Section 1.3 we show that even the ”best” final bound Nfinal
received by using an ST-basis, can be further improved if one uses more bases
simultaneously, and combines the information obtained for the solutions in the
different bases. The results of this chapter are published in [50].

1.2 The E llog method

Let f ∈ Z[u, v] be irreducible over Z, and consider the Diophantine equation

f(u, v) = 0 (1.2)
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and the corresponding curve

C =
{

(u, v) ∈ Q2 | f(u, v) = 0
}
.

If C is of genus 1 and non-empty, then (1.2) can be transformed into a short
Weierstrass equation

y2 = x3 +Ax+B =: q(x) (1.3)

with a birational transformation. Here A,B ∈ Z, and the discriminant of q(x),
i.e. 4A3 + 27B2 is non-zero. We define

E(K) = {(x, y) ∈ K2 | y2 = x3 +Ax+B},

where K ∈ {Q,R,C}. The birational transformation and its inverse between C
and E (Q) can be written in the form

x = X(u, v), y = Y (u, v),
u = U(x, y), v = V (x, y),

where

(X,Y ) : C −→ E (Q) and (U, V ) = (X,Y )
−1

: E (Q) −→ C.

Here X, Y , U , V are rational functions which can be explicitly computed.

In what follows, we recall some well-known facts and results about E(Q), E(R)
and E(C). For the basic properties of these structures we refer to [101] and the
references given there.

E (Q) is a finitely generated group, more precisely

E (Q) ∼= Etors (Q)× Zr,

where Etors(Q) is the torsion group, and r is the rank of E(Q). Note that
by a famous theorem of Mazur, the order of any torsion point is at most 12,
and by the Nagell-Lutz theorem the torsion points can be easily computed.
Let P1, . . . , Pr denote a Mordell-Weil basis of E(Q). Then each rational point
P ∈ E(Q) has a unique representation of the form

P = P0 + n1P1 + . . .+ nrPr, (1.4)

where P0 ∈ Etors(Q) is a torsion point and ni ∈ Z (i = 1, . . . , r).
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The group E(R) has the so-called identity component E0 and in the real case –
when q(x) has three real roots: e1 > e2 > e3 – also a bounded component E1.
The components are given by

E0 = {(x, y) ∈ E(R) | e1 ≤ x} ,

E1 = {(x, y) ∈ E(R) | e3 ≤ x ≤ e2} .

Consider the isomorphism Φ : E0 → R/Z defined by

Φ ≡


0 (mod 1), if P = O,
1
ω

∫∞
x(P )

dt√
q(t)

(mod 1), if y (P ) ≥ 0,

−Φ (−P ) (mod 1), if y (P ) < 0,

where ω = 2
∫∞
e1

dx√
q(x)

is the fundamental real period of E(C). In the complex

case – that is when q(x) has a single real root – E0 = E(R) and Φ is defined on
the whole E(R). In the real case Φ can be extended to a two-to-one epimorphism
Φ̃, defined by

Φ̃(R) =

{
Φ(R), if R ∈ E0,

Φ(R′), if R ∈ E1,

where R′ = R+ (e2, 0). In the complex case simply set Φ̃ = Φ. We have

ω · Φ̃(R) =

{
elliptic logarithm of R, if R ∈ E0,

elliptic logarithm of R′, if R ∈ E1.

Let

G(u, v) = 2
∂uY (u, v) · ∂vf(u, v)− ∂vY (u, v) · ∂uf(u, v)

3X2(u, v) +A
.

The relation between the original equation (1.2) and the short Weierstrass equa-
tion (1.3) is given by ∫ ∞

U(P )

G(u, v)

∂vf(u, v)
du =

∫ x0

x(P )

dx

ε
√
q (x)

(1.5)

under the assumption that U(P ) is greater than the poles ofX and Y . Here x(P )
is the first coordinate of the point P on the curve E, U(P ) is the first coordinate
of the inverse of the point P on C, ε = ±1, and x0 = limu→∞X(u, v). It can
be easily seen that either x0 =∞, or x0 is a real algebraic number that can be
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explicitly computed. In the latter case, let R0 denote the point of E(R) with first
coordinate x0, and non-negative second coordinate. The integral on the right
side of (1.5) can be expressed by (1.4) as a linear form in elliptic logarithms in
the following way:∫ x0

x(P )

dx

ε
√
q(x)

= u0 + n1u1 + . . .+ nrur − ur+1 + n0ω =: L(P ). (1.6)

Here P = (x, y) ∈ E(Q), ui denotes the elliptic logarithm of the points Pi
(i = 0, 1, . . . , r), ur+1 is the elliptic logarithm of R0 and n0 is a rational integer.
Put N = max1≤i≤r {|ni|}. Note that n0 ≤ rN + 1. We derive an upper bound
for the linear form L(P ) in terms of N . First, in a standard way (using e. g.
elliptic integrals and Puiseux-expansions) we obtain an inequality of the form

|L(P )| < c1 · |u|−δ ,

where δ and c1 (and later c2, c3, etc.) are explicitly computable positive con-
stants depending only on the parameters of the curve. At this point we need
some further notation. Let h (α) denote the logarithmic height of an alge-
braic number α (see for example [61]). We mention that if p, q ∈ Z, q 6= 0,
gcd(p, q) = 1, then h(p/q) = log max (|p| , |q|). With a simple calculation from
equation (1.2) we deduce that

h (X (u, v)) ≤ c2 + c3 log |u| .

It is well-known (see for example [34] and the references there), that

ĥ(P )− 1

2
h(X (u, v)) ≤ c4

for all P = (x, y) ∈ E(Q), where ĥ is the so-called Néron-Tate height function,
that is

ĥ(P ) =
1

2
lim
n→∞

h(2nP )

22n
.

(Here and later on we use the convention h(Q) = h(x(Q)) for all algebraic points

Q ∈ E(C).) On the other hand, since ĥ is a positive semidefinite quadratic form
on E(R), we obtain the lower estimate

ĥ(P ) ≥ λN2,
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where λ > 0 is the smallest eigenvalue of the matrix of ĥ with respect to the
basis P1, . . . , Pr of E(Q). On combining the latter four inequalities, we get the
estimate

|L(P )| < c5 exp
(
c6 − c7λN2

)
. (1.7)

To get a lower estimation for |L(P )|, one needs a deep result of David [36]
providing a lower bound for linear forms in elliptic logarithms. In the following
lemma we formulate Tzanakis’ variant of this result from [117]. Before that,
we need to introduce some new notation. First note that it is always possible
to choose a pair of fundamental periods ω1, ω2 of the curve E in a way that
τ := ω2/ω1 satisfies

|τ | ≥ 1 , =τ > 0 , − 1
2 < <τ ≤

1
2 with 0 ≤ <τ if |τ | = 1.

The height of E(Q) is defined by hE = max
(
1, h

(
A
4 ,

B
16

)
, h(jE)

)
, where jE =

2833A3/
(
4A3 + 27B2

)
is the modular invariant of E(Q). Let D denote the

degree of the number field generated by the coordinates of R0, and let k =
r + 1 if Φ(R0) is linearly independent of Φ(P1), . . . ,Φ(Pr) over Q, else set
k = r. Finally, choose real numbers Ai (i = 0, . . . , r + 1) such that A0 ≥
max

(
hE ,

3π|ω|2
D|ω1|2=τ

)
, Ai ≥ max

(
hE ,

3π|ω|2Φ(Pi)
2

D|ω1|2=τ , ĥ(Pi)
)

(i = 1, . . . , r), Ar+1 ≥

max
(
hE ,

3π|ω|2Φ(R0)2

D|ω1|2=τ , ĥ(R0)
)

.

Lemma 1.2.1 (Tzanakis [117]). By the above notation we have

|L(P )| > exp
(
−c8 (logN ′ + c9) (log logN ′ + c10)

k+2
)
, (1.8)

where

c8 = 2.9 · 106k+12D2k+442(k+1)2 (k + 2)
2k2+13k+23.3

k∏
i=0

Ai,

c9 = logDe, c10 = logDe+ hE,

and N ′ = max {|n0| , N}.

Combining the upper bound (1.7) and the lower bound (1.8) for the linear form,
using N ′ ≤ rN + 1 we obtain an upper estimate for N . This initial bound ac-
cording to a heuristic argument of Stroeker and Tzanakis [104] is approximately

around 10(5r2+15r+28)/2, so it is too large to determine all integer solutions of
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the original equation. We use de Weger’s method [120] based upon the LLL-
algorithm to reduce this bound. Using the inverse of the birational transforma-
tion, after the reduction we can compute all integer solutions of equation (1.2).
Put ρi = Φ (Pi) (i = 1, . . . , r) and ρr+1 = Φ (R0). In general, ρr+1 is linearly
independent of ρ1, . . . , ρr over Q. In the opposite case, a simpler version of the
reduction can be used. Now we outline the main steps of the reduction algo-
rithm. Consider the (r+ 1)-dimensional lattice Γ generated by the coloumns of
the matrix

A =


1 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 · · · 1 0

[K0ρ1] · · · [K0ρr] K0

 ,

where K0 is a conveniently chosen integer, to be specified later. Compute the
LLL-reduced basis of the lattice, and denote by b1 the shortest vector of this
basis. Write x1

...
xr+1

 = B−1 · x with x =


0
...
0

− [K0ρr+1]

 ∈ Rr+1,

where B denotes the matrix whose columns are the vectors of the reduced basis.
By Lemma 3.5 of de Weger [120]

d (x,Γ) ≥ 2r/2 ‖xi0‖ |b1|

holds, where ‖·‖ denotes the distance to the nearest integer, i0 ∈ {1, . . . , r + 1}
is chosen so that ‖xi0‖ is minimal among ‖x1‖ , . . . , ‖xr+1‖. Then we have the
following result.

Lemma 1.2.2 (Tzanakis [117]). Let K1 = c5
ω exp c6, K2 = c7. Then by the

above notation,

‖xi0‖ |b1| > 2r/2
√

(r2 + r)K2
3 + 2rK3 + 1

implies that

N2 ≤ K−1
2

(
logK0K1 − log

√
2−r ‖xi0‖

2 |b1|2 − rK2
3 − rK3 − 1

)
.
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To use this result, we choose K0 somewhat larger than (2r/2K3

√
r2 + r)r+1.

Then by Lemma 1.2.2 (if the condition is satisfied) we get a new bound for N
of the size (K−1

2 logK3)1/2. We iterate this process (always with the new values
of K0 and K3), until the new bound cannot be improved. Using this reduced
bound we can determine the integer points of the curve C by the help of the
inverse of the birational transformation, and hence all integer solutions of the
equation (1.2).

1.3 An improvement of the E llog method - Par-
allel LLL-reduction for bounding the inte-
gral solutions of elliptic Diophantine equa-
tions

In [104], Stroeker and Tzanakis observed and gave convincing numerical and
heuristic evidence for that in their Ellog method a certain parameter λ plays
a decisive role in the size of the final bound Nfinal for the integral points on
elliptic curves. This λ is the smallest eigenvalue of the height-pairing matrix
of the underlying Mordell-Weil basis. Further, they provided an algorithm to
determine that Mordell-Weil basis of the curve which corresponds to the optimal
choice of λ. Hence to minimize the final bound for the solutions, one should use
such a ”best” basis of the curve. We shall call such a basis Stroeker-Tzanakis
basis, or shortly ST-basis. In [104] it is shown through several examples that
using an ST-basis one can get a (much) better bound Nfinal than with other
bases. This point is important in particular if the rank of the elliptic curve is
”large”, as then already a small improvement of the final bound can considerably
shrink the region of possible solutions, and hence the final search can be done
much faster. In this section we show that even the ”best” final bound Nfinal
received by using an ST-basis, can be further improved if one uses more bases
simultaneously, and combines the information obtained for the solutions in the
different bases. As we will also see, elementary linear algebra tells us that it
takes only a very little extra time to get this improvement.

In the first subsection we explain our method. In the second subsection
we give some examples to illustrate how our method works. These result are
published in [50].
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1.3.1 Bounding integral solutions of genus 1 equations

All constants c5, c6, c7, c8, c9, c10 occurring in the upper and lower bounds (1.7)
and (1.8) obtained for L(P ) depend only on C and E. However, most impor-
tantly from our point of view, in (1.7) λ is the smallest eigenvalue of the height
pairing matrix of the basis P1, . . . , Pr occurring in (1.4). That is, λ certainly de-
pends on the choice of the Mordell-Weil basis. As it is demonstrated by Stroeker
and Tzanakis [104], the size of λ has a great impact on the final bound Nfinal
for N . As it turns out, Nfinal is almost linear in λ−1/2 so it is worth to pay
attention to this point. We shall return here a little later.

As it was described before, in Section 1.2, combining estimates (1.8) and
(1.7) we get an initial upper bound N0 for N . However, this upper bound is
usually extremely huge. Due to an observation of Stroeker and Tzanakis [104],

N0 should be around 10(5r2+5r+28)/2. Hence to explicitly determine the integral
points on C, this initial bound N0 should be reduced. This is the final stage of
Ellog and can be done by lattice reduction techniques due to de Weger [120],
based on the LLL-algorithm. We use Lemma 1.2.2 due to Tzanakis [117]. To
apply this result, one starts with (1.7), together with the inequality N < N0.
Using the appropriate Proposition from Section 5 of Tzanakis [117], one gets a
new lower bound of the shape

N <
c11√
c7λ

for N , where c11 is an explicitly computable constant depending on some pa-
rameters of E, and also on the length of the shortest vector of an LLL-reduced
basis of a certain lattice. As one can see, this new bound is linear in λ−1/2,
which shows the importance of this parameter. Stroeker and Tzanakis [104]
have considered several examples which indicate this phenomenon in a rather
convincing way. Summarizing the results in [104], to get the best possible re-
duced bound Nfinal for N one should definitely choose an ST-basis of the curve
E in (1.4). Subsequently, Stroeker and Tzanakis [104] have also worked out an
efficient algorithm for finding an ST-basis of the curve.

However, in the sequel it turns out that the bound obtained by using an
ST-basis, can still be improved further, if one works with several Mordell-Weil
bases simultaneously. It is important to note that following our method the use
of more bases shall increase only by a fraction the total time needed to get a
better Nfinal. As we mentioned earlier, already a small gain in Nfinal may lead
to a large improvement in the searching time for finding the small solutions - in
particular, if r is large. The reason is simply that the region where we have to



18 CHAPTER 1. THE ELLOG METHOD AND AN IMPROVEMENT

look for the small solutions is of size (2Nfinal + 1)r. Note that a similar ”size”
notion was used also in [104] to compare the final bounds obtained in different
Mordell-Weil bases.

Now we briefly outline how to work in several bases simultaneously. To
explain our ideas in fact it is sufficient to use two bases. So assume that B1 =
(P1, . . . , Pr) is a Mordell-Weil basis of E, and let S be an integral unimodular
matrix of size r× r. Let B2 = (Q1, . . . , Qr) be the basis of E obtained from B1

by using S as a basis transformation matrix. Let P be a rational point on E
with the representation (1.4), and assume that we also have

P = Q0 +m1Q1 + . . .+mrQr, (1.9)

with some torsion point Q0 and integers m1, . . . ,mr. Put M = max
1≤i≤r

|mi|, and

recall that by elementary linear algebra we have

S−1

n1

...
nr

 =

m1

...
mr

 . (1.10)

This implies M ≤ sN , where s = ||S−1|| is the row norm of S−1. (The row norm

of a k × ` type real matrix A = (aij)1≤i≤k
1≤j≤`

is defined by ||A|| = max
1≤i≤k

∑̀
j=1

|aij |.)

In particular, this means that one does not have to go through the Ellog method
both for B1 and B2, it is sufficient to use it with B1 say. Indeed, take for example
B1 to be an ST-basis of E, and suppose that after applying the Ellog method
(together with the reduction stage) we have the bound N < Nfinal. Then by
M ≤ sN , we automatically have M ≤M0 := sNfinal. As s is typically ”small”
(it will be at most around ten), M0 is not too large - and of course, it can also
be reduced. Importantly, we can get the final bound Mfinal very easily and
quickly. The reason is that the reduction steps are difficult and time consuming
only if the initial bound is large, as then e.g. high precision is needed. However,
as s will be small, the reduction steps leading from M0 to Mfinal are made very
easily. The final bounds Nfinal and Mfinal yield simultaneous upper bounds
for the coefficients of P , in two different bases. Combining these two bounds by
(1.10), we can decrease the domain where the final search has to be done. As
one may predict (which turns out to be true), the gain starts getting more and
more significant as the rank r is getting larger and larger.

In our calculations we choose B1 to be an ST-basis of E, and we choose the
other bases according to two different strategies.
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Strategy 1. We try to decrease N
(1)
final (corresponding to B1), componentwise.

For this purpose, choose distinct indices i, j with 1 ≤ i, j ≤ r and a positive
integer t, and consider the bases B2 and B3 obtained by replacing Pi by Pi+tPj
and Pi − tPj in B1, respectively (leaving the other basis elements untouched).
With the bases B2 and B3 the reduction process starts from the quite small

bound (t + 1)N
(1)
final and gives, respectively, the final bounds, say, N

(2)
final and

N
(3)
final. Then a simple calculation yields that

|ni| ≤
N

(2)
final +N

(3)
final

2t

holds. If the right hand side happens to be less than N
(1)
final, then we get a

new, improved bound for |ni|. To make this principle work, for each fixed i we
(heuristically) choose that j, for which the sum of the λ values (corresponding to
B2 and B3) is maximal with t = 1. Then for simplicity (and also because we try
to keep the time consumption of the method low), instead of checking several
values, we take the fixed value t = 10 in the computations. The procedure can
be iterated, and the iteration leads to further improvement in some cases.

Note that the ”one-sided” version of this approach could also be used (i.e.
when we work only with one of B2 or B3), but our experiences suggest that
this ”two-sided” version is more efficient. Further, we have some reasons for the
choice of t = 10. If λt denotes the value of λ corresponding to t (either in B2

or in B3), then t+1
t

√
λt

λt+1
is close to 1, if t is ”large”. The value t = 10 seems

to be large enough to make the λ-s corresponding to B2 and B3 more or less
close to each other, and it seems to have some good effect on the outcome. Still,
obviously at this point the method can have many variants.

Strategy 2. Using the algorithm of Stroeker and Tzanakis [104], we determine
the ”best” ten Mordell-Weil bases Bj (j = 1, . . . , 10) i.e. ten Mordell-Weil basis
corresponding to the ten largest λ-values. (Note that by the algorithm we get
all the basis transformation matrices with respect to B1, as well, and also that
the calculation of ten basis takes only a little extra time than calculating only

B1.) Then we compute the initial upper bounds N
(j)
0 (j = 1, . . . , 10) for the

coordinates of the integral points in these bases, respectively. (As we mentioned,

out of these only the calculation of N
(1)
0 is time consuming (but it has to be

calculated even if we use only B1), the other bounds come very quickly and
easily.) Having these bounds, using the basis transformation matrices, we get
several extra information for the coefficients of P in B1. In fact we get a system
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of inequalities defining a convex body, which contains much less integral points

than the one implied by |ni| ≤ N (1)
final (i = 1, . . . , r).

Finally, we mention that altogether it seems that Strategy 2 yields more
improvement than Strategy 1.

1.3.2 Examples

In this subsection we give some examples, to illustrate how Strategy 1 and
Strategy 2 work. For this purpose we borrow some curves from the papers
[104] and [58]. As we mentioned, the problem discussed in the paper is inter-
esting when the rank of the underlying elliptic curve is not too small, so we
consider curves of ranks 5 and 6. In fact we have worked out a number of other
examples (from [107], [104] and [58]), which can be found on the homepage
http://www.math.klte.hu/algebra/hajdu.htm.

In each example we illustrate both Strategy 1 and Strategy 2. We always
start with giving the underlying curve and the basic information corresponding
to it. In case of Strategy 1, we give the index j for each i, the two corresponding
linear inequalities (with t = 10, using the notation (1.4)), and also indicate the
final bound obtained for |ni|. Finally, we calculate the improvement ratio, as
well.

In case of Strategy 2 we provide the following data. We give the best ten
Mordell-Weil bases (in the sense explained above), by using the algorithm of
Stroeker and Tzanakis [104]. (Note that the best basis is of course an ST-basis.)
The bases are represented by the basis transformation matrices (with respect to
the ST-basis). We indicate the corresponding λ values, as well. Finally, we list
the final bounds in the corresponding bases, obtained by the above mentioned
reduction results from [117]. After that we summarize the information in a
system of linear inequalities (of the form −b ≤ Ax ≤ b). Using Barvinok’s algo-
rithm [6] the number N∗ of the integral points in the corresponding convex body
can be computed by the program package Latte [65]. Hence we can calculate the
”improvement ratio” defined in the natural way, by N∗/(2Nfinal + 1)r, where
Nfinal corresponds to the ST-basis. Note that here we may use the reduced
bounds obtained for |ni| by Strategy 1.

We give a detailed description only in the first example. In case of the other
examples, we present the data in a brief form, following the previous notation.
We start with two curves of rank 5, and we conclude with a rank 6 curve.

Example 1. This example is from [104]. We would like to determine the integral
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points on the curve

E : x3 − 203472x+ 18487440 = y2.

The rank of E is r = 5, and an ST-basis of E (obtained by the method in [104])
is given by

P1 = (468, 5076), P2 = (−216, 7236), P3 = (432, 3348),

P4 = (−36, 5076), P5 = (36, 3348).

The final bound obtained for the coordinates of the integral points of E is
Nfinal = 9 in this basis (see [104]).

Strategy 1. Using the above explained methods, we get the following table.

i j bound for |10ni ± nj | bound for |ni|
1 4 (77,82) 7
2 1 (85,79) 8
3 5 (76,81) 7
4 5 (84,88) 8
5 1 (75,81) 7

Based upon the table, the improvement is given by

(2 · 7 + 1)(2 · 8 + 1)(2 · 7 + 1)(2 · 8 + 1)(2 · 7 + 1)

(2 · 9 + 1)5
= 0.393916.

Strategy 2. The basis transformation matrices (with respect to the ST-basis)
of the best ten bases (obtained by the method of Stroeker and Tzanakis [104])
are given by(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 −1 1 1 1

)
,

(
1 1 1 1 1
0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 −1 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 −1 1 0
1 1 −1 1 1

)
,

( 0 0 0 0 −1
−1 −1 1 1 2

0 −1 1 1 1
−1 0 1 1 1

0 0 1 0 0

)
,

(
0 0 0 0 1
1 0 0 0 −1
0 1 0 0 0
1 −1 1 0 0
1 −1 1 1 0

)
,

(
0 0 0 0 1
1 0 0 0 −1
1 1 1 1 0
0 0 −1 −1 0
0 0 0 −1 0

)
,

(
1 1 1 0 1
0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

)
,

(
1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
0 0 0 −1 0
0 0 0 0 1

)
.
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The corresponding λ values are

0.46493, 0.45844, 0.45792, 0.44837, 0.44736,

0.42425, 0.41358, 0.41295, 0.41229, 0.41173,

and the final bounds Nfinal obtained after the reduction are

9, 9, 9, 9, 9, 10, 10, 10, 10, 10,

respectively. Combining these data, using the notation (1.4) (with respect to
the ST-basis) we get the system of linear inequalities

−7
−8
−7
−8
−7
−9
−9
−9
−10
−10
−10
−10


≤



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 −1 −1 1
−1 −1 1 1 0

0 0 0 −1 1
−1 −1 1 0 0
−1 −1 0 1 0

0 −1 1 1 −1
1 1 0 0 0


(
n1
n2
n3
n4
n5

)
≤


7
8
7
8
7
9
9
9
10
10
10
10

 . (1.11)

Note that because of some (natural) redundancy, here and also in the other
examples not all the ten basis transformation matrices are needed to derive
(1.11). We also mention that here we could already use the improved upper
bounds obtained by Strategy 1 for the |ni|. Using Latte [65], we get that
the above inequality (1.11) has precisely N∗ = 396785 integral solutions in
(n1, n2, n3, n4, n5). Hence the ”improvement ratio” is

N∗/(2Nfinal + 1)5 = 396785/(2 · 9 + 1)5 = 0.160246,

where Nfinal = 9 corresponds to the ST-basis P1, P2, P3, P4, P5.

Example 2. This example is from [104]. The problem is to find the integral
points on the curve

E : x3 − 879984x+ 319138704 = y2.

The rank of E is r = 5, and an ST-basis of E is given by

P1 = (468, 3132), P2 = (−684,−24516), P3 = (720,−7668),

P4 = (432,−4428), P5 = (540,−1188).
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i j bound for |10ni ± nj | bound for |ni|
1 5 (83,79) 8
2 1 (76,82) 7
3 5 (77,78) 7
4 3 (94,89) 9
5 1 (79,77) 7

The final bound obtained for the coordinates of the integral points of E is
Nfinal = 9 in this basis (cf. [104]).

Strategy 1. We obtain the table
Hence the improvement is given by

(2 · 8 + 1)(2 · 7 + 1)(2 · 7 + 1)(2 · 9 + 1)(2 · 7 + 1)

(2 · 9 + 1)5
= 0.440259.

Strategy 2. The basis transformation matrices of the best ten bases:(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 1 1
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0
0 −1 0 0 0

)
,

(
1 1 1 1 0
0 0 0 0 1
1 0 0 0 0
−1 0 −1 −1 1

0 0 0 −1 0

)
,

(
0 1 0 0 0
0 0 0 1 0
−1 1 1 0 1

0 −1 0 1 −1
0 0 1 0 0

)
,

(
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
−1 0 1 1 −1

0 0 1 0 0

)
,

(
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 −1 0 1
0 0 0 1 0

)
,

(
0 1 0 0 0
−1 1 0 1 1

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

)
,(

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 −1 1
1 1 1 −1 0

)
,

(
0 1 0 0 0
0 0 0 1 0
1 −1 0 1 1
0 0 0 0 −1
0 0 1 0 0

)
,

(
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 0 1 −1
0 0 1 0 0

)
.

The corresponding λ values are

0.492063, 0.462853, 0.457636, 0.454803, 0.454749,

0.453727, 0.451024, 0.450503, 0.448775, 0.431040,

and the final bounds Nfinal obtained after reduction are

9, 9, 9, 9, 9, 9, 9, 9, 9, 9,

respectively. Thus we get the system of linear inequalities
−8
−7
−7
−9
−7
−9
−9
−9

 ≤


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 1 1 0
1 −1 0 1 0
0 1 −1 −1 1


(
n1
n2
n3
n4
n5

)
≤


8
7
7
9
7
9
9
9

 .
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By Latte [65] we obtain that the above inequality has precisely N∗ = 513939
integral solutions in (n1, n2, n3, n4, n5). Hence the ”improvement ratio” is

513939/(2 · 9 + 1)5 = 0.207560.

Example 3. This example is from [58]. The original problem is to find the
integral points on the curve

C : 2u3 + 3u2 + u = 6v3 + 60v2 + 144v.

The curve is birationally equivalent to

E : x3 − 1008x+ 2985993 = y2.

The rank of E is r = 6, and an ST-basis of E is

P1 = (−36, 1725), P2 = (298, 5399), P3 = (243, 4134),

P4 = (−138,−705), P5 = (24, 1725), P6 = (−41, 1720).

The final bound obtained for the coordinates of the images of the integral points
of C on E is Nfinal = 7 in this basis (see [58]).

Strategy 1. We get the table

i j bound for |10ni ± nj | bound for |ni|
1 3 (70,68) 6
2 6 (69,64) 6
3 4 (64,61) 6
4 3 (64,60) 6
5 6 (68,71) 6
6 5 (59,63) 6

Hence the improvement is given by

(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)

(2 · 7 + 1)6
= 0.423753.

Strategy 2. The basis transformation matrices of the best ten bases: 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

−1 −2 1 −1 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 −1 0 0 1 0
0 −1 0 0 0 0

 ,

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
−1 0 0 0 1 0
−1 0 0 0 0 0

 ,

−1 −1 1 1 0 0
0 0 0 −1 1 0
0 0 0 0 0 1
1 0 −1 −1 1 −1
1 0 0 0 0 0
0 0 0 1 0 0

 ,
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 0 −1 1 1 1 0
−1 0 0 −1 −1 1

0 0 0 0 −1 0
0 0 0 −1 0 0
1 0 0 0 0 0
1 0 1 1 1 −1

 ,

−1 0 1 −1 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 1 0 0 0 0

 ,

−1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 −1 1 1
0 0 1 0 0 0

 ,

−1 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 1 −1 1 1
0 1 0 0 0 0

 ,

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 −1 1 1 1
0 0 0 0 0 −1

 ,

 0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
−2 −1 1 −1 −1 −1
−1 0 0 0 −1 0
−1 0 0 0 0 0

 .

The corresponding λ values are

0.640325, 0.627020, 0.603695, 0.603010, 0.599688,

0.595452, 0.587593, 0.586898, 0.586647, 0.586371,

and the final bounds Nfinal obtained after reduction are

8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

respectively. So we get the following system of linear inequalities

−6
−6
−6
−6
−6
−6
−8
−8
−8
−8
−8
−8
−8


≤



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 1 −1 −1 1 1

0 0 0 0 1 −1
−1 1 −1 −1 0 1

0 1 −1 −1 1 0
0 1 0 0 0 1
−1 1 −1 −1 1 0

0 1 −1 −1 1 1


 n1
n2
n3
n4
n5
n6

 ≤


6
6
6
6
6
6
8
8
8
8
8
8
8

 .

Latte [65] gives that the above system has precisely N∗ = 1801039 integral
solutions in (n1, n2, n3, n4, n5, n6). Thus the ”improvement ratio” is

1801039/(2 · 7 + 1)6 = 0.158116.
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Chapter 2

Combinatorial Diophantine
equations of genus 1

2.1 Introduction

Many Diophantine equations possess combinatorial background. A lot of deep
finiteness (both effective and ineffective) results are known about the solutions
of such equations. We refer to the papers [15], [16], [21], [88], [89] and the
references given there. One of the first results giving all integer solutions of a
combinatorial Diophantine equation is a theorem of Mordell [71], which provides
all integer solutions of the equation y(y+ 1) = x(x+ 1)(x+ 2). Later Avanesov
[2] resolved the equation

(
y
2

)
=
(
x
3

)
. MacLeod and Barrodale [66] considered the

problem when the product of two consecutive integers is equal to the product of
six consecutive integers, i.e. resolved the equation y(y+1) = x(x+1) · · · (x+5).
A similar result is due to Boyd and Kisilevsky [18]. They determined all integral
solutions of the equation y(y+ 1)(y+ 2) = x(x+ 1)(x+ 2)(x+ 3). Later among
others, mixed equations were considered, i.e. in one side there is a binomial
coefficient and in the other side there is the product of l consecutive terms. For
example Tzanakis and de Weger [118] resolved the equation

(
y
2

)
= x(x+1)(x+2)

and Pintér [82] (see also [43], p. 225) found all integral solutions of the equation(
y
2

)
= x(x+ 1)(x+ 2)(x+ 3). Other scattered equations have been investigated

by several authors, see for example [3], [66], [86], [103], [119], [122]. Hajdu and
Pintér [52] systematically collected and solved those combinatorial equations
that can be reduced to Mordell-type equations. Our purpose is to extend this

27
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result to more general combinatorial equations that can be reduced to general
elliptic equations. Namely, we collect those equations that can be reduced to
equations of genus 1. We mention that beside a lot of sparse results (see e.g. [82],
[83], [86], [106] and [121]), Stroeker and de Weger [107] solved all such equations
involving binomial coefficients. The results of Chapter 2 are published in [58].

2.2 New results

As we mentioned in the introduction, we systematically collect and solve those
unsolved combinatorial Diophantine equations which can be reduced to equa-
tions of genus 1 or to Mordell-type equations (see the details later). We need
some notation to formulate our results. For all n, x ∈ N let

Sn (x) = 1n + 2n + . . .+ (x− 1)n,

Πn (x) = x (x+ 1) · · · (x+ n− 1) .

The formerly solved Diophantine equations which can be reduced to elliptic
equations concerning Πn (x), Sn (x) and

(
x
n

)
, are the followings:

Π2(k) = Π3(l) (Mordell [71]),(
k
2

)
=
(
l
3

)
(Avanesov [2]),

Π2(k) = Π6(l) (MacLeod and Barrodale [66]),

S2(k) =
(
l
2

)
(Avanesov [3] and Uchiyama [119]),

Π3(k) = Π4(l), S2(k) =
(
l
4

)
(Boyd and Kisilevsky [18]),(

k
2

)
= Π3 (l) (Tzanakis and de Weger [118]),(

k
2

)
= Π4 (l) (Pintér [82], see also [43], p. 225.),(

k
4

)
=
(
l
2

)
(Pintér [83] and de Weger [121]),(

k
3

)
=
(
l
4

)
(de Weger [122]),(

k
4

)
= Π2 (l) ,Π3 (l) (Pintér and de Weger [86]),(

k
m

)
= Πn (l), where (m,n) = (3, 6; 3, 6) (Stroeker and de Weger [106]),(

k
m

)
=
(
l
n

)
, where (m,n) = (2; 3, 4, 6, 8), (3; 4, 6), (4; 6, 8) (Stroeker and de Weger

[107]),
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Equation Solutions
S3(k) = Π2(l) (k, l) = (−1, 0;−1, 0)
S3(k) = Π4(l) (k, l) = (−1, 0;−3,−2,−1, 0)
S3(k) = Π8(l) (k, l) = (−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

S5(k) =
(
l
3

)
(k, l) = (−1, 0; 0, 1, 2), (−2, 1; 3)

S7(k) =
(
l
2

)
(k, l) = (−1, 0; 0, 1), (−2, 1;−1, 2)

P2(k) = Π4(l) (k, l) = (−1, 0;−3,−2,−1, 0)
P2(k) = Π8(l) (k, l) = (−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)
P3(k) = Π6(l) (k, l) = (−2,−1, 0;−5,−4,−3,−2,−1, 0), (8;−6, 1)
P4(k) = Π8(l) (k, l) = (−3,−2,−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

Table 2.1: Equations which can be solved by Runge’s method

S5 (k) =
(
l
2

)
, S5 (k) =

(
l
4

)
, Sm (k) = Πn (l), where (m,n) = (2, 5; 2, 4),

(
k
m

)
=

Πn (l), where (m,n) = (2, 4; 6), (3, 6; 2, 4), Π4 (k) = Π6 (l) (Hajdu and Pintér
[52]).

Here and later on (k, l) = (a1, . . . , an; b1, . . . , bm) means that (k, l) can be
any of the pairs (ai, bj), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

We mention that Sn(x) is a polynomial of degree n + 1, and Πn(x) is a
polynomial of degree n. For the sake of completeness we give all integer solutions
of the investigated polynomial equations (although the negative solutions do
not have combinatorial meanings). Our results are summarized in the next
theorem. We distribute the equations considered into three tables, according to
the methods used in their solutions.

Theorem 2.2.1. All integral solutions of the equations in the first columns of
Tables 2.1-2.3 are exactly the ones appearing in the second columns of the tables,
respectively.

2.3 Proof of Theorem 2.2.1

Proof of Theorem 2.2.1. The considered Diophantine equations can be divided
into three groups.

Equations which can be solved by Runge’s method. Consider the Diophantine
equation F (u) = G (v), where F and G are monic polynomials with integer
coefficients, F (u) − G (v) is irreducible in Q [u, v] and gcd(degF,degG) > 1.
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Equation Solutions

S3(k) =
(
l
3

)
(k, l) = (−1, 0; 0, 1, 2), (−2, 1; 3)

S3(k) =
(
l
6

)
(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5), (−2, 1;−1, 6)

S3(k) = Π3(l) (k, l) = (−1, 0;−2,−1, 0)
S3(k) = Π6(l) (k, l) = (−1, 0;−5,−4,−3,−2,−2,−1, 0)

S5(k) =
(
l
2

)
(k, l) = (−1, 0; 0, 1), (−2, 1;−1, 2), (−4, 3;−23, 24),

(−9, 8;−351, 352)

S5(k) =
(
l
4

)
(k, l) = (−1, 0; 0, 1, 2, 3), (−2, 1;−1, 4)

S5(k) = Π2(l) (k, l) = (−1, 0;−1, 0)
S5(k) = Π4(l) (k, l) = (−1, 0;−3,−2,−1, 0)

Table 2.2: Equations which can be reduced to Mordell-type equations

We can use the method of Runge [93] for computing the integer solutions of
such equations. Among the combinatorial Diophantine equations considered in
Theorem 2.2.1, there are several ones which can be treated by this method.
These equations are collected in Table 2.1. For example, using that

S5(k) =
1

12
(2k6 − 6k5 + 5k4 − k2) =

1

12
(2(k2 − k)3 − (k2 − k)2),

the equation S5(k) =
(
l
3

)
can be transformed to the equation u3 − u2 = v3 −

6v2 + 8v with the substitutions u = 2k2 − 2k, v = 2l, and the method of
Runge can be applied. There are several results and efficient algorithms for
finding the integer solutions of Runge-type equations, see for example Masser
[67], Schinzel and Grytschuk [42], Szalay [110], Tengely [112] and Walsh [123]
and the references given there. Tengely implemented his algorithm from [112]
in the Magma computational algebra system [17] and made it accessible on the
internet site www.math.klte.hu/∼tengely. We computed all integer solutions of
the equations in Table 2.1 with Tengely’s program. The total running time of
the program was only a few minutes.

Equations which can be reduced to Mordell-type equations. Under a Mordell-
type equation we mean a Diophantine equation F (u) = G (v) with degF = 3,
degG = 2 or conversely. These equations can be simply solved with Magma
by the procedure IntegralPoints. The algorithm is based upon a theorem
obtained independently by Gebel, Pethő and Zimmer [41] and Stroeker and
Tzanakis [103] that was mentioned in Section 1.2. We collected the equations
which can be reduced to Mordell-type equations in Table 2.2. For example, the
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Equation Solutions

S1(k) =
(
l
4

)
(k, l) = (−21, 20;−7, 10), (−6, 5;−3, 6),

(−2, 1;−1, 4), (−1, 0; 0, 1, 2, 3)

S1(k) =
(
l
8

)
(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5, 6, 7), (−2, 1;−1, 8),

(−10, 9;−3, 10; ), (−78, 77;−7, 14), (−221, 220;−10, 17)
S1(k) = Π4(l) (k, l) = (−16, 15;−5, 2), (−1, 0;−3,−2,−1, 0))
S1(k) = Π8(l) (k, l) = (−1, 0;−7,−6,−5,−4,−3,−2,−1, 0)

S2(k) =
(
l
3

)
(k, l) = (−1, 0; 0, 1, 2), (−2,−1), (1, 3)

S2(k) =
(
l
6

)
(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5), (1;−1, 6)

S2(k) = Π3(l) (k, l) = (−1, 0;−2,−1, 0)
S2(k) = Π6(l) (k, l) = (−1, 0;−5,−4,−3,−2,−1, 0)

S3(k) =
(
l
2

)
(k, l) = (−4, 3;−8, 9), (−2, 1;−1, 2), (−1, 0; 0, 1)

S3(k) =
(
l
4

)
(k, l) = (−2, 1;−1, 4), (−1, 0; 0, 1, 2, 3)

S3(k) =
(
l
8

)
(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5, 6, 7), (−3, 2;−2, 9),

(−2, 1;−1, 8)

S5(k) =
(
l
6

)
(k, l) = (−1, 0; 0, 1, 2, 3, 4, 5), (−2, 1;−1, 6)

S5(k) = Π3(l) (k, l) = (−1, 0;−2,−1, 0)
S5(k) = Π6(l) (k, l) = (−1, 0;−5,−4,−3,−2,−1, 0)

S7(k) =
(
l
4

)
(k, l) = (−2, 1;−1, 4), (−1, 0; 0, 1, 2, 3)

S7(k) = Π2(l) (k, l) = (−1, 0;−1, 0)
S7(k) = Π4(l) (k, l) = (−1, 0;−3,−2,−1, 0)(
k
2

)
= Π8(l) (k, l) = (0, 1;−7,−6,−5,−4,−3,−2,−1, 0)(

k
4

)
= Π4(l) (k, l) = (0, 1, 2, 3;−3,−2,−1, 0)(

k
4

)
= Π8(l) (k, l) = (0, 1, 2, 3;−7,−6,−5,−4,−3,−2,−1, 0)(

k
8

)
= Π2(l) (k, l) = (0, 1, 2, 3, 4, 5, 6, 7;−1, 0)(

k
8

)
= Π4(l) (k, l) = (0, 1, 2, 3, 4, 5, 6, 7;−3,−2,−1, 0)

Table 2.3: Equations which can be reduced to genus 1 equations
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equation S3(k) =
(
l
3

)
can be written as 3((k − 1)k)2 = 2l(l − 1)(l − 2), which

reduces to the Mordell- type equation 3u2 = 2v3−6v2 + 4v by the substitutions
u = (k − 1)k and v = l. We determined all the integer solutions of these
equations with Magma, and listed them in Table 2.2.

Equations which can be reduced to genus 1 equations. Table 2.3 contains
equations that can be transformed into genus 1 equations with simple integral
transformations. As finding the integer solutions of an equation of genus 1 is
not at all automatic, we give some details at this point. The method we use is
the Ellog method of Stroeker and Tzanakis [105]. In the remaining part of this
section, we follow the discussion and terminology of Section 1.2 without any
further reference.
The algorithm discussed in Section 1.2 can always be used in cases when equa-
tion (1.2) has the form F (u) = G (v), where F,G ∈ Z[x] with degF = 4,
degG = 2 (quartic case) or degF = degG = 3 (cubic case). Among the equa-
tions in Table 2.3 the followings reduce to quartic ones:

S1(k) =
(
l
4

)
, S1(k) =

(
l
8

)
, S1(k) = Π4(l), S1(k) = Π8(l),

S3(k) =
(
l
2

)
, S3(k) =

(
l
4

)
, S3(k) =

(
l
8

)
, S7(k) =

(
l
4

)
,

S7(k) = Π2(l), S7(k) = Π4(l),
(
k
2

)
= Π8(l),

(
k
4

)
= Π4(l),(

k
4

)
= Π8(l),

(
k
8

)
= Π2(l),

(
k
8

)
= Π4(l).

To transform these equations to the desired shape, we make use of the fact
that all of S2i−1(x),

(
x
2i

)
and Π2i(x) can be written in the form F (G(x)), where

F,G ∈ Q[x] with degG = 2, degF = i. For example, we have

S7(k) =
1

24
(3k8−12k7+14k6−7k4+2k2) =

1

24
(3(k2−k)4−4(k2−k)3+2(k2−k)2)

and
Π4(l) = l(l + 1)(l + 2)(l + 3) = (l2 + 3l)(l2 + 3l + 2).

Hence, the equation S7(k) = Π4(l) can be transformed to the equation 3u4 −
4u3 + 2u2 = 6v2 + 24v with the substitutions u = k2 − k, v = 2(l2 + 3l).

Note that the program package Magma contains a procedure (namely
IntegralQuarticPoints) which is able to locate all integral points on quartic
equations in some cases. (For details see the Magma manual [17].) However, in



2.3. PROOF OF THEOREM 2.2.1 33

the previous versions of Magma this procedure apparently contains some error,
and we solved all these equations following the Ellog method step-by-step. In
case of each equation, we obtained exactly the solutions listed in Table 2.3.
Note that in the new version of Magma (V.2.13-9) distributed by the beginning
of 2007 the procedure IntegralQuarticPoints seems to be correct, and by its
help we have also solved the above quartic equations except for

(
k
8

)
= Π2(l),(

k
8

)
= Π4(l) and S1(k) =

(
l
8

)
. In these cases Magma is only able to guarantee

that IntegralQuarticPoints gives all integral points in a subgroup of the curve
of finite index. In the other cases we have obtained the same solutions as in
Table 2.3.

Now we turn to the cubic case. From Table 2.3 the following equations
belong to this group:

S2(k) =
(
l
3

)
, S2(k) =

(
l
6

)
, S2(k) = Π3(l), S2(k) = Π6(l),

S5(k) =
(
l
6

)
, S5(k) = Π3(l), S5(k) = Π6(l).

In this case no implemented version of the procedure is available, and we follow
the Ellog method step-by-step for each equation. As an example, we illustrate
the algorithm for finding the integer solutions of the equation S2(k) = Π6(l).
Substituting u = k − 1, v = l2 + 5l, we get

f(u, v) = 2u3 + 3u2 + u− 6v3 − 60v2 − 144v = 0. (2.1)

Put
C =

{
(u, v) ∈ Q2 | f (u, v) = 0

}
.

We use Magma to perform the following computations. Equation (2.1) can be
transformed into the short Weierstrass equation

y2 = x3 − 1008x+ 2985993

with the birational transformation

x = X (u, v) = 6
1439v + 6902u+ 10358

144v − u
, y = Y (u, v) =

= 3
124296v2 − 414288uv + 1242960v + 1990654u+ 2983104 + 2877u2

(u− 144v)u
.
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Set
E =

{
(x, y) ∈ Q2 | y2 = x3 − 1008x+ 2985993

}
.

It turns out that the rank of E is r = 6, and the only torsion point of E is O.
Further, a basis of the Mordell-Weil group of E is

P1 = (24, 1725), ĥ(P1) = 1.717986 . . .,

P2 = (−36, 1725), ĥ(P2) = 1.721482 . . .,

P3 = (234, 3945), ĥ(P3) = 1.924237 . . .,

P4 = (354,−6855), ĥ(P4) = 2.062256 . . .,

P5 = (36,−1731), ĥ(P5) = 2.123124 . . .,

P6 = (−144, 381), ĥ(P6) = 2.165316 . . .,

where the Néron-Tate heights of the basis points are also indicated. Let

P = n1P1 + . . .+ n6P6 (ni ∈ Z, i = 1, . . . , 6)

be a point of E, which is the image of an integer point of C. In this case the
linear form (1.6) is of the shape

L = n0ω + n1u1 + n2u2 + n3u3 + n4u4 + n5u5 + n6u6 − u7,

where ω is the fundamental real period, and ui are the elliptic logarithms of the
points Pi (i = 1, . . . , 6) and R0, respectively. We have

R0 =

(
6

1439 + 6902 · 3
√

3

144− 3
√

3
, 361

3
√

3

3
+ 864

3
√

9 + 8649

)
and

ω = 0.704584 . . ., u1 = 0.220969 . . ., u2 = 0.255688 . . ., u3 = 0.128958 . . .,
u4 = 0.598701 . . ., u5 = 0.490562 . . ., u6 = 0.340110 . . ., u7 = 0.091196 . . ..

We deduce an upper bound for N = max1≤i≤6 |ni|. With the previous notation
we have

G(u, v) = 2
∂uY (u, v) · ∂vf(u, v)− ∂vY (u, v) · ∂uf(u, v)

3X2(u, v)− 1008
= −2.

If U(P ) ≥ T then ∫ ∞
U(P )

G(u, v)du

∂vf(u, v)
=

∫ x0i

x(P )

dx

ε
√
q(x)

,



2.3. PROOF OF THEOREM 2.2.1 35

where T is the maximum of the first coordinates of the poles of X and Y ; now
we have T = 0. Since

4.1u2 < 9v2 + 60v + 72

for all integer solutions u, v of (2.1)∫ ∞
U(P )

G(u, v)du

∂vf(u, v)
=

∫ ∞
U(P )

1

9v2 + 60v + 72
du <

1

4.1 |u|

holds. Using the explicit form of X (u, v), we obtain that

h(X(u, v)) < 11.953526 + log |u| .

Furthermore, by a result of Cremona, Prickett and Siksek [34] we get that

ĥ(P )− 1

2
h(P ) < 2.838410,

whence

ĥ(P ) < 8.815173 +
1

2
log |u| .

Additionally,
ĥ(P ) ≥ λN2

where λ = 0.299043 . . . is the smallest eigenvalue of ĥ with respect to the basis
P1, . . . , P6. From the above inequalities we obtain the upper bound

|L| < 1.106568 · 107 · exp(−0.598086N2).

We deduce a lower bound for N by Lemma 1.2.1. We have

ω1 = 0.365010 . . .− i · 0.201383 . . ., ω2 = 0.365010 . . .+ i · 0.201383 . . .,

whence
τ = 0.533276 . . .+ i · 0.845940 . . . ,

and

jE = −9710862336
330222313475 , Ai = hE = 26.523031 . . ., (i = 0, . . . , 7),

D = 3, c8 = 1.227240 · 10354, c9 = 2.098612, c10 = 28.621644.

Hence by Lemma 1.2.1 we obtain the lower bound

|L| > exp
(
−1.22724 · 10354(log(N ′) + 2.09862)(log(log(N ′)) + 28.62165)9

)
.
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Using that N ′ ≤ 6N + 1 and combining the upper and lower bounds for the
linear form L, we get the initial bound

N < K3 = 2.753 · 10185.

We reduce this bound by the LLL-algorithm, using Lemma 1.2.2. The constants
K1 and K2 are given by

K1 = 1.570524 · 107, K2 = 0.598086.

The reduction steps are summarized in the following table:

bound for N K0 new bound for N
2.753 · 10185 5.3 · 101322 67

67 6.4 · 1047 15
15 5.5 · 1016 9

After the third iteration we obtain N ≤ 9, which cannot be improved further.
The inverse of the birational transformation X and Y are

u = U(x, y) =
−6 (16x+ 767) (36x+ 431)

10x2 + 24xy + 206808x− 1439y + 5462793
,

v = V (x, y) =
−24x2 + 992449x− 10358y + 29808030

10x2 + 24xy + 206808x− 1439y + 5462793
.

Using these functions, we can compute all the integer points of C. These are
given by

(u, v) = (−1, 0;−6,−4, 0), (−33,−26), (−14,−13), (−11,−11), (2,−5).

In view of the original substitution, all integer solutions of the equation S2(k) =
Π6(l) are

(k, l) = (0, 1;−5,−4,−3,−2,−1, 0).

The integer solutions of all other cubic and quartic equations can be determined
with a similar process and the solutions are exactly those which are summarized
in Table 2.3. Hence Theorem 2.2.1 is proved.



Chapter 3

Combinatorial numbers in
binary recurrences

3.1 Introduction

There are many papers about values of a polynomial p(x) ∈ Q[x] (taken at inte-
ger values of x) in a binary linear recurrence sequence U . The first such results
dealt with the case where U is a special sequence and p(x) = xm with some
m ≥ 2. That is, we are interested in terms of U which are perfect powers. In
1962 Ogilvy [77], one year later Moser and Carlitz [73], and Rollett [92] proposed
the following problem: determine all squares in the Fibonacci sequence F . The
problem was solved by Cohn [29, 30] and Wyler [125] who independently proved
with elementary methods that the only squares in the Fibonacci sequence are
F0 = 0, F1 = F2 = 1, F12 = 144. Later, Alfred [1] and Cohn [31] determined the
squares in the Lucas sequence L. Pethő [80] and Cohn [32] independently de-
termined the perfect powers in the Pell sequence. Recently, Bugeaud, Mignotte
and Siksek [28] showed that the perfect powers in the Fibonacci and Lucas se-
quences are exactly F0 = 0, F1 = F2 = 1, F6 = 8, F12 = 144, and L1 = 1, L3 = 4,
respectively.

Another branch of problems is about triangular numbers in recurrence se-

quences, i.e. we take the polynomial p(x) = x(x+1)
2 . Hoggatt stated the con-

jecture that there are only five triangular Fibonacci numbers. In 1989 Ming
[69] proved that this conjecture is true. Furthermore, Ming [70] and McDaniel
[68] determined the triangular numbers in the Lucas and Pell sequences, respec-

37
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tively. In [108] Szalay described all values of the polynomials S2(x) and S3(x)
in the Fibonacci, Lucas and Pell sequences, where Sk(x) denotes the sum of the
first x− 1 kth powers (x ∈ N). Further, he listed all numbers of the form

(
x
4

)
in

the Fibonacci and Lucas sequences, as well. As a generalization of the previous
results, Tengely [114] determined the g-gonal numbers in the Fibonacci, Lucas,
Pell and Associated Pell sequences for g ≤ 20. Recently, Tengely [115] showed
that the only term of the form

(
x
5

)
of the Lucas sequence is L1 = 1.

The above mentioned results give complete solutions of the problem in case
of certain sequences U and polynomials p. Beside them there are several results
in the literature which provide effective upper bounds for the solutions under
certain assumptions. The most extensively investigated case is about perfect
powers, i.e. where p(x) = xm with some m ≥ 2. Instead of trying to survey
the extremely huge literature we only refer to the book [99] and the references
given there. Finally, we mention that Szalay [108] provided an algorithm for the
complete description of the values of a polynomial p(x) of degree 3 in a binary
recurrence sequence U under some assumptions.

In this chapter we prove three theorems concerning the values of some poly-
nomials in binary recurrence sequences. First we provide an effective finiteness
theorem for certain combinatorial numbers, namely for binomial coefficients,
products of consecutive integers, power sums and alternating power sums in
binary recurrence sequences, under some assumptions. The proof of this theo-
rem is based on Baker’s method together with certain results of Brindza [19],
Ping-Zhi [81], Pintér and Rakaczki [85] and Rakaczki [90]. Our second result is
an extension of the above mentioned result of Szalay. More precisely, it provides
an efficient algorithm for determining the values of certain degree 4 polynomi-
als in binary recurrence sequences, under some assumptions. In particular, we
implemented the main part of our algorithm in Magma [17]. Finally, partly by
the help of this algorithm we give all combinatorial numbers mentioned above
for the small values of the parameter involved in the Fibonacci, Lucas, Pell
and Associated Pell sequences. We mention that to prove the latter result we
reduce the problem to elliptic and more generally to genus 1 equations. We use
the Ellog method and the program package Magma to resolve our particular
equations. The results of Chapter 3 are published in [59].



3.2. NOTATION 39

3.2 Notation

Let U = {Un}∞n=0 be a binary recurrence sequence defined by the initial terms
U0, U1 ∈ Z and the recurrence relation

Un = AUn−1 +BUn−2 (n ≥ 2)

where A,B are non-zero integers. Let α and β denote the zeros of the companion
polynomial x2−Ax−B of U . Further, let D = A2 + 4B be the discriminant of
U and

au = U1 − βU0, bu = U1 − αU0, C = aubu = U2
1 −AU0U1 −BU2

0 .

The sequence U is called non-degenerate if C 6= 0 and α/β is not a root of
unity. It is well-known that if U is non-degenerate then for all n = 0, 1, . . . we
have

Un =
auα

n − buβn

α− β
.

From this point on we assume that B = ±1 and that U is non-degenerate. Then
as it is also well-known, U has a so-called associate sequence V = {Vn}∞n=0 for
which

V 2
n −DU2

n = 4C(−B)n (3.1)

holds for all n = 0, 1, . . .. Observe that by our assumption B = ±1, we have
(−B)n = ±1. Further, note that V0 = 2U1 − AU0, V1 = AU1 + 2BU0 and V
satisfies the same recurrence relation as U .

Beside dealing with general sequences U we consider combinatorial num-
bers in certain special famous sequences, too. Let F , L, P and Q denote the
Fibonacci, Lucas, Pell and Associated Pell sequence, respectively. These se-
quences are defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2),
L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 (n ≥ 2),
P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 (n ≥ 2),
Q0 = 1, Q1 = 1, Qn = 2Qn−1 +Qn−2 (n ≥ 2).

Now we give what kind of combinatorial numbers we are interested in. Be-
side binomial coefficients, we consider power sums, alternating power sums and
products of consecutive integers as well. In Chapter 2 we defined these polyno-
mials except for the alternating power sum. That polynomial is defined for all
k, x ∈ N as

Rk(x) = −1k + 2k − . . .+ (−1)x−1(x− 1)k.

We mention that Rk(x) is a polynomial of degree k.
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3.3 New results

We use the previous notation. Further, recall that B = ±1 and U = {Un}∞n=0

is non-degenerate. All our results concern the equation

Un = p(x) (3.2)

in integers n, x with n ≥ 0. For the sake of completeness we also take care of the
solutions with x ≤ 0, although these solutions usually do not have combinatorial
meanings.

First we give an effective result for the solutions of (3.2) which is valid for
general U .

Theorem 3.3.1. Let k ≥ 2 and p(x) be one of the polynomials Sk−1(x),
Rk(x), Πk(x),

(
x
k

)
. If either k = 2 or p(x) is one of S2(x),Π3(x),

(
x
3

)
, then

further assume that B = 1. Then the solutions n, x of equation (3.2) satisfy
max (n, |x|) < c0(U, k), where c0(U, k) is an effectively computable constant de-
pending only on U and k.

Obviously, the assumption k ≥ 2 cannot be omitted. The next proposition
shows that the condition B = 1 in the special cases of the theorem is necessary
as well.

Proposition 3.3.1. Let U be the sequence defined by B = −1 and by the values
U0, U1, A given in the ith row of Table 3.1, for any i ∈ {1, 2, 3, 4, 5}. Further,
let p(x) be a polynomial from the last column of the ith row of Table 3.1. Then
equation (3.2) has infinitely many solutions.

U0 U1 A p(x)

1 253 254 S1(x), R2(x),
(
x
2

)
2 506 254 Π2(x)

1 3759787041401 3760028828350 S2(x)

7770 455962704852690 58682458798
(
x
3

)
46620 2735776229116140 58682458798 Π3(x)

Table 3.1: Settings where equation (3.2) has infinitely many solutions
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Remark. If (3.2) has infinitely many solutions then these solutions have some
special structure. This structure has been described by Nemes and Pethő [74],
see Theorem 3 (cf. also [78], [79]). It turns out that the solutions x belong
to certain recurrence sequences, while the solutions n come from some arith-
metic progressions. For details see [74], [78] and [79]. Furthermore, to find the
examples provided by Table 3.1, the above mentioned Theorem 3 of [74] can
also be used. In the beginning of the proof of Proposition 3.3.1 we shall show
that our examples do satisfy the conditions of Theorem 3 of [74]. Since the
assumptions of Theorem 3 of [74] are not sufficient (see Remark 2 of [74]), it
remains necessary to show that in these cases (3.2) really has infinitely many
solutions. We also mention that for all polynomials that occur in Table 3.1 using
the method in [74] many more binary recurrence sequences can be constructed
with infinitely many solutions for equation (3.2).

As we mentioned above, Szalay [108] gave an algorithm for the resolution of
(3.2) in the case when p(x) is a polynomial of degree 3. We extend this result
to the degree 4 case. For this purpose we need some further notation. Let
p(x) ∈ Q[x] be a polynomial of degree 4 and write

p(x) = A0x
4 +A1x

3 +A2x
2 +A3x+A4.

Suppose that the coefficients of p fulfill the relations

A0 =
a

e
,A1 =

4ab

e
,A2 =

6ab2 + c

e
,A3 =

4ab3 + 2bc

e
, A4 =

ab4 + b2c+ d

e
,

with some integers a, b, c, d, e, ae 6= 0. Then we have

p(x) =
a(x+ b)4 + c(x+ b)2 + d

e
.

Write x1 = x+ b and let y = Vn where V = {Vn}∞n=0 is the associate sequence
of U . Then by (3.1) we get

y2 −D
(
ax4

1 + cx2
1 + d

e

)2

= 4C(−B)n,

which yields
Y 2 = h4X

4 + h3X
3 + h2X

2 + h1X + h0, (3.3)

where
Y = ey, X = x2

1, h4 = a2D, h3 = 2acD,
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h2 = (c2 + 2ad)D, h1 = 2cdD, h0 = d2D + 4e2C(−B)n.

Equation (3.3) in general is of genus 1, therefore the Ellog method can be
used to determine all its integral solutions. In particular, using the program
package Magma, equation (3.3) can be solved completely in concrete cases.
If h0 is a perfect square then (3.3) can be solved directly by the procedure
IntegralQuarticPoints. Putting together some tools and results about genus
1 curves, we give an efficient method for the resolution of (3.3) in the general
case. For the description of the method see the proof of Theorem 3.3.2. (Further,
as we mentioned we implemented our algorithm in Magma, too.) From the
solutions, the values x and the indices n can be easily determined.

Summarizing the above argument, we get

Theorem 3.3.2. Using the previous notation, suppose that 8aDd(2ad− c2) 6=
−64a2C ± e2 − c4D. Then equation (3.2) has only finitely many solutions n, x
and these solutions can be effectively determined.

Our final result completely describes the above type combinatorial numbers
for the small values of the parameter k in some well-known binary recurrence
sequences.

Theorem 3.3.3. Let U ∈ {F,L, P,Q} and p(x) ∈ {S1(x), S2(x), S3(x), R2(x),
R4(x),Π2(x),Π3(x),Π4(x),

(
x
2

)
,
(
x
3

)
,
(
x
4

)
}. Then the solutions n, x of equation

(3.2) are exactly those contained in Table 3.2. The sign ”–” shows that the actual
equation has no solution. Further, the references given in the table indicate that
the corresponding equation was solved in the appropriate paper.

Remark. The complete solution of the equation Un = R3(x) remains open. In
this case by relation (3.1) and with the substitution y = Vn we get the equation

y2 = D
4x6 − 12x5 + 9x4

16
+ 4C(−B)n,

if x is even and

y2 = D
4x6 − 12x5 + 9x4 + 4x3 − 6x2 + 1

16
+ 4C(−B)n,

if x is odd. These equations are of genus 2 thus neither Szalay’s method nor
our algorithm given in the proof of Theorem 3.3.2 can be used to solve them.
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= Fn Ln Pn Qn

S1(x) [69] [70] [68]
(0,−1), (0, 2),
(1,−1), (1, 2),
(2,−2), (2, 3)

S2(x) [108] [108] [108] (0, 2), (1, 2)

S3(x) [108] [108] [108]
(0,−1), (0, 2),
(1,−1), (1, 2)

T2(x)

(0, 0), (0, 1),
(1,−1), (2,−1),
(4, 3), (8, 7),
(10, 11)

(1,−1), (2, 3),
(18,−107)

(1,−1)
(0,−1), (1,−1),
(2, 3)

T4(x)
(0, 0), (0, 1),
(1,−1), (2,−1)

(1,−1)
(0, 0), (0, 1),
(1,−1)

(0,−1), (1,−1)

Π2(x)
(0,−1), (0, 0),
(3,−2), (3, 1)

–
(0,−1), (0, 0),
(2,−2), (2, 1),
(4,−4), (4, 3)

–

Π3(x)
(0,−2), (0,−1),
(0, 0)

–
(0,−2), (0,−1),
(0, 0)

–

Π4(x)
(0,−3), (0,−2),
(0,−1), (0, 0)

–
(0,−3), (0,−2),
(0,−1), (0, 0)

–

(
x
2

)
[69] [70] [68]

(0,−1), (0, 2),
(1,−1), (1, 2),
(2,−2), (2, 3)(

x
3

)
[109] [109] [109] –

(
x
4

)
[108] [108]

(0, 0), (0, 1),
(0, 2), (0, 3),
(1,−1), (1, 4),
(3,−2), (3, 5),
(6,−5), (6, 8)

(1,−1), (1, 4)

Table 3.2: Solutions of equation (3.2) with the particular settings
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3.4 Proofs

We need some new concepts and also some lemmas for the proof of Theorem
3.3.1. A polynomial f(x) ∈ C[x] is called non-degenerate if it has at least three
zeros of odd multiplicities.

Lemma 3.4.1 (Brindza [19]). Let b be a non-zero rational number and f(x) ∈
Q[x] a non-degenerate polynomial. Then for the integral solutions x, y of the
hyperelliptic equation

f(x) = by2

we have max (|x|, |y|) < c1, where c1 is an effectively computable constant de-
pending only on b and f .

Proof. This is a special case of the Theorem in [19].

Lemma 3.4.2 (Ping-Zhi [81]). Let k be an integer with k ≥ 5, b an algebraic
number and put fk(x) =

(
x
k

)
− b. Then apart from the cases when k = 6, b =

− 10±7
√

7
1215 , the polynomial fk(x) is non-degenerate.

Proof. See the proof of Theorem 2 in [81].

Further on, let Bk(x) and Ek(x) denote the kth Bernoulli and Euler polynomial,
respectively (see e.g. [87]).

Lemma 3.4.3 (Pintér and Rakaczki [85]). If k is an integer with k ≥ 5 and
a, b are complex numbers with b 6= 0 then the polynomial (Bk(x) + a)2 + b is
non-degenerate.

Proof. This is Lemma 5 in [85].

Lemma 3.4.4 (Rakaczki [90]). If k is an integer with k ≥ 5 and a, b are complex
numbers with b 6= 0 then the polynomial (Ek(x) + a)2 + b is non-degenerate.

Proof. This is Lemma 2 in [90].

Now we have all the tools to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. We split the proof into three parts according to the
value of k. In each part we investigate the possible choices for p(x) in turn.

The case k ≥ 5. Assume first that p(x) =
(
x
k

)
. By (3.1) with y = Vn, we

get

y2 = D

(
x

k

)2

+ 4C(−B)n,
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for which by factoring the right-hand side we obtain

y2 = D

((
x

k

)
+ 2

√
−C(−B)n

D

)((
x

k

)
− 2

√
−C(−B)n

D

)
. (3.4)

Note that as B = ±1 and C 6= 0 the zeros of the two factors on the right-hand
side of (3.4) must be distinct. Thus by Lemmas 3.4.1 and 3.4.2 it is enough to
consider the cases where

k = 6, b = −10± 7
√

7

1215
.

Hence by a simple calculation we get that one of the factors of the right-hand
side of (3.4) is non-degenerate. Thus by Lemma 3.4.1 the theorem follows.

Now let p(x) = Πk(x). By (3.1) with y = Vn we obtain that

y2 = DΠk(x)2 + 4C(−B)n. (3.5)

Since Πk(x) = k!
(
x+k−1
k

)
, and a non-zero constant multiple of a non-degenerate

polynomial is non-degenerate, by the previous argument the polynomial on the
right-hand side of (3.5) is non-degenerate. Thus the theorem follows also in this
case.

Assume that p(x) = Sk−1(x). It is well-known that

Sk−1(x) =
1

k
(Bk(x)−Bk(0)),

where Bk(x) is the kth Bernoulli polynomial. Thus by (3.1) with y = Vn we
have

y2 =
D

k2

(
(Bk(x)−Bk(0))2 +

4C(−B)nk2

D

)
. (3.6)

Applying Lemma 3.4.3 with a = −Bk(0) and b = 4C(−B)nk2

D 6= 0, the polynomial
on the right-hand side of (3.6) is non-degenerate. So the theorem follows again
by Lemma 3.4.1.

Finally, let p(x) = Rk(x). It is well-known that for all k ∈ N

Rk(x) =
1

2
(Ek(0) + (−1)x+1Ek(x))

holds, where Ek(x) is the kth Euler polnomial. In the usual manner, (3.1) gives

y2 =
D

4

(
(Ek(x) + (−1)x+1Ek(0))2 +

16C(−B)n

D

)
. (3.7)
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Using Lemma 3.4.4 with a = (−1)x+1Ek(0) and b = 16C(−B)n

D 6= 0, we obtain
that the polynomial on the right-hand side of (3.7) is non-degenerate. Thus by
Lemma 3.4.1 the theorem holds.

The case k = 4. Take first p(x) =
(
x
4

)
. Then (3.1) yields

y2 = D

(
x

4

)2

+ 4C(−B)n,

where y = Vn. If the discriminant of the polynomial on the right-hand side is
non-zero, then the polynomial is non-degenerate and the theorem is the conse-
quence of Lemma 3.4.1. The discriminant of this polynomial is zero if and only
if 4C(−B)n = −9D

16384 , or −D576 , therefore we need to check only these two cases.
In the first case we obtain the hyperelliptic equation

y2 = D

(
x

4

)2

− 9D

16384
=

=
D

147456
(4x2 − 12x− 1)(16x4 − 96x3 + 176x2 − 96x+ 9)(2x− 3)2

and by Lemma 3.4.1 we are done. The second case gives the hyperelliptic
equation

y2 = D

(
x

4

)2

− D

576
=

D

576
(x4 − 6x3 + 11x2 − 6x− 1)(x2 − 3x+ 1)2

and by Lemma 3.4.1 the theorem follows again.
When p(x) ∈ {Π4(x), S3(x), R4(x)} the theorem can be verified by a similar

argument. We omit the details.
The case k ≤ 3. First note that when p(x) = R3(x) by a similar argument

as in case of k = 4 the theorem follows. Hence we may assume that either
k = 2, or k = 3, p(x) ∈ {

(
x
3

)
,Π3(x), S2(x)}. Recall that in these cases we have

B = 1. We only consider one example, all the other possibilities can be handled
similarly. Let p(x) =

(
x
2

)
. Putting y = Vn in (3.1) we get

y2 = D

(
x

2

)2

+ 4C(−1)n. (3.8)

The discriminant of the polynomial on the right-hand side is zero if and only if
4C(−1)n = −D

64 . Thus this polynomial is non-degenerate, unless 256|D is valid.
However, as now D = A2 + 4, a simple calculation gives that it is impossible.
Therefore the right-hand side of (3.8) is non-degenerate and by Lemma 3.4.1
the theorem follows.
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For the proof of Proposition 3.3.1 we need the following concept and lemma.
Let Tk(x) denote the Chebisev polynomial of degree k, i.e., T0(x) = 2, T1(x) = x,
and Tn+1(x) = xTn(x)− Tn−1(x) for n ≥ 1.

Lemma 3.4.5 (Nemes and Pethő [74]). Let Un be a non-degenerated binary
recurrence sequence with |B| = 1, and p(x) be a polynomial with integer coef-
ficients of degree k ≥ 2. Let be q = −(−B)mC/D and E = 2(k − 1)a2

k−1 −
4kakak−2. If (3.2) has infinitely many solutions n, x, then

p(x) = ε
√
qTk

(
2k|ak|
η
√
E
x+

2ak−1

η
√
E

)
,

where ε and η are either 1 or −1. Furthermore, either x is an integer root of
p′(x) or k|ak|x + ak−1 is contained in the union of finitely many second order
recurrence sequences with discriminants Di, where D/Di are squares of integers.

Proof. This is Theorem 3 in [74].

Proof of Proposition 3.3.1. We start the proof showing that our examples sat-
isfy the conditions of Lemma 3.4.5. We consider only one example, the others
can be handled similarly. Let p(x) =

(
x
2

)
. Then p(x) can be written in the form

p(x) =
1

16
T2(2
√

2x−
√

2) =
1

16
(8x2 − 8x).

From this it follows that if equation (3.2) has infinitely many solutions then
the parameters of the binary recurrence sequence U must satisfy C

D = − 1
256 .

Choosing U0 = 1, U1 = 253, A = 254 with B = −1 we get that C
D = −252

64512 =
− 1

256 . Hence we can conclude that the binary recurrence sequence belonging
to the parameters of the first row of Table 3.1 and the polynomial p(x) =

(
x
2

)
satisfy the conditions of Lemma 3.4.5.

Now we prove that with these choices of the parameters, equation (3.2)
actually has infinitely many solutions. Since the companion polynomial of U is
x2 − 254x+ 1, we have

Un = 3
√

7+8
16 (127 + 48

√
7)n − 3

√
7−8
16 (127− 48

√
7)n (n = 0, 1, . . .).

Let W = {Wn}∞n=0 be the ternary recurrence sequence defined by the initial
values W0 = 2, W1 = 23, W2 = 359 and by the recurrence relation Wn =
17Wn−1 − 17Wn−2 +Wn−3 (n ≥ 3). Then the companion polynomial of W is

x3 − 17x2 + 17x− 1 = (x2 − 16x+ 1)(x− 1).
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Hence we have

Wn =
3 +
√

7

4
(8 + 3

√
7)n +

3−
√

7

4
(8− 3

√
7)n +

1

2
1n.

Since Un can be written as Un = 1
16

(
(8 + 3

√
7)2n+1 + (8− 3

√
7)2n+1

)
, it can

be easily verified that for all n = 0, 1, . . . we have Un =
(
Wn

2

)
. Thus with the

choice x = Wn equation (3.2) has infinitely many solutions in n, x.

Proof of Theorem 3.3.2. As we explained before formulating the theorem, to
prove the statement it is sufficient to consider equation (3.3) with our special
settings, i.e.

Y 2 = D
(
a2X4 + 2acX3 + (c2 + 2ad)X2 + 2cdX + d2

)
+ 4C(−B)ne2.

The discriminant of the polynomial on the right-hand side is

∆ = 256D3a4C2e4(16a2Dd2 + 64a2C(−B)ne2 − 8aDc2d+ c4D).

Since by our conditions Dae 6= 0, and U is non-degenerate therefore C 6= 0,
thus if

8aDd(2ad− c2) 6= −64a2C(−B)ne2 − c4D,

then ∆ 6= 0. Hence, by Lemma 3.4.1 the solutions n, x of (3.2) can be effectively
determined.

The solutions can be determined explicitly in the following way. In what
follows, we use certain procedures of the program package Magma and also
Magma programs of Bruin and Stoll [26] and Tengely [112]. We emphasize
that all the procedures we use or mention are known from the literature. The
novelty at this point is only that we put them together in order to get a complete
algorithm.

First, by the command HyperellipticCurve we define the hyperelliptic
curve

Y 2 = h(X), (3.9)

where h(X) := h4X
4 +h3X

3 +h2X
2 +h1X +h0 is the right-hand side of (3.3).

If h4 is a perfect square then one can use Runge’s method to solve (3.9). In fact,
by the help of a Magma program of Tengely, all solutions can be determined in
this case (see [112]). Otherwise, we try to determine some rational points on
the curve (3.9) with the help of the procedure Points. If we cannot get any
rational points, then most probably (3.9) has no rational solutions at all. This
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can be very efficiently checked by the procedure TwoCoverDescent of Bruin and
Stoll. (For the description of this procedure and some examples see [26].)

Assume now that with the procedure Points we obtained some rational
points on (3.9). Suppose that there is a point (X0, Y0) among them such that

Y0 = 0. Let (X0, 0) =
(
x1

x2
, 0
)

be such a point of the curve. Then using the

substitutions U = x2X − x1 and V = x2
2Y , noting that h(X0) = 0, we obtain

an equation of the shape

V 2 = t4U
4 + t3U

3 + t2U
2 + t1U

with some ti ∈ Z (i = 1, . . . , 4). Factorizing the right-hand side we get that

sV 2
1 = U (3.10)

and
sV 2

2 = t4U
3 + t3U

2 + t2U + t1 (3.11)

with some integers s, V1, V2. Equation (3.10) implies that s | U , hence (3.11)
yields that s | t1. Thus to solve our original problem it is sufficient to find the
integral points on finitely many elliptic curves given by (3.11). This can be done
with the procedure IntegralPoints. Following the substitutions backwards we
obtain all integer solutions of (3.9).

Finally, consider the case when the procedure Points finds only rational
points on (3.9) with nonzero second coordinates. In this case by the help of
certain birational transformations (3.9) can be transformed into an elliptic curve.
For the theory of birational transformations see e.g. Harada and Lang [55],
Connell [33], Tzanakis [117], Hermann [56] and the references given there. To
resolve (3.9) completely, one can use the procedure IntegralQuarticPoints of
Magma (which is actually based upon [117]). One needs to call the procedure
IntegralQuarticPoints by (3.9) and one of the above mentioned points. In
this way we can get all integral solutions of (3.9) also in this case.

We implemented our algorithm for the resolution of (3.9) in Magma.
From the solutions of equation (3.3) all solutions n, x of the original equation

(3.2) can be easily determined.

Proof of Theorem 3.3.3. We split the proof into three parts. We start with
equations which turn to be unsolvable locally. Then we deal with equations
which can be reduced to elliptic equations. Finally, we prove the theorem for
those equations which can be reduced to genus 1 equations. In all cases we give
the proof only for one equation as the other ones can be handled similarly.
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Throughout the proof we shall use the well-known facts that L is the asso-
ciate sequence of F and Q is the associate sequence of P .

Locally unsolvable equations. In this part of the proof we deal with
those equations which turn out to be locally unsolvable for some prime. The
following equations belong to this group: Qn = Π2(x),Π4(x).

As an example, take the equation Qn = Π2(x). Writing y = Pn in (3.1), we
get the equations

y2 = 8(x(x+ 1))2 ∓ 8.

A simple calculation modulo 16 leads to a contradiction. Hence equation Qn =
Π2(x) does not have any integer solutions. We note that our algorithm described
in the proof of Theorem 3.3.2 provides the same conclusion.

Elliptic equations. In this part we handle those equations which can
be reduced to elliptic equations. The following equations belong to this set:
Qn = S2(x),

(
x
3

)
and Un = Π3(x), with Un ∈ {Fn, Ln, Pn, Qn}.

As an example, consider the equation Pn = Π3(x). With the substitution
y = Qn, (3.1) yields

y2 = 8(x(x+ 1)(x+ 2))2 ± 4.

With the substitution x1 = 2(x+ 1)2 the right-hand side can be transformed to
a polynomial of degree 3, therefore we obtain the elliptic equations

y2 = x3
1 − 4x2

1 + 4x1 ± 4.

With the procedure IntegralPoints of Magma one can compute the integer
points of these curves, and then determine the solutions n, x of (3.2). The
solutions are exactly the ones listed in Table 3.2.

Genus 1 equations. In this part we consider those equations which can
be reduced to genus 1 equations. All the equations considered which are not
mentioned so far belong to this group.

Consider the equation Fn = Π4(x). With y = Ln and x1 = x2 + 3x by (3.1)
we get the equation

y2 = 5x4
1 + 20x3

1 + 20x2
1 + 4(−1)n.

If n is even then directly, if n is odd then after the substitution x2 = x1 + 1
we can apply the procedure IntegralQuarticPoints of Magma to compute
the integer solutions of this equation. Then we easily get the solutions n, x of
the original equation (3.2). The solutions are exactly the ones listed in Table
3.2.



Chapter 4

Results on (a, b)-balancing
numbers

4.1 Introduction and main results

A positive integer n is called a balancing number if

1 + · · ·+ (n− 1) = (n+ 1) + · · ·+ (n+ r)

holds for some positive integer r (see [7] and [39]). The sequence of balancing
numbers is denoted by Bm (m = 1, 2, . . . ). As one can easily check, we have
B1 = 6 and B2 = 35. Note that by a result of Behera and Panda [7], we have

Bm+1 = 6Bm −Bm−1 (m > 1).

In particular, there are infinitely many balancing numbers.

The literature of balancing numbers is very rich. In [62] and [63] Liptai
proved that there are no Fibonacci and Lucas balancing numbers, respectively.
Later, Szalay [111] derived the same results by a different method.

In [64] Liptai, Luca, Pintér and Szalay generalized the concept of balancing
numbers in the following way. Let y, k, l be fixed positive integers with y ≥ 4.
A positive integer x with x ≤ y − 2 is called a (k, l)-power numerical center for
y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

51
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In [64] several effective and ineffective finiteness results were proved for (k, l)-
power numerical centers.

Recently, the ”balancing” property has been investigated in recurrence se-
quences (see [14]). In this chapter we extend the concept of balancing numbers
to arithmetic progressions. Let a > 0 and b ≥ 0 be coprime integers. If for some
positive integers n and r we have

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

then we say that an + b is an (a, b)-balancing number. The sequence of (a, b)-

balancing numbers is denoted by B
(a,b)
m (m = 1, 2, . . . ). We mention that since

B
(1,0)
m = Bm for all m, we obtain a generalization of balancing numbers.

We prove several effective finiteness and explicit results concerning polyno-

mial values in the sequences B
(a,b)
m . That is, we consider the equation

B(a,b)
m = f(x) (4.1)

in integers m and x with m ≥ 1, where f is some polynomial with rational
coefficients, taking only integral values at integers. To prove our theorems,
beside the above mentioned results of Ping-Zhi [81], Pintér and Rakaczki [85]
and Rakaczki [90], we further need the modular method developed by Wiles
[124] and others and a deep result of Bennett [8] concerning binomial Thue
equations. The results of Chapter 4 are published in [60].

From this point on, when we refer to equation (4.1) we always assume that
a and b are arbitrary, but fixed coprime integers such that a > 0 and b ≥ 0.
Our first result is the following.

Theorem 4.1.1. Let f(x) be a monic polynomial with integer coefficients, of
degree ≥ 2. If a is odd, then for the solutions of (4.1) we have max(m, |x|) <
c0(f, a, b), where c0(f, a, b) is an effectively computable constant depending only
on a, b and f .

Our next result concerns the case where f(x) = xl with some l ≥ 2. In
this case solving equation (4.1) is equivalent to finding (a, b)-balancing numbers
which are perfect powers.

Theorem 4.1.2. If a2 − 4ab − 4b2 = 1, then there is no perfect power (a, b)-
balancing number.

Remark. One can easily check that the equation a2 − 4ab − 4b2 = 1 has
infinitely many solutions in integers a, b with a > 0, b ≥ 0. Hence Theorem
4.1.2 completely solves the proposed problem for infinitely many pairs (a, b).
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The following theorem takes up the problem where the polynomial f(x) in
(4.1) has some combinatorial meaning. More precisely, we investigate binomial
coefficients

(
x
k

)
, products of consecutive integers Πk(x), power sums Sk(x) and

alternating power sums Rk(x). Note that the coefficients of
(
x
k

)
, Sk(x) and

Rk(x) are not integers. Further, in the case f(x) = Πk(x) Theorem 4.1.1 yields
a finiteness result, however, only for the odd values of the parameter a.

For these combinatorial choices of f(x) our next statement yields a bound
for the solutions of (4.1), without any assumptions for the parameters a and b.

Theorem 4.1.3. Let k ≥ 2 and f(x) be one of the polynomials
(
x
k

)
, Πk(x),

Sk−1(x), Rk(x). Then the solutions of equation (4.1) satisfy max(m, |x|) <
c1(a, b, k), where c1(a, b, k) is an effectively computable constant depending only
on a, b and k.

In our final result, under the assumption a2 − 4ab− 4b2 = 1, we provide the
complete solution of (4.1) with the above choices of f(x), for some small values
of the parameter k. More precisely, we consider all cases where (4.1) can be
reduced to an equation of genus 1. Further, we also solve a particular case of
(4.1) which can be reduced to the resolution of a genus 2 equation.

Theorem 4.1.4. Suppose that a2−4ab−4b2 = 1. Let f(x) ∈ {
(
x
2

)
,
(
x
3

)
,
(
x
4

)
,Π2(x),

Π3(x),Π4(x), S1(x), S2(x), S3(x), S5(x)}. Then the solutions (m,x) of equation
(4.1) are those contained in Table 4.1. For the corresponding parameter values
we have (a, b) = (1, 0) in all cases.

f(x) Solutions (m,x) of (4.1)(
x
2

)
(1,−3), (1, 4)(

x
3

)
(2,−5), (2, 7)(

x
4

)
(2,−4), (2, 7)

Π2(x) (1,−3), (1, 2)
Π3(x) (1,−3), (1, 1)
Π4(x) −−
S1(x) (1,−4), (1, 3)
S2(x) (3,−8), (3, 9), (5,−27), (5, 28)
S3(x) −−
S5(x) −−

Table 4.1: Solutions of equation (4.1) with the particular polynomials
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Remark. We considered some other related equations that lead to genus 2
equations. However, because of certain technical difficulties, we could not solve
them by the Chabauty method. We checked that under the assumption a2 −
4ab − 4b2 = 1 equation (4.1) has no ”small” solutions (i.e. solutions with
|x| ≤ 10000) in cases f(x) ∈ {

(
x
6

)
,
(
x
8

)
,Π6(x),Π8(x), S7(x)}.

4.2 Proof of the theorems

For the proof of our theorems we need several lemmas. The first one is of prin-
cipal importance, because it opens access to the application of deep methods.

Lemma 4.2.1. For any a > 0, b ≥ 0 and m ≥ 1

y2 − 8
(
B(a,b)
m

)2

= a2 − 4ab− 4b2 (4.2)

holds with some y ∈ Z.

Proof. Using the definition of B
(a,b)
m and writing B

(a,b)
m = an + b, a simple

calculation shows that

ar2 + (a+ 2B(a,b)
m )r − (n− 1)(B(a,b)

m + b) = 0.

The left hand side of this equality is a polynomial in r of degree two. Thus its
discriminant must be a square in Z. Since the discriminant in question is given
by

8
(
B(a,b)
m

)2

+ a2 − 4ab− 4b2,

the statement follows.

For the proof of Theorem 4.1.1 we need two lemmas. The first one is Lemma
3.4.1 from the previous chapter. For the second one, we need the following
concept. If p is a prime and t is an integer, then by pα||t we mean that pα|t but
pα+1 - t. The following result of Brindza and Pintér [20] provides information
on the structure of zeros of certain polynomials.

Lemma 4.2.2. Let P (X) = anX
n+· · ·+a1X+a0 be a polynomial with integral

coefficients, for which a0 is odd, 4|ai (i = 1, . . . , n) and 23||an. Then every zero
of P is simple.
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Proof of Theorem 4.1.1. Using Lemma 4.2.1, from (4.1) we get the equation

8f2(x) + a2 − 4ab− 4b2 = y2.

It is easy to see that since a is odd, the left hand side of the above equation is
a polynomial satisfying the conditions of Lemma 4.2.2. So, by Lemma 4.2.2 we
know that the zeros of the left hand side are simple. Hence, by Lemma 3.4.1
the theorem follows.

To prove Theorem 4.1.2, we need the following deep result of Bennett [8]
about binomial Thue equations. Note that recently this result has been consid-
erably generalized in certain sense (see e.g. the papers [9], [11] and the references
given there). However, the following lemma is sufficient for our present purposes.

Lemma 4.2.3. If A, B and n are integers with AB 6= 0 and n ≥ 3, then the
equation

|Axn −Byn| = 1

has at most one solution in positive integers x, y.

Proof of Theorem 4.1.2. Using Lemma 4.2.1 and substituting B
(a,b)
m = xl into

(4.2), by a2 − 4ab− 4b2 = 1 we obtain

y2 − 8x2l = 1, (4.3)

with some y ∈ Z. Rewrite (4.3) as

y2 − 1 = 8xt,

where t = 2l with t ≥ 4, as l ≥ 2.
Obviously, y must be odd. Introducing the notation y = 2k + 1, we get

k(k + 1) = 2xt.

Thus we have k = 2αxt1 and k+ 1 = 2βxt2 with αβ = 0, α+ β = 1, where x1, x2

are some positive integers. This yields

|2βxt2 − 2αxt1| = 1. (4.4)

Observe that x1 = x2 = 1 is a solution to (4.4). Hence by Lemma 4.2.3 there
are no other solutions. Thus the only possible value for x is x = 1, which yields

B
(a,b)
m = 1. Since this is impossible, the theorem follows.
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For the proof of Theorem 4.1.3, we need three more lemmas from the previous
chapter, namely results of Ping-Zhi [81], Pintér and Rakaczki [85] and Rakaczki
[90], respectively.

Proof of Theorem 4.1.3. Assume first that k ≥ 5. Using Lemma 4.2.1 and (4.1),
we get the equation

y2 = 8 (f(x))
2 − C(a, b), (4.5)

where C(a, b) = −(a2 − 4ab− 4b2). Observe that C(a, b) 6= 0. We consider the
possible choices for f(x) in turn.

Let f(x) =
(
x
k

)
. Factorizing the right hand side of (4.5), we obtain

y2 = 8

(
f(x) +

√
C(a, b)

8

)(
f(x)−

√
C(a, b)

8

)
. (4.6)

Since C(a, b) 6= 0, the zeros of the factors on the right hand side of equation

(4.6) are distinct. Moreover, as one can readily check, ±
√

C(a,b)
8 6= 10±7

√
7

1215 ,

since C(a, b) ∈ Z. Thus, by Lemmas 3.4.1 and 3.4.2 the theorem follows in this
case.

Now assume that f(x) = Πk(x). In this case Lemma 4.2.1 and (4.1) give

y2 = 8 (Πk(x))
2 − C(a, b).

Since Πk(x) = k!
(
x+k−1
k

)
, we get

y2 = 8(k!)2

((
x+ k − 1

k

)
+

√
C(a, b)

8(k!)2

)((
x+ k − 1

k

)
−

√
C(a, b)

8(k!)2

)
.

Since C(a, b) 6= 0, the zeros of the factors on the right hand side are distinct

again. Moreover, it is easy to see that ±
√

C(a,b)
8k!2 6= 10±7

√
7

1215 . Hence using

Lemmas 3.4.1 and 3.4.2 the theorem follows also in this case.
Next let f(x) = Sk(x). We use again the well-known fact that

Sk−1(x) =
1

k
(Bk(x)−Bk(0)) .

Then by Lemma 4.2.1 and (4.1) again, we obtain that

y2 =
8

k2

(
(Bk(x)−Bk(0))

2 − k2C(a, b)

8

)
.
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Applying Lemma 3.4.3 with A = −Bk(0) and B = −k
2C(a,b)

8 6= 0, we see that
the right hand side of this equation is non-degenerate. Thus, the theorem follows
from Lemma 3.4.1.

Finally, let f(x) = Rk(x). It is also well-known that for all k ∈ N

Rk(x) =
1

2

(
Ek(x) + (−1)x+1Ek(0)

)
is valid. Lemma 4.2.1 and (4.1) now yield

y2 = 2

(
(Ek(x) + (−1)x+1Ek(0))2 − C(a, b)

2

)
.

Applying Lemma 3.4.4 with A = (−1)x+1Ek(0) and B = −C(a,b)
2 6= 0, we get

that the right hand side of the above equation is non-degenerate. Again, the
theorem follows from Lemma 3.4.1.

Consider now the cases when 2 ≤ k ≤ 4. In all cases we get that the polyno-
mial on the right hand side of (4.5) is non-degenerate because its discriminant
is non-zero. We consider only one example, all the other cases can be handled
similarly.

Let f(x) =
(
x
2

)
. In this case the discriminant of the polynomial on the right

hand side of (4.5) is D := −256C(a, b)2(8C(a, b)−1). Since C(a, b) is a non-zero
integer, we get D 6= 0, indeed. Therefore, the polynomial on the right side of
(4.5) is non-degenerate, and by Lemma 3.4.1 the theorem follows.

As it was mentioned already, in our numerical results we consider all cases
with the above choices of f(x) and with a2 − 4ab− 4b2 = 1, where (4.1) can be
reduced to an equation of genus 1. Further, we also solve a particular case of
(4.1) which can be reduced to a genus 2 equation. To solve this equation, we shall
use the Chabauty method by the help of explicit techniques developed by Bruin.
We note that the Chabauty method has already been successfully used to solve
certain other combinatorial Diophantine equations, see e.g. the corresponding
results in the papers [25], [48], [53], [54], [98], [113] and the references given
there.

Proof of Theorem 4.1.4. Using Lemma 4.2.1 and the assumption a2−4ab−4b2 =
1, equation (4.1) can be written as

y2 = 8f(x)2 + 1. (4.7)

Actually, we solve equation (4.7) for all the cases of f(x) listed in Theorem
4.1.4. We prove that the solutions are those contained in Table 4.2. Having the
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solutions of (4.7), the solutions of the original equation (4.1) can be determined
with simple calculations.

f(x) Solutions (x, y) of (4.7)(
x
2

)
(−3,±17), (−1,±3), (0,±1), (1,±1), (2,±3), (4,±17)(

x
3

)
(0,±1), (1,±1), (2,±1), (−1,±3), (3,±3), (−5,±99), (7,±99)(

x
4

) (−4,±99), (−1,±3), (0,±1), (1,±1),
(2,±1), (3,±1), (4,±3), (7,±99)

Π2(x) (−3,±17), (−1,±1), (0,±1), (2,±17)
Π3(x) (−3,±17), (−1,±1), (0,±1), (1,±17)
Π4(x) (−3,±1), (−2,±1), (−1,±1), (0,±1)
S1(x) (−4,±17), (−2,±3), (−1,±1), (0,±1), (1,±3), (3,±17)

S2(x)
(−27,±19601), (−8,±577), (−1,±3), (0,±1),
(1,±1), (2,±3), (9,±577), (28,±19601)

S3(x) (−1,±3), (0,±1), (1,±1), (2,±3)
S5(x) (−1,±3), (0,±1), (1,±1), (2,±3)

Table 4.2: Solutions of equation (4.7) with the particular polynomials

As it will be clear from the presentation, it is worth to split the resolution
of (4.10) into three parts. Assume first that f(x) ∈ {

(
x
3

)
,Π3(x), S2(x)}. Then

the right hand side of equation (4.7) can be transformed into a polynomial of
degree 3. As the computations are similar in all cases, we consider only one
example. Let f(x) = S2(x). Then (4.7) is given by

y2 = 8(S2(x))2 + 1.

Using the well-known fact S2(x) = x(x− 1)(2x− 1)/6, we get

y2 =
32x6 − 96x5 + 104x4 − 48x3 + 8x2 + 36

36
.

This leads to the elliptic equation

Y 2 = X3 + 2X2 + 576,

where X = 8(x2 − x), Y = 24y. One can compute the integer solutions of this
equation with the procedure IntegralPoints of Magma [17]. Following the
substitutions backwards, we can determine the solutions x, y of the equation
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(4.7). The solutions are exactly the ones listed in Table 4.2. In all the other
cases we get the solutions of (4.7) by a similar calculation.

Assume next that f(x) ∈ {
(
x
2

)
,
(
x
4

)
,Π2(x),Π4(x), S1(x), S3(x)}. Then the

right hand side of equation (4.7) can be transformed into a polynomial of degree
4. Since the different choices of f can be handled similarly, we consider only
one example, again. Let f(x) = Π4(x). Then (4.7) has the form

y2 = 8(Π4(x))2 + 1.

Using Π4(x) = x(x + 1)(x + 2)(x + 3), introducing the notation X = x2 + 3x,
this yields

y2 = 8X4 + 32X3 + 32X2 + 1.

This equation is of genus 1 and can be solved using the Magma procedure
IntegralQuarticPoints. Hence, we can find all integral solutions of equation
(4.7), again. The solutions (x, y) are exactly the ones listed in Table 4.2. All
the other cases are similar.

Finally, assume that f(x) = S5(x). In this case, equation (4.7) has the form

y2 = 8(S5(x))2 + 1.

Hence, using the well-known assertion S5(x) = 1
12 (x− 1)2x2(2x2 − 2x− 1), we

get
Y 2 = 8X6 − 8X5 + 2X4 + 36, (4.8)

where X = x2 − x and Y = 6y. Equation (4.8) defines a curve of genus 2 over
Q. All its solutions can be determined by applying recent explicit Chabauty
techniques due to Bruin. Here we only indicate the main steps of the method
without explaining the background theory. For details we refer to the papers of
Bruin [22], [23], [24], and the references given there.

Since the Jacobian of the hyperelliptic curve determined by (4.8) has Mordell-
Weil rank 3, the classical Chabauty-type method (see e.g. [40]) does not suffice
to find the rational points on (4.8). To deal with this situation, we apply the
elliptic Chabauty method, combined with Magma, following [24]. In the first
step, we factorize the right-hand side of equation (4.8) over the number field
K = Q(α) where α =

√
−2. For later use, we mention that {1, α} is an integral

basis of K, and that the ring of integers OK of K is a Euclidean ring. We obtain

Y 2 = (2αX3 − αX2 + 6)(−2αX3 + αX2 + 6). (4.9)

This yields that
δZ2 = 2αX3 − αX2 + 6 (4.10)
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is valid with some δ, Z ∈ OK , where δ is square-free in OK . Observe that (4.9)
and (4.10) imply that

δW 2 = −2αX3 + αX2 + 6

is also valid with some W ∈ OK . Hence δ divides (2αX3−αX2 +6)+(−2αX3 +
αX2 + 6) in OK , that is δ|12. Thus, using that the only units in OK are ±1,
α2 = −2, and 3 is a prime in OK , we get that δ = ±αt13t2 with t1, t2 ∈ {0, 1}.
Taking norms on both sides of (4.10), we obtain that δ ∈ {−3,−1, 1, 3}. In the
cases δ = ±1, simple computations show that equation (4.10) has no solutions.
We illustrate this only for δ = 1. Write Z = Z1 +αZ2 in (4.10) with Z1, Z2 ∈ Z.
Then comparing the coefficients of 1 and α on both sides of (4.10), we get
Z2

1 − 2Z2
2 = 6. However, this is impossible modulo 16. The case of δ = −1 can

be excluded in a similar way.
Let now δ = 3. Equation (4.10) defines a genus 1 curve over K that can be

transformed into a Weierstrass-form elliptic curve E over K by the help of its
point P = (2, α+ 2). A minimal model of E is given by

ME : v2 = u3 + 6u+ (4α− 1296).

Note that all these curves, together with the transformations among them can
be handled by Magma. Now, as X,Y are known to be rational coordinates of
the hyperelliptic curve defined by (4.8), one can apply the elliptic Chabauty
method to solve (4.8) completely (following Bruin [24]). To have the method
work, the rank of ME(K) should be strictly less than the degree of K (which is
2). It turns out that the rank of ME(K) is 1, so the elliptic Chabauty method is
applicable. The procedure PseudoMordellWeilGroup of Magma is able to find a
subgroup G of ME(K) of finite odd index. Then using the procedure Chabauty

with the prime 59, we get that (X,Y ) = (2,±18) are the only solutions for
equation (4.8) in this case. Substituting back, we obtain that the corresponding
solutions to equation (4.7) are (x, y) = (0,±1), (1,±1).

In case of δ = −3 we can follow a similar argument. The rank of the
corresponding elliptic curve is 1 again, so we can proceed as previously. The
solutions for equation (4.8) can be found by using the prime 7 with Aux:=19
in the procedure Chabauty of Magma. We obtain that all solutions of equation
(4.8) are given by (X,Y ) = (0,±6) in this case. Following the substitutions
backwards, we get that the corresponding solutions to equation (4.7) are (x, y) =
(−1,±3), (2,±3).

From the solutions of equation (4.7), using (4.1) and B
(a,b)
m = an + b with

some integer n > 0, the parameters a, b,m can be found by simple calculations.
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Thus we obtain all solutions (m,x) of (4.1). They are exactly the ones listed in
Table 4.1, all corresponding to the parameters (a, b) = (1, 0).
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Chapter 5

Almost fifth powers in
arithmetic progression

5.1 Introduction

A classical theorem of Erdős and Selfridge [38] states that the product of con-
secutive positive integers is never a perfect power. A natural generalization is
the Diophantine equation

x(x+ d) . . . (x+ (k − 1)d) = byn (5.1)

in non-zero integers x, d, k, b, y, n with gcd(x, d) = 1, d ≥ 1, k ≥ 3, n ≥ 2 and
P (b) ≤ k. Here P (u) stands for the largest prime divisor of a non-zero integer
u, with the convention P (±1) = 1.

This equation has a long history with an extremely rich literature. The
complete solution of (5.1) in case of d = 1 is due to Saradha [94] (case k ≥ 4)
and Győry [44] (case k < 4).

For an overview of the huge number of related results for d > 1 we refer
to survey papers of Győry [45], Shorey [96], [97] and Tijdeman [116]. Now we
concentrate only on results where all solutions of (5.1) have been determined
when the number k of terms is fixed.

In case of (k, n) = (3, 2) equation (5.1) has infinitely many solutions, already
for b = 1 (c.f. [116]). Euler (see [37]) proved that (5.1) has no solutions with
b = 1, and (k, n) = (3, 3) or (4, 2). Obláth [75], [76] obtained similar results for
(k, n) = (3, 4), (3, 5) and (5, 2).

63
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By a conjecture of Erdős, equation (5.1) has no solutions in positive integers
when k > 3 and b = 1. In other words, the product of k consecutive terms of
a primitive positive arithmetic progression with k > 3 is never a perfect power.
By primitive arithmetic progression we mean one of the form

x, x+ d, . . . , x+ (k − 1)d,

with gcd(x, d) = 1. The conjecture of Erdős has recently been verified for certain
values of k in a more general form; see the papers [45], [46], [10], [47]. Since
now we focus on the case n = 5, we give only the best known result for this
particular exponent. (Though the results mentioned are valid for any n ≥ 2.)
The following statement is a combination of results from [45] (case k = 3), [46]
(cases k = 4, 5), [10] (cases k = 6, 7) and [47] (cases 8 ≤ k ≤ 34).

Theorem A. The only solutions to equation (5.1) with n = 5, 3 ≤ k ≤ 34 and
P (b) ≤ Pk, with

Pk =



2, if k = 3, 4,

3, if k = 5,

5, if k = 6, 7,

7, if 8 ≤ k ≤ 22,
k−1

2 , if 23 ≤ k ≤ 34

are given by

(k, d) = (8, 1), x ∈ {−10,−9,−8, 1, 2, 3}; (k, d) = (8, 2), x ∈ {−9,−7,−5};

(k, d) = (9, 1), x ∈ {−10,−9, 1, 2}; (k, d) = (9, 2), x ∈ {−9,−7};

(k, d) = (10, 1), x ∈ {−10, 1}; (k, d, x) = (10, 2,−9).

Note that knowing the values of k, d and x, all solutions (x, d, k, b, y, n) of
(5.1) can be easily listed.

To explain why the case n = 5 in equation (5.1) is special, we need to give
some insight into the method of solving (5.1) for fixed k, in the general case n ≥
2. One of the most important tools is the modular method, developed by Wiles
[124]. In [45], [46], [10], [47] all three types of ternary equations (i.e. of signatures
(n, n, 2), (n, n, 3), (n, n, n)) and related results of Wiles [124], Darmon and Merel
[35], Ribet [91], Bennett and Skinner [12], Bennett, Vatsal and Yazdani [13]
and others are used. However, the modular technique works effectively only
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for ”large” exponents, typically for n ≥ 7. Thus the ”small” exponents n =
2, 3, 5 must be handled separately. In fact these cases are considered in distinct
sections, or are covered by separate theorems in the above mentioned papers.

Further, the exponents n = 2, 3 has already been considered in separate
papers. Equation (5.1) with n = 2 has a broad literature in itself; see e.g. [57]
and the references given there. Here we focus only on the resolution of (5.1) with
fixed k. For n = 2 and positive x, equation (5.1) has been completely solved up
to a few exceptional cases by Hirata-Kohno, Laishram, Shorey and Tijdeman
[57] for k ≤ 100, and in case of b = 1, even for k ≤ 109. Their main tools were
elliptic curves and quadratic residues. Later, the exceptional remaining cases
have been handled by Tengely [113], by the help of the Chabauty method. At
this point we note that we shall refer to the Chabauty method frequently later
on. For the description of the method, and in particular how to use it in the
frame of the program package Magma [17], we refer to the papers of Bruin [23],
[24] and the references given there.

When n = 3, working mainly with cubic residues, however making use of
elliptic curves and the Chabauty method as well, Hajdu, Tengely and Tijdeman
[54] obtained all solutions to equation (5.1) with k < 32 such that P (b) ≤ k if
4 ≤ k ≤ 12 and P (b) < k if k = 3 or k ≥ 13. Further, if b = 1 then they could
solve (5.1) for k < 39.

The case n = 5 has not yet been closely investigated. In this case (in
the above mentioned papers considering equation (5.1) for general exponent n)
mainly classical methods were used, due to Dirichlet and Lebesgue (see e.g.
[47]). Apparently, for n = 5 elliptic curves are not applicable. In this thesis we
show that in this case the Chabauty method (both the classical and the elliptic
version) can be applied very efficiently. As we mentioned, the Chabauty method
has been already used for the cases n = 2, 3 in [10], [113], [54]. However, it has
been applied only for some particular cases and equations. In our results we
solve a large number of genus 2 equations by Chabauty method, and then build
a kind of sieve system based upon them. The results of Chapter 5 are published
in [51].

5.2 New results

Our first theorem considerably extends Theorem A, in the most interesting
case of b = 1 in equation (5.1). We call an arithmetic progression of the form
x, x+ d, . . . , x+ (k − 1)d primitive, if gcd (x, d) = 1.
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Theorem 5.2.1. The product of k consecutive non-zero terms in a primitive
arithmetic progression with 3 ≤ k ≤ 54 is never a fifth power.

In fact Theorem 5.2.1 follows directly from the next result. To formulate
it, we need to introduce a new concept. An arithmetic progression x, x +
d, . . . , x + (k − 1)d is called trivial if d ≤ 5 and |x + id| ≤ 15 for some
i = 0, 1, . . . , k − 1. Further, a solution to equation (5.1) is also called triv-
ial, if the terms x, x + d, . . . , x + (k − 1)d on the left-hand side of (5.1) form
a trivial arithmetic progression. This concept is needed because of the huge
number of trivial solutions; on the other hand, such solutions of (5.1) can be
listed easily for any fixed k.

Theorem 5.2.2. Equation (5.1) with n = 5, 3 ≤ k ≤ 24 and P (b) ≤ Pk has
the only nontrivial solutions with

(k, d) = (3, 7), x ∈ {−16,−8,−6, 2};

(k, d) = (4, 7), x ∈ {−16,−15,−12,−9,−6,−5};

(k, d) = (4, 11), x ∈ {−27,−6}; (k, d) = (5, 7), x ∈ {−16,−12};

(k, d) = (5, 11), x ∈ {−36,−32,−12,−8};

(k, d) = (5, 13), x ∈ {−40,−27,−25,−12};

(k, d) = (6, 7), x ∈ {−32,−25,−10,−3};

(k, d) = (6, 9), x ∈ {−25,−20}; (k, d) = (6, 13), x ∈ {−40,−25};

(k, d) = (7, 7), x ∈ {−39,−32,−27,−22,−20,−15,−10,−3};

(k, d) = (8, 7), x ∈ {−39,−27,−22,−10};

(k, d) = (9, 7), x ∈ {−39,−34,−32,−24,−22,−17};

(k, d) = (10, 7), x ∈ {−39,−24},

where the values of Pk are given by

k 3 4 5 6 7, 8
Pk 3 5 7 11 13

k 9, 10, 11, 12 13, 14, 15 16, 17 18, 19, 20, 21, 22, 23 24
Pk 17 19 23 29 31
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Observe that Pk > k for k ≥ 4 in Theorem 5.2.2, which is a new feature
about equation (5.1).

As a simple and immediate corollary of Theorem 5.2.2 we get the following
statement, concerning the case P (b) ≤ k. We mention that already this result
yields considerable improvement of Theorem A, in particular with respect to
the bound for P (b).

Corollary 5.2.1. For n = 5 and 3 ≤ k ≤ 36 all nontrivial solutions of equation
(5.1) with P (b) ≤ k are given by

(k, d) = (3, 7), x ∈ {−16,−8,−6, 2}; (k, d) = (5, 7), x ∈ {−16,−12}.

Our last theorem provides the key to the proof of Theorem 5.2.2 in case of
k ≥ 4. It has been proved by a kind of sieving procedure, based upon genus 2
equations and the Chabauty method.

Note that having an increasing arithmetic progression z1 < . . . < zl, by
symmetry we obtain that −zl < . . . < −z1 is also an increasing arithmetic
progression. Hence dealing with such arithmetic progressions it is sufficient to
give only one progression from each symmetric pair.

Theorem 5.2.3. Let 4 ≤ t ≤ 8 and z0 < z1 < . . . < zt−1 be a non-trivial
primitive arithmetic progression. Suppose that

z0 = b0x
5
0, zi1 = bi1x

5
i1 , zi2 = bi2x

5
i2 , zt−1 = bt−1x

5
t−1,

with some indices 0 < i1 < i2 < t − 1 such that P (b0bi1bi2bt−1) ≤ 5. Then
the initial term z0 and common difference z1 − z0 of the arithmetic progression
z0, . . . , zt−1 for the separate values of t = 4, . . . , 8 up to symmetry is one of
t = 4 : (−9, 7), (−6, 7), (−6, 11), (−5, 7);

t = 5 : (−32, 17), (−25, 13), (−20, 11), (−16, 13), (−12, 7), (−12, 11),
(−12, 13), (−10, 7), (−8, 7), (−8, 11), (−4, 7), (−3, 7), (−1, 7), (2, 7),
(4, 7), (4, 23);

t = 6 : (−125, 61), (−81, 17), (−30, 31), (−25, 8), (−25, 11), (−25, 13),
(−25, 17), (−20, 9), (−20, 13), (−20, 19), (−20, 29), (−15, 7), (−15, 11),
(−15, 13), (−15, 23), (−10, 7), (−10, 11), (−8, 7), (−5, 7), (−3, 7),
(−1, 11), (−1, 13), (1, 7), (5, 11);

t = 7 : (−54, 19), (−54, 29), (−48, 23), (−30, 11), (−30, 13), (−27, 17),
(−24, 13), (−18, 7), (−18, 11), (−18, 13), (−18, 19), (−16, 11), (−15, 7),
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(−12, 7), (−12, 11), (−10, 7), (−6, 7), (−6, 11), (−4, 9), (−3, 13), (−2, 7),
(−2, 17), (2, 13), (3, 7), (6, 7), (8, 7), (9, 11), (18, 7);

t = 8 : (−405, 131), (−125, 41), (−100, 49), (−32, 11), (−27, 11),
(−27, 13), (−25, 19), (−24, 7), (−16, 13), (−10, 13), (−9, 7), (−5, 11),
(−4, 7), (−2, 11), (−1, 13), (−1, 7), (1, 7), (3, 11), (4, 11), (5, 7), (6, 17).

5.3 Preliminaries

Before giving the proofs of our results, we explain some principles and techniques
which shall be used rather frequently later on. We present these tools separately
because in this way the structure of our proofs will be more transparent.

5.3.1 Reducing equation (5.1) to arithmetic progressions
of ”almost” fifth powers

In a standard way, as gcd(x, d) = 1 and n = 5, any solution of equation (5.1)
can be written as

x+ id = aix
5
i (i = 0, 1, . . . , k − 1) (5.2)

where xi is a non-zero integer and ai is a fifth power free positive integer with
P (ai) ≤ k. This observation justifies the title of the chapter, as well: the
members of the arithmetic progression x, x + d, . . . , x + (k − 1)d are ”almost”
n-th powers.

5.3.2 Listing the possible coefficient tuples

Suppose that

ai1x
5
i1 < ai2x

5
i2 < · · · < aitx

5
it (5.3)

are t (not necessarily consecutive) nonzero terms of a primitive arithmetic pro-
gression, with aij as in (5.2). In this subsection we explain a method to list all
the possible coefficient t-tuples (ai1 , ai2 , . . . , ait) corresponding to (5.3).

Observe that knowing aij is equivalent to knowing the exponents νp(aij ) of
the primes p ≤ k in the factorization of aij . Take an arbitrary prime p ≤ k
dividing one of the terms aijx

5
ij

, and suppose that ij0 is such an index that

νp(aij0x
5
ij0

) ≥ νp(aijx5
ij ) for all j = 1, . . . , t.



5.3. PRELIMINARIES 69

Since the arithmetic progression is assumed to be primitive, one can easily check
that then for all j = 1, . . . , t with j 6= j0 we have

νp(aijx
5
ij ) = νp(j − j0).

As we have νp(aij0 ) < 5, we can simply list all possibilities for the exponents
of the prime p in the coefficients ai1 , ai2 , . . . , ait . Then combining these pos-
sibilities for all primes p ≤ k, we can list all the possible coefficient t-tuples
(ai1 , ai2 , . . . , ait) which may occur in (5.3).

5.3.3 Local testing of coefficient tuples

As we will see, some of the coefficient tuples listed in the previous subsection in
fact cannot occur as coefficients of fifth powers in arithmetic progressions. In
many cases this can be shown already modulo m with some appropriate choice
of m. We shall use the moduli m = 11, 25.

Let 0 ≤ i1 < i2 < · · · < it ≤ k − 1 be t indices, and consider a coefficient
t-tuple (ai1 , ai2 , . . . , ait), which in fact we would like to exclude - that is, we
would like to show that no corresponding subsequence

ai1x
5
i1 , . . . , aitx

5
it (5.4)

of any appropriate arithmetic progression exists. For this purpose, consider
(5.4) modulo m (with m = 11 or 25). Observe that to have such a sequence, we
should find appropriate fifth powers modulo m. We check all the possibilities.
(Since we work with m = 11 and m = 25, the fifth powers modulo m are
only {0,±1} and {0,±1,±7}, respectively.) Observe that by coprimality, we
know that m | aij1 , aij2 yields that m | j1 − j2. If we find that no fifth powers
modulo m exist having also the previous property, then the actual coefficient
tuple (ai1 , . . . , ait) is not valid in the sense that no underlying subsequence (5.4)
exists. We shall indicate how to use this test later on.

5.3.4 Reducing the problem to genus 2 equations

We found two ways to get access to genus 2 equations.

Reduction method I

Suppose that a0x
5
0, a1x

5
1, a2x

5
2 is an arithmetic progression with nonzero terms,

and with common difference d. Then we have

(a1x
5
1)2 − a0x

5
0 · a2x

5
2 = d2
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which after the substitutions X = −x0x2/x
2
1, Y = d/x5

1 and A = a0a2, B = a2
1

yields the genus 2 equation

AX5 +B = Y 2

in X,Y ∈ Q.

Reduction method II

Suppose that

aix
5
i , ajx

5
j , aux

5
u, avx

5
v

are four terms of an arithmetic progression. Then we have

(j − u)aix
5
i + (u− i)ajx5

j = (j − i)aux5
u

and

(j − v)aix
5
i + (v − i)ajx5

j = (j − i)avx5
v.

Multiplying these identities we get an equation of the form

AX10 +BX5Y 5 + CY 10 = DZ5, (5.5)

where A = (j − u)(j − v)a2
i , B = ((j − u)(v − i) + (u − i)(j − v))aiaj , C =

(u− i)(v − i)a2
j , D = (j − i)2auav and X = xi, Y = xj , Z = xuxv. Then from

(5.5) we can easily get both genus 2 equations over Q

A1Z
5
1 +B1 = X2

1 and A2Z
5
2 +B2 = X2

2

with the notation A1 = 4AD, B1 = B2−4AC, X1 = 2AX5/Y 5+B, Z1 = Z/Y 2

and A2 = 4CD, B2 = B2−4AC, X2 = 2CY 5/X5+B, Z2 = Z/X2, respectively.

The rational points on the genus 2 curves obtained by both methods (under
suitable assumptions) can be determined by the Chabauty method. Then, fol-
lowing the corresponding substitutions backwards we can determine the actual
members of the original arithmetic progressions.

Note that in fact in case of k = 3 in the proof of Theorem 5.2.2 we also use
genus 1 curves over some number fields, which can be treated by the elliptic
Chabauty method. However, since these are particular cases, we do not include
them in this ”general” discussion.
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5.4 Proofs

We give the proofs of our results in a specific order. First we prove the case
k = 3 of Theorem 5.2.2. We do so because this result is needed in the proof
of Theorem 5.2.3, which is the next step. The latter result gives the key to
derive Theorem 5.2.2 for k ≥ 4. Then we continue by proving the cases k ≥ 4
of Theorem 5.2.2 and its corollary. Finally, we give the proof of Theorem 5.2.1,
which easily follows from Theorem 5.2.2.

In the proof of case k = 3 of Theorem 5.2.2 we shall make use of two lemmas.
The first one is due to Bennett, Bruin, Győry, Hajdu [10].

Lemma 5.4.1. Let C be a positive integer with P (C) ≤ 5. If the Diophantine
equation

X5 + Y 5 = CZ5

has solutions in nonzero coprime integers X,Y and Z, then C = 2 and X =
Y = ±1.

Proof. See Proposition 6.1 in [10].

The second lemma is a result of Saradha and Shorey [95].

Lemma 5.4.2. Let A and B be coprime positive integers with AB = 2α3β for
nonnegative integers α and β with α ≥ 4. Then the Diophantine equation

AX5 +BY 5 = Z5

has no solutions in coprime nonzero integers X,Y and Z.

Proof. This is a special case of Lemma 13 in [95].

Proof of the case k = 3 of Theorem 5.2.2. First list all the possible coefficient
triples (a0, a1, a2) as in (5.2). This can be done by the method explained
in Subsection 5.3.2. Altogether we obtain 182 such triples. Observe that
a2x

5
2, a1x

5
1, a0x

5
0 is also an arithmetic progression. Hence by symmetry it is

sufficient to consider those 106 triples for which a0 ≤ a2. (It will be clear from
our method that we can do so without loss of generality indeed.)

Clearly, a0x
5
0, a1x

5
1, a2x

5
2 is also an arithmetic progression modulo 11 and

25. So we can test the coefficient triples modulo 11 and 25, as explained in
Subsection 5.3.3. After the modulo 11 test we are left with 88 triples; for
example (1, 1, 6) gets excluded by this method. The test modulo 25 excludes 6
more triples (e.g. (1, 4, 3)), and we are left with 82 ones.
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Then we apply Lemmas 5.4.1 and 5.4.2, in this order, for the remaining set of
triples. As an example for the application of Lemma 5.4.1 consider (a0, a1, a2) =
(2, 1, 4). The identity a0x

5
0 + a2x

5
2 = 2a1x

5
1 gives an equation of the shape

X5 + Y 5 = 2Z5,

with X = −x0, Y = x2, Z = x1, hence with X,Y, Z coprime. Then Lemma
5.4.1 gives that the only solutions are given by (X,Y, Z) = ±(1, 1, 1). In view
of our assumption that the arithmetic progression on the left hand side of (5.1)
has a positive common difference, we get that in this case the progression must
be given by (x, d) = (−2, 3), i.e. x0 = −1, x1 = x2 = 1. Note that here we can
automatically handle the ”symmetric” case (a0, a1, a2) = (4, 1, 2). For this triple
we get the only arithmetic progression is defined by (x, d) = (−4, 3), belonging
to x0 = x1 = −1, x2 = 1. By the help of Lemma 5.4.1 we can exclude 58 triples.
(Note that from this step, as we have seen, some solutions are obtained.) To see
an example also for the application of Lemma 5.4.2, take (a0, a1, a2) = (1, 1, 54).
As one can easily check, this triple has not been excluded so far, by any of our
previous filters. Observe that since a2x

5
2 is even, a0x

5
0 also must be even, i.e.

2 | x0. Thus using the identity a0x
5
0 + a2x

5
2 = 2a1x

5
1 once again, we get an

equation of the form
16X5 + 27Y 5 = Z5

with X = x0/2, Y = x2, Z = x1, and gcd(X,Y, Z) = 1. Then Lemma 5.4.2
shows that this equation has no solutions, so there is no arithmetic progression
with coefficient triple (1, 1, 54). By Lemma 5.4.2 we can exclude 6 more triples,
so at this stage we are left with 18 ones.

Now we apply our Reduction method I explained in Subsection 5.3.4 to
handle the remaining triples. Note that the Chabauty method for determining
the rational points on a genus 2 curve is applicable only if the rank of the curve
is at most one. We find that in 16 out of the 18 triples this is just the case. For
example, when (a0, a1, a2) = (4, 1, 18) we get the curve

72X5 + 1 = Y 2,

which is of rank 0. The rational points on this curve (and two more rank zero
curves) can be determined by the procedure Chabauty0 of Magma. It turns out
that the above equation has the only rational solutions (X,Y ) = (0,±1). Since
there is no corresponding arithmetic progression on the left hand side of (5.1),
this triple is simply excluded. In case of (a0, a1, a2) = (1, 2, 3) the corresponding
genus 2 curve is given by

3X5 + 4 = Y 2,
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which is of rank one. Then we use the procedure Chabauty of Magma (as well
as in case of 12 alike curves) to get the rational points on the curve. We get that
the above curve has the only rational points (X,Y ) = (−1,±1), (0,±2), (2,±10).
These points yield the only arithmetic progression given by

(x, d) = (1, 1).

(In the ”symmetric” case (a0, a1, a2) = (3, 2, 1) we get the same curve, and the
rational points yield the only arithmetic progression (x, d) = (−3, 1).) Only
in the cases (a0, a1, a2) = (1, 1, 3), (2, 9, 16) we get genus 2 curves of rank >
1 (namely, of rank 2 in both cases). We handle these triples by the elliptic
Chabauty method, and the procedure Chabauty of Magma. We give details
only for the triple (1, 1, 3), the other one can be handled similarly. In this case,
using the identity (x+ d)2 − x(x+ 2d) = d2, we get the equation

X5 − 3Y 5 = Z2 (5.6)

with X = x2
1, Y = x0x2, Z = d. Further, the coprimality property yields

gcd(X,Y, Z) = 1. Finally, we may also assume that XY is odd. Indeed, 2 | Y
would easily imply that both x0 and x2 are even, which would violate the
coprimality property. Further, 2 | X would mean that 2 | x1. Then the identity
a0x

5
0 + a2x

5
2 = 2a1x

5
1 would give rise to

64(x1/2)5 − 3x5
2 = x5

0,

which is a contradiction by Lemma 5.4.2. Let K be the number field generated
by α = 5

√
3 over Q. Using the procedure pSelmerGroup of Magma, following

the method of Bruin [24] we get that (5.6) can be factorized as

X4 + αXY 3 + α2X2Y 2 + α3XY 3 + α4Y 4 = δU2 (5.7)

and
X − αY = δ−1V 2 (5.8)

where U, V are some algebraic integers in K, and

δ ∈ {1, 7 + 6α+ 5α2 + 4α3 + 3α4, 1 + α+ α3, 4 + 2α+ α4}.

Note that δ is a unit in K, so δ and δ−1 are algebraic integers in K. In case of
δ = 1 + α+ α3 or 4 + 2α+ α4, write

V = b0 + b1α+ b2α
2 + b3α

3 + b4α
4
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with some integers b0, b1, b2, b3, b4 (using that 1, α, α2, α3, α4 is an integral basis
for K). Expanding equation (5.8) in both choices for δ and using that XY is
odd, we easily get a contradiction modulo 2 or 4, respectively. Assume next
that δ = 1. Then equation (5.7) yields the elliptic curve

E1 : u4 + αu3 + α2u2 + α3u+ α4 = v2

over K, with u = X/Y and v = U/Y 2. Using the point (0, α2) of E1, one can
apply the elliptic Chabauty method and the procedure Chabauty of Magma to
find the points of E1 with (u, v) ∈ Q × K. In the present case the only such
points are given by (u,±v) = (0, α2). However, this point yields x1 = 0 which
is impossible. Finally, assume that δ = 7 + 6α + 5α2 + 4α3 + 3α4. Then (5.7)
gives rise to the elliptic curve

E2 : u4 + αu3 + α2u2 + α3u+ α4 = (7 + 6α+ 5α2 + 4α3 + 3α4)v2

over K, again with u = X/Y and v = U/Y 2. Using the point (−1, 1 +α−α2 +
α3−α4) of E2, by a similar procedure as in case of E1 we get that the only points
(u,±v) ∈ Q×K of E2 are (−1, 1+α−α2+α3−α4) and (3, 3−3α+7α2−3α3−α4).
These points yield the only arithmetic progression given by (x, d) = (−1, 2), and
the triple (1, 1, 3) is completely discussed. Note that obviously, in case of the
coefficient triple (3, 1, 1) we get the only progression (x, d) = (−3, 2).

In case of the triple (a0, a1, a2) = (2, 9, 16) by a similar method we obtain
that the only underlying arithmetic progression is (x, d) = (2, 7) (and in case of
(a0, a1, a2) = (16, 9, 2) it is (x, d) = (−16, 7)), and the proof of the case of k = 3
of Theorem 5.2.2 is complete.

Proof of Theorem 5.2.3. We work inductively on t. Assume first that t = 4.
Then the four terms b0x

5
0, bi1x

5
i1
, bi2x

5
i2
, b3x

5
3 in fact are consecutive ones of an

arithmetic progression, that is, i1 = 1, i2 = 2. Then by case k = 3 of Theorem
5.2.2 (which has already been proved) we may assume that 5 | b1b2. Using
symmetry (just as before) we may further suppose that b0 ≤ b3. Now following
the method explained in Subsection 5.3.2 we can list all such coefficient quadru-
ples (b0, b1, b2, b3), which further have the properties as the coefficients in (5.2).
Then we check the remaining quadruples modulo 11, modulo 25, then by Lem-
mas 5.4.1, 5.4.2. Since these checks go along the same lines as in the proof of
the case of k = 3 of Theorem 5.2.2 above, we suppress the details.

Then in case of the quadruples still remain, we choose two arbitrary indices
out of {0, 1, 2, 3} as i, j (the remaining two indices will play the role of u, v),
and apply Reduction method II as explained in Subsection 5.3.4 to construct
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two genus 2 curves C1 and C2. If either of these curves happens to have rank
≤ 1, then by applying the Chabauty method (using Magma) its rational points
can be determined. Then we get all arithmetic progressions corresponding to
the actual coefficient quadruple. If the choice of i, j and u, v yields curves of
ranks ≥ 2, then we make another choice for i, j and u, v, etc. Since we can
construct 2 ·

(
4
2

)
= 12 such curves (which apparently are ”independent”), we

have a good chance to handle all coefficient quadruples. In fact, this is just
what happens indeed. For example, let (b0, b1, b2, b3) = (3, 10, 1, 162). Then
choosing (i, j) = (0, 1) and (u, v) = (2, 3) in Reduction method II, we have

−3x5
0 + 20x5

1 = x5
2

and

−6x5
0 + 30x5

1 = 162x5
3.

Multiplying these identities we get the equation

18x10
0 − 210(x0x1)5 + 600x10

1 = 162(x2x3)5.

Introducing the new variables X = x2x3/x
2
1 and Y = 6x5

0/x
5
1− 35, the previous

equation yields

Y 2 = 324X5 + 25.

This genus 2 equation is of rank 0. Using the procedure Chabauty0 of Magma,
we get that the only rational solutions of this equation are (X,Y ) = (0,±5).
Following the substitutions backwards, we obtain no solution for x0, x1, x2, x3.

We handled all the possible coefficient quadruples remaining after the above
explained tests similarly. We get that the only non-trivial possibilities in case
of t = 4 are those given in the theorem.

Now assume that the statement is proved for some t ∈ {4, 5, 6, 7}, and con-
sider the value t + 1. The indices i1, i2 may take only (t − 1)(t − 2)/2 values
altogether. From this point on we just repeat the same steps as with t = 4. For
instance, suppose we have already finished with the case t = 7 and consider the
case of t + 1 = 8 terms. Then we have 15 possibilities for the pair of indices
(i1, i2), given by 0 < i1 < i2 < 7. As an example, take (i1, i2) = (2, 3) and con-
sider the tuple (b0, b2, b3, b7) = (24, 10, 3, 25). As it cannot be excluded neither
modulo 11, modulo 25, nor by Lemmas 5.4.1, 5.4.2, we use Reduction method
II, again. Choosing (i, j) = (0, 7) and (u, v) = (2, 3) we obtain

120x5
0 + 50x5

7 = 70x5
2
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and

96x5
0 + 75x5

7 = 21x5
3.

Multiplying these identities we get

11520x10
0 + 13800x0x7

5 + 3750x10
7 = 1470(x2x3)5.

After some calculations we are left with the equation

Y 2 = 3675X5 + 30625,

where X = 2x2x3/x
2
7 and Y = 960x5

0/x
5
7 + 575. This equation is of genus 2

and of rank 1. Using the procedure Chabauty of Magma again, we conclude
that its rational solutions are (X,Y ) = (0,±175), (2,±385). Following the sub-
stitutions backwards, we find the only solution for the tuple (x0, x2, x3, x7) =
(−1,−1,−1, 1) and the arithmetic progression (−24,−17,−10,−3, 4, 11, 18, 25).

Altogether we get the only possibilities listed in the statement, and the proof
of the theorem is complete.

Proof of the case k ≥ 4 of Theorem 5.2.2. Clearly, the case k = 4 is an im-
mediate consequence of Theorem 5.2.3. Further, observe that the cases k =
8, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23 trivially follow from the corresponding
cases for k−1. Hence it is sufficient to consider the values k = 5, 6, 7, 9, 13, 16, 18,
24. In each case make the following steps. We list all the possible coefficient k-
tuples (a0, a1, . . . , ak−1) by the method given in Subsection 5.3.2. As previously,
by symmetry we may assume that a0 ≤ ak−1. In the generation process we con-
sider only those placements of primes which cannot be automatically excluded
by induction. For example, let k = 13; then Pk = 19. If 19 - a4a5a6a7a8 then
by coprimality we have that either P (a0a1 . . . a8) ≤ 17 or P (a4a5 . . . a12) ≤ 17,
and we can apply induction based upon the case k = 9. Further, if say 19 | a8

but 17 - a1a2 . . . a6 then one of P (a0a1 . . . a6) ≤ 13, P (a1 . . . a7) ≤ 13 holds, and
we can use the case k = 7, and so on. Then for the remaining tuples try to
find indices j1, j2, j3, j4 ∈ {0, 1, . . . , k − 1} which are (not necessarily consecu-
tive) terms of an arithmetic progression of length t with 4 ≤ t ≤ 8, such that
P (aj1aj2aj3aj4) ≤ 5. It turns out that it is possible to find such indices in case
of all the remaining k-tuples. Having four such indices, we can simply apply
Theorem 5.2.3 to handle the actual coefficient tuple. For example, let k = 6
and consider the tuple

(a0, a1, . . . , a5) = (20, 11, 2, 7, 16, 25).
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Note that this tuple cannot be excluded by induction. Take (j1, j2, j3, j4) =
(0, 2, 4, 5), and observe that P (a0a2a4a5) ≤ 5 holds. Applying Theorem 5.2.3
with t = 6, b0 = a0, bi1 = a2, bi2 = a4, b5 = a5, we find that the only non-
trivial primitive increasing arithmetic progressions corresponding to this tuple
are −20,−11,−2, 7, 16, 25 and its symmetric pair −25,−16,−7, 2, 11, 20. These
progressions are listed in the statement.

Considering another example, let k = 18 and take the tuple

(a0, a1, . . . , a17) = (2, 125, 132, 13, 14, 57, 40, 29, 54, 1, 68, 105, 46, 11, 48, 1, 130, 9).

This tuple cannot be excluded using induction. However, we find four appropri-
ate indices again, namely (j1, j2, j3, j4) = (8, 9, 14, 15) for which P (a8a9a14a15) ≤
5 holds. Applying Theorem 5.2.3 with t = 8, b0 = a8, bi1 = a9, bi2 = a14, bt−1 =
a15, we find that the only possible underlying 8-tuple is (a8, a9, . . . , a15) =
(54, 1, 68, 105, 46, 11, 48, 1). However, there is no arithmetic progression hav-
ing the appropriate property corresponding to this tuple. Therefore we have no
solution with the original 18-tuple (a0, a1, . . . , a17).

By this process we have found all the nontrivial arithmetic progressions,
which are just the ones listed in the statement.

Proof of Corollary 5.2.1. Since the next prime after 31 is 37, the statement is
an immediate consequence of Theorem 5.2.2.

Proof of Theorem 5.2.1. For k ≤ 24 the statement is a simple consequence of
Theorem 5.2.3. In case of 25 ≤ k ≤ 54, observe that in (5.2) the product
A := a0a1 . . . ak−1 must be a full fifth power. Thus any prime p | A must
divide at least two coefficients ai. Hence one can easily check that for these
values of k there always exists an index i with 0 ≤ i < k − 24 such that
P (aiai+1 . . . ai+23) ≤ 31. So the statement follows from Theorem 5.2.3 also in
this case.
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Summary

Our dissertation consists of five chapters each containing new results concerning
Diophantine equations and Diophantine problems. Most problems have certain
combinatorial background.

In the first chapter we presented the main method used in our studies namely
the Ellog method together with an improvement due to Hajdu and Kovács
[50]. Mordell initiated the search for integral solutions of elliptic equations. By
Siegel’s famous theorem [100], at most finitely many integral solutions exist for
any given elliptic equation. Since this result is ineffective, the determination of
all such solutions remained a challenge. Baker’s famous work on linear forms
in logarithms of algebraic numbers made Siegel’s theorem effective. Since then
several improvements have been achieved, see e.g. [4], [19], [99], [102], [27], [49]
and the references given there. Besides these results a great variety of methods
and techniques have been successfully applied to solve individual equations, (see
e.g. [71], [72], [2], [66], [3], [18], [119], [86] and the references given there) until
a new method was developed simultaneously and independently by Stroeker,
Tzanakis [103] and Gebel, Pethő, Zimmer [41]. This approach uses the arith-
metic properties of elliptic curves and combines many deep ingredients, due to
several authors. Later, the method of Stroeker and Tzanakis, the so-called Ellog
method has been developed further. The most recent version is already capable
to find (at least in principle) all integral points on genus 1 curves (see [105],
and also the references given there). In Chapter 1, we described in details the
above mentioned Ellog method and presented an improvement due to Hajdu
and Kovács [50]. Stroeker and Tzanakis [104] gave convincing numerical and
heuristic evidence for that in their Ellog method a certain parameter λ plays
a decisive role in the size of the final bound for the integral points on elliptic
curves. Further, they provided an algorithm to determine that Mordell-Weil
basis of the curve which corresponds to the optimal choice of λ. In the first
chapter we showed that working with more Mordell-Weil bases simultaneously,

79



80

the final bound for the integral points can be further decreased.
In the second chapter some Diophantine equations concerning binomial coef-

ficients, power sums and product of consecutive integers were solved. One of the
first results giving all integer solutions of a combinatorial Diophantine equation
is a theorem of Mordell [71], which provides all integer solutions of the equation
y(y+ 1) = x(x+ 1)(x+ 2). Other scattered equations have been investigated by
several authors, see for example [2], [3], [18], [66], [86], [103], [118], [119], [122].
Hajdu and Pintér [52] systematically collected and solved those combinatorial
equations that can be reduced to Mordell-type equations. Our purpose was to
extend this result to more general combinatorial equations that can be reduced
to general elliptic equations. Namely, we collected those equations that can
be reduced to equations of genus 1. The equations were solved with the Ellog
method and with the Magma computational algebra system. We mention that
beside a lot of sparse results (see e.g. [82], [83], [86], [106] and [121]), Stroeker
and de Weger [107] solved all such equations involving binomial coefficients.
The results of the second chapter are published in [58].

In the third chapter we gave several effective and explicit results concerning
the values of some polynomials in binary recurrence sequences. There are many
papers about values of a polynomial p(x) ∈ Q[x] (taken at integer values of x)
in a binary linear recurrence sequence U . The first such results dealt with the
case where U is a special sequence and p(x) = xm with some m ≥ 2. Ogilvy
[77] and later Moser and Carlitz [73], and Rollett [92] proposed the problem of
determining all squares in the Fibonacci sequence F . The problem was solved
by Cohn [29, 30] and Wyler [125] independently. Later, Alfred [1] and Cohn
[31] determined the squares in the Lucas sequence L. Pethő [80] and Cohn
[32] independently determined the perfect powers in the Pell sequence. Re-
cently, Bugeaud, Mignotte and Siksek [28] computed all perfect powers in the
Fibonacci and Lucas sequences. Another branch of problems is about triangular
numbers in recurrence sequences. Hoggatt conjectured that there are only five
triangular Fibonacci numbers. Ming [69] proved that this conjecture is true.
Furthermore, Ming [70] and McDaniel [68] determined the triangular numbers
in the Lucas and Pell sequences, respectively. In [108] Szalay described all values
of the polynomials S2(x) and S3(x) in the Fibonacci, Lucas and Pell sequences,
where Sk(x) denotes the sum of the first x − 1 kth powers(x ∈ N). Further,
he listed all numbers of the form

(
x
4

)
in the Fibonacci and Lucas sequences, as

well. Beside the above mentioned results that give complete solutions of a given
problem there are several results which provide effective upper bounds for the
solutions under certain assumptions. The most extensively investigated situa-
tion is again the case of perfect powers. We mention that Szalay [108] provided
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an algorithm for the complete description of the values of a polynomial p(x) of
degree 3 in a binary recurrence sequence U under some assumptions. In the
third chapter we proved three theorems concerning the values of some polyno-
mials in binary recurrence sequences. First we provided an effective finiteness
theorem for certain combinatorial numbers, namely for binomial coefficients,
products of consecutive integers, power sums and alternating power sums in bi-
nary recurrence sequences, under some assumptions. Our second theorem was
an extension of the above mentioned result of Szalay. More precisely, it provided
an efficient algorithm for determining the values of certain degree 4 polynomials
in binary recurrence sequences, under some assumptions. We note that we im-
plemented our algorithm in Magma [17] as well. Finally, partly by the help of
this algorithm we gave all combinatorial numbers mentioned above for the small
values of the parameter involved in the Fibonacci, Lucas, Pell and Associated
Pell sequences. The results of the third chapter are published in [59].

In the fourth chapter we introduced the concept of balancing numbers in
arithmetic progressions, and proved several effective finiteness and explicit re-
sults about them. The literature of balancing numbers is very rich. In [62] and
[63] Liptai proved that there are no Fibonacci and Lucas balancing numbers,
respectively. Later, Szalay [111] derived the same results by a different method.
In [64] Liptai, Luca, Pintér and Szalay generalized the concept of balancing
numbers to a (k, l)-power numerical center. In [64] several effective and ineffec-
tive finiteness results were proved for these numbers. Recently, the ”balancing”
property has been investigated in recurrence sequences (see [14]). In the fourth
chapter we extended the concept of balancing numbers to arithmetic progres-
sions. Let a > 0 and b ≥ 0 be coprime integers. If for some positive integers n
and r we have

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

then we say that an + b is an (a, b)-balancing number. The sequence of (a, b)-

balancing numbers is denoted by B
(a,b)
m (m = 1, 2, . . . ). We proved several

effective finiteness and explicit results concerning polynomial values in the se-

quences B
(a,b)
m . That is, we considered the equation

B(a,b)
m = f(x)

in integers m and x with m ≥ 1, where f is some polynomial with rational
coefficients, taking only integral values at integers. In the proofs of our results,
among others, we combined Baker’s method, the modular method developed by
Wiles [124] and others, a result of Bennett [8] about the diophantine equation
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|axn − byn| = 1, the Chabauty method and the theory of elliptic curves. Our
results from Chapter 4 are published in [60].

In the fifth chapter we proved that the product of k consecutive terms of a
primitive arithmetic progression is never a perfect fifth power when 3 ≤ k ≤ 54.
We also provided a more precise statement, concerning the case where the prod-
uct is an ”almost” fifth power. Our theorems yield considerable improvements
and extensions, in the fifth power case, of recent results due to Győry, Hajdu
and Pintér [47].

A celebrated theorem of Erdős and Selfridge [38] states that the product of
consecutive positive integers is never a perfect power. A natural generalization
is the Diophantine equation

x(x+ d) . . . (x+ (k − 1)d) = byn (2)

in non-zero integers x, d, k, b, y, n with gcd(x, d) = 1, d ≥ 1, k ≥ 3, n ≥ 2 and
P (b) ≤ k. Here P (u) stands for the largest prime divisor of a non-zero integer
u, with the convention P (±1) = 1.

By a conjecture of Erdős, equation (2) has no solutions in positive integers
when k > 3 and b = 1. In other words, the product of k consecutive terms of
a primitive positive arithmetic progression with k > 3 is never a perfect power.
The conjecture of Erdős has recently been verified for certain values of k in a
more general form; see the papers [45], [46], [10], [47].

We explained why the case n = 5 is special and proved extensions of the
previous results. Apparently, for n = 5 elliptic curves are not applicable. We
showed that in this case the Chabauty method (both the classical and the elliptic
versions) can be applied very efficiently. The results of Chapter 5 are published
in [51].



Összefoglaló

Az értekezés öt fejezetből áll, melyek kombinatorikus háttérrel rendelkező dio-
fantikus egyenletekkel, illetve diofantikus problémákkal kapcsolatos új eredmé-
nyeket tartalmaznak.

Az első fejezetben a vizsgálataink során használt legfontosabb módszert,
az úgynevezett Ellog módszert és annak egy tőlünk származó jav́ıtását mu-
tatjuk be. Elliptikus egyenletek egész megoldásainak meghatározásával először
Mordell foglalkozott. Siegel [100] egy klasszikus eredménye alapján ismert, hogy
(bizonyos triviális feltételek mellett) egy ilyen egyenlet csak véges sok egész
megoldással rendelkezik. Később Baker [4] az egyenlet paraméterei seǵıtségével
a megoldásokra effekt́ıv felső korlátot adott. Az utóbbi évtizedekben többen
értek el további jav́ıtásokat, lásd például [4], [19], [99], [102], [27], [49] és az ottani
hivatkozásokat. Ezen eredmények mellett különböző módszerek használatával
sikerült konkrét egyenletek összes egész megoldását meghatározni (lásd [71], [72],
[2], [66], [3], [18], [119], [86] és az ottani hivatkozásokat). 1994-ben egymástól
függetlenül Gebel, Pethő, Zimmer [41] és Stroeker, Tzanakis [103] kidolgo-
zott egy általános módszert elliptikus görbék egész pontjainak meghatározására,
mely a görbék algebrai és geometriai tulajdonságait használja. Az úgynevezett
Ellog módszer képes 1 génuszú görbék egész pontjainak meghatározására, le-
galábbis elvben. Az első fejezetben részletesen bemutatjuk a módszert és annak
egy tőlünk származó jav́ıtását. A módszer három fő részre osztható. Elöljáróban
az elliptikus görbe alapadatait határozzuk meg, például a torziócsoportot, az r
rangot és egy (P1, . . . , Pr) Mordell-Weil bázist. Tudjuk, hogy bármely P ∈ E(Q)
racionális pont egyértelműen feĺırható

P = P0 + n1P1 + . . .+ nrPr (1)

alakban, ahol P0 torziópont és ni ∈ Z (i = 1, . . . , r). LegyenN = max1≤i≤r{|ni|}.
A módszer első lépésében meghatározunk egy kezdeti felső korlátot N -re. Ezt
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különböző magasságokra vonatkozó becslések és David [36] egy mély, elliptikus
logaritmusok lineáris formáira vonatkozó eredménye seǵıtségével tehetjük meg.
Amennyiben rendelkezünk egy felső korláttal N -re, úgy minden az (1)-nek eleget
tevő P pont meghatározható, legalábbis elvileg.

A kezdeti felső korlát N -re tipikusan nagyon nagy, ı́gy a gyakorlatban nem
használható. Az Ellog módszer második lépésében ezt a kezdeti korlátot jelentős
mértékben csökkentjük. Ennek eléréséhez kulcsfontosságú de Weger [120] egy
az LLL-algoritmuson alapuló eredménye.

A módszer harmadik lépése triviálisnak tűnik: az N -re kapott végső korlátot
felhasználva (ami tipikusan 10 körüli érték) leszámláljuk a kis megoldásokat.
Azonban ez az ártalmatlannak tűnő rész akár a legproblémásabb is lehet. Ha a
görbe rangja nagy, akkor a megoldásokat tartalmazó tartomány mérete hatalmas
lehet. (Ezen a ponton érdemes megjegyezni, hogy egy sejtés szerint tetszőlegesen
nagy rangú elliptikus görbe is létezik.) Tehát az N -re kapott

”
végső” kor-

lát kis mértékű jav́ıtása vagy a megoldásokat tartalmazó tartomány méretének
csökkentése rendḱıvül fontos lehet konkrét egyenletek megoldásánál. Emiatt
érdemes külön figyelmet szentelni ennek a pontnak.

Stroeker és Tzanakis [104]-ben megmutatták, hogy azNv végső korlát megha-
tározásánál döntő szerepe van egy bizonyos λ paraméternek, amely a Mordell-
Weil bázishoz tartozó magasságmátrix legkisebb pozit́ıv sajátértéke. Stroeker
és Tzanakis kidolgoztak egy algoritmust, mely seǵıtségével meghatározható egy
optimális bázis, vagyis egy olyan bázis, melyhez tartozó λ érték a lehető leg-
nagyobb. Egy ilyen bázisban dolgozva az Nv végső korlát minimális lesz. Egy
ilyen bázist Stroeker-Tzanakis bázisnak, vagy röviden ST-bázisnak nevezünk.
Stroeker és Tzanakis [104]-ben több példán keresztül illusztrálták, hogy egy ST-
bázissal dolgozva kisebb végső korlát érhető el, mint bármely más bázisban. Ez
különösen

”
nagy” rangú görbék esetén lényeges, amikor a végső korlát már egy

kismértékű jav́ıtása is nagy mértékben redukálja a megoldásokat tartalmazó tar-
tományt. Az első fejezetben megmutatjuk, hogy egy ST-bázis használata során
adódó

”
legjobb” végső korlát is tovább jav́ıtható, ha több bázisban párhuzamo-

san dolgozunk, és kombináljuk az ı́gy adódó információkat. Az első fejezet
eredményeit az [50] publikáció tartalmazza.

A második fejezetben az Ellog módszert használva számos diofantikus
egyenletet oldunk meg. A kombinatorikus hátterű, egymást követő számok
szorzataival, hatványösszegekkel és binomiális együtthatókkal kapcsolatos dio-
fantikus egyenletek irodalma rendḱıvül gazdag. Számos mély effekt́ıv és in-
effekt́ıv eredmény ismert ilyen jellegű egyenletek megoldásaira vonatkozóan.
Ezen a ponton csupán a [15], [16], [21], [88], [89] cikkekre és az ottani hi-
vatkozásokra utalunk. Jelen keretek között csupán azon még mindig igen nagy



85

számú eredmény feltérképezésére vállalkozhatunk, melyek a vizsgált egyenletek
összes megoldását meghatározzák. Az egyik első ilyen jellegű eredménynek
Mordell [71] egy tétele tekinthető, mely az y(y + 1) = x(x + 1)(x + 2) egyen-
let összes egész megoldását megadja. A későbbiekben számos olyan elszórt
eredmény született, amely emĺıtett t́ıpusú egyenletek összes megoldását léırja,
lásd például [2], [3], [18], [66], [86], [103], [118], [119], [122] és az ottani hi-
vatkozásokat. Hajdu és Pintér [52] szisztematikusan összegyűjtötte azokat a
kombinatorikus egyenleteket, melyek Mordell-t́ıpusú (azaz f(x) = y2, deg f = 3
alakú) elliptikus egyenletre redukálhatóak, és a korábban nem vizsgált egyen-
leteket megoldotta. A második fejezetben szisztematikusan összegyűjtjük és
megoldjuk mindazon fenti t́ıpusú egyenletet, melyek 1 génuszú egyenletekre re-
dukálhatóak. Megemĺıtjük, hogy az irodalomban ebben az esetben is számos
elszórt eredmény ismert (lásd [82], [83], [86], [106], [107] és [121]). A második
fejezet eredményeit az [58] dolgozat tartalmazza.

A harmadik fejezetben másodrendű lineáris rekurźıv sorozatok polinom-
értékeivel kapcsolatos effekt́ıv és explicit eredményeket mutatunk be. A másod-
rendű lineáris rekurźıv sorozatokkal kapcsolatos diofantikus egyenletek irodalma
rendḱıvül gazdag. 1962-ben Ogilvy [77], majd egy évvel később Moser és Carlitz
[73], valamint Rollett [92] a következő problémát fogalmazták meg: határozzuk
meg az Fn Fibonacci sorozatban található négyzetszámokat! A problémát egy-
mástól függetlenül Cohn [29, 30] és Wyler [125] oldotta meg. Később, Al-
fred [1] és Cohn [31] megkeresték a négyzetszámokat az Ln Lucas sorozatban.
Pethő [80], és később Cohn [32] egymástól függetlenül meghatározták a Pell
sorozatban található teljes hatványokat. Újabban Bugeaud, Mignotte és Sik-
sek [28] meghatározták a Fibonacci illetve Lucas sorozatban található teljes
hatványokat.

Egy másik, az érdeklődés középpontjában álló probléma a tringuláris számok
meghatározása adott másodrendű lineáris rekurźıv sorozatokban. Hogatt sejtése
szerint mindössze öt darab trianguláris Fibonacci szám létezik, ezt 1989-ben
Ming [69] be is bizonýıtotta. Később Ming [70] a Lucas sorozatban, majd
McDaniel [68] a Pell sorozatban álló trianguláris számokat is megkereste. Az
eredmények általánośıtásaként Tengely [114] meghatározta az úgynevezett g-
szög számokat a Fibonacci, Lucas, Pell és asszociált Pell sorozatokban, a g
paraméter több értékére. Tengely [115] a közelmúltban megmutatta, hogy az
egyetlen

(
x
5

)
alakú elem a Lucas sorozatban az L1 = 1.

A fentiek mellett sok olyan eredmény is ismert, melyek különböző kombina-
torikus hátterű számokat ı́rnak le bizonyos másodrendű lineáris rekurźıv soroza-
tokban. 2001-ben Szalay [108] a Fibonacci, Lucas és Pell sorozatban határozott
meg egyes binomiális együtthatókat és hatványösszegeket. Szalay [108]-ban egy
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algoritmust is megadott, mely seǵıtségével bizonyos feltételek mellett meg lehet
határozni egy harmadfokú polinom értékeit egy másodrendű lineáris rekurźıv
sorozatban.

A harmadik fejezetben először egy effekt́ıv végességi tételt bizonýıtunk az
Un = p(x) egyenlet egész megoldásaira vonatkozóan. Itt Un egy nemdegenerált
másodrendű lineáris rekurźıv sorozat, p(x) pedig egy legalább negyedfokú poli-
nom, mely binomiális együtthatót, egymást követő számok szorzatait, hatvány-
összeget, vagy alternáló hatványösszeget jelöl. A bizonýıtás a Baker-módszeren,
valamint Brindza [19], Ping-Zhi [81], Pintér és Rakaczki [85] és Rakaczki [90]
eredményein alapszik. Második tételünk Szalay fent emĺıtett algoritmusának
kiterjesztése negyedfokú polinomok esetére. Megjegyezzük, hogy az algorit-
musunkat implementáltuk a Magma [17] programcsomagban. Továbbá a fent
emĺıtett három rekurźıv sorozatban, illetve az asszociált Pell sorozatban egyes,
a korábbi vizsgálatokból kimaradt binomiális együtthatókat, illetve a korábbi
eredményekkel összhangban egymást követő számok szorzatait és alternáló hat-
ványösszegeket keresünk, részben az algoritmusunk seǵıtségével. A harmadik
fejezet eredményeit az [59] cikk tartalmazza.

A negyedik fejezetben balansz számok általánośıtásával foglalkozunk, konk-
rétan számtani sorozatok balansz számait definiáljuk és azokkal kapcsolatban bi-
zonýıtunk több tételt. Egy n pozit́ıv egész számot balansz számnak nevezünk,
ha

1 + · · ·+ (n− 1) = (n+ 1) + · · ·+ (n+ r)

teljesül valamely r pozit́ıv egész számra (lásd [7] és [39]). A balansz számok
sorozatát Bm-mel jelöljük (m = 1, 2, . . . ). Könnyen ellenőrizhető, hogy B1 = 6
és B2 = 35. Behera és Panda [7] megmutatták, hogy a sorozatra a

Bm+1 = 6Bm −Bm−1 (m > 1).

rekurzió érvényes. Megjegyezzük, hogy végtelen sok balansz szám létezik.
A balansz számokkal kapcsolatos irodalom nagyon gazdag. Liptai [62]-ben és

[63]-ban megmutatta, hogy nem létezik Fibonacci, illetve Lucas balansz szám.
Később Szalay [111] más módszerrel belátta ugyanezt.

[64]-ben Liptai, Luca, Pintér és Szalay általánośıtották a balansz számok
fogalmát a következőképpen. Legyen y, k, l rögźıtett pozit́ıv egészek, y ≥ 4. Egy
x pozit́ıv egészt, ahol x ≤ y− 2, (k, l)-hatvány számtani középnek nevezünk, ha

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l

teljesül. [64]-ben számos effekt́ıv és ineffekt́ıv végességi tételt bizonýıtottak
(k, l)-hatvány számtani közepekre.
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Nemrégiben a
”
balansz” tulajdonságot rekurźıv sorozatokban is vizsgálták

(lásd [14]). A negyedik fejezetben kiterjesztjük a balansz számok fogalmát
számtani sorozatokra. Legyen a > 0 és b ≥ 0 relat́ıv pŕım egészek. Ha valamely
n és r pozit́ıv egészekre

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

teljesül, akkor azt mondjuk, hogy an+ b egy (a, b)-balansz szám. Jelölje B
(a,b)
m

(m = 1, 2, . . . ) az (a, b)-balansz számok sorozatát. Megjegyezzük, hogy mivel

B
(1,0)
m = Bm bármely m-re, ı́gy a balansz számok egy általánośıtását kapjuk.

Vizsgálataink során több effekt́ıv végességi és explicit eredményt bizonýıtunk

a B
(a,b)
m sorozatban található különböző polinomértékekkel kapcsolatban. Konk-

rétan, a
B(a,b)
m = f(x)

egyenletet tekintjük, ahol m és x egészek, továbbá m ≥ 1, f egy racionális
együtthatós polinom, mely egész értékű helyeken egész értéket vesz fel. Bi-
zonýıtásaink során Ping-Zhi [81], Pintér és Rakaczki [85] és Rakaczki [90] koráb-
ban emĺıtett eredményei mellett szükségünk van továbbá a Wiles [124] által
kidolgozott moduláris módszerre, valamint Bennett [8] egy binom Thue egyen-
letekkel kapcsolatos mély eredményére. A negyedik fejezet eredményeit a [60]
cikk tartalmazza.

Az ötödik fejezetben bebizonýıtjuk, hogy egy primit́ıv számtani sorozat
k darab egymást követő elemének szorzata nem lehet teljes ötödik hatvány
3 ≤ k ≤ 54 esetén. Emellett megadunk egy pontosabb álĺıtást abban az esetben,
mikor a szorzat egy

”
majdnem” teljes ötödik hatvány. Erdős és Selfridge [38]

egy ünnepelt tétele azt mondja ki, hogy egymást követő pozit́ıv egészek szorzata
nem lehet teljes hatvány. Az

x(x+ d) . . . (x+ (k − 1)d) = byn (2)

egyenlet egy természetes általánośıtása az előbbi problémának. Itt x, d, k, b, y, n
nem-nulla egészek, gcd(x, d) = 1, d ≥ 1, k ≥ 3, n ≥ 2 és P (b) ≤ k, ahol P (u)
az u nem-nulla egész legnagyobb pŕımosztóját jelöli és megállapodás szerint
P (±1) = 1.

A (2) egyenlet irodalma rendḱıvül gazdag. Az egyenletet d = 1-re teljesen
megoldotta Saradha [94] (k ≥ 4 esetén) illetve Győry [44] (k < 4 esetén). A
d > 1 esetre vonatkozó igen nagy számú kapcsolódó eredmény áttekintése helyett
ajánljuk az Olvasó figyelmébe Győry [45], Shorey [96], [97] és Tijdeman [116]
összefoglaló cikkeit.
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Erdős egy sejtése szerint a (2) egyenletnek nincs pozit́ıv egész megoldása, ha
k > 3 és b = 1; vagyis egy primit́ıv, pozit́ıv számtani sorozat k darab egymást
követő elemének szorzata k > 3 esetén nem lehet teljes hatvány. Erdős sejtését
bizonyos k értékekre egy általánosabb formában sikerült belátni; lásd [45], [46],
[10], [47]. Mi az n = 5 esetre koncentrálunk. Az erre a kitevőre vonatkozó
legjobb eredményt a következő tétel tartalmazza, mely [45] (k = 3 eset), [46]
(k = 4, 5 esetek), [10] (k = 6, 7 esetek) és [47] (8 ≤ k ≤ 34 esetek) megfelelő
eredményeinek ötvözete. (Megjegyezzük, hogy az emĺıtett eredmények bármely
n ≥ 2 esetén érvényesek.)

Tétel A. A (2) egyenlet összes megoldása n = 5, 3 ≤ k ≤ 34 és P (b) ≤ Pk
esetén, ahol

Pk =



2, if k = 3, 4,

3, if k = 5,

5, if k = 6, 7,

7, if 8 ≤ k ≤ 22,
k−1

2 , if 23 ≤ k ≤ 34

az alábbiak:

(k, d) = (8, 1), x ∈ {−10,−9,−8, 1, 2, 3}; (k, d) = (8, 2), x ∈ {−9,−7,−5};

(k, d) = (9, 1), x ∈ {−10,−9, 1, 2}; (k, d) = (9, 2), x ∈ {−9,−7};

(k, d) = (10, 1), x ∈ {−10, 1}; (k, d, x) = (10, 2,−9).

Az n = 5 kitevő esete speciális. Rögźıtett k és n ≥ 2 esetén a legfontosabb
eszköz a moduláris módszer, melyet Wiles [124] fejlesztett ki. Azonban ez a
módszer csak

”
nagy” kitevők, tipikusan n ≥ 7 esetén dolgozik eredményesen.

Emiatt a
”
kis” kitevőket külön kell kezelni. Az n = 2, 3 kitevőket már több

önálló cikkben vizsgálták. Az n = 2 és pozit́ıv x esetén a (2) egyenletet teljesen
megoldotta néhány kivételes esettől eltekintve Hirata-Kohno, Laishram, Shorey
és Tijdeman [57] k ≤ 100-ra, b = 1 esetén pedig k ≤ 109-re. Legfontosabb
eszközeik az elliptikus görbék és a kvadratikus maradékok voltak. Később a ki-
maradt kivételes eseteket Tengelynek [113] sikerült kezelnie a Chabauty módszer
seǵıtségével. Az n = 3 esetben főként köbmaradékok, illetve emellett az ellip-
tikus görbék és a Chabauty módszer használatával Hajdu, Tengely és Tijdeman
[54] teljesen megoldotta a (2) egyenletet k < 32-re, ahol P (b) ≤ k, ha 4 ≤ k ≤ 12
illetve P (b) < k, ha k = 3 vagy k ≥ 13. Továbbá b = 1 esetén megoldották
(2)-t k < 39-re. Az n = 5 esetet korábban nem vizsgálták meg közelebbről.
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Az eddigi eredményekben főleg Dirichlet és Lebesgue klasszikus eredményeit
használtak fel, lásd például [47]. Ennél a kitevőnél az elliptikus görbék nem
használhatóak. Az ötödik fejezetben megmutatjuk, hogy a Chabauty módszer
nagyon hatékonyan alkalmazható, eredményeinkben nagy számú 2 génuszú egyen-
letet oldunk meg a Chabauty módszerrel, majd egy ezeken alapuló szitarendszert
dolgozunk ki. Az ötödik fejezet eredményeit az [51] dolgozat tartalmazza.
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Math. France, Mémoire 62 (Suppl. Bull. S. M. F.) 123, 1995, pp. 143.

[37] L. E. Dickson, History of the theory of numbers. Vol. II: Diophantine anal-
ysis, Chelsea Publishing Co., New York, 1966.



94 BIBLIOGRAPHY
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[60] T. Kovács, K. Liptai, P. Olajos, On (a, b)−balancing numbers, Publ. Math.
Debrecen 77 (2010) 485–498.

[61] S. Lang, Diophantine Geometry, Interscience, New York, 1962.

[62] K. Liptai, Fibonacci balancing numbers, Fibonacci Quart. 42 (2004), 330–
340.

[63] K. Liptai, Lucas balancing numbers, Acta Math. Univ. Ostrav. 14 (2006),
43–47.
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[74] I. Nemes, A. Pethő, Polynomial values in linear recurrences II, J. Number
Theory 24 (1986), 47–53.
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[76] R. Obláth, Eine Bemerkung über Produkte aufeinander folgender Zahlen,
J. Indian Math. Soc. 15 (1951), 135–139.

[77] C. S. Ogilvy, Tomorrow’s math, unsolved problems for the amateur, Oxford
Univ. Press, 1962, p.100.
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[84] Á. Pintér, On the magnitude of integer points on elliptic curves, Bull. Aus-
tral. Math. Soc. 52 (1995), 195–199.
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2. Combinatorial Diophantine equations - the genus 1 case, 18th Czech and
Slovak International Conference on Number Theory, 28 August 2007,
Smolenice (Slovakia).
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tográfiai Napok, 11 October 2008, Sopron.

4. Parallel LLL-reduction for elliptic Diophantine equations, Winter School
on Explicit Methods in Number Theory, 28 Januar 2009, Debrecen.

5. Combinatorial numbers in binary recurrences, XXVImes Journées Arithmé-
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