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Cusp relations for local strongly decaying properties in electronic systems
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Several expressions are derived that allow one to evaluate any local property at nuclear cusps in atoms and

molecules. Applications of the formulas to the Hartree-Fock density and its derivatives for first- and second-
row atoms show agreement with Kato's cusp condition. Applications to the exact exchange-only and exchange-
correlation energy potential for neutral atoms are given. It is shown that for an atom, the values of V„(0) and

V„,(0) are both close to the negative of the charge of the nucleus.

PACS number(s): 31.15.—p

I. INTRODUCTION

There is considerable interest in density-functional theory
(DFT) [I] as a tool for calculating properties of electronic
systems ranging from atoms and molecules to solids. Work-

ing with density p instead of wave function 'P, DFT is ca-
pable of reducing calculation tremendously because p is only
a function of three variables while W is a function of 3N
variables, where N is the number of electrons in the system
of concern. Even in the Kohn-Sham scheme [2], in which the
concept of orbital is still retained, it is generally accepted
that the results of DFT are at about the Hartree-Fock plus
MP2 level even though calculations are performed with a
single Slater determinant wave function, just as in Hartree-
Fock theory.

Among the unsolved problems in DFT are the values of
various quantities at a nucleus (or cusp). It is hard to obtain
an accurate value at this point because in most circumstances
expressions to give the value are singular at r=o. Thus one
is unable to approach the point smoothly. However, the value
of a quantity at a cusp is an important entity. It can serve
either as a criterion to justify a method or an approximation,
or as a means to improve some approach involved. For ex-
ample, Kato's cusp condition [3],

p'(0)
t (o)+ 2Z

where p and p' are the density and its derivative, respec-
tively, and Z is the nuclear charge, is usually employed in
testing an approximate wave function or density in calcula-
tion to see if it behaves properly near and at a nucleus. Other
examples, showing the importance of a quantity at a nucleus,
are the Thomas-Fermi [4,5] and Thomas-Fermi-Dirac [6]
models for neutral atoms. It is well known that these models
give an electron density that, although normalizable, di-
verges at an atomic nucleus. But when one incorporates one
additional constraint [7], namely,

to force densities to satisfy the cusp condition, electron den-
sities and total energies are vastly improved. We will show in
later sections that the constraint form (2) is similar to part of
an expression for the density at a nucleus.

The importance of a value at a nucleus is not restricted
only to the density. In DFT, the exchange-correlation poten-
tial V„has special interest, since in the Kohn-Sham method
the only unknown is this term. Much progress of DFT in
recent years is related to this quantity t8], for which various
approximate forms beyond the local-density-approximation
(LDA) or local-spin-density approximation (LSDA) have
been obtained and have been found to give an overall im-
provement to the exchange-correlation energies. Unfortu-
nately, however, in a very recent paper by Umrigar and
Gonze [9], it is shown that, although the generalized gradient
approximation (GGA) yields improved energies compared to
the local-density approximation, the exchange-correlation
potentials obtained from -the GGA and other familiar ap-
proximations are in poor agreement with exact potentials,
especially near a nucleus. We shall give in the present paper
accurate values of V„at the nucleus for the neutral atoms
He, Be, Ne, Mg, and Ar.

Although the expression to give the value of a quantity
may be singular at the nucleus, in most of the cases we
consider here its value at this point is definitely finite. In Sec.
II, proof of a number of formulations for this purpose is
given based on Green's theorem. One finds that the exact
value of any quantity can be obtained at a nuclear cusp in
terms of its gradients and Laplacians over the whole range of
integration. In Sec. III, application of the formulas is made to
obtain densities and their first derivatives. Excellent agree-
ment with Kato's cusp condition is observed. In Sec. IV, we

apply the formulas to the exchange-only and exchange-
correlation potentials, and determine data for V,(0) and

V„,(0) for atoms. Discussions are presented in Sec. V to
model the data for V,(0) and V„,(0). Final remarks are in-
cluded in Sec. VI. Atomic units are used throughout.

II. THE BASIC CUSP RELATIONS

Theorem For any quantity F(r) in. an electronic system
such that F(r) falls off faster that 1/r and its gradient falls
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1 "V F(r)
(o) = —

4

F(0) =— " r VF(r)
dr,

47r J
(4)

F(0) =— 1 t' e "V' F(r) 1 & u e "F(r)
dr+ dr,

IrI 4~) IrI
(5)

F(0)=— 1 [ e ~"r VF(r) 1 t' Pe ~"F(r)
dl +, 2 dr,

7T g 4n) r

off faster than 1/r, the value at a nucleus (cusp) can be
evaluated from any one of the following expressions:

Thus the right-hand side of Eq. (8) is zero. Upon using Eqs.
(10) and (11), Eq. (3) follows.

(iv) Choosing P=e ~"/IrI and Q=F(r), where P is an
arbitrary parameter, and 'inserting them into Eq. (8), by simi-
lar steps, one has Eq. (5).

Q.E.D.
It is interesting to notice the following. (i) In each of the

expressions (5) and (6), an arbitrary constant (u or P) enters
the evaluation of any quantity at the r=o point which is
supposedly always constant and finite. (ii) The conditions
that restrict the theorem, which state that a quantity and its
derivative must decay faster than 1!r and 1/r, respectively,
are applicable to atomic and molecular systems, in which it
is known that quantities, such as wave function, density, and
potentials, decay exponentially.

III. THE ELECTRON DENSITY AND ITS DERIVATIVE
AT A NUCLEUS

where u and P are arbitrary constants. Falloff of F faster
than I/r means that IF(r) I

( I/r for large enough r
Proof of Equations We use . the two identities of Green's

theorem [10]

f
[PV /+V P V P]dV= lim ( @V/ da, (7)

Jv p"~ oo ~~ v

and

1 "V p(r)
p(0)= —

J I I

d, (13)

1 r r Vp(r)
p(0) = —

3 dr,
4ug r (14)

Setting F(r)=p(r), one obtains four expressions for
evaluating the density at a nucleus:

ff
(@V2$—PV2$)dV= lim ' [PVP—PV P]J da.

a V~~ ~~co J r p(0) =— 1 &e 'V p(r) u re "p(r)
dr+ dr,4~~ Ir Irl

(1S)

(i) Choose @=F(r) and p= 1/IrI and insert them into Eq.
(7). Because F(r) decays faster than 1/r, the right-hand side
of Eq. (7) is zero:

1 r
lim ( F(r)V—da( lim ( ——

3 rr dA =0. (9), s IrI, gjs rr'

In the left side of Eq. (7) we use

1 "e / "r Vp(r) P c e ~'p(r)
p(0) =—,dr+ 2 dr,4m' 47rJ r

(16)

where u and P are arbitrary constants. In the spherically
symmetrical case, by setting F(r) = p'(r), one obtains four
corresponding expressions for the density derivative at a
nucleus:

and

21
V —= —4~6(r),

p'(0) =— 2
p"(r)+ —p'(r) r dr,

r (17)

F(r) 6(r)dr=F(0) p'(o) = — p"(r)«, (18)

One then obtains Eq. (4).
(ii) Choose P= F(r) and V P= e "V 1/IrI, where u is an

arbitrary parameter, and inserting them also into Eq. (7),
straightforwardly one obtains Eq. (6).

(iii) Choose /=1/IrI and Q=F(r) and insert them into
Eq. (8). Besides Eq. (9), since VF(r) decays faster than
1/r ,

p'(o) = — « " p"'(r)+ —p"(r) —u'p'(r) «
7"

(20)
f

p'(0) = — e ~"[p"(r) Pp'(r))«—
1

lim I t —VF(r) da( lim ( —
3 rr dA=0.

Sr Sr ~

(12)

where u and P are arbitrary constants, and p"(r) and
p"'(r) stand for the second- and third-order density deriva-
tives with respect to r, respectively.
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TABLE I. Density at the nuclei cusps from Eqs. (13)—(16) for neutral atoms ranging from He to Ar. For
comparison, exact values and values using the Hiller-Sucher-Feinberg identity are also shown.

Formula I
Density at nucleus'

Formula II Formula III Formula IV PHsF(0) Exact'

He
Li
Be
B
C
N

0
F
Ne

Na

Mg
Al

Si
p
S
Cl
Ar

3.597
13.834
35.428
71.985
127.556
206.135
311.975
448.710
620.146
833.833
1093.731
1402.907
1765.708
2186.309
2670.098
3218.036
3840.223

3.597
13.834
35.428
71.985
127.555
206.135
311.975
448.710
620.146
833.833
1093.731
1402.906
1765.707
2186.309
2670.098
3218.036
3840.222

3.597
13.834
35.428
71.985
127.556
206.135
311.975
448.710
620.146
833.833
1093.731
1402.907
1765.708
2186.309
2670.098
3218.036
3840.223

3.597
13.834
35.428
71.985
127.556
206.135
311.975
448.710
620.146
833.833
1093.731
1402.907
1765.708
2186.309
2670.098
3218.036
3840.223

3.562

35.311

619.13

3.60

127.56

620.15

1093.73

1765.71

3840.22

'Formulas I—IV represent Eqs. (13)—(16), respectively.
From Ref. [13].

'From Ref. [22].

It is interesting to notice that Parr and Ghosh [7] used Eq.
(2), and Zhou and Parr [11]used

—k' r 4/3(r) dr~ ~ (21)

"p(r)
J

e "V' p(r)dr —u e "p(r)dr+2u
J 4

dF

where k and k' are parameters to be determined, as con-
straints to force the density to satisfy both cusp and asym-
potic behavior conditions. They found much improvement
both in density behavior and in energies. The forms they
introduced are much like the numerators of components in
the right-hand side of Eq. (15). To see how one can obtain
the constraint Eq. (2) from Eq. (15), one takes the derivative
of both sides of Eq. (15) with respect to the parameter u.
Since u is arbitrary, dp(0)/du=0. Thus,

1 BU 1
p(0) = 4' —~ xL, %'),2' Br) r)

(23)

calculations are performed using the Hartree-Fock densities
of Clementi and Roetti [12].Vp and V p are computed ana-

lytically in terms of Slater-type orbitals. And the value of
arbitrary constants u and p we choose here is just the
nuclear charge Z of each atom. Excellent agreement between
values from these expressions and exact values is observed.
Accurate satisfaction of Kato's cusp condition between

p(0) and p'(0) is seen in the last column in Table II.
There have been recent works [13,14] dealing with the

electron density near or at nuclear cusps. An interesting for-
mula which has been used is the Hiller-Sucher-Feinberg
identity [15],which takes the form

=0 (22)

for any n. In this equation the first term on the left side is
exactly the constraint of Eq. (2), while the second term is
similar to Eq. (21). So the present formulation for the density
at a nucleus is in accord with the previous applications of
constraints. The difference lies mainly in the fact that the
parameters k and k' were determined definitely by the pre-
vious authors, while in our expression the constants u and

p are actually arbitrary.
Results for the density and its derivative at a nucleus for

the neutral atoms from He and Ar are listed in Tables I and
II, respectively, in which, for the purpose of comparison,
exact results and Kato's cusp condition are also given. The

where r, =
~
r, ~, L&= i rt XV,—and v = XJv,„,(r/) + XJ«I/

r k, which is the summation of the electron-nuclear attractive
and electron-electron repulsive potentials. This means that if
one knows the wave function, and hence the density, of the
system and its potentials, the density at nuclei cusps can be
determined. The advantage of this approach lies in that it
explicitly employs the potential of the system. On the other
hand, however, one still has to use wave functions to com-
pute p(0) and, furthermore, calculations show that results
are not good even when high-quality wave functions are em-
ployed. Some of the results listed in Tables I and II are from
[13],obtained by using 6-311++G basis sets. Our approach
is clearly superior.
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TABLE II. Density derivative at the nuclei cusps from Eqs. (17)—(20) for neutral atoms ranging from He
to Ar. For comparison, values using the Hiller-Sucher-Feinberg identity and Kato's cusp condition are listed.
The exact value of p'(0)/2ZP(0) is l.

Formula I
Density derivative at nucleus'

Formula II Formula III Formula IV

Kato's cond.

Piisp(0) P' ( 0)~ 2ZP( 0)

He

Li
Be
B
C
N

0
F
Ne

Na

Mg
Al

Si
p
S
Cl
Ar

—14.420
—83.479
—284.792
—722.601

—1 535.738
—2 894.996
—5 009.895
—8 101;860
—12 425.078
—18 364.846
—26 274.491
—36 511.207
—49 489.964
—65 638.236
—85 545.142
—109 422.248
—138 373.992

—14.420
—83.479
—284.792
—722.601

—1 535.738
—2 894.996
—5 009.894
—8 101.858
—12 425.076
—18 364.843
—26 274.487
—36 511.200
—49 489.953
—65 638.222
—85 545.121
—109 422.219
—138 373.954

—14.420
—83.479
—284.792
—722.601

—1 535.739
—2 894.997
—5 009.896
—8 101.862
—12 425.082
—18 364.852
—26 274,501
—36 511.221
—49 489.985
—65 638.266
—85 545.184
—109 422.304
—138 374.067

—14.420
—83.479
—284.792
—722.601

—1 535.738
—2 894.996
—5 009.896
—8 101.860
—12 425.078
—18 364.846
—26 274.491
—36 511.207
—49 489.964
—65 638.236
—85 545.142
—109 422.248
—138 373.992

—12.744

—267.48

—11 629

1.002
1.006
1.005
1.004
1.003
1.003
1.004
1.003
1.002
1.001
1.001
1.001
1.001
1.001
1.001
1.000
1.001

'Formulas I—IV represent Eqs. (17)—(20), respectively.
From Ref. [13].

IV. EXCHANGE-ONLY AND EXCHANGE-CORRELATION
POTENTIALS AT A NUCLEAR CUSP

Although various approximate forms of the exchange-
only and exchange-correlation energy functionals have been
proposed in recent years, not until recently did we know the
exchange-only potential and the exchange-correlation poten-
tial by numerical solution of the Kohn-Sham equation. Sur-
prisingly it was not known until a very recent paper by Um-
rigar and Gonze [9] that, although approximate functionals
for E,[p] and E„,[p] do yield improvements over the con-
ventional LDA approach in energetics, most of these poten-
tials are in poor agreement with the exact potentials both
near or at nuclei cusps and in long-range regions. For ex-
ample, as mentioned in Ref. [9], all the GGA approximate
potentials, such as those of Langreth-Mehl [16], Perdew-
Wang '86 [17],Perdew-Wang '91 [18], Becke '88 [19],and
so on, diverge at nuclear cusps. Only the LDA potential re-
mains finite. This awkward situation stimulates the search for
new approximate functionals which behave properly both in
cusp and in asymptotic regions. It also shows the need to find
accurate data for these potentials at nuclear cusps, from
which one may judge how well an approximate potential
behaves at cusps.

Letting V„or V„, replace F in Eqs. (3)—(6), one obtains
expressions for V„(0) and V„,(0). For example, assuming
spherical symmetry,

V„,(0)=— 1 & V V„,(r)
4m'

2
r V'„',(r)+ —V,',(r) dr (24)

By employing the numerical data for V,(r) and V„,(r) from
the Nagy method [20] and the Zhao-Parr method [21], we
have calculated V„(0) and V„(0) for five neutral atoms, He,
Be, Ne, Mg, and Ar, as shown in Tables III and IV, respec-
tively. In the paper of Umrigar and Gonze [9], although the
discrete values of V,(0) and V„,(0) of helium were not
given, the authors did plot the curves of V„(r) and V„,(r),
which show that the value of V„(0) is around —1.7, and

V„(0) around —1.8, in agreement with our results.
To check that these results at a nucleus are accurate, we

note that the contributions to values of V„(0) and V„,(0)
come from quite a long range. The results are relatively in-

TABLE III. Values of the exchange-only potential at the nuclear cusp V,(0) for neutral atoms of He, Be,
Ne, and Ar (a.u. ). Formulas I—IV denote Eqs. (3)—(6), all with F= V„.

Atom

He
Be
Ne
Ar

—1.708
—3.353
—7.424
—13.670

—1.697
—3.351
—7.399
—13.665

—1.704
—3.357
—7.406
—13.668

IV

—1.703
—3.358
—7.409
—13.677

—1.668
—3.015
—7.502
—13.346

—11,/2

—1.688
—3.684
—9.622
—17.555
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TABLE IV. Values of the exchange-correlation potential at the nuclear cusp V„(0) for a few neutral
closed-shell atoms (a.u.). Formulas I—IV denote Eqs. (3)—(6), all with F= V„.

Atom

He

Be
Ne

Mg
Ar

—1.815
—3.123
—8.208
—9.703
—17.587

—1.755
—3.055
—8.154
—9.645
—17.505

—1.815
—3.122
—8.209
—9.703
—17.581

IV

—1.817
—3.116
—8.215
—9.707
—17.567

Estimated '
—2.29
—4.50
—11.80

—22.10

'Equation (35) in the text.

sensitive to the behavior of VV„(r) or 7 V„,(r) near cusps,
where errors are likely in numerical calculations. In Fig. 1,
the integrand of Eq. (24) is plotted for the exchange-
correlation potential of helium.

V. DISCUSSION

V ff(r) = V,„,(r)+ U ( )+ U„,( ).

Thus V„,(r) can be expressed as

1
U„,(r) = e, + V' %;

—V,„,(r) —VJ(r).
2+I

(31)

(32)

It can be seen from Table III that the values of V„(0) and

V„(0) both are close to minus the nuclear charge Z of the
atom. This fact can serve as guidance in the finding of better
approximate functionals for E„[p] and F„,[p].

To model this interesting behavior, it may be assumed that
near the nuclear cusp the main component in the density and
first-order density matrix is the Is orbital contribution [23].
One then has an approximate expression for V„(0):

Near the nuclear cusp, the most important term is the ls
orbital; therefore one has approximately

j ) 1/2

(p (33)

Inserting Eq. (33) into Eq. (32), we derive an approximation
for V„,(0):

V„(0)= —Jl,/2, (25)

where J&, is the electron-electron repulsion energy between
1s orbitals. If one supposes that the density takes the form

1 V'p(0) 1 i 7 pi
V„(0)=et, —— +— —V,„,(r—+0)

/(0)

p "(r) =A exp( —2Z, ffr ), (26)
—VJ(0). (34)

and the first-order density matrix has the form

IJi"(r, r') =A exp( Z,ffr Z,ffr'), — —

then one obtains the exchange energy functional

(27)

By using Kato's cusp condition and supposing
p(r) =A exp( —2Zr), one finally reaches

(35)
(2m p

F.,[p] =
~

[A —p+ z p In(p/A)]dr. (28)
Z,ff ln p/A

The functional derivative of E„[p] leads to the exchange
potential, which turns out to be

Values from the above equation for a few atoms are given in
the last column of Table IV. Fair agreement with the calcu-
lated V„,(0) is found.

1 t' 1
V,(r) = —— 1+ ' [1—(I +2Z,ffr)e «'"].

2Z ~ffr /

(29) VI. CONCLUDING REMARKS

[—
—,'V + V,ff(r)]q, =e;rp;, (30)

where

At r=0, we have V„(0)= —Z,ff. Values of —Ji,/2 and
—Z,ff for a few neutral atoms are also listed in Table III.
Z,ff was obtained by a least-square-fit process of Eq. (29)
with the first five points of V„(r) for each atom. It is found
that they are good approximations for V„(0).

Another way to account for this is from the Kohn-Sham
equation, which reads

In this paper, four rigorous expressions to obtain the value
of any quantity at nuclear cusps have been given in terms of
its gradients or Laplacians over the whole range of integra-
tion. Applications to the electron density and its derivative
for neutral atoms ranging from He to Ar, and to the
exchange-only and exchange-correlation potentials of a few
neutral atoms, have been carried out. Excellent agreement
with reference values is observed. As a first-order approxi-
mation, we have found that the value of V,(r) and V„,(r) at
a nuclear cusp is minus the nuclear charge Z of the corre-
sponding atom.
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3.0

2.5

1.5

1.0

FIG. 1. Integrand of Eq. (24) for helium. The
negative of the integral from zero to infinity is

V„,(0).

0.5

0.0

0.0 0.5 2.0 2.5 3.0 3.5 4.0

As a Anal remark, we would like to point out that, in
terms of the gradient or Laplacian of any quantity, one actu-
ally can get the quantity itself anywhere in space from

equations for the density. Bader and Beddall [24] first gave
Eq. (36) for the density.

1 t V2F(r')()=—
„ i,

~

d ' (36)
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or

F(r) = 1 [ (r—r') V'F(r')

or from other forms similar to Eqs. (5) and (6). The proof of
this statement follows that given above, if one chooses
1/t= I/~r —r'~ and Q=F(r') in both identities of Green's
theorem. Setting F(r) = p(r), one obtains integro-differential
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