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Abstract
In this paper we consider Diophantine equations of the
form 𝑓(𝑥) = g(𝑦) where 𝑓 has simple rational roots and
g has rational coefficients. We give strict conditions for
the cases where the equation has infinitely many solu-
tions in rationals with a bounded denominator. We give
examples illustrating that the given conditions are nec-
essary. It turns out that such equations with infinitely
many solutions are strongly related to Prouhet–Tarry–
Escott tuples. In the special, but important case when g
has only simple rational roots as well, we can give a sim-
pler statement. Also we provide an application to equal
products with terms belonging to blocks of consecutive
integers of bounded length. The latter theorem is related
to problems and results of Erdős and Turk, and of Erdős
and Graham.

MSC 2020
11N32, 11B75, 11D41, 11P05 (primary)

1 INTRODUCTION

Let 𝑎1, … , 𝑎𝑘 be distinct rationals and 𝑎0 ∈ ℚ with 𝑎0 ≠ 0. Put

𝑓(𝑥) = 𝑎0(𝑥 − 𝑎1)⋯ (𝑥 − 𝑎𝑘) (1)
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310 HAJDU and TIJDEMAN

and let g(𝑦) ∈ ℚ[𝑦]. In this paper we investigate for which 𝑓, g equation

𝑓(𝑥) = g(𝑦) (2)

has infinitely many solutions. Moreover, we study for which 𝑓, g this holds if g is of the form

g(𝑦) = 𝑏0(𝑦 − 𝑏1)⋯ (𝑦 − 𝑏𝓁), (3)

where 𝑏1, … , 𝑏𝓁 are distinct elements ofℚ and 𝑏0 ∈ ℚwith 𝑏0 ≠ 0. We say that an equation 𝑓(𝑥) =

g(𝑦) has infinitely many rational solutions with a bounded denominator if there exists a positive
integerΔ such that 𝑓(𝑥) = g(𝑦) has infinitelymany solutions (𝑥, 𝑦) ∈ ℚ2 with (Δ𝑥, Δ𝑦) ∈ ℤ2. Our
focus is the question for which 𝑓, g Equation (2) has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a
bounded denominator.
Using results of Bilu and Tichy [11] and of Davenport, Lewis and Schinzel [24], both based on

a theorem of Siegel [75], we prove the following theorem.

Theorem 1.1. Let 𝑓(𝑥) ∈ ℚ[𝑥] have only simple rational roots and let g(𝑥) ∈ ℚ[𝑥]. Suppose the
equation 𝑓(𝑥) = g(𝑦) has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator.
Then there exist positive integers𝑚, 𝑛, 𝑠with𝑚 ∈ {1, 2, 3, 4, 6} or𝑛 ∈ {1, 2} such thatdeg(𝑓) = 𝑚𝑠,

deg(g) = 𝑛𝑠.
If g has also only simple rational roots and deg(𝑓) ⩽ deg(g), then there exist𝑚 ∈ {1, 2},𝑛, 𝑠 ∈ ℤ>0

such that deg(𝑓) = 𝑚𝑠, deg(g) = 𝑛𝑠.

The first statement will be proved in Section 7. After the proof we shall argue that if 𝑚 ∈

{1, 2, 3, 4, 6}, then for every such 𝑚, 𝑛, 𝑠 a pair of polynomials (𝑓, g) can be constructed, 𝑓 hav-
ing only simple integral roots, such that 𝑓(𝑥) = g(𝑦) has infinitely many integral solutions (𝑥, 𝑦).
For the remaining cases, see Section 11.
The second statement will be proved in Section 9. Observe that it follows that deg(𝑓) ∣ 2 deg(g).
As illustration of Theorem 1.1 we present some non-trivial examples. Later more examples will

follow.

Example 1.1 ([cf. Example 5.2]). An example of the second statement where deg(𝑓) does not
divide deg(g). Let

𝑓(𝑥) = (𝑥 − 6)(𝑥 + 6), g(𝑦) = (𝑦 − 1)(𝑦 − 4)(𝑦 − 9).

Then 𝑓(𝑥) = g(𝑦) has solution

(𝑥, 𝑦) = (𝑋(𝑋2 − 7), 𝑋2) for every 𝑋 ∈ ℤ.

Example 1.2 ([cf. Example 5.3]). An example of the second statement where deg(𝑓) divides
deg(g). Let

𝑓(𝑥) = (𝑥 − 7)(𝑥 − 1)(𝑥 + 1)(𝑥 + 7), g(𝑦) = 4(𝑦 − 5)(𝑦 − 1)(𝑦 + 1)(𝑦 + 5).
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 311

Consider the Pell equation 𝑥2 = 2𝑦2 − 1. It has solutions (𝑋𝑖, 𝑌𝑖)
∞
𝑖=1

given by (𝑋1, 𝑌1) = (1, 1),
(𝑋2, 𝑌2) = (7, 5) and

𝑋𝑖+1 = 6𝑋𝑖 − 𝑋𝑖−1, 𝑌𝑖+1 = 6𝑌𝑖 − 𝑌𝑖−1 (𝑖 = 2, 3, … ).

The equation 𝑓(𝑥) = g(𝑦) has a solution

(𝑥, 𝑦) = (𝑋𝑖, 𝑌𝑖) for every 𝑖 ∈ ℤ>0.

Example 1.3 ([cf. Example 7.3]). An example of the first statement for 𝑚 = 3, 𝑛 = 4 and 𝑠 = 1.
Let

𝑓(𝑥) = (𝑥 + 286)(𝑥 + 13)(𝑥 − 299), g(𝑦) = 𝑦4 − 8788𝑦2 + 8 541 936.

For every 𝑋 ∈ ℤ there is a solution

(𝑥, 𝑦) = (𝑋4 − 52𝑋2 + 338, 𝑋3 − 39𝑋).

In Section 2 we give a historical overview of the literature on equations 𝑓(𝑥) = g(𝑦) where 𝑓

has only simple rational roots. In Section 3 we present the Bilu–Tichy decomposition [11] which
is fundamental for our treatment. Bilu and Tichy attach a standard pair of polynomials (𝐹, 𝐺)

to each equation 𝑓(𝑥) = g(𝑦) which has infinitely many solutions with a bounded denominator.
They distinguish five kinds of standard pairs. We exclude the fifth kind and rephrase Theorem 1.1
as Lemma 3.2. In Section 4 we present Prouhet–Tarry–Escott (PTE) sets, an extension of ideal
PTE pairs. In Section 5 we consider standard pairs of the first and second kinds where g need not
satisfy (3). In the next section we assume that g satisfies (3) too. Section 7 deals with standard
pairs of the third and fourth kinds where g need not satisfy (3). In particular, we prove here the
first statement of Theorem 1.1. This part of our argument is the most involved. Here we need to
give a complete description of shifts of Dickson polynomials having only rational roots. For this,
we need to combine certain identities for such polynomials with various (both theoretical and
computational) tools from algebraic number theory. Section 8 restricts the cases with standard
pairs of the third and fourth kinds if g has only simple rational roots, too. In Section 9 we give a
more precise statement than Theorem 1.1 under (3) which completes the proof of Theorem 1.1. We
give an application of our results to equal products with terms belonging to blocks of consecutive
integers of bounded lengths in Section 10. We finish the paper with some open problems.

2 HISTORICAL OVERVIEW

There are numerous publications on the title equation where 𝑓 has only simple rational roots. In
many of them the roots of 𝑓, and often also of g , are well structured and all solutions are found.
In other papers only finiteness of the number of such solutions is considered. The present paper
deals with the finiteness of the number of solutions for a wide class of equations covering the
equations cited in this overview. Subsections 2.1 and 2.2 correspond to Section 5, Subsections 2.3
and 2.4 to Sections 6, 8 and 9, Subsection 2.5 to Section 10.
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312 HAJDU and TIJDEMAN

2.1 The roots of 𝒇 form an arithmetic progression and g is almost a
perfect power

First we consider the case that the roots of 𝑓 form an arithmetic progression and g is almost a
perfect power, more precisely:

𝑥(𝑥 + 𝑑)⋯ (𝑥 + (𝑘 − 1)𝑑) = 𝑏0𝑦
𝓁 + 𝑏𝓁 , (4)

where 𝑏0, 𝑏𝓁 , 𝑑, 𝑘 and 𝓁 are integers with 𝑘 > 1, 𝓁 > 1, 𝑘𝓁 > 4, 𝑏0 ≠ 0, 𝓁th power free, the greatest
prime factor of 𝑏0 is atmost 𝑘 and solutions (𝑥, 𝑦) ∈ ℤ2 satisfy gcd(𝑥, 𝑑) = 1, |𝑦| > 1. (If 𝑘 = 𝓁 = 2,
then we may have a Pell equation which has infinitely many solutions.) If 𝑏𝓁 = 0, then there
are only finitely many solutions according to a theorem of Siegel [74] if 𝓁 > 2 and by a result of
Schinzel [71], Corollary 7 if 𝓁 = 2.
Let 𝑑 = 1. In 1975 Erdős and Selfridge [30] proved that Equation (4) has no solutions when

𝑏0 = 1, 𝑏𝓁 = 0. Erdős [28] and Győry [34] showed that the equation
(𝑥+𝑘−1

𝑘

)
= 𝑦𝓁 , which agrees

with the case 𝑏0 = 𝑘!, 𝑏𝓁 = 0, has only the solution
(50

3

)
= 1402. Saradha [60] and Győry [35] dealt

with Equation (4) with 𝑏0 > 1, 𝑏𝓁 = 0. Bilu, Kulkarny and Sury [10] proved that Equation (4) has
only finitely many solutions (𝑘,𝓁, 𝑚, 𝑛) if 𝑏𝓁 is not a perfect power and that all solutions can be
explicitly determined. For more results with 𝑑 = 1 see [21, 38, 81].
Next let 𝑑 > 1, 𝑏0 = 1, 𝑏𝓁 = 0. A famous result due to Euler is that the product of 𝑘 = 4 distinct

positive integers in arithmetic progression cannot be a square. For a generalization of this result
to 4 ⩽ 𝑘 ⩽ 109, see [7, 36, 56] and finally [47]. Similar results for 𝓁 = 3 and 𝓁 = 5 can be found in
[44] and [39], respectively. Euler’s result has been extended for arbitrary powers 𝓁 and 𝑘 ⩽ 34 by
Győry, Hajdu and Saradha [37], Bennett, Bruin, Győry andHajdu [7] and Győry, Hajdu and Pintér
[36]. Bennett [6] obtained the following strong finiteness result: There exist at most finitely many
integer tuples 𝑑, 𝑘,𝓁, 𝑥, 𝑦, with 4 ⩽ 𝑘 ⩽ 15 177 for which Equation (4) is satisfied. Bennett and
Siksek [8] proved that there exists an effectively computable 𝑘0 such that for fixed 𝑘 > 𝑘0 there
are only finitely many integers 𝑑,𝓁, 𝑥, 𝑦 satisfying Equation (4). For related papers see [32, 60, 61,
72].
Case 𝑑 > 1, 𝑏0 > 1. Saradha and Shorey [66] proved that for 𝑑 at most some explicitly given

𝑑0 = 𝑑0(𝓁) and 𝑏𝓁 = 0Equation (4) has no solutions. It follows fromYuan [81] that if 𝑘 ⩾ 8 then all
solutions of (4) satisfymax(|𝑥|, |𝑦|,𝓁) < 𝐶 where𝐶 is an effectively computable constant depend-
ing only on 𝑘, 𝑏0, 𝑏𝓁 . For other results with 𝑏𝓁 = 0 see [32, 49, 55, 65, 66], and for general 𝑏𝓁 the
survey [73].

2.2 The roots of 𝒇 form almost an arithmetic progression and g is
almost a perfect power

First we turn to the case that the roots of 𝑓 form an arithmetic progression with some terms
missing, more precisely, to the equation

(𝑥 + 𝑑1𝑑)⋯ (𝑥 + 𝑑𝑘𝑑) = 𝑏0𝑦
𝓁 + 𝑏𝓁 , (5)

where 0 ⩽ 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘 < 𝐾, 𝑑, 𝑏0, 𝑏𝓁 and 𝓁 are integers with 𝑘 > 2, 𝓁 > 1, 𝑏0 is 𝓁th power
free, the greatest prime factor of 𝑏0 is at most 𝑘 and solutions (𝑥, 𝑦) ∈ ℤ2 satisfy gcd(𝑥, 𝑑) = 1.
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 313

Several papers deal with the case 𝐾 − 𝑘 = 1. Saradha and Shorey [63], Hanrot, Saradha and
Shorey [46] andBennett [5] together proved that for𝑑 = 𝐾 − 𝑘 = 𝑏0 = 1, 𝑏𝓁 = 0 the only solutions
of (5) are given by 4!∕3 = 23, 6!∕5 = 122, 10!∕7 = 7202. For other papers with 𝐾 − 𝑘 = 1, 𝑏𝓁 = 0

see [23, 64, 65, 67, 69]. Hajdu and Papp [40] proved that Equation (5) with 𝐾 − 𝑘 = 1, 𝐾 ⩾ 8 has
only finitely many solutions 𝑥, 𝑦,𝓁.
All solutions of Equation (5) with 𝐾 − 𝑘 = 2, 𝑘 ⩾ 4, 𝓁 ⩾ 3 have been given in [55] and [68]. For

papers with 𝐾 − 𝑘 ⩾ 2, 𝑏𝓁 = 0 see [3] and [22]. Hajdu, Papp and Tijdeman [41] provided effective
upper bounds formax(|𝑥|, |𝑦|,𝓁) in (5) under the assumption that𝐾 − 𝑘 < 𝑐𝐾2∕3 for some explicit
𝑐 > 0.
For results and history concerning the case when instead of omitting terms from an arithmetic

progression we have an extra term, see [45] and the references there.

2.3 Both 𝒇 and g have simple rational roots almost in arithmetic
progressions

In the literature many papers deal with special cases of the equation

𝑎0𝑥(𝑥 + 𝑑1)⋯ (𝑥 + (𝑘 − 1)𝑑1) = 𝑏0𝑦(𝑦 + 𝑑2)⋯ (𝑦 + (𝓁 − 1)𝑑2), (6)

where 𝑘,𝓁, 𝑎0, 𝑏0 are integers with 1 < 𝑘 ⩽ 𝓁, 𝑎0𝑏0 ≠ 0, and 𝑑1, 𝑑2 are positive integers with 𝑑1 ≠

𝑑2 if 𝑘 = 𝓁.
First the case 𝑎0 = 𝑏0 = 𝑑1 = 𝑑2 = 1 attracted attention. For these values Mordell [54], Boyd

and Kisilevsky [14] and Hajdu and Pintér [42] computed all positive solutions for (𝑘,𝓁) =

(2, 3), (3, 4) and (4,6), respectively. Saradha and Shorey [62] proved that the only solution with
𝓁 = 2𝑘 is given by (𝑘,𝓁, 𝑥, 𝑦) = (3, 6, 8, 1). They, together with Mignotte (see [53]) determined all
solutions in case 𝓁∕𝑘 ∈ {3, 4, 5, 6}.
Saradha, Shorey and Tijdeman [70] studied the cases 𝑎0 = 𝑏0 = 1, 𝑑1 = 1, 𝑑2 > 1, 𝓁∕𝑘 is inte-

gral. Beukers, Shorey and Tijdeman [9] proved that Equation (6) with 𝑎0 = 𝑏0 = 1 admits only
finitelymany positive integral solutions 𝑥, 𝑦 except for the infinite class of solutions𝑥 = 𝑦2 + 3𝑑2𝑦

when 𝑘 = 2, 𝓁 = 4 and 𝑑1 = 2𝑑2
2
. By a similar reasoning the restriction 𝑎0 = 𝑏0 = 1 can be

replaced by 𝓁 > 2.
Brindza and Pintér [17] showed that the equation

𝑥(𝑥 + 1)⋯ (𝑥 + 𝑘 − 1) =

(
𝑦

𝓁

)
for 𝑘 > 2,𝓁 > 2 has only finitely many solutions in positive integers 𝑥, 𝑦. This corresponds to the
choice 𝑎0 = 1, 𝑏0 = 𝑘!, 𝑑1 = 𝑑2 = 1.
By taking 𝑎0 = 𝓁!, 𝑏0 = 𝑘!, 𝑑1 = 𝑑2,𝑚 = 𝑥 + 𝑘 − 1, 𝑛 = 𝑦 + 𝓁 − 1 in (6) the question becomes

which binomial coefficients
(𝑚
𝑘

)
and

(𝑛
𝓁

)
are equal. Without loss of generality we assume 1 < 𝑘 <

𝓁, 𝑘 ⩽ 𝑚∕2, 𝓁 ⩽ 𝑛∕2. For several pairs (𝑘,𝓁) all solutions were found, see, for example, [1, 54, 78]
and [18]. Gallegos-Ruiz, Katsipis, Tengely and Ulas [33] described all binomial coefficients

(𝑚
𝑘

)
,(𝑛

𝓁

)
with (𝑘,𝓁) = (2, 3), (2,4), (2,6), (2,8), (3,4), (3,6), (4,6), (4,8) whose difference is at most three.

Surveys on (almost) equal binomial coefficients can be found in Blokhuis, Brouwer, de Weger
[12]† and Gallegos-Ruiz et al. [33].

† In their list on page 2 the sporadic solution 𝑛 = 78, 𝑘 = 2,𝑚 = 15,𝓁 = 5 is missing.
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314 HAJDU and TIJDEMAN

For a generalization related to figurate numbers see Hajdu, Pintér, Tengely and Varga [43] and
the references there.

2.4 The roots of 𝒇 are simple and rational and g(𝒚) ∈ ℚ[𝒚]

Consider the equation

𝑓(𝑥) ∶= (𝑥 + 𝑑1𝑑)⋯ (𝑥 + 𝑑𝑘𝑑) = g(𝑦) (7)

in integers 𝑥, 𝑦where 𝑑, 𝑘, 𝐾, 𝑑1, 𝑑2, … , 𝑑𝑘 are integerswith 0 ⩽ 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘 < 𝐾 and 𝑘 > 2,
g(𝑦) ∈ ℚ[𝑦] of degree 𝓁 ⩾ 2. Kulkarni and Sury [48] for 𝑑 = 1, 𝑘 = 𝐾, 𝓁 > 2 completely described
all cases where (7) has infinitelymany solutions. Hajdu, Papp and Tijdeman [41] proved the finite-
ness of the number of solutions of (7) under the assumption that 𝐾 − 𝑘 ⩽ 𝑐𝐾2∕3 with 𝑐 an explicit
constant, except for two explicitly given classes of gs. Both papers are based on a theorem of Bilu
and Tichy [11], whichwill also play an important role in our present study and is formulated in the
next section. For other papers related to (7) see [3, 16, 58, 59, 77]. For finiteness results on similar
equations related to figurate numbers, see [43, 45], and the references there.

2.5 Power values and equal values of products with terms coming
from an interval

Finally, we recall some papers and results from the literature concerning products of terms coming
from blocks of consecutive integers.
Erdős and Turk [31] studied the existence of terms from a ‘short’ interval 𝐼 having a power

product, and also the existence of two distinct sets of integers in 𝐼 with equal product. Roughly
speaking, they proved that these properties never hold for ‘very short’ intervals; that for ‘medium-
sized’ intervals they hold in infinitely many cases and fail in infinitely many cases, and that
they always hold if the size of 𝐼 is ‘large enough’. They gave precise formulas for these
sizes.
Another problem of somewhat similar flavor is due to Erdős and Graham [29] who asked when

the product of two or more disjoint blocks of consecutive integers can be a power. Ulas [80] exhib-
ited families of blocks of precisely four integers whose product gives perfect squares. Bauer and
Bennett [4] described the ‘minimal examples’ yielding perfect square products. For related results,
see [76, 79] and the references there.

3 THE BILU–TICHY THEOREM

We say that a polynomial 𝑓 as in (1) is symmetric, if there exists an 𝑎 ∈ ℚ such that the set
{𝑎1, … , 𝑎𝑘} is symmetric around 𝑎.
We call polynomials 𝑓, 𝑓 ∈ ℚ[𝑥] similar if there exist 𝑎, 𝑏 ∈ ℚ, 𝑎 ≠ 0 such that 𝑓(𝑥) = 𝑓(𝑎𝑥 +

𝑏). Notation 𝑓 ≃ 𝑓. Obviously this induces an equivalence relation on ℚ[𝑥]. Observe that if 𝑓 has
only simple rational roots, then 𝑓 has only simple rational roots too. In every equivalence class
there are polynomials with sum of roots equal to 0. Moreover, if the roots of 𝑓 are all rational,
then there exists a similar polynomial 𝑓(𝑥) ∈ ℤ[𝑥] of which the roots are integers with sum 0. If
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 315

TABLE 1 Standard pairs. Here 𝛼, 𝛽 are non-zero rational numbers, 𝜇, 𝜈, 𝑞 are positive integers, 𝑝 is a
non-negative integer, 𝑣(𝑥) ∈ ℚ[𝑥] is a non-zero, but possibly constant polynomial.

Kind Standard pair (unordered) Parameter restrictions
First (𝑥𝑞, 𝛼𝑥𝑝𝑣(𝑥)𝑞) 0 ⩽ 𝑝 < 𝑞, gcd(𝑝, 𝑞) = 1,

𝑝 + deg(𝑣) > 0

Second (𝑥2, (𝛼𝑥2 + 𝛽)𝑣(𝑥)2) -
Third (𝐷𝜇(𝑥, 𝛼

𝜈), 𝐷𝜈(𝑥, 𝛼
𝜇)) gcd(𝜇, 𝜈) = 1

Fourth (𝛼−𝜇∕2𝐷𝜇(𝑥, 𝛼), −𝛽−𝜈∕2𝐷𝜈(𝑥, 𝛽)) gcd(𝜇, 𝜈) = 2

Fifth ((𝛼𝑥2 − 1)3, 3𝑥4 − 4𝑥3) -

the polynomial equation 𝑓(𝑥) = g(𝑦) has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded
denominator and 𝑓 ≃ 𝑓, g ≃ g̃ , then the equation 𝑓(𝑥) = g̃(𝑦) has also infinitely many solutions
(𝑥, 𝑦) ∈ ℚ2 with a bounded denominator. We call equations 𝑓(𝑥) = g(𝑦) and 𝑓(𝑥) = g̃(𝑦) with
𝑓 ≃ 𝑓, g ≃ g̃ similar equations.
We call 𝑓(𝑥) ∈ ℚ[𝑥] decomposable over ℚ if there exist 𝐺(𝑥),𝐻(𝑥) ∈ ℚ[𝑥] with deg(𝐺) > 1,

deg(𝐻) > 1 such that 𝑓 = 𝐺(𝐻), and otherwise indecomposable. Since deg(𝑓) = deg(𝐺) ⋅ deg(𝐻),
𝑓 is indecomposable if deg(𝑓) is prime.
Let 𝛿 be a non-zero rational number and 𝜇 be a positive integer. Then the 𝜇th Dickson

polynomial is defined by

𝐷𝜇(𝑥, 𝛿) ∶=

⌊𝜇∕2⌋∑
𝑖=0

𝑑𝜇,𝑖𝑥
𝜇−2𝑖 where 𝑑𝜇,𝑖 =

𝜇

𝜇 − 𝑖

(
𝜇 − 𝑖

𝑖

)
(−𝛿)𝑖.

For properties of Dickson polynomials see, for example, [52].
In this section we prove a variant of Theorem 1.1. In the proof the following result of Bilu and

Tichy [11] on Equation (2) is crucial. Here the polynomials 𝐹,𝐺 ∈ ℚ[𝑥] form a standard pair over
ℚ if either (𝐹(𝑥), 𝐺(𝑥)) or (𝐺(𝑥), 𝐹(𝑥)) appears in Table 1.

Lemma3.1Bilu, Tichy [11, Theorem 1.1]. Let𝑓(𝑥), g(𝑥) ∈ ℚ[𝑥] be non-constant polynomials. Then
the following two statements are equivalent.

(I) The equation 𝑓(𝑥) = g(𝑦) has infinitely many rational solutions 𝑥, 𝑦 with a bounded
denominator.

(II) Wehave𝑓 = 𝜑(𝐹(𝜅))and g = 𝜑(𝐺(𝜆)), where𝜅(𝑥), 𝜆(𝑥) ∈ ℚ[𝑥]are linear polynomials,𝜑(𝑥) ∈

ℚ[𝑥], and 𝐹(𝑥), 𝐺(𝑥) form a standard pair over ℚ such that the equation 𝐹(𝑥) = 𝐺(𝑦) has
infinitely many rational solutions with a bounded denominator.

Observe that 𝐹(𝜅) ≃ 𝐹 and 𝐺(𝜆) ≃ 𝐺. The Bilu–Tichy theorem implies that if (I) holds then the
equation 𝐹(𝜅(𝑥)) = 𝐺((𝜆(𝑦)) has infinitely many rational solutions with a bounded denominator.
The converse is obvious.
In Theorem 1.1 one may read𝑚 = deg(𝐹), 𝑛 = deg(𝐺), 𝑠 = deg(𝜑).
An interesting result in connection with Lemma 3.1 is due to Avanzi and Zannier [2]. Namely,

[2, Theorem 1] implies that if the equation 𝑓(𝑥) = g(𝑦)with 𝑓(𝑥), g(𝑥) ∈ ℚ[𝑥], gcd(𝑘,𝓁) = 1 and
𝑘,𝓁 > 6 has infinitely many rational solutions, then infinitely many of them have a bounded
denominator (cf. Bilu’s MathSciNet review MR1845348 of that paper).
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316 HAJDU and TIJDEMAN

We start with investigating when the equation

𝐹(𝑥) = 𝐺(𝑦) (8)

for standard pairs (𝐹, 𝐺) has infinitely many solutions (𝑥, 𝑦) with a bounded denominator in our
settings. Lemma 3.2 shows that condition (1) restricts the possibilities.

Lemma 3.2. Suppose 𝑓 is of the form (1) and Equation (2) has infinitely many rational solutions
with a bounded denominator. Let (𝐹, 𝐺) be a corresponding standard pair. Then one of the following
cases holds:

1) (𝐹, 𝐺) is of the first or second kind,min(deg(𝐹), deg(𝐺)) ⩽ 2,
2) (𝐹, 𝐺) is of the third or fourth kind.

Proof. Without loss of generality we may assume 𝑓 = 𝜑(𝐹), g = 𝜑(𝐺). Since 𝑓 has only simple
rational roots, 𝑓′ = 𝜑′(𝐹)𝐹′ has only simple real roots. Hence 𝐹′ has only simple real roots. If
(𝐹, 𝐺) is of the fifth kind, then 𝐹′ has a multiple root and so the fifth kind is excluded. Therefore,
if we are not in case 2), we have a pair (𝐹, 𝐺) of the first or second kind. By case 1) we may assume
that deg(𝐹) ⩾ 3 and deg(𝐺) ⩾ 3. Then (𝐹, 𝐺) is not of the second kind. If (𝐹, 𝐺) is of the first kind,
then 𝑞 ⩾ 3 and if deg(𝑣) = 0 then 𝑝 ⩾ 3. However, then 𝐹′ has a multiple root, which is not the
case. □

Remark 3.1. It follows that if (𝐹, 𝐺) is a standard pair of the first or second kind, then deg(𝑓) ∣

2 deg(g) or deg(g) ∣ 2 deg(𝑓).

Remark 3.2. In Examples 1.1, 1.2, 1.3 we may take

𝐹(𝑥) = 𝑥2, 𝐺(𝑦) = 𝑦(𝑦 − 7)2, 𝜑(𝑥) = 𝑥 − 36, (f irst kind)

𝐹(𝑥) = 𝑥2, 𝐺(𝑦) = 2𝑦2 − 1, 𝜑(𝑥) = (𝑥 − 1)(𝑥 − 49), (second kind)

𝐹(𝑥) = 𝐷3(𝑥, 13
4), 𝐺(𝑦) = 𝐷4(𝑦, 13

3), 𝜑(𝑥) = 𝑥 − 1 111 682, (third kind)

respectively.

4 PTE𝒎,𝒔 SETS

An ideal PTE pair is a pair of sets of an equal number of distinct integers, 𝛼1, 𝛼2, … , 𝛼𝑚 and
𝛽1, 𝛽2, … , 𝛽𝑚 say, such that

𝑚∑
𝑖=1

𝛼
𝑗
𝑖
=

𝑚∑
𝑖=1

𝛽
𝑗
𝑖

for 𝑗 = 1, 2, … ,𝑚 − 1. Ideal PTE pairs are known for 2 ⩽ 𝑚 ⩽ 10 and for𝑚 = 12. For general infor-
mation on such pairs we refer to [57]. In this section we study the case of 𝑠 tuples of 𝑚 distinct
integers having the same sums of 𝑗th powers for 1 ⩽ 𝑗 ⩽ 𝑚 − 1, a so-called PTE𝑚,𝑠 set. An ideal
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 317

PTE pair of each𝑚 integers is therefore a PTE𝑚,2 set. Observe that a PTE𝑚,𝑠 set remains a PTE𝑚,𝑠

set if all elements are multiplied by the same constant and also if a constant is added to all num-
bers. We call such PTE𝑚,𝑠 sets equivalent. If there exists a PTE𝑚,𝑠 set of rationals, then there exists
an equivalent PTE𝑚,𝑠 set of integers. The following result will be useful in the sequel.

Lemma 4.1. For 𝑚 ∈ {3, 4, 6} and every positive integer 𝑠 there exist infinitely many equivalence
classes of PTE𝑚,𝑠 sets.

To prove the case𝑚 = 4 we use the following result.

Lemma 4.2 [51, Theorem 7.5]. Let𝑀 be the product of 𝜌 distinct primes of the form ≡ 1 (mod 4).
Then the number of representations of𝑀 as 𝛼2

1
+ 𝛼2

2
with 𝛼1, 𝛼2 ∈ ℤ, 𝛼1 > 𝛼2 > 0, gcd(𝛼1, 𝛼2) = 1

equals 2𝜌−1.

Proof of Lemma 4.1 for 𝑚 = 4. Choose a 𝜌 with 2𝜌−1 ⩾ 𝑠 and 𝜌 primes ≡ 1 (mod 4). Call their
product𝑀. Obviously infinitely many choices of the primes are possible. According to Lemma 4.2
there exist 𝑠 pairs of integers 𝛼1,𝑖, 𝛼2,𝑖 with 𝛼1,𝑖 > 𝛼2,𝑖 > 0, gcd(𝛼1,𝑖, 𝛼2,𝑖) = 1 such that 𝛼2

1,𝑖
+ 𝛼2

2,𝑖
=

𝑀 for 𝑖 = 1, 2, … , 𝑠. Put 𝛼3,𝑖 = −𝛼1,𝑖, 𝛼4,𝑖 = −𝛼2,𝑖 for all 𝑖. Then
∑4

ℎ=1 𝛼ℎ,𝑖 = 0,
∑4

ℎ=1 𝛼
2
ℎ,𝑖

= 2𝑀,∑4
ℎ=1 𝛼

3
ℎ,𝑖

= 0 for 𝑖 = 1, 2, … , 𝑠. □

Example 4.1. We apply Lemma 4.2 with 𝜌 = 3 and primes 5,13,17. We have

5 ⋅ 13 ⋅ 17 = 1105 = 𝑥2 + 𝑦2 for (𝑥, 𝑦) = (33, 4), (32, 9), (31, 12), (24, 23).

Therefore the sets

{−33, −4, 4, 33}, {−32, −9, 9, 32}, {−31, −12, 12, 31}, {−24, −23, 23, 24}

form a PTE4,4 set.

For the cases𝑚 = 3 and 6 we use the following analogue of Lemma 4.2.

Lemma 4.3 [26, para 48, item 4]. Let 𝑀 be the product of 𝜌 distinct primes of the form ≡ 1

(mod 6). Then the number of representations of𝑀 as 𝛼2
1
+ 𝛼1𝛼2 + 𝛼2

2
with 𝛼1, 𝛼2 ∈ ℤ, 𝛼1 > 𝛼2 > 0,

gcd(𝛼1, 𝛼2) = 1 equals 2𝜌−1.

Proof of Lemma 4.1 for 𝑚 = 6. Choose a 𝜌 with 2𝜌−1 ⩾ 𝑠. Let 𝑀 be the product of 𝜌 distinct
primes of the form ≡ 1 (mod 6). Clearly, we may choose such primes in infinitely many ways.
The number of representations of 𝑀 as 𝑥2 + 𝑥𝑦 + 𝑦2 with coprime integers 𝑥, 𝑦 with 𝑥 > 𝑦 > 0

equals 2𝜌−1. Choose 𝑠 such pairs, (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1, 2, … , 𝑠. Then 𝑥2
𝑖
+ 𝑦2

𝑖
+ (𝑥𝑖 + 𝑦𝑖)

2 = 2𝑀 and

𝑥4
𝑖 + 𝑦4

𝑖 + (𝑥𝑖 + 𝑦𝑖)
4 = 2(𝑥2

𝑖 + 𝑥𝑖𝑦𝑖 + 𝑦2
𝑖 )

2 = 2𝑀2

(cf. [19, Section 4]). Put 𝛼3,𝑖 = 𝛼1 + 𝛼2, 𝛼4,𝑖 = −𝛼1,𝑖 , 𝛼5,𝑖 = −𝛼2,1, 𝛼6,𝑖 = −𝛼3,𝑖 for 𝑖 = 1, 2, … , 𝑠.
Then

∑6
ℎ=1 𝛼ℎ,𝑖 = 0,

∑6
ℎ=1 𝛼

2
ℎ,𝑖

= 4𝑀,
∑4

ℎ=1 𝛼
3
ℎ,𝑖

= 0,
∑4

ℎ=1 𝛼
4
ℎ,𝑖

= 4𝑀2,
∑4

ℎ=1 𝛼
5
ℎ,𝑖

= 0 for 𝑖 =

1, 2, … , 𝑠. Thus this yields a PTE6,𝑠 set. □
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318 HAJDU and TIJDEMAN

Example 4.2. We have

7 ⋅ 13 ⋅ 19 = 1729 = 𝑥2 + 𝑥𝑦 + 𝑦2 for (𝑥, 𝑦) = (40, 3), (37, 8), (32, 15), (25, 23).

Thus the sets

{±40, ±3, ±43}, {±37, ±8 ± 45}, {±32, ±15, ±47}, {±25, ±23, ±48}

each have sum 0, sum of squares 4 ⋅ 1729, sum of cubes 0, sum of biquadrates 4 ⋅ 17292, sum of
fifth powers 0.

Proof of Lemma 4.1 for 𝑚 = 3. We use the notation introduced in the proof of the case 𝑚 = 6.
Consider the triples

(𝑀 + 𝑥𝑖(𝑦𝑖 − 𝑥𝑖), −𝑀 + 𝑦𝑖(𝑦𝑖 − 𝑥𝑖), 𝑥
2
𝑖 − 𝑦2

𝑖 ) (𝑖 = 1, 2, … , 𝑠).

Each triple has sum 0 and sum of squares

2𝑀2 − 2𝑀(𝑥2
𝑖 − 2𝑥𝑖𝑦𝑖 + 𝑦2

𝑖 ) + 2𝑥4
𝑖 − 2𝑥3

𝑖
𝑦𝑖 − 2𝑥𝑖𝑦

3
𝑖
+ 2𝑦4

𝑖 .

Using that 𝑀 = 𝑥2
𝑖
+ 𝑥𝑖𝑦𝑖 + 𝑦2

𝑖
, we obtain that the sums of squares equal 2𝑀2. Of course, this is

also true for the opposite triples

−(𝑀 + 𝑥𝑖(𝑦𝑖 − 𝑥𝑖)), 𝑀 − 𝑦𝑖(𝑦𝑖 − 𝑥𝑖), 𝑦2
𝑖 − 𝑥2

𝑖 (𝑖 = 1, 2, … , 𝑠)

and for {−𝑀, 0,𝑀}. Thus we have a PTE3,𝑠+1 set, and maybe even a PTE3,2𝑠+1 set. □

Example 4.3. We start again from the pairs

(𝑥, 𝑦) = (40, 3), (37, 8), (32, 15), (25, 23)

fromExample 4.2 which each satisfy𝑀 = 𝑥2 + 𝑥𝑦 + 𝑦2 = 1729. According to the above rules they
lead to the nine triples

±(249, −1840, 1591), ±(656, −1961, 1305),

±(1185, −1984, 799), ±(1679, −1775, 96), (−1729, 0, 1729),

which each have sum 0 and sum of squares 2 ⋅ 17292. We obtain a PTE3,9 set.

Let 𝑓(𝑥) ∈ ℚ[𝑥] with only simple rational zeros be decomposable over ℚ as 𝜑(𝐹(𝑥)) (cf.
Lemma 3.1). Let

𝜑(𝑥) = 𝑝0(𝑥 − 𝑝1)(𝑥 − 𝑝2)⋯ (𝑥 − 𝑝𝑠)

with 𝑠 > 0, 𝑝0 ∈ ℚ (𝑝0 ≠ 0) and 𝑝𝑖 ∈ ℂ (𝑖 = 1,… , 𝑠). Then

𝑓(𝑥) = 𝑝0(𝐹(𝑥) − 𝑝1)(𝐹(𝑥) − 𝑝2)⋯ (𝐹(𝑥) − 𝑝𝑠).

From this, we see that 𝑝𝑖 ∈ ℚ (𝑖 = 1,… , 𝑠), and that these numbers are distinct. Further, writ-
ing 𝐹𝑖(𝑥) = 𝐹(𝑥) − 𝑝𝑖 for 𝑖 = 1, 2, … , 𝑠 we obtain that 𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑠(𝑥) ∈ ℚ[𝑥] are such that
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 319

𝐹𝑖(𝑥)∕𝐹𝑗(𝑥) ∉ ℚ, 𝐹𝑖(𝑥) − 𝐹𝑗(𝑥) ∈ ℚ for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑠 and, moreover, 𝐹𝑖(𝑥) has only simple ratio-
nal roots for 1 ⩽ 𝑖 ⩽ 𝑠. These polynomials have the same degree, 𝑚 say. It follows that there
are rationals 𝑟1, 𝑟2, … , 𝑟𝑚 independent of 𝑖 such that 𝐹𝑖(𝑥) = 𝑟𝑚𝑥𝑚 + 𝑟𝑚−1𝑥

𝑚−1 +⋯ + 𝑟1𝑥 + 𝑓𝑖

for all 𝑖 with 𝑓1, 𝑓2, … , 𝑓𝑠 ∈ ℚ distinct. Then, by the formulas of Newton–Girard, the roots of
𝐹1, 𝐹2, … , 𝐹𝑠 form a PTE𝑚,𝑠 set. We call 𝑓 a PTE𝑚,𝑠-polynomial, {𝐹1, 𝐹2, … , 𝐹𝑠} a PTE𝑚,𝑠 polyno-
mial set and 𝐹 a PTE𝑚,𝑠 base of 𝑓. Of course, deg(𝑓) = 𝑚𝑠. In the literature PTE𝑚,2 polynomial
sets are mentioned; see [57].
We apply Lemma 4.1 in the following way.

Corollary 4.1. For𝑚 ∈ {2, 3, 4, 6} and every positive integer 𝑠 there exists a polynomial𝐹(𝑥) ∈ ℤ[𝑥]

of degree 𝑚 and 𝑠 integers 𝑓1, 𝑓2, … , 𝑓𝑠 such that 𝐹(𝑥) + 𝑓𝑖 has only simple integer roots for 𝑖 =

1, 2, … , 𝑠.

Proof. For𝑚 = 2 we choose 𝐹(𝑥) = 𝑥2 and 𝑓𝑖 = −𝑖2 for 𝑖 = 1, 2, … , 𝑠.
According to Lemma 4.1 there exists a PTE𝑚,𝑠 set of integers {𝐻1,𝐻2, … ,𝐻𝑠} for 𝑚 ∈ {3, 4, 6}

and all 𝑠 ∈ ℤ>0. Consider the 𝑠 monic polynomials 𝑃𝑖(𝑥) with the elements of 𝐻𝑖 as roots for 𝑖 =
1, 2, … , 𝑠. Then they differ only by a constant. So we can take 𝐹(𝑥) = 𝑃1(𝑥) − 𝑃1(0) and 𝑓𝑖 = 𝑃𝑖(𝑥)

(𝑖 = 1, … , 𝑠). □

Examples 4.1–4.3 continued. Let 𝑚 = 𝑠 = 4. The polynomial 𝑃(𝑥) = 𝑥4 − 1105𝑥2 has sim-
ple rational roots when 17 424, 82 944, 138 384 or 304 704 is added, since the corresponding
polynomials equal

(𝑥2 − 332)(𝑥2 − 42), (𝑥2 − 322)(𝑥2 − 92), (𝑥2 − 312)(𝑥2 − 122), (𝑥2 − 242)(𝑥2 − 232),

respectively.
Let 𝑚 = 6, 𝑠 = 4. The polynomial 𝑃(𝑥) = 𝑥6 − 2 ⋅ 1729𝑥4 + 17292𝑥2 has simple integer roots

when 26 625 600, 177 422 400, 508 953 600 or 761 760 000 is subtracted, since the corresponding
polynomials equal

(𝑥2 − 32)(𝑥2 − 402)(𝑥2 − 432), (𝑥2 − 82)(𝑥2 − 372)(𝑥2 − 452),

(𝑥2 − 152)(𝑥2 − 322)(𝑥2 − 472), (𝑥2 − 232)(𝑥2 − 252)(𝑥2 − 482),

respectively.
Let𝑚 = 3, 𝑠 = 9. The polynomial 𝑃(𝑥) = 𝑥3 − 17292𝑥 has simple integer roots when one from

0, ∓728 932 560, ∓1 678 772 880, ∓1 878 480 960, ∓286 101 600

is added, as we get the polynomials (𝑥 − 1729)𝑥(𝑥 + 1729),

(𝑥 ± 249)(𝑥 ∓ 1840)(𝑥 ± 1591), (𝑥 ± 656)(𝑥 ∓ 1961)(𝑥 ± 1305),

(𝑥 ± 1185)(𝑥 ∓ 1984)(𝑥 ± 799), (𝑥 ± 96)(𝑥 ∓ 1775)(𝑥 ± 1679),

respectively. (Either triple upper signs or triple lower signs.) □
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320 HAJDU and TIJDEMAN

5 STANDARD PAIRS OF THE FIRST OR SECOND KIND

In this section we return to the original problem on Equation (2) subject to (1) and show by the
help of examples that all cases of the first or second kindwhich are not excludedmay indeed occur.
Suppose the equation 𝑓(𝑥) = g(𝑦) with 𝑓(𝑥), g(𝑥) ∈ ℚ[𝑥] has infinitely many solutions (𝑥, 𝑦) ∈

ℚ2 with a bounded denominator. According to Lemma 3.1 we have 𝑓 = 𝜑(𝐹(𝜅)) and g = 𝜑(𝐺(𝜆)),
where 𝜅(𝑥), 𝜆(𝑥) ∈ ℚ[𝑥] are linear polynomials,𝜑(𝑥) ∈ ℚ[𝑥], and𝐹(𝑥), 𝐺(𝑥) form a standard pair
overℚ such that the equation 𝐹(𝑥) = 𝐺(𝑦) has infinitely many rational solutions with a bounded
denominator. In the sequel we suppose that 𝑓 = 𝜑(𝐹) and g = 𝜑(𝐺). The results then extend to all
equations similar to the equation 𝜑(𝐹(𝑥)) = 𝜑(𝐺(𝑦)), in particular to the original equation 𝑓(𝑥) =

g(𝑦).
Let 𝜑(𝑥) = 𝑝0(𝑥 − 𝑝1)⋯ (𝑥 − 𝑝𝑠) with 𝑝0 ∈ ℚ (𝑝0 ≠ 0), 𝑝1, … , 𝑝𝑠 ∈ ℂ. Then 𝑓 = 𝑝0𝐹1 ⋯𝐹𝑠

with 𝐹𝑖(𝑥) = 𝐹(𝑥) − 𝑝𝑖 for 𝑖 = 1, 2, … , 𝑠. As we have seen in the previous section, {𝐹1, 𝐹2, … , 𝐹𝑠}

form a PTE𝑚,𝑠 polynomial set. In this section we assume that (𝐹, 𝐺) is a standard pair of the first
or second kind and consider successively the cases deg(𝐹) = 1, deg(𝐹) = 2 and deg(𝐹) > 2. As we
shall see, in each case deg(𝜑) can attain any positive integer value, hence deg(𝑓), deg(g) can be
arbitrarily large.
Case deg(𝐹) = 1. The standard pair is of the first kind and wemay assume that 𝐹(𝑥) = 𝑥. Then

𝑓 = 𝜑. Hence for every 𝑋 ∈ ℚ equation 𝐹(𝑥) = 𝐺(𝑦) has as solution (𝑥, 𝑦) = (𝐺(𝑋), 𝑋). Thus
equation 𝑓(𝑥) = g(𝑦) has also solution (𝑥, 𝑦) = (𝐺(𝑋), 𝑋) for every 𝑋 ∈ ℚ.

Example 5.1. First kind, 𝐹(𝑥) = 𝑥, 𝐺 is arbitrary, 𝜑 = 𝑓.
For every set of non-zero rationals {𝑎1, 𝑎2, … , 𝑎𝑘} the equation

(𝑥 − 𝑎1)(𝑥 − 𝑎2)⋯ (𝑥 − 𝑎𝑘) = (𝐺(𝑦) − 𝑎1)(𝐺(𝑦) − 𝑎2)⋯ (𝐺(𝑦) − 𝑎𝑘),

has solution (𝑥, 𝑦) = (𝐺(𝑋), 𝑋) (𝑋 ∈ ℚ).

Case deg(𝐹) = 2. Then either 𝐹(𝑥) = 𝑥2, or 𝐹(𝑥) = 𝛼𝑥2 + 𝛽𝑥 + 𝛾. In the latter case we use
that 𝐹(𝑥) ≃ 𝑥2 + 𝑐 for some 𝑐 ∈ ℚ. Here 𝑝 = 0, 𝑞 = 1, deg(𝑣) = 2 if (𝐹, 𝐺) is of the first kind and
deg 𝑣 = 0 if (𝐹, 𝐺) is of the second kind. Next we replace𝜑(𝑥) by𝜑(𝑥 − 𝑐) so that we get𝐹(𝑥) = 𝑥2.
Thus we may choose 𝐹(𝑥) = 𝑥2 anyhow.
We obtain that 𝑓(𝑥) is of the form

𝜑(𝐹(𝑥)) = 𝑝0(𝑥
2 − 𝑝1)⋯ (𝑥2 − 𝑝𝑠)

has only simple rational roots. It follows that 𝑝1, 𝑝2, … , 𝑝𝑠 are squares of distinct rational num-
bers and that the roots ±𝑏1, ±𝑏2, … , ±𝑏𝑠 of 𝑓 are symmetric around 0. Further, g(𝑦) = 𝑝0(𝐺(𝑦) −

𝑏2
1
)⋯ (𝐺(𝑦) − 𝑏2

𝑠 ). By Lemma 3.1 the equation 𝑥2 = 𝐺(𝑦) has to have infinitely many rational
solutions (𝑥, 𝑦) with a bounded denominator. Let (𝑋𝑖, 𝑌𝑖) (𝑖 = 1, 2, … ) be such solutions. By the
main result of LeVeque [50] (for the effective version, see Brindza [15]) we obtain that the polyno-
mial 𝐺 can have at most two roots of odd multiplicities. It follows that the equation 𝑓(𝑥) = g(𝑦)
has infinitely many rational solutions (𝑥, 𝑦) = (𝑋𝑖, 𝑌𝑖) (𝑖 = 1, 2, … ) with a bounded denominator.
Writing 𝑛 = deg(𝐺), 𝑠 = deg(𝜑), we have deg(𝑓) = 2𝑠 ∣ 2𝑛𝑠 = 2 deg(g). In this case 𝑠 and 𝑛 can be
arbitrary, and hence deg(𝑓), deg(g)may be arbitrarily large.
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 321

Example 5.2. First kind, 𝐹(𝑥) = 𝑥2, 𝐺(𝑦) = 𝑦𝑣2(𝑦), for some 𝑣(𝑦) ∈ ℚ[𝑦], 𝜑(𝑥) = (𝑥 −

𝑏2
1
)⋯ (𝑥 − 𝑏2

𝑠 ) with distinct positive rationals 𝑏1, 𝑏2, … , 𝑏𝑠. We have

𝑓(𝑥) = (𝑥 − 𝑏1)(𝑥 + 𝑏1)⋯ (𝑥 − 𝑏𝑠)(𝑥 + 𝑏𝑠), g(𝑦) = (𝐺(𝑦) − 𝑏2
1)⋯ (𝐺(𝑦) − 𝑏2

𝑠 ),

and 𝑓(𝑥) = g(𝑦) has solutions (𝑋𝑣(𝑋2), 𝑋2) for every 𝑋 ∈ ℤ.

Example 5.3. Second kind, 𝐹(𝑥) = 𝑥2, 𝐺(𝑦) = (2𝑦2 − 1)𝑣2(𝑦) for some 𝑣(𝑦) ∈ ℚ[𝑦], 𝜑(𝑥) = (𝑥 −

𝑏2
1
)⋯ (𝑥 − 𝑏2

𝑠 ) for distinct positive rationals 𝑏1, 𝑏2, … , 𝑏𝑠.
Let (𝑋𝑖)

∞
𝑖=1

be distinct integers such that 2𝑌2
𝑖
− 1 = 𝑋2

𝑖
for integers 𝑌𝑖 . Then

𝑓(𝑥) = (𝑥 − 𝑏1)(𝑥 + 𝑏1)⋯ (𝑥 − 𝑏𝑠)(𝑥 + 𝑏𝑠), g(𝑦) = (𝐺(𝑦) − 𝑏2
1)⋯ (𝐺(𝑦) − 𝑏2

𝑠 ),

and 𝑓(𝑥) = g(𝑦) has solutions (𝑋𝑖𝑣(𝑌𝑖), 𝑌𝑖) for 𝑖 = 1, 2, …

Examples 5.2 and 5.3 are generalizations of Examples 1.1 and 1.2, respectively; see also
Remark 3.2.
Case deg(𝐹) > 2. Here either 𝐹(𝑥) = 𝑥𝑞 for some 𝑞 > 2 or 𝐺(𝑥) = 𝑥𝑞 for some positive integer

𝑞.
If 𝐹(𝑥) = 𝑥𝑞, then 𝑓(𝑥) = 𝑝0(𝑥

𝑞 − 𝑝1)(𝑥
𝑞 − 𝑝2)⋯ (𝑥𝑞 − 𝑝𝑠) has simple rational roots which

implies 𝑞 ⩽ 2, but since deg(𝐹) > 2 this is not possible. If 𝐺(𝑦) = 𝑦𝑞, then from Table 1 we see
that either 𝐹(𝑥) = 𝛼𝑥𝑝𝑣(𝑥)𝑞 with 0 ⩽ 𝑝 < 𝑞, gcd(𝑝, 𝑞) = 1 (if (𝐹, 𝐺) is of the first kind), or 𝑞 = 2

and 𝐹(𝑥) = (𝛼𝑥2 + 𝛽)𝑣(𝑥)2 (if (𝐹, 𝐺) is of the second kind). Since 𝑓 has simple rational roots,
𝑓′ = 𝜑′(𝐹)𝐹′ has only simple real roots and therefore 𝐹′ has only simple real roots. So 𝑞 ⩽ 2 and
in viewof deg(𝐹) > 2 and the gcd-condition,wehave only the following possibilities, with𝛼 ≠ 0.

(a) 𝐺(𝑦) = 𝑦 and 𝐹(𝑥) = 𝛼𝑣(𝑥) has only simple rational roots.
(b) 𝐺(𝑦) = 𝑦2 and 𝐹(𝑥) is 𝛼𝑥𝑣(𝑥)2.
(c) 𝐺(𝑦) = 𝑦2 and 𝐹(𝑥) is (𝛼𝑥2 + 𝛽)𝑣(𝑥)2.

We have deg(g) ∣ deg(𝑓) in cases (a) and (c), while deg(g) ∣ 2 deg(𝑓) in case (b). The degree of 𝜑
can be arbitrary, hence the degrees of 𝑓, g can be arbitrarily large.
We give an example for each case.

Example 5.4. First kind, case (a), 𝐹(𝑥) = 𝑥3 − 17292𝑥, 𝐺(𝑦) = 𝑦, 𝜑(𝑥) = 𝑥(𝑥 − 728 932 560). We
start from two triples from Example 4.3, (−1729, 0, 1729), (249, −1840, 1591), both having sum 0
and sum of squares 2 ⋅ 17292. This gives

𝑓(𝑥) = 𝑥(𝑥 − 1729)(𝑥 + 1729)(𝑥 + 249)(𝑥 − 1840)(𝑥 + 1591),

and g(𝑦) = 𝑦(𝑦 − 249 ⋅ 1840 ⋅ 1591). The equation 𝑓(𝑥) = g(𝑦) has solution (𝑥, 𝑦) = (𝑋, 𝐹(𝑋)) for
every 𝑋 ∈ ℚ. Both 𝑓 and g have only simple integer roots.

Example 5.5. First kind, case (b), 𝐹(𝑥) = 𝑥(𝑥 − 17292)2, 𝐺(𝑦) = 𝑦2, 𝜑(𝑥) = (𝑥 −

728 932 5602)(𝑥 − 1 678 772 8802). This example is based on the same triples as the previous
example. We obtain

𝑓(𝑥) = (𝑥 − 2492)(𝑥 − 18402)(𝑥 − 15912)(𝑥 − 6562)(𝑥 − 19612)(𝑥 − 13052)
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322 HAJDU and TIJDEMAN

and

g(𝑦) = (𝑦2 − (249 ⋅ 1840 ⋅ 1591)2)(𝑦2 − (656 ⋅ 1961 ⋅ 1305)2).

The equation 𝑓(𝑥) = g(𝑦) has infinitely many solutions given by (𝑥, 𝑦) = (𝑋2, 𝑋(𝑋2 − 17292))

(𝑋 ∈ ℚ). Again 𝑓 and g have only simple rational roots.

Example 5.6. Second kind, case (c), 𝐹(𝑥) = 26𝑥2(𝑥2 − 1105), 𝐺(𝑦) = 𝑦2, 𝜑(𝑥) = (𝑥 + 26 ⋅ (33 ⋅
4)2)(𝑥 + 26 ⋅ (32 ⋅ 9)2).
We use data from Example 4.1, viz. 1105 = 332 + 42 = 322 + 92. Thus

𝑓(𝑥) = 262(𝑥2 − 332)(𝑥2 − 42)(𝑥2 − 322)(𝑥2 − 92), g(𝑦) = 𝜑(𝑦2).

A Magma [13] calculation shows that 𝜀 = 5 +
√

26 is a fundamental unit of ℚ(
√

26) of norm −1,
and that 𝛼 = −1248 + 247

√
26 is an algebraic integer of this number field of norm −28 730 =

−26 ⋅ 1105. From this we obtain that the equation

26(𝑥2 − 1105) = 𝑦2

has solutions (𝑥, 𝑦) = (𝑋𝑖, 𝑌𝑖) (𝑖 ∈ ℤ), with (𝑋1, 𝑌1) = (247, −1248), (𝑋2, 𝑌2) = (117, 572), and

(𝑋𝑖, 𝑌𝑖) = 102(𝑋𝑖−1, 𝑌𝑖−1) − (𝑋𝑖−2, 𝑌𝑖−2) (𝑖 ∈ ℤ>2).

This, after some simple calculations, follows from the fact that 𝜀2𝑡𝛼 is of norm −26 ⋅ 1105, for any
positive integer 𝑡. So the equation 𝑓(𝑥) = g(𝑦) has infinitely many integral solutions (𝑋, 𝑌) =

(𝑋𝑖, 𝑋𝑖𝑌𝑖). (Note that the above Pell equation has more solutions. One can, for example, take
(𝑥, 𝑦) = (39, 104), which belongs to the algebraic integer 104 + 39

√
26 of norm −26 ⋅ 1105 not

being associate of 𝛼. However, for our present purposes it is sufficient to exhibit an infinite family
of solutions of the Pell equation.)

6 BOTH 𝒇 AND g HAVE ONLY SIMPLE RATIONAL ROOTS

In this section we consider Equation (2) with both 𝑓 and g having only simple rational roots and
(𝐹, 𝐺) is of the first or second kind. Without loss of generality we may assume deg(𝑓) ⩽ deg(g),
hence deg(𝐹) ⩽ deg(𝐺). We again assume 𝑓 = 𝜑(𝐹), g = 𝜑(𝐺).

Theorem6.1. Let𝑓(𝑥), g(𝑥) ∈ ℚ[𝑥], both having only simple rational roots. Suppose that the equa-
tion 𝑓(𝑥) = g(𝑦) has infinitely many rational solutions 𝑥, 𝑦 with a bounded denominator and that
the corresponding standard pair (𝐹(𝑥), 𝐺(𝑥)) ∈ ℚ[𝑥] is of the first or second kind. Then we can
choose 𝐹,𝐺, 𝜑 such that one of the following items holds:

1. deg(𝑓) ∣ deg(g), there exist 𝑝0 ∈ ℚ, 𝑝0 ≠ 0 and distinct 𝑝1, 𝑝2, … , 𝑝𝑠 ∈ ℚ such that

𝑓(𝑥) = 𝑝0

𝑠∏
𝑖=1

(𝑥 − 𝑝𝑖), g(𝑦) = 𝑝0

𝑠∏
𝑖=1

(𝐺(𝑦) − 𝑝𝑖), (9)

𝐹(𝑥) = 𝑥 and𝐺(𝑦) is a PTE𝑛,𝑠 base where 𝑛 = deg(𝐺). For every𝑋 ∈ ℤ the equation 𝑓(𝑥) = g(𝑦)
has solution (𝑥, 𝑦) = (𝐺(𝑋), 𝑋).
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 323

2. deg(𝑓) ∣ 2 deg(g), there exist 𝑞0 ∈ ℚ, 𝑞0 ≠ 0 and distinct 𝑞1, 𝑞2, … , 𝑞𝑠 ∈ ℚ>0 such that

𝑓(𝑥) = 𝑞0

𝑠∏
𝑖=1

(𝑥 − 𝑞𝑖)(𝑥 + 𝑞𝑖), g(𝑦) = 𝑞0

𝑠∏
𝑖=1

(𝐺(𝑦) − 𝑞2
𝑖 ), (10)

𝐹(𝑥) = 𝑥2, 𝐺(𝑦) ∈ ℚ[𝑦] has at most two roots of odd multiplicities and is a PTE𝑛,𝑠 base, and
the equation 𝑥2 = 𝐺(𝑦) has infinitely many rational solutions (𝑥, 𝑦) = (𝑋𝑖, 𝑌𝑖) (𝑖 = 1, 2, … ) with
a bounded denominator. Here the equation 𝑓(𝑥) = g(𝑦) has solutions (𝑥, 𝑦) = (𝑋𝑖, 𝑌𝑖) (𝑖 =

1, 2, … ).

Proof. By Lemma 3.2 we know that deg(𝐹) ⩽ 2.
If deg(𝐹) = 1, then (using the notation of Table 1) we have 𝑝 = 0, 𝑞 = 1,𝐹(𝑥) = 𝑥,𝐺 = 𝑣, 𝑓 = 𝜑

and𝐺(𝑦) − 𝑝1, … , 𝐺(𝑦) − 𝑝𝑠 form a PTE𝑛,𝑠 polynomial set. Then 𝑓, g are as in (9). For every𝑋 ∈ ℚ

there is a solution (𝑥, 𝑦) = (𝐺(𝑋), 𝑋). This is case 1.
If deg(𝐹) = 2, then we may assume 𝐹(𝑥) = 𝑥2 according to the argument given in the preced-

ing section. As before, we see that 𝑝1, 𝑝2, … , 𝑝𝑠 are squares in ℚ. Let 𝑝𝑖 = 𝑞2
𝑖
for 𝑖 = 1, 2, … , 𝑠.

Then 𝑓, g are as in (10) where 𝐺(𝑦) − 𝑞2
1
, … , 𝐺(𝑦) − 𝑞2

𝑠 form a PTE𝑛,𝑠 polynomial set. Further,
by Lemma 3.1 we know that the equation 𝑥2 = 𝐺(𝑦) has infinitely many solutions in rationals
𝑥, 𝑦 with a bounded denominator. Clearly, these solutions will be solutions to the original equa-
tion, too. The main result of LeVeque [50] shows that 𝐺(𝑦) can have at most two roots of odd
multiplicities. This is case 2. □

Case 1 corresponds with case (a) in the previous section, case 2 with cases (b) and (c). The
following examples of case (a) illustrate that the results in Section 4 imply that there are instances
of deg(𝐹) = 1 with deg(𝐺) ∈ {3, 4, 6} and arbitrary deg(𝜑), (hence arbitrarily large deg(𝑓), deg(g)
as well). This is obvious for deg(𝐺) = 2, cf. Example 5.1.

Example 6.1 (Cf., Examples 4.1–4.3). For deg(𝐺) = 4 choose 𝐹(𝑥) = 𝑥, 𝐺(𝑦) = 𝑦4 − 1105𝑦2 and

𝜑(𝑥) = (𝑥 + (33 ⋅ 4)2)(𝑥 + (32 ⋅ 9)2)(𝑥 + (31 ⋅ 12)2)(𝑥 + (24 ⋅ 23)2).

Then 𝑓(𝑥) = 𝜑(𝑥) and g(𝑦) = 𝜑(𝐺(𝑦)) is given by

(𝑦2 − 332)(𝑦2 − 42)(𝑦2 − 322)(𝑦2 − 92)(𝑦2 − 312)(𝑦2 − 122)(𝑦2 − 242)(𝑦2 − 232).

Similarly, for deg(𝐺) = 6 choose

𝐹(𝑥) = 𝑥, 𝐺(𝑦) = 𝑦6 − 2 ⋅ 1729𝑦4 + 17292𝑦2,

𝜑(𝑥) = (𝑥 − (40 ⋅ 3 ⋅ 43)2)(𝑥 − (37 ⋅ 8 ⋅ 45)2)(𝑥 − (32 ⋅ 15 ⋅ 47)2)(𝑥 − (35 ⋅ 23 ⋅ 48)2).

Then 𝑓(𝑥) = 𝜑(𝑥), g(𝑦) =
∏

𝑎∈𝑇(𝑦
2 − 𝑎2) with

𝑇 = {40, 3, 43, 37, 8, 45, 32, 15, 47, 25, 23, 48}.
Finally, for deg(𝐺) = 3 let 𝐹(𝑥) = 𝑥, 𝐺(𝑦) = 𝑦3 − 17292𝑦,

𝜑(𝑥) = 𝑥(𝑥2 − (249 ⋅ 1840 ⋅ 1591)2)(𝑥2 − (656 ⋅ 1961 ⋅ 1305)2) ⋅

(𝑥2 − (1185 ⋅ 1984 ⋅ 799)2)(𝑥2 − (1679 ⋅ 1775 ⋅ 96)2).
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324 HAJDU and TIJDEMAN

Then 𝑓(𝑥) = 𝜑(𝑥) and g(𝑦) = 𝑦
∏

𝑎∈𝑇(𝑦
2 − 𝑎2) with

𝑇 = {1729, 249, 1840, 1591, 656, 1961, 1305, 1185, 1984, 799, 1679, 1775, 96}.

In all three cases, we obtain a solution (𝑥, 𝑦) = (𝐺(𝑋), 𝑋) of 𝑓(𝑥) = g(𝑦) for every𝑋 ∈ ℚ and both
𝑓 and g have only simple rational roots.

Now we turn to the case deg(𝐹) = 2. Again deg(𝜑) can be arbitrary (when deg(𝑓) and deg(g)
can be arbitrarily large). Note that deg(𝐺) ⩾ 2. An example of case (b) is given by Example 5.5.
The following example illustrates case (c). It is another generalization of Example 1.2.

Example 6.2. Suppose that the equation 𝑥2 = 𝑎𝑦2 + 𝑏 with 𝑎, 𝑏 ∈ ℤ, 𝑎𝑏 ≠ 0 has solutions
(𝑋𝑖, 𝑌𝑖)

∞
𝑖=1

∈ ℤ2. Let 𝑠 ⩾ 1, 𝐹(𝑥) = 𝑥2, 𝐺(𝑦) = 𝑎𝑦2 + 𝑏, 𝜑(𝑥) =
∏𝑠

𝑖=1(𝑥 − 𝑋2
𝑖
). Then we have

𝑓(𝑥) =

𝑠∏
𝑖=1

(𝑥2 − 𝑋2
𝑖 ), g(𝑦) =

𝑠∏
𝑖=1

(𝑎𝑦2 + 𝑏 − 𝑋2
𝑖 ) = 𝑎𝑠

𝑠∏
𝑖=1

(𝑦2 − 𝑌2
𝑖 ).

So both 𝑓(𝑥) and g(𝑦) have only simple rational roots. Further, the equation 𝑓(𝑥) = g(𝑦) has as
solutions (𝑋𝑖, 𝑌𝑖) for all 𝑖.

7 STANDARD PAIRS 𝑭,𝑮 OF THE THIRD OR FOURTH KIND

To handle the cases corresponding to standard pairs of the third and fourth kinds, we apply the
following result.

Lemma 7.1. Let 𝑎1, … , 𝑎𝑁 be distinct rationals, and assume that for some rational numbers
𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝑏 with 𝑢1𝑣1𝑏 ≠ 0 we have

𝑢1𝐷𝑁(𝑥, 𝑏) + 𝑢2 = (𝑣1𝑥 + 𝑣2 − 𝑎1)⋯ (𝑣1𝑥 + 𝑣2 − 𝑎𝑁), (11)

where 𝐷𝑁(𝑥, 𝑏) is the𝑁-th Dickson polynomial with parameter 𝑏. Then𝑁 ∈ {1, 2, 3, 4, 6}.

For appropriate choices of the parameters the cases 𝑁 ∈ {1, 2, 3, 4, 6} are possible. In Theo-
rem 7.1 we describe these cases completely. First we prove the first part of Theorem 1.1.

Proof of the first statement of Theorem 1.1. By Lemma7.1 Equation (2)with (1) implies thatdeg(𝐹) ∈

{1, 2, 3, 4, 6}, if the corresponding standard pair (𝐹, 𝐺) is of the third or fourth kind. This combined
with Lemma 3.2 completes the proof of the first statement of Theorem 1.1. □

Lemma 7.1 has already been proved for 𝑁 ⩽ 12 in [41] (see the proof of Theorem 2.3 there).
However, in this paper we need amore precise statement. To keep the presentation self-contained,
we include the complete proof.

Proof of Lemma 7.1. Writing 𝑤𝑖 = (𝑣2 − 𝑎𝑖)∕𝑣1 (𝑖 = 1, … ,𝑁) and 𝑢 = 𝑢2∕𝑣
𝑁
1
, dividing both sides

of (11) by 𝑣𝑁
1
and using that 𝐷𝑁 is monic, we get the similar equation

𝐷𝑁(𝑥, 𝑏) + 𝑢 = (𝑥 + 𝑤1)… (𝑥 + 𝑤𝑁). (12)

Here 𝑢 ∈ ℚ and 𝑤1,… ,𝑤𝑁 are distinct rationals.
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 325

Applying the well-known identity

𝐷𝑁

(
𝑦 +

𝑏

𝑦
, 𝑏

)
= 𝑦𝑁 +

(
𝑏

𝑦

)𝑁

to (12), we obtain

𝑦2𝑁 + 𝑢𝑦𝑁 + 𝑏𝑁 =

𝑁∏
𝑖=1

(𝑦2 + 𝑤𝑖𝑦 + 𝑏) . (13)

Write 𝜁, 𝜉 for the roots of the polynomial 𝑌2 + 𝑢𝑌 + 𝑏𝑁 . Clearly, 𝜁, 𝜉 are algebraic numbers of
degrees at most two. Further, 𝑏 ≠ 0 yields 𝜁𝜉 ≠ 0. Also observe that 𝜁 ≠ 𝜉, since the numbers 𝑤𝑖

in (12) are distinct. If 𝑢 = 0, then the roots of the left-hand side of (13) are given by

𝜂𝑗
√

𝑏 (𝑗 = 0, 1, … , 2𝑁 − 1), (14)

where
√

𝑏 denotes one of the (complex) square roots of 𝑏, and 𝜂 is a primitive 2𝑁-th root of unity.
In viewof the right-hand side of (13),we see that the numbers (14) are algebraic numbers of degrees
at most two. Hence 𝜑(2𝑁) = deg(𝜂) ⩽ 4. This implies 𝑁 ∈ {1, 2, 3, 4, 6}.
So from this point on, we assume 𝜁 + 𝜉 = −𝑢 ≠ 0. Then the roots of the polynomial on the

left-hand side of (13) are given by

𝜁0𝜀
𝑖 and 𝜉0𝜀

𝑖 (𝑖 = 0, 1, … ,𝑁 − 1),

where 𝜁0 and 𝜉0 are𝑁th roots of 𝜁 and 𝜉, respectively, and 𝜀 is a primitive𝑁th root of unity. Since
these are the roots of the polynomial on the right-hand side of (13), they are distinct algebraic
numbers of degrees at most two. In particular, 𝜁0 and 𝜁0𝜀 are at most quadratic algebraic numbers,
so the degree of 𝜀 is at most four. Hence 𝜑(𝑁) ⩽ 4, and we obtain 𝑁 ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}.
To refine the restriction for𝑁, we need a more careful consideration. Write 𝜁1 ∶= 𝜁0𝜀. Then we

see that

𝜀 =
𝜁1
𝜁0

(15)

belongs to the number field 𝐾 ∶= ℚ(𝜁0, 𝜁1). Observe that if 𝜁0 ∈ ℚ(𝜁1), then 𝜀 is (at most)
quadratic, yielding 𝜑(𝑁) ⩽ 2, and our claim follows. So we may assume that deg(𝐾) = 4, and also
that 𝐾 = ℚ(𝜀) and that 𝜁0 is quadratic. Denoting its algebraic conjugate by 𝜁0, we have

(𝜁0)
𝑁 = 𝜁𝑁

0
= 𝜁 = 𝜉.

Therefore, without loss of generality we may assume that 𝜉0 = 𝜁0 holds, in particular, that 𝜁0 and
𝜉0 belong to the same quadratic subfield of 𝐾. From this point on, we shall use this assumption.
We deal with the remaining cases in turn. For the calculations we used Magma [13].
If 𝑁 = 5, 10, then 𝐾 is defined by 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1. The only quadratic subfield of 𝐾 is

given by 𝑇1 ∶= ℚ(
√

5). So now 𝜁0, 𝜉0 ∈ 𝑇1. Recall that 𝜁0, hence also 𝜉0 is not rational. However,
the (unique) factorization of

𝑃(𝑥) ∶= 𝑥2𝑁 + 𝑢𝑥𝑁 + 𝑏𝑁 = (𝑥𝑁 − 𝜁𝑁
0 )(𝑥𝑁 − 𝜉𝑁

0 ) (16)
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326 HAJDU and TIJDEMAN

(into irreducible factors) in 𝑇1[𝑥] contains both for 𝑁 = 5 and for 𝑁 = 10 the factors

𝑥2 + (3 −
√

5)𝜁0𝑥 + 𝜁2
0 and 𝑥2 + (3 −

√
5)𝜉0𝑥 + 𝜉2

0 .

Here the constant terms of the quadratic factors are not equal. Indeed, otherwise 𝜁2
0
= 𝜉2

0
would

imply 𝜁0 = ±𝜉0, when 𝜁 = ±𝜉, which is excluded. Hence we see that (13) is not possible in
these cases.
Let now𝑁 = 8. Then 𝐾 is defined by 𝑥4 + 1. The number field 𝐾 has three quadratic subfields,

namely 𝑇2 = ℚ(𝑖), 𝑇3 = ℚ(
√

2) and 𝑇4 = ℚ(𝑖
√

2). Following the argument given above for the
factorization of 𝑃(𝑥) defined by (16) we get that

∙ 𝑥2 + 𝑖𝜁2
0
and 𝑥2 + 𝑖𝜉2

0
are factors of 𝑃(𝑥) in 𝑇2[𝑥],

∙ 𝑥2 + 𝜁2
0
and 𝑥2 + 𝜉2

0
are factors of 𝑃(𝑥) in 𝑇3[𝑥] and 𝑇4[𝑥],

assuming that 𝜁0, 𝜉0 ∈ 𝑇2, 𝑇3, 𝑇4, respectively. In all cases the constant terms of the quadratic
factors are not the same. So 𝑁 = 8 is also impossible.
Finally, let 𝑁 = 12. Then 𝐾 is defined by 𝑥4 − 𝑥2 + 1. The number field 𝐾 has three quadratic

subfields, namely 𝑇5 = ℚ(𝑖), 𝑇6 = ℚ(
√

3) and 𝑇7 = ℚ(𝑖
√

3). Now, similarly as before, for the
factorization of 𝑃(𝑥) given by (16) we obtain that

∙ 𝑥2 + 𝜁0𝑥 + 𝜁2
0
and 𝑥2 + 𝜉0𝑥 + 𝜉2

0
are factors of 𝑃(𝑥) in 𝑇5[𝑥],

∙ 𝑥2 + 𝜁2
0
and 𝑥2 + 𝜉2

0
are factors of 𝑃(𝑥) in 𝑇6[𝑥] and 𝑇7[𝑥],

assuming that 𝜁0, 𝜉0 ∈ 𝑇5, 𝑇6, 𝑇7, respectively.
Again, in all cases we observe that the constant terms of the quadratic factors are not identical.

So 𝑁 = 12 is excluded, too. □

Theorem 7.1. Let 𝑁 ∈ {3, 4, 6}. For any 𝑤1,𝑤2 ∈ ℚ we can choose 𝑤3,… ,𝑤𝑁, 𝑏, 𝑢 ∈ ℚ such that
(12) holds. On the other hand, this provides the only solutions of Equation (12).

Remark 7.1. The cases 𝑁 = 1 and 𝑁 = 2 are trivial. Indeed, for 𝑁 = 1 we have 𝐷1(𝑥, 𝑏) = 𝑥, so
𝑤1 = 𝑢 can be any rational number. Further, for 𝑁 = 2 we have 𝐷2(𝑥, 𝑏) = 𝑥2 − 2𝑏, when 𝑤1 +

𝑤2 = 0, 𝑤1𝑤2 = −2𝑏 + 𝑢. Therefore all cases of (12) are given by

(𝑥 + 𝑤1)(𝑥 − 𝑤1) = 𝐷2(𝑥, 𝑏) + (2𝑏 − 𝑤2
1),

that is, with 𝑢 = 2𝑏 − 𝑤2
1
for arbitrary 𝑏,𝑤1 ∈ ℚ.

Proof of Theorem 7.1. We consider the possibilities in turn.
The case 𝑁 = 3. We have

𝐷3(𝑥, 𝑏) = 𝑥3 − 3𝑏𝑥, (17)

hence

𝑤1 + 𝑤2 + 𝑤3 = 0,𝑤1𝑤2 + 𝑤1𝑤3 + 𝑤2𝑤3 = −3𝑏,𝑤1𝑤2𝑤3 = 𝑢.

This gives

𝑤3 = −𝑤1 − 𝑤2, 𝑏 = (𝑤2
1 + 𝑤1𝑤2 + 𝑤2

2)∕3, 𝑢 = −𝑤2
1𝑤2 − 𝑤1𝑤

2
2. (18)
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 327

Thus we have for any 𝑤1,𝑤2 ∈ ℚ that

(𝑥 + 𝑤1)(𝑥 + 𝑤2)(𝑥 − 𝑤1 − 𝑤2) = 𝐷3(𝑥, 𝑏) + 𝑢 (19)

and this provides all possibilities for (12).
The case 𝑁 = 4. We have

𝐷4(𝑥, 𝑏) = 𝑥4 − 4𝑏𝑥2 + 2𝑏2. (20)

This implies

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 0

and

𝑤1𝑤2𝑤3 + 𝑤1𝑤2𝑤4 + 𝑤1𝑤3𝑤4 + 𝑤2𝑤3𝑤4 = 0.

It follows that

0 = 𝑤1𝑤2𝑤3 − (𝑤1𝑤2 + 𝑤1𝑤3 + 𝑤2𝑤3)(𝑤1 + 𝑤2 + 𝑤3) = −(𝑤1 + 𝑤2)(𝑤1 + 𝑤3)(𝑤2 + 𝑤3).

We assume, without loss of generality,

𝑤1 + 𝑤3 = 0, hence 𝑤2 + 𝑤4 = 0. (21)

Further comparison of coefficients gives

𝑏 = −
𝑤1𝑤2 + 𝑤1𝑤3 + 𝑤1𝑤4 + 𝑤2𝑤3 + 𝑤2𝑤4 + 𝑤3𝑤4

4
=

𝑤2
1
+ 𝑤2

2

4
(22)

and

𝑢 = 𝑤1𝑤2𝑤3𝑤4 − 2𝑏2 = 𝑤2
1𝑤

2
2 −

1

8
(𝑤2

1 + 𝑤2
2)

2 = −
1

8
(𝑤4

1 − 6𝑤2
1𝑤

2
2 + 𝑤4

2). (23)

For any 𝑤1,𝑤2 ∈ ℚ and 𝑏, 𝑢 chosen as above we have

(𝑥 + 𝑤1)(𝑥 − 𝑤1)(𝑥 + 𝑤2)(𝑥 − 𝑤2) = 𝐷4(𝑥, 𝑏) + 𝑢 (24)

and this provides all possibilities for (12).
The case 𝑁 = 6 is the most involved one. We have

𝐷6(𝑥, 𝑏) = 𝑥6 − 6𝑏𝑥4 + 9𝑏2𝑥2 − 2𝑏3. (25)

On the other hand, the roots of the polynomial on the left-hand side of (13) are given by

±𝜁0, ±𝜁0𝜀, ±𝜁0𝜀
2, ±𝜉0, ±𝜉0𝜀, ±𝜉0𝜀

2,

where 𝜀 is a primitive sixth root of unity (that is, a root of 𝑥2 − 𝑥 + 1), and either 𝜁0, 𝜉0 ∈ ℚ, or they
are conjugated quadratic algebraic numbers from the field 𝐾 = ℚ(𝜀). Anyhow, the factorization
of the polynomial on the right hand side of (13) over 𝐾 reads as

(𝑦 − 𝜁0)(𝑦 + 𝜁0)(𝑦 − 𝜁0𝜀)(𝑦 + 𝜁0𝜀)(𝑦 − (1 − 𝜀)𝜁0)(𝑦 + (1 − 𝜀)𝜁0)

⋅(𝑦 − 𝜉0)(𝑦 + 𝜉0)(𝑦 − 𝜉0𝜀)(𝑦 + 𝜉0𝜀)(𝑦 − (1 − 𝜀)𝜉0)(𝑦 + (1 − 𝜀)𝜉0).
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328 HAJDU and TIJDEMAN

Note that the (algebraic) conjugate of 𝜀 is 1 − 𝜀. Hence we immediately get that the right hand
side of (13) is given by

(𝑦2 − (𝜁0 + 𝜉0)𝑦 + 𝜁0𝜉0)(𝑦
2 + (𝜁0 + 𝜉0)𝑦 + 𝜁0𝜉0)

⋅(𝑦2 − (𝜁0𝜀 + 𝜉0(1 − 𝜀))𝑦 + 𝜁0𝜉0)(𝑦
2 + (𝜁0𝜀 + 𝜉0(1 − 𝜀))𝑦 + 𝜁0𝜉0)

⋅(𝑦2 − (𝜁0(1 − 𝜀) + 𝜉0𝜀)𝑦 + 𝜁0𝜉0)(𝑦
2 + (𝜁0(1 − 𝜀) + 𝜉0𝜀)𝑦 + 𝜁0𝜉0).

Here all the above quadratic polynomials have rational coefficients. The coefficients of 𝑦 are just
the numbers𝑤𝑖 from (13) (and (12)). Observe that (by choosing an appropriate indexing) we have

𝑤3 = 𝑤1 + 𝑤2, 𝑤4 = −𝑤1, 𝑤5 = −𝑤2, 𝑤6 = −𝑤3 (26)

in (12). Put𝑊 = 𝑤2
1
+ 𝑤1𝑤2 + 𝑤2

2
. A simple calculation yields that

(𝑥 + 𝑤1)(𝑥 + 𝑤2)(𝑥 + 𝑤3)(𝑥 + 𝑤4)(𝑥 + 𝑤5)(𝑥 + 𝑤6)

= 𝑥6 − 2𝑊𝑥4 + 𝑊2𝑥2 − 𝑤2
1𝑤

2
2(𝑤1 + 𝑤2)

2.

Comparing the coefficients with 𝐷6(𝑥, 𝑏) + 𝑢 = 𝑥6 − 6𝑏𝑥4 + 9𝑏2𝑥2 − 2𝑏3 + 𝑢 we see that

𝑏 =
𝑊

3
, 𝑢 =

2𝑊3

27
− 𝑤2

1𝑤
2
2(𝑤1 + 𝑤2)

2. (27)

On the other hand, for any 𝑤1,𝑤2 ∈ ℚ we have, choosing 𝑏 and 𝑢 as in (27), that

(𝑥 + 𝑤1)(𝑥 − 𝑤1)(𝑥 + 𝑤2)(𝑥 − 𝑤2)(𝑥 + 𝑤1 + 𝑤2)(𝑥 − 𝑤1 − 𝑤2) = 𝐷6(𝑥, 𝑏) + 𝑢. (28)

Thus this provides all possibilities for (12) if 𝑁 = 6. □

We give examples to show that for deg(𝐹) = 𝑚 ∈ {3, 4, 6} Equation (2) with 𝑓 of the form (1)
can have infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator. The examples are
successively with 𝑚 = 3, 4, 6 for the third kind and with 𝑚 = 4, 6 for the fourth kind. By the gcd
condition in Table 1,𝑚 = 3 cannot occur for the fourth kind.

Example 7.1. Third kind, case 𝑚 = 3, 𝑛 = 4, 𝑏 = 7, 𝐹(𝑥) = 𝐷3(𝑥, 7
4), 𝐺(𝑦) = 𝐷4(𝑦, 7

3)), 𝜑(𝑥) =

(𝑥 − 14 ⋅ 77 ⋅ 91)(𝑥 − 23 ⋅ 71 ⋅ 94).
We have

3 ⋅ 74 = 142 + 14 ⋅ 77 + 772 = 232 + 23 ⋅ 71 + 712.

Hence, by (19) and (20),

𝐷3(𝑥, 7
4) = (𝑥 + 14)(𝑥 + 77)(𝑥 − 91) + 14 ⋅ 77 ⋅ 91

= (𝑥 + 23)(𝑥 + 71)(𝑥 − 94) + 23 ⋅ 71 ⋅ 94,

𝐷4(𝑥, 7
3) = 𝑥4 − 4 ⋅ 73 ⋅ 𝑥2 + 2 ⋅ 76.

According to [11, formula (5)] we have, for all coprime positive integers𝑚, 𝑛 and integers 𝑏,

𝐷𝑚(𝐷𝑛(𝑥, 𝑏), 𝑏
𝑛) = 𝐷𝑛(𝐷𝑚(𝑥, 𝑏), 𝑏𝑚). (29)
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 329

So the equation 𝐹(𝑥) = 𝐺(𝑦) has solutions (𝑥, 𝑦) = (𝐷4(𝑋, 7), 𝐷3(𝑋, 7)) for every𝑋 ∈ ℤ. Then the
equation 𝑓(𝑥) = g(𝑦) with

𝑓(𝑥) = (𝐷3(𝑥, 7
4) − 14 ⋅ 77 ⋅ 91)(𝐷3(𝑥, 7

4) − 23 ⋅ 71 ⋅ 94),

g(𝑦) = (𝐷4(𝑦, 7
3) − 14 ⋅ 77 ⋅ 91)(𝐷4(𝑦, 7

3) − 23 ⋅ 71 ⋅ 94)

has the same solutions. Note that 𝑓 has only simple integral roots.

Example 7.2. Third kind, 𝑚 = 4, 𝑛 = 3, 𝑏 = 5, 𝐹(𝑥) = 𝐷4(𝑥, 5
3), 𝐺(𝑦) = 𝐷3(𝑦, 5

4), 𝜑(𝑥) = (𝑥 +

42 ⋅ 222 − 2 ⋅ 56)(𝑥 + 102 ⋅ 202 − 2 ⋅ 56).
We have 4 ⋅ 53 = 42 + 222 = 102 + 202. Hence

𝐷4(𝑥, 5
3) = (𝑥 + 4)(𝑥 − 4)(𝑥 + 22)(𝑥 − 22) − 42 ⋅ 222 + 2 ⋅ 56 =

= (𝑥 + 10)(𝑥 − 10)(𝑥 + 20)(𝑥 − 20) − 102 ⋅ 202 + 2 ⋅ 56.

By (29), the equation 𝐹(𝑥) = 𝐷4(𝑥, 5
3) = 𝐷3(𝑦, 5

4) = 𝐺(𝑦) has solutions (𝑥, 𝑦) =

(𝐷3(𝑋, 5), 𝐷4(𝑋, 5)) (𝑋 ∈ ℤ). Thus the equation 𝑓(𝑥) = g(𝑦) with

𝑓(𝑥) = (𝑥 + 4)(𝑥 − 4)(𝑥 + 22)(𝑥 − 22)(𝑥 + 10)(𝑥 − 10)(𝑥 + 20)(𝑥 − 20),

g(𝑦) = (𝐷3(𝑦, 5
4) + 42 ⋅ 222 − 2 ⋅ 56)(𝐷3(𝑦, 5

4) + 102 ⋅ 202 − 2 ⋅ 56)

has the same solutions.

Example 7.3. Third kind, 𝑚 = 6, 𝑛 = 5, 𝑏 = 7, 𝐹(𝑥) = 𝐷6(𝑥, 7
5), 𝐺(𝑦) = 𝐷5(𝑦, 7

6)), 𝜑(𝑥) = (𝑥 +

7 945 347 009 886)(𝑥 + 3 958 608 139 486).
We have 3 ⋅ 75 = 2112 + 211 ⋅ 25 + 252 = 1962 + 196 ⋅ 49 + 492. Hence

𝐷6(𝑥, 7
5) = (𝑥 + 211)(𝑥 + 25)(𝑥 + 236)(𝑥 − 211)(𝑥 − 25)(𝑥 − 236) − 7 945 347 009 886

= (𝑥 + 196)(𝑥 + 49)(𝑥 + 245)(𝑥 − 196)(𝑥 − 49)(𝑥 − 245) − 3 958 608 139 486.

By (29), the equation 𝐹(𝑥) ∶= 𝐷6(𝑥, 7
5) = 𝐷5(𝑦, 7

6) =∶ 𝐺(𝑦) has solutions (𝑥, 𝑦) =

(𝐷5(𝑋, 7), 𝐷6(𝑋, 7)) for (𝑋∈ℤ). Thus the equation 𝑓(𝑥) = g(𝑦) with

𝑓(𝑥) = (𝑥 + 211)(𝑥 + 25)(𝑥 + 236)(𝑥 − 211)(𝑥 − 25)(𝑥 − 236)

⋅(𝑥 + 196)(𝑥 + 49)(𝑥 + 245)(𝑥 − 196)(𝑥 − 49)(𝑥 − 245),

g(𝑦) = (𝐷5(𝑦, 7
6) + 7 945 347 009 886)(𝐷5(𝑦, 7

6) + 3 958 608 139 486)

has the same solutions.

Example 7.4. Fourth kind, case 𝑚 = 4, 𝑛 = 10, 𝑎 = −10 ⋅ 652, 𝑏 = 65, 𝐹(𝑥) = 𝑏−2𝐷4(𝑥, 𝑏),

𝐺(𝑦) = −𝑎−5𝐷10(𝑦, 𝑎), 𝜑(𝑥) = (𝑥 − 7426 ⋅ 𝑏−2)(𝑥 + 4094 ⋅ 𝑏−2).
We have 4𝑏 = 260 = 22 + 162 = 82 + 142. Thus

𝐷4(𝑥, 𝑏) = (𝑥2 − 22)(𝑥2 − 162) + 7426 = (𝑥2 − 82)(𝑥2 − 142) − 4094.
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330 HAJDU and TIJDEMAN

According to [11, formula (10)] with𝑚 = 4, 𝑛 = 10,

𝑏2𝑣2
1 + 𝑎𝑣2

2 = 4𝑎𝑏 (30)

with 𝑣1, 𝑣2 ∈ ℚ implies that

𝑏−2𝐷4(𝑏
−2(𝑣5

2 − 5𝑏𝑣3
2 + 5𝑏2𝑣2), 𝑏) = −𝑎−5𝐷10(𝑣1𝑣2, 𝑎). (31)

Observe that (30) becomes the Pell equation 𝑣2
1
− 10𝑣2

2
= −2600 with solutions (𝑣1, 𝑣2) = (𝑋𝑖, 𝑌𝑖)

given by (𝑋0, 𝑌0) = (−80, 30), (𝑋1, 𝑌1) = (280, 90) and

(𝑋𝑖, 𝑌𝑖) = 38(𝑋𝑖−1, 𝑌𝑖−1) − (𝑋𝑖−2, 𝑌𝑖−2) (𝑖 ⩾ 2).

Thus

𝐹(𝑥) = 𝑏−2𝐷4(𝑥, 𝑏) = −𝑎−5𝐷10(𝑦, 𝑎) = 𝐺(𝑦)

has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator. We conclude that the
equation 𝑓(𝑥) = g(𝑦) with

𝑓(𝑥) = 𝑏−4(𝑥 − 2)(𝑥 + 2)(𝑥 − 16)(𝑥 + 16)(𝑥 − 8)(𝑥 + 8)(𝑥 − 14)(𝑥 + 14),

g(𝑦) = (−𝑎−5𝐷10(𝑦, 𝑎) − 7426𝑏−2)(−𝑎−5𝐷10(𝑦, 𝑎) + 4094𝑏−2)

has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator.

Example 7.5. Fourth kind, case𝑚 = 6, 𝑛 = 10, 𝑎 = −14 ⋅ 913, 𝑏 = 91,
𝐹(𝑥) = 𝑏−3𝐷6(𝑥, 𝑏), 𝐺(𝑦) = −𝑎−5𝐷10(𝑦, 𝑎),
𝜑(𝑥) = (𝑥 + 1 433 158 ⋅ 𝑏−3)(𝑥 − 1 288 442 ⋅ 𝑏−3).
We have 3𝑏 = 162 + 16 ⋅ 1 + 12 = 112 + 11 ⋅ 8 + 82. Thus

𝐷6(𝑥, 91) = (𝑥2 − 162)(𝑥2 − 1)(𝑥2 − 172) − 1 433 158

= (𝑥2 − 112)(𝑥2 − 82)(𝑥2 − 192) + 1 288 442.

By [11, formula (10)] with𝑚 = 6, 𝑛 = 10,

𝑏3𝑣2
1 + 𝑎𝑣2

2 = 4𝑎𝑏 (32)

with 𝑣1, 𝑣2 ∈ ℚ implies that

𝑏−3𝐷6(𝑏
−2(𝑣5

2 − 5𝑏𝑣3
2 + 5𝑏2), 𝑏) = −𝑎−5𝐷10(𝑣1(𝑣

2
2 − 𝑏), 𝑎). (33)

Observe that (32) becomes the Pell equation 𝑣2
1
− 14𝑣2

2
= −5096, with solutions (𝑣1, 𝑣2) = (𝑋𝑖, 𝑌𝑖)

given by (𝑋0, 𝑌0) = (−140, 42), (𝑋1, 𝑌1) = (252, 70) and

(𝑋𝑖, 𝑌𝑖) = 30(𝑋𝑖−1, 𝑌𝑖−1) − (𝑋𝑖−2, 𝑌𝑖−2) (𝑖 ⩾ 2).

Thus, by (33),

𝐹(𝑥) = 𝑏−3𝐷6(𝑥, 𝑏) = −𝑎−5𝐷10(𝑦, 𝑎) = 𝐺(𝑦)
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 331

has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator. We conclude that the
equation 𝑓(𝑥) = g(𝑦) with

𝑓(𝑥) = 𝑏−6(𝑥2 − 162)(𝑥2 − 1)(𝑥2 − 172)(𝑥2 − 112)(𝑥2 − 82)(𝑥2 − 192),

g(𝑦) = (−𝑎−5𝐷10(𝑦, 𝑎) + 1 433 158𝑏−3)(−𝑎−5𝐷10(𝑦, 𝑎) − 1 288 442𝑏−3)

has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator.

Remark 7.2. It follows from Lemmas 4.2 and 4.3 that in all the above examples deg(𝜑) can equal
any 𝑠 ∈ ℤ>0, (hence deg(𝑓) and deg(g) can bemade arbitrarily large) by choosing suitable𝑊 with
number of representations ⩾ 𝑠 and corresponding values 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑠.

Remark 7.3. Let 𝑓(𝑥) ∈ ℚ[𝑥] have only simple rational roots and let g(𝑥) ∈ ℚ[𝑥]. Suppose the
equation 𝑓(𝑥) = g(𝑦) has infinitely many solutions (𝑥, 𝑦) ∈ ℚ2 with a bounded denominator.
By Lemma 7.1 we have deg(𝐹) ∈ {1, 2, 3, 4, 6}. Put 𝑠 = gcd(deg(𝑓), deg(g)), 𝑚 = deg(𝑓)∕𝑠, 𝑛 =

deg(g)∕𝑠. Then gcd(𝑚, 𝑛) = 1 and𝑚 ∈ {1, 2, 3, 4, 6} or 𝑛 ∈ {1, 2}.
If 𝑚 = 1 we refer to Example 5.1 to see that all pairs 𝑛, 𝑠 are possible. For 𝑚 = 2 Example 5.2

shows that all pairs (𝑛, 𝑠) (with 𝑛 odd since 𝑚 and 𝑛 are coprime) are possible. By (29) the equa-
tion 𝐷𝑚(𝑥, 𝑏𝑛) = 𝐷𝑛(𝑦, 𝑏

𝑚) with gcd(𝑚, 𝑛) = 1 has infinitely many solutions in integers (𝑥, 𝑦)

for any integer 𝑏. If 𝑚 = 4, we proceed as in Example 7.2 (where 𝑠 = 2) using a 𝑏 which is the
product of sufficiently many distinct primes ≡ 1 (mod 4). If𝑚 = 3 or𝑚 = 6, then we proceed as
in Example 7.1 or 7.3 (where 𝑠 = 2 too) using a 𝑏 which is the product of sufficiently many dis-
tinct primes ≡ 1 (mod 6). Remark 7.2 underlines that this can be done for any 𝑠. Thus every pair
(deg(𝑓), deg(g)) with corresponding𝑚 ∈ {1, 2, 3, 4, 6} can be represented.

8 𝒇 AND g CANNOT HAVE ONLY SIMPLE RATIONAL ROOTS IF
(𝑭, 𝑮) IS OF THE THIRD OR FOURTH KIND

If both𝑓 and g have simple rational roots, then by symmetrywemay assume that deg(𝑓) ⩽ deg(g).
Throughout this chapter we shall do so without further mentioning. We show that if in this case
the equation 𝑓(𝑥) = g(𝑦) has infinitely many rational solutions with a bounded denominator and
the corresponding standard pair (𝐹, 𝐺) is of the third or fourth kind, then deg(𝐹) ⩽ 2. Note that
deg(𝑓) ⩽ deg(g) implies deg(𝐹) ⩽ deg(𝐺).

Theorem 8.1. Suppose that 𝑓 and g have only simple rational roots, and the equation 𝑓(𝑥) = g(𝑦)
has infinitely many rational solutions with a bounded denominator. If the corresponding standard
pair (𝐹, 𝐺) is of the third or fourth kind, then deg(𝐹) ⩽ 2 holds.

In the proof we use the following lemmas.
We denote the discriminant of a polynomial 𝑃 by disc(𝑃).

Lemma 8.1 (Davenport, Lewis, Schinzel, [24, Theorem 1]). Let 𝐹(𝑥) ∈ ℤ[𝑥] be of degree 𝑚 > 1

and 𝐺(𝑦) ∈ ℤ[𝑥] of degree 𝑛 > 1. Let

𝐷(𝑧) = disc(𝐹(𝑥) + 𝑧), 𝐸(𝑧) = disc(𝐺(𝑦) + 𝑧).
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332 HAJDU and TIJDEMAN

Suppose there are at least ⌊ 1

2
𝑚⌋ roots of𝐷(𝑧) = 0 forwhich𝐸(𝑧) ≠ 0. Then𝐹(𝑥) − 𝐺(𝑦) is irreducible

over the complex field. Further, the genus of the equation 𝐹(𝑥) − 𝐺(𝑦) = 0 is strictly positive except
possibly when 𝑛 = 2 or𝑚 = 𝑛 = 3. Apart from these possible exceptions, the equation has at most a
finite number of integral solutions.

Lemma 8.2. Let 𝑎, 𝑏, 𝑐 be rational numbers such that

3𝑎2 + 𝑏2 = 𝑐2.

Then there exist rational numbers 𝑢, 𝑣, 𝑤 such that

𝑎 = ±𝑤(2𝑢𝑣), 𝑏 = ±𝑤(3𝑢2 − 𝑣2), 𝑐 = ±𝑤(3𝑢2 + 𝑣2)

with independent choices of the ± signs.

Proof. Using the trivial solution (𝑎, 𝑏, 𝑐) = (0, 1, 1), the statement is a simple consequence of
Corollary 6.3.6 of Cohen [20] (in the particular case (𝐴, 𝐵, 𝐶) = (3, 1, 1) there); see also Desboves
[25] andDickson [27, II p. 405].We note that the parametrization given in [27] is not complete. □

Proof of Theorem 8.1. Suppose that the equation 𝑓(𝑥) = g(𝑦) has infinitely many solutions 𝑥, 𝑦 ∈

ℚ with a bounded denominator, and write (𝐹, 𝐺) for the corresponding standard pair of the third
or fourth kind. Assume that deg(𝐹) ⩾ 3. Then it follows from Lemma 7.1 that deg(𝐹), deg(𝐺) ∈

{3, 4, 6}. In view of the gcd restrictions on standard pairs of the third and fourth kinds it remains
to consider (𝑚, 𝑛) ∶= (deg(𝐹), deg(𝐺)) = (3, 4) for the third kind and = (4, 6) for the fourth kind.
Standard pairs of the third kind.We have (𝑚, 𝑛) = (3, 4). Write

𝜑(𝑥) = 𝑝0(𝑥 − 𝑝1)⋯ (𝑥 − 𝑝𝑠)

with 𝑝0 ∈ ℚ, 𝑝0 ≠ 0 and 𝑝𝑖 ∈ ℂ (𝑖 = 1,… , 𝑠). Since the roots of 𝑓(𝑥) = 𝜑(𝐹(𝑥)) are simple and
rational, we see that 𝑝1, … , 𝑝𝑠 are distinct and rational. So we can write

𝐹(𝑥) − 𝑝𝑖 = (𝑥 − 𝑎(𝑖)
1

)(𝑥 − 𝑎(𝑖)
2

)(𝑥 − 𝑎(𝑖)
3

),

𝐺(𝑦) − 𝑝𝑖 = (𝑦 − 𝑏(𝑖)
1

)(𝑦 − 𝑏(𝑖)
2

)(𝑦 − 𝑏(𝑖)
3

)(𝑦 − 𝑏(𝑖)
4

) (𝑖 = 1, … , 𝑠).

Here the 3𝑠 numbers 𝑎 form the set of roots of 𝑓 and are therefore distinct rationals. Similarly the
4𝑠 numbers 𝑏 form the set of roots of g and are therefore distinct rationals. By Lemma 3.1 we know
that the equation

𝐹(𝑥) − 𝑝1 = 𝐺(𝑦) − 𝑝1 (34)

has infinitely many solutions in rationals 𝑥, 𝑦 with a bounded denominator. Since they are Dick-
son polynomials of degrees 3 and 4, respectively, the proof of Theorem 7.1 implies that the
equation (after changing the indexing of the roots if it is necessary)

(𝑥 − 𝑎(1)
1

)(𝑥 − 𝑎(1)
2

)(𝑥 + 𝑎(1)
1

+ 𝑎(1)
2

) = (𝑦2 − (𝑏(1)
1

)2)(𝑦2 − (𝑏(1)
2

)2)
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THE DIOPHANTINE EQUATION 𝒇(𝒙) = g(𝒚) 333

has infinitely many solutions in rationals 𝑥, 𝑦 with a bounded denominator. Then there exist
positive integers Δ1, Δ2 such that, omitting the superscript (1) for simplicity and putting

𝐴𝑖 = Δ1𝑎𝑖 (𝑖 = 1, 2, 3) and 𝐵𝑗 = Δ2𝑏𝑗 (𝑗 = 1, 2),

the equation

𝑈(𝑥) ∶= (𝑥 − 𝐴1)(𝑥 − 𝐴2)(𝑥 + 𝐴1 + 𝐴2) = Δ(𝑦2 − 𝐵2
1)(𝑦

2 − 𝐵2
2) =∶ 𝑉(𝑦) (35)

with Δ = Δ3
1
∕Δ4

2
has infinitely many solutions in integers 𝑥, 𝑦.

It follows from Lemma 8.1 that, writing

𝐷(𝑧) = disc(𝑈(𝑥) + 𝑧) and 𝐸(𝑧) = disc(𝑉(𝑦) + 𝑧),

every root of 𝐷(𝑧) is a root of 𝐸(𝑧). A Maple calculation reveals that the roots of 𝐷(𝑧) are

−𝐴2
1𝐴2 − 𝐴1𝐴

2
2 ±

2

9

√
3(𝐴2

1
+ 𝐴1𝐴2 + 𝐴2

2
)3 (36)

and that the roots of 𝐸(𝑧),

−Δ𝐵2
1𝐵

2
2, Δ

(
𝐵2
1
− 𝐵2

2

2

)2

(37)

(the latter one being a double root), are rational. So the roots of 𝐷(𝑧) have to be rational. Hence,
for some 𝑠 ∈ ℚ,

3(𝐴2
1 + 𝐴1𝐴2 + 𝐴2

2) = 𝑠2. (38)

We rewrite (38) as

3(2𝐴1 + 𝐴2)
2 + (3𝐴2)

2 = (2𝑠)2.

By Lemma 8.2, we obtain

2𝐴1 + 𝐴2 = ±𝑤(2𝑢𝑣), 3𝐴2 = ±𝑤(3𝑢2 − 𝑣2)

with some 𝑢, 𝑣, 𝑤 ∈ ℚ and independent choice of the ± signs. This yields

(𝐴1, 𝐴2) = 𝑤

(
−3𝑢2 ± 6𝑢𝑣 + 𝑣2

6
,
3𝑢2 − 𝑣2

3

)
.

(Here in place of the factor ±𝑤 we can simply write 𝑤, since 𝑤 ∈ ℚ is arbitrary.) Therefore the
roots of 𝐷(𝑧) are given by

1

2
𝑤3𝑢2(𝑢 − 𝑣)2(𝑢 + 𝑣)2, −

1

54
𝑤3𝑣2(3𝑢 − 𝑣)2(3𝑢 + 𝑣)2.

Since, by (37), the products of any two roots (37) of 𝐸(𝑧) are ± squares and 2 ⋅ 54 = 108 is not a
square in ℚ, we see that one of the roots of 𝐷(𝑧) is zero. Then 𝐸(𝑧) has also a root 0. However,
then either 𝐵1𝐵2 = 0 or 𝐵1 = ±𝐵2, which contradicts the distinctness of the roots 𝐵1, 𝐵2, 𝐵3, 𝐵4.
This contradiction proves that (35) has only finitely many solutions (𝑥, 𝑦) ∈ ℤ2, hence (34) and
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334 HAJDU and TIJDEMAN

thus also the equation 𝑓(𝑥) = g(𝑦) has only finitely many rational solutions with a bounded
denominator. So this case cannot occur.
Standard pairs of the fourth kind. In this case the only possibility is (𝑚, 𝑛) = (4, 6), and

Lemma 3.1 implies that the standard pair (𝐹(𝑥), 𝐺(𝑦)) is of the form (𝑎−2𝐷4(𝑥, 𝑎), −𝑏−3𝐷6(𝑦, 𝑏)).
Further, the equation

𝑎−2𝐷4(𝑥, 𝑎) = −𝑏−3𝐷6(𝑦, 𝑏) (39)

should have infinitely many rational solutions 𝑥, 𝑦 with bounded denominator. However, by The-
orem 7.1 we know that here 𝑏 is of the form (𝑤2

1
+ 𝑤1𝑤2 + 𝑤2

2
)∕3 with some 𝑤1,𝑤2 ∈ ℚ, in

particular, 𝑏 > 0. However, since the signs of the leading coefficients of the even degree poly-
nomials in (39) are different, this equation can have only finitely many solutions with a bounded
denominator. So this case cannot occur either, and the proof of Theorem 8.1 is complete. □

9 A SHARPENING OF THEOREM 1.1

We give a refinement of Theorem 1.1 in case both 𝑓 and g have only simple rational roots. This
completes the proof of Theorem 1.1.

Theorem 9.1. Suppose that 𝑓 and g have only simple rational roots, and that the equation 𝑓(𝑥) =

g(𝑦) has infinitely many rational solutions with a bounded denominator. Let 𝑘 = deg(𝑓),𝓁 =

deg(g). If 0 < 𝑘 ⩽ 𝓁, then 𝑘 ∣ 2𝓁, 𝑓 is a PTE𝑚,𝑠-polynomial and g is a PTE𝓁𝑚∕𝑘,𝑠-polynomial with
𝑚 ∈ {1, 2} and 𝓁𝑚∕𝑘 ∈ ℤ.
Conversely, if 𝑘,𝓁 are positive integers with 𝑘 ∣ 𝓁 and g is a PTE𝓁∕𝑘-polynomial of degree 𝓁 with

only simple rational roots, then there exists a polynomial 𝑓(𝑥) ∈ ℚ[𝑥] with deg(𝑓) = 𝑘 and only
simple rational roots such that the equation 𝑓(𝑥) = g(𝑦) has infinitely many rational solutions with
a bounded denominator.

Proof. Suppose that the equation 𝑓(𝑥) = g(𝑦) has infinitely many solutions 𝑥, 𝑦 ∈ ℚ with a
bounded denominator. Write (𝐹, 𝐺) for a corresponding standard pair. Combining Lemma 3.2
and Theorem 8.1 we see that deg(𝐹) ⩽ 2, hence deg(𝑓) ∣ 2 deg(g). Similarly as in the treatment
of case deg(𝐹) = 2 in Section 5, without loss of generality we may assume 𝐹(𝑥) = 𝑥𝑚 with
𝑚 ∈ {1, 2}. If 𝜑(𝑥) = 𝑝0(𝑥 − 𝑝1)⋯ (𝑥 − 𝑝𝑠), then the rationals 𝑝1, … , 𝑝𝑠 are distinct, 𝑓(𝑥) is sim-
ilar to 𝑝0(𝑥

𝑚 − 𝑝1)⋯ (𝑥𝑚 − 𝑝𝑠) and g(𝑦) is similar to 𝑝0(𝐺(𝑦) − 𝑝1)⋯ (𝐺(𝑦) − 𝑝𝑠), which both
have simple rational roots. Thus 𝑓 is a PTE𝑚,𝑠-polynomial, g is a PTE𝓁𝑚∕𝑘-polynomial.
Conversely, let 𝑘 ∣ 𝓁 and g be a PTE𝓁∕𝑘,𝑠-polynomial of degree 𝓁with only simple rational roots.

Then g is of the form

g(𝑦) = 𝑝0(𝐺(𝑦) − 𝑝1)(𝐺(𝑦) − 𝑝2)⋯ (𝐺(𝑦) − 𝑝𝑘) (40)

for some 𝑝0, 𝑝1, … , 𝑝𝑘 ∈ ℚ with 𝑝1, 𝑝2, … , 𝑝𝑘 distinct. Write 𝑓(𝑥) = 𝑝0(𝑥 − 𝑝1)⋯ (𝑥 − 𝑝𝑘). Then
the equation 𝑓(𝑥) = g(𝑦) has solutions (𝑥, 𝑦) = (𝐺(𝑋), 𝑋) for every 𝑋 ∈ ℤ. □

Remark 9.1. If in (40) 𝑝𝑖 = 𝑏2
𝑖
for 𝑏𝑖 ∈ ℚ, 𝑖 = 1, … , 𝑘, then we may choose 𝐹(𝑥) = 𝑥2, 𝑓(𝑥) = (𝑥 −

𝑏1)(𝑥 + 𝑏1)⋯ (𝑥 − 𝑏𝑘)(𝑥 + 𝑏𝑘). This is the case 𝑚 = 2 in which 𝑓 is both a PTE1,2𝑘-polynomial
and, after replacing 𝑥2 by 𝑥, a PTE2,𝑘-polynomial.
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 335

Remark 9.2. A remaining question is how large deg(𝑣) in Table 1 can be, if both 𝑓 and g have only
simple rational roots. Similarly as earlier, without loss of generality we may assume 𝐹(𝑥) = 𝑥 or
𝐹(𝑥) = 𝑥2. Below we treat the cases with the largest known degree of 𝑣. As before we distinguish
between the cases (a), (b) and (c) (see Section 5). We have examples with deg(𝑣) = 12 for (a),
deg(𝑣) = 4 for (b), deg(𝑣) = 0 for (c).

Example 9.1. Case 𝐹(𝑥) = 𝑥, 𝐺(𝑦) = 𝑣(𝑦), 𝜑(𝑥) = 𝑥2 − 𝐴2.
It is known (see, for example, [57, p. 7]) that the sets

𝑇1 ∶= {±22, ±61, ±86, ±127, ±140, ±151},

𝑇2 ∶= {±35, ±47, ±94, ±121, ±146, ±148}

form an ideal PTE2,12 pair. Let

𝑣(𝑦) =

∏
𝑡∈𝑇1

(𝑦 − 𝑡) +
∏

𝑡∈𝑇2
(𝑦 − 𝑡)

2
and 𝐴 =

∏
𝑡∈𝑇1

𝑡 −
∏

𝑡∈𝑇2
𝑡

2
.

Then

g(𝑦) = 𝑣(𝑦)2 − 𝐴2 = (𝑣(𝑦) + 𝐴)(𝑣(𝑦) − 𝐴) =
∏

𝑡∈𝑇1∪𝑇2

(𝑦 − 𝑡).

Thus 𝑓(𝑥) = 𝑥2 − 𝐴2 and g have only simple rational roots and the equation 𝑓(𝑥) = g(𝑦) has
solutions (𝑥, 𝑦) = (±𝑣(𝑋), 𝑋) for every 𝑋 ∈ ℤ.

Example 9.2. Case 𝐹(𝑥) = 𝑥2, 𝐺(𝑦) = 𝛼𝑦𝑣(𝑦)2, 𝜑(𝑥) = 𝑥 − 𝐴2.
It is known (see, for example, [57, p. 7]) that the symmetric sets

𝑇3 ∶= {−98, −82, −58, −34, 13, 16, 69, 75, 99} and 𝑇4 ∶= {𝑡 ∈ 𝑇3 ∶ −𝑡}

form an ideal PTE2,9 pair. Put 𝑓(𝑥) = 𝑥2 − 𝐴2, g(𝑦) =
∏

𝑡∈𝑇3
(𝑦 − 𝑡2), 𝐴 =

∏
𝑡∈𝑇3

𝑡 and 𝑦𝑇(𝑦) =∏
𝑡∈𝑇3

(𝑦 − 𝑡) + 𝐴. Then

g(𝑦2) =
∏
𝑡∈𝑇3

(𝑦 − 𝑡) ⋅
∏
𝑡∈𝑇4

(𝑦 − 𝑡) = (𝑦𝑇(𝑦) − 𝐴)(𝑦𝑇(𝑦) + 𝐴).

Observe that 𝑦𝑇(𝑦) is an odd polynomial (the coefficients of 𝑦𝑖 with 𝑖 odd are 0 in 𝑇), so 𝑇(𝑦) is
an even polynomial. Then 𝑇(𝑦) = 𝑣(𝑦2) for some 𝑣(𝑦) ∈ ℚ[𝑦] and therefore g(𝑦) = 𝑦𝑣(𝑦)2 − 𝐴2.
Thus the equation 𝑓(𝑥) = g(𝑦) has solutions (𝑥, 𝑦) = (𝑋𝑣(𝑋2), 𝑋) for every 𝑋 ∈ ℤ.

Example 9.3. Case 𝐹(𝑥) = 𝑥2, 𝐺(𝑦) is of the form (𝛼𝑦2 + 𝛽)𝑣(𝑦)2 with 𝛼𝛽 ≠ 0. An example with
deg(𝑣) = 0 is given by Example 6.2.

10 EQUAL PRODUCTS FROM BLOCKS

We give an application of Theorem 1.1 for equal products from blocks of integers of bounded size.
By a block we mean a set of consecutive integers.
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336 HAJDU and TIJDEMAN

Theorem 10.1. For every positive integer𝑁 there exist only finitely many pairs of disjoint blocks 𝐴
and 𝐵 of size at most 𝑁 with the property that for some 𝑘,𝓁 with 1 ⩽ 𝑘 < 𝓁 and 𝑘 ∤ 2𝓁, there exist
distinct elements 𝑎1, … , 𝑎𝑘 ∈ 𝐴 and distinct elements 𝑏1, … , 𝑏𝓁 ∈ 𝐵 such that

𝑎1 ⋯𝑎𝑘 = 𝑏1 ⋯ 𝑏𝓁 . (41)

Proof. Suppose the statement of the theorem is false for 𝑁. We may clearly assume that 𝑘 and 𝓁
are fixed and that

𝑎1 < ⋯ < 𝑎𝑘 and 𝑏1 < ⋯ < 𝑏𝓁 .

Then we may assume as well that the differences

𝑐𝑖 ∶= 𝑎𝑖 − 𝑎1 (1 < 𝑖 ⩽ 𝑘) and 𝑑𝑗 ∶= 𝑏𝑗 − 𝑏1 (1 < 𝑗 ⩽ 𝓁)

are fixed. Therefore the equation

𝑓(𝑥) ∶= 𝑥(𝑥 + 𝑐1)… (𝑥 + 𝑐𝑘−1) = 𝑦(𝑦 + 𝑑1)… (𝑦 + 𝑑𝓁−1) =∶ g(𝑦)

would have infinitely many solutions in rationals 𝑥, 𝑦 with a bounded denominator. By Theo-
rem 9.1 the corresponding standard pair (𝐹, 𝐺) satisfies deg(𝐹) ⩽ 2. This implies 𝑘 ∣ 2𝓁, and the
statement follows. □

Remark 10.1. Example 5.1 provides examples with 𝑘 ∣ 𝓁 such that (41) has infinitely many integral
solutions.Here 𝑘 can be arbitrarily large. Examples 5.5 and 9.2 provide exampleswith 𝑘 ∣ 2𝓁, 𝑘 ∤ 𝓁,
and (41) has infinitely many integral solutions.

11 OPEN PROBLEMS

Suppose Equation (2) for 𝑓(𝑥), g(𝑥) ∈ ℚ[𝑥] admits infinitely many integral solutions (𝑥, 𝑦) with
𝑓 subject to (1). Put 𝑠 = gcd(deg(𝑓), deg(g)),𝑚 = deg(𝑓)∕𝑠, 𝑛 = deg(g)∕𝑠. At the end of Section 7
we have proved that 𝑚 ∈ {1, 2, 3, 4, 6} or 𝑛 ∈ {1, 2}. Moreover we have argued that every pair
(deg(𝑓), deg(g)) with corresponding𝑚 ∈ {1, 2, 3, 4, 6} can be represented.

Problem 1. Which other possibilities are there for𝑚, 𝑠, if 𝑛 = 1 or 2 for Equation (2) under (1)?

Now let 𝑓(𝑥), g(𝑥) ∈ ℚ[𝑥] both have only simple rational roots and Equation (1.1) have
infinitelymany integral solutions.We assume deg(𝑓) ⩽ deg(g), hence𝑚 ⩽ 𝑛. Theorem 1.1 implies
𝑚 ∈ {1, 2}. Note that the cases 𝑚 = 𝑠 = 1, 𝑛 arbitrary, 𝑚 = 𝑛, 𝑠 arbitrary and 𝑚 = 1, 𝑛 = 2, 𝑠
arbitrary are trivial, the latter in view of

(𝑥 − 𝑏2
1)⋯ (𝑥 − 𝑏2

𝑠 ) = (𝑦2 − 𝑏2
1)⋯ (𝑦2 − 𝑏2

𝑠 ), 𝐹(𝑥) = 𝑥, 𝐺(𝑦) = 𝑦2

with solutions (𝑋2, 𝑋) for 𝑋 ∈ ℤ. Example 6.1 shows that the cases 𝑚 = 1, 𝑛 ∈ {3, 4, 6}, 𝑠 arbi-
trary are possible, cf. Remark 7.3. Example 5.5 deals with the case𝑚 = 2, 𝑛 = 3, 𝑠 arbitrary. Using
ideal PTE pairs Example 9.1 can be extended to the cases 𝑚 = 1, 𝑛 ∈ {5, 7, 8, 9, 10, 12}, 𝑠 = 2 and
Example 9.2 to the cases𝑚 = 2, 𝑛 ∈ {5, 7, 9}, 𝑠 = 1.
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THE DIOPHANTINE EQUATION 𝑓(𝑥) = g(𝑦) 337

Problem 2. Which other possibilities for triples𝑚, 𝑛, 𝑠 exist for Equation (2) under (1) and (3)? In
particular, which degrees of 𝑣 are possible for standard pairs of the second kind? (Cf. Example 6.2.)
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