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Ternary clusterization and quadrupole deformation
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Abstract

The deformation-dependence of ternary clusterization of atomic nuclei is investigated. In particular, allowed and forbidden ternary cluster-
configurations are determined for the ground, superdeformed, and hyperdeformed states of some light and heavy nuclei, based on a microscopic
(real and effective SU(3)) selection rule. The energetic stability of the clusterizations is also considered.
© 2006 Elsevier B.V. All rights reserved.
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The investigation of exotic nuclear shapes, e.g. superde-
formed and hyperdeformed states is one of the most interesting
topics in recent nuclear structure studies. The appearance of ex-
otic cluster configurations (or exotic cluster decay) is another
issue of utmost interest. The combination of these two problems
brings us to an exciting question: what is the interrelation of
these two phenomena, i.e. what are the possible clusterizations
of nuclear states with exotic shapes. In the present Letter we ad-
dress this question from the angle of the ternary clusterization.
We apply methods which can be generalized to more compli-
cated multicluster-configurations in a straightforward way.

The basic concept of this work is that when we try to de-
scribe the composition of an atomic nucleus from smaller nuclei
(clusters) then we take into account both of the two complemen-
tary natural laws, which govern this kind of phenomenon: the
energy-minimum principle and the Pauli-exclusion principle.
The crucial role of these two rules are obvious: energetically un-
favored systems are not likely to appear, and when the building
blocks are fermions, like the nucleons of the atomic nuclei, then
they follow the exclusion principle. However, the exact role, or
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relative importance of these two aspects of clusterization among
different circumstances are not completely understood yet; the
present work is meant to be a contribution to this task.

Much attention has been paid to the energetic preference of
various cluster-configurations of a nucleus. The methods ap-
plied along this line are partly or completely empirical ones,
using information gained from the experimental data. Further-
more, most of these works concentrate on the simplest, i.e.
binary clusterizations, especially, when the energetic calcula-
tion involves (in addition to the experimental binding energies)
intercluster potentials, like in the dinuclear system model [1], or
in the local potential approach [2]. On the other hand the treat-
ment of the exclusion-principle has to be done microscopically,
therefore, apart from the light, or simplest heavy nuclei, it gives
rise to large computational difficulties. Due to this fact no sys-
tematic studies has been done, and many of the experimentally
interesting systems are untouched from this viewpoint.

The main point of this Letter is to present a method for
the approximative treatment of the exclusion principle, which
can be applied both to binary [3] and to ternary (and even
to multi) cluster-configurations. The results of these calcula-
tions can be combined with those on the energetic stability.
As for this latter quantity, it can be determined within differ-
ent approximations. One of the simplest possibility is provided

http://www.elsevier.com/locate/physletb
mailto:algora@atomki.hu
http://dx.doi.org/10.1016/j.physletb.2006.06.080


452 A. Algora et al. / Physics Letters B 639 (2006) 451–455
by the binding-energy argument, as it is discussed by Buck et
al. [4]. This procedure does not contain, however, any details
of the cluster–cluster interactions, which are obviously impor-
tant. On the other hand, they are treated carefully (both for the
Coulombic and for the effective nucleon–nucleon interactions)
in e.g. the dinuclear system model [1]. In order to reach the
final conclusions on the possible cluster-configurations calcu-
lations including these details need to be done, of course; and
their conclusions have to be combined with those on the ex-
clusion principle. Up to our knowledge, energetic calculations
of this kind are not available at present for the ternary clus-
terizations discussed here. Therefore, we combine the results
of our selection-rule calculations with those of the binding-
energy, in light of its simplicity. (We obtain it in a way similar
to the work of Buck et al. [4], except for a straightforward gen-
eralization from binary to ternary clusterization.) In doing so
our intention is not to pretend that the final conclusion on the
cluster-preference is obtained, rather we wish to emphasize the
need for the combination of the calculations of energetic stabil-
ity and exclusion principle.

In this way both aspects of the clusterization can be handled,
therefore, their interrelation can be studied in specific prob-
lems. The exclusion-principle is taken into account by a selec-
tion rule, based on the real [5] or effective [6] U(3) symmetry
for light and heavy nuclei, respectively. This symmetry-based
consideration can also be very involved for heavy nuclei, nev-
ertheless, it seems to be widely applicable.

In comparison with other cluster studies the novel feature
of our work is that we address problems which has been in-
vestigated so far (in a systematic manner) only with phenom-
enologic approaches [1,2]. We present here a method which
enables us to incorporate the most important aspect of the mi-
croscopic description, i.e. the Pauli-exclusion principle, in an
approximate but systematically applicable way. Our description
is not fully microscopic rather it can be called semimicroscopic,
but it reaches a territory which is hopeless for the fully micro-
scopic calculations at present. It turns out that the incorporation
of the exclusion principle together with the appropriate treat-
ment of the deformation and orientation of the clusters within
the nuclear molecular states brings us to physical conclusions,
which are new and unexpected based on our previous experi-
ences from the phenomenological models.

As specific examples we consider ternary cluster-configu-
rations in the ground, superdeformed and hyperdeformed states
of the light 36Ar and heavy 252Cf nuclei, which were inves-
tigated from the viewpoint of possible binary clusterization
in [3]. In case of 36Ar the superdeformed state has been found
experimentally [7], and a theoretical prediction is available for
its hyperdeformed state [8]. In case of 252Cf the main motiva-
tion is provided by the spontaneous fission experiments from
its ground state, which indicated several very exotic clusteriza-
tions [9]. As for superdeformed and hyperdeformed states of
this nucleus, we consider the results of the Nilsson-model with
appropriate quadrupole deformation [3].

The structural selection rule we apply, is based on the U(3)

symmetry, what is known to be a good approximate symmetry
of light nuclei [5], and its role in the clusterization was also ob-
served in the early studies [10], followed by the understanding
of its importance from different aspects of clusterization [11].
For a ternary cluster-configuration there are two independent
relative motions (along the corresponding Jacobi-coordinates),
therefore, the U(3) selection rule reads:
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where [n1, n2, n3] is the set of (approximate) U(3) quantum
numbers of the parent nucleus, the superscript (i) stands for the
ith cluster, and (Ri) indicates relative motion (along the corre-
sponding Jacobi-coordinates). This is a straightforward gener-
alization of the U(3) selection rule applied to binary clusteriza-
tions (see e.g. [3,12], and references therein). Please, note that
this coupling of the U(3) quantum numbers is quite general,
no assumption is made on a stretched, or maximally deformed
configuration. In geometrical terms: the U(3) representations
characterize the deformation of the clusters (including triaxial
shapes as well), and the general coupling without simplifying
assumptions allows all the possible relative orientations of the
clusters with respect to the molecular axis.

In medium and heavy nuclei, however, the U(3) symme-
try is not valid in its original form, due to the importance of
the symmetry-breaking interactions, like spin–orbit and pair-
ing. Nevertheless, it was found in [6] that in spite of the strong
symmetry-breaking interactions a generalized U(3) symmetry,
called effective, or quasi-dynamical U(3) symmetry, may sur-
vive even for heavy nuclei. It is very general in the sense that
the energy-eigenfunctions are composed as linear combinations
of basis states belonging to different U(3) irreducible represen-
tations (irreps). Nevertheless, the mixing is a special one, it is a
coherent mixing of different irreducible representations, which
results in an approximate U(3) symmetry. This symmetry is de-
termined by effective, or average U(3) quantum numbers. The
physical condition for the special mathematical structure of the
effective symmetry is the adiabatic decoupling of the single nu-
cleon motion and the collective motion of the nucleus. In [13]
a method was developed for the determination of the effective
U(3) quantum numbers of the heavy nuclei, based on the occu-
pation of the asymptotic Nilsson orbits. The procedure, which
was originally invented for the large prolate deformation was
extended in [14] to the oblate shape and small deformations as
well, based on the expansion of single-particle orbitals in terms
of asymptotic Nilsson-states. Thus, in practical terms the deter-
mination of the effective U(3) quantum numbers is done in the
following way. (i) Starting from the quadrupole deformation of
the cluster or parent nucleus we fill in the Nilsson-orbitals at the
proper deformation. (ii) Then the single-particle states at this
finite deformation is expanded into asymptotic Nilsson-states.
(iii) The contribution of the asymptotic Nilsson-orbitals to the
effective U(3) quantum numbers are determined as discussed
in [13,14].

When applying the effective U(3) symmetry in cluster stud-
ies, it describes an average (or effective) clusterization. It is
worth stressing that the effective U(3) symmetry, and the ef-
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fective U(3) quantum numbers are valid to the same extent,
like the concept of the quadrupole deformation of the nucleus
in question. Both of them are determined by the coherent super-
position of several basis states belonging to real U(3) irreps of
the many-fermion system [15]. The concept of effective sym-
metry is applicable also to light nuclei, and when the simple
leading representation approximation is valid, the real and ef-
fective U(3) quantum numbers usually coincide [14]. This cir-
cumstance gives a straightforward way for the extension of the
simple selection rule consideration.

When a cluster configuration is forbidden, we can character-
ize its forbiddenness quantitatively [3,16]. In particular, a quan-
tity S, called reciprocal forbiddenness, is calculated such that
0 � S � 1. It measures the similarity between the U(3) sym-
metry (or in geometrical terms: the shape) of the parent nuclear
state and that of the cluster configuration, such that S = 0, and
S = 1 correspond to completely forbidden and allowed cluster-
izations, respectively.

Concerning the relation of the reciprocal forbiddenness (S),
calculated here, to the microscopic cluster spectroscopic fac-
tor (SF), the following can be said. They are not identical,
of course, the cluster spectroscopic factor can be determined
only from a fully microscopic calculation. Nevertheless, they
have some similarities. Unlike the phenomenological models,
our consideration based on S reflects the non-orthogonal na-
ture of different cluster-configurations, just like the microscopic
spectroscopic factor. Furthermore, when S = 0, i.e. the cluster
configuration is forbidden according to our selection-rule con-
sideration, then SF = 0 for the SU(3) state in question (exactly
for light nuclei, and in a sort of average for heavy nuclei). If,
however, the cluster-configuration is allowed (S = 1), then SF
still can be smaller than 1. Please, note, that the microscopic de-
finition of the spectroscopic factor (see e.g. [17]) is such, that
even for a pure cluster state it is not necessarily 1. Thus, in short
we can say that our reciprocal forbiddenness (S) is not identi-
cal, of course, with the microscopic spectroscopic factor, but it
is related to it; in some sense it can be considered as its semi-
microscopic approximation.

The criterium of maximal stability [4], which represents a
complementary viewpoint for the selection of clusterization,
requires the largest value of the summed differences of the
measured binding energies and the corresponding liquid drop
values. For the case of a ternary clusterization it reads:

D(1,2,3) = [
B(1) − BL(1)

] + [
B(2) − BL(2)

]

(2)+ [
B(3) − BL(3)

]
,

where B(i) is the experimental binding energy of the ith clus-
ter [18], while BL(i) stands for liquid drop value [4].

In the generalized version of the method, as we apply it here,
a further condition is also taken into account, which is called
dipole constraint [4]. It is based on the observation that elec-
tric dipole transitions are weak, therefore, the decomposition is
expected to be close to satisfying the constraint:
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where T stands for total.
Table 1
Ternary clusterizations of 36Ar including 4He (upper part) and 16O (lower part).
S stands for the reciprocal forbiddenness of the indicated states (ND: normal
deformed, SD: superdeformed, HD: hyperdeformed). The S values are identical
for different cluster-configurations belonging to the same mass-fragmentation.
D gives the energetic stability of the clusterizations (in MeV)

A1 + A2 Nuclei S D(1,2,3)

ND SD HD

16 + 16 16
8O + 16

8O 0.070 0.169 1.000 17.59

18 + 14
18
10Ne + 14

6C 0.131 1.000 1.000 12.88
18

8O + 14
8O 12.45

20 + 12 20
10Ne + 12

6C 1.000 1.000 1.000 14.89

22 + 10
22
12Mg + 10

4Be 1.000 1.000 1.000 11.67
22
10Ne + 10

6C 11.56

24 + 8 24
12Mg + 8

4Be 1.000 1.000 1.000 15.70

26 + 6
26
14Si + 6

2He 1.000 1.000 1.000 18.74
26
12Mg + 6

4Be 19.07

28 + 4 28
14Si + 4

2He 1.000 0.169 0.086 22.40

10 + 10 10
6C + 10

4Be 1.000 1.000 1.000 9.94

12 + 8 12
6C + 8

4Be 1.000 1.000 1.000 13.68

14 + 6
14

8O + 6
2He 0.131 0.290 1.000 16.61

14
6C + 6

4Be 17.12

16 + 4 16
8O + 4

2He 0.070 0.169 1.000 17.59

The U(3) symmetry of the experimentally found superde-
formed, and of the theoretically predicted hyperdeformed bands
of the 36Ar nucleus were determined in [3]. The shell model
configurations provided by the model calculations of the su-
perdeformed [7,19], and of the hyperdeformed [8] states re-
sulted in the [32,12,12], and [48,8,8] representations, respec-
tively, while the ground state has [20,20,12].

Since, the double-magic nuclei are energetically more stable,
than all the others, it is reasonable to search for ternary cluster-
configurations in such a way that one of the clusters has closed-
shell structure. For the 36Ar nucleus two different ternary clus-
terizations of this kind may exist, built on the 4He, and 16O
core, respectively. We consider here only even–even clusters,
again: due to energetic reasons. The results of our calculations
for these configurations are summarized in Table 1. All the clus-
ters are characterized by their ground-state U(3) symmetry, i.e.
they were supposed to have ground state as an intrinsic state,
but collective rotations built on them were taken into account.
Simple leading term approximation was used in determining
their U(3) symmetry (which usually coincides with the effec-
tive symmetries for light nuclei [14]).

The experimental studies on the spontaneous fission of the
252Cf indicate the presence of cluster configurations in this nu-
cleus [9]. As for the possible binary cluster-configurations, we
have carried out a systematic investigation in [3]. Here we con-
sider the ternary clusterizations of this nucleus, since however,
their total number is too large due to the number of nucleons, we
have to restrict ourselves to some interesting subsets. Therefore,
we investigate the following cases. (i) All the possible three-
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Table 2
Ternary clusterizations of 252Cf with two double magic clusters

C1 + C2 + C3 S D(1,2,3)

ND SD HD
208Pb + 4He + 40Si 0.041 1.000 0.019 23.32
132Sn + 78Ni + 42Ca 0.010 0.019 0.039 19.01
132Sn + 48Ca + 72Ni 0.010 0.019 0.037 15.87
132Sn + 16O + 104Zr 0.015 1.000 1.000 15.16
132Sn + 4He + 116Pd 0.009 0.064 1.000 21.33
78Ni + 78Ni + 96Mo 0.009 0.016 0.027 17.57
78Ni + 48Ca + 126Sn 0.010 0.018 0.034 14.87
78Ni + 40Ca + 134Sn 0.010 0.019 0.037 20.76
78Ni + 16O + 158Sm 0.026 1.000 1.000 11.32
78Ni + 4He + 170Er 0.015 0.211 1.000 17.56
48Ca + 48Ca + 156Ce 0.027 1.000 1.000 1.65
16O + 4He + 232Ra 1.000 0.043 0.012 4.52
4He + 4He + 244Pu 1.000 0.018 0.009 11.48

cluster configurations which contain two double magic clusters.
(When searching for cluster-configurations, we took into ac-
count only those nuclei, as building blocks, which have exper-
imentally known masses [18].) (ii) Possible even–even ternary
configurations, built on the 208Pb core. (iii) Ternary clusteriza-
tions, for which experimental indications exist. In doing so, we
investigate not only the ground-state of 252Cf, but the hypothet-
ical superdeformed and hyperdeformed states as well, which
are obtained by requiring quadrupole deformation β2 = 0.6
and 0.86, respectively. The corresponding U(3) quantum num-
bers are [414,321,303], [520,285,267], and [600,260,245]
for the ground, superdeformed and hyperdeformed states, re-
spectively [3].

The results for the ternary configurations with two double-
magic clusters are shown in Table 2. As for the possible even–
even three-cluster configurations with 208Pb core we have found
the following remarkable situation. They are forbidden both in
the ground state (S � 0.06), and in the hyperdeformed state
(S � 0.03), but each of them is allowed in the superdeformed
state. These three-cluster configurations are preferred from the
energetic viewpoint (13 MeV � D(1,2,3) � 24 MeV).

Recent experimental studies, using multidetector arrays,
have identified ternary clusterizations in 252Cf that include
4He, or 10Be (see for example [20] and references therein). We
have performed calculations for the corresponding three-cluster
configurations. The results are listed in Table 3. It is worth men-
tioning again, that these configurations are not allowed in the
ground state from the microscopic viewpoint, some of them are
allowed in the superdeformed state, and each of them is pre-
ferred in the hyperdeformed state.

To sum up: Our results show that the two aspects of the nu-
clear clusterization, i.e. the energetic stability and the exclusion
principle have different preferences for the possible configu-
rations. They are complementary aspects of the clusterization,
and from the investigation of one of them one cannot conclude
on the other. This finding is very similar to that of the similar
study on binary clusterizations [3].

The present study also illustrates that the nuclear clusteriza-
tion depends on the quadrupole deformation in a highly non-
Table 3
Ternary clusterizations of 252Cf having some experimental indications. The D

values are given for configurations of even–even clusters

C1 + C2 + C3 S D(1,2,3)

ND SD HD
146Ba + 96Sr + 10Be 0.014 1.000 1.000 −0.42
130Sn + 112Ru + 10Be 0.012 0.104 1.000 9.67
134Te + 108Mo + 10Be 0.012 1.000 1.000 8.76
156Nd + 92Kr + 4He 0.013 1.000 1.000 8.07
150Ce + 98Sr + 4He 0.013 1.000 1.000 5.81
148Ce + 100Sr + 4He 0.012 1.000 1.000 6.77
148Ba + 100Zr + 4He 0.012 1.000 1.000 5.90
146Ba + 102Zr + 4He 0.011 0.414 1.000 6.80
144Ba + 104Zr + 4He 0.011 0.414 1.000 8.63
141Xe + 107Mo + 4He 0.011 0.169 1.000
136Te + 112Ru + 4He 0.009 0.069 1.000 15.20
152Ce + 96Sr + 4He 0.014 1.000 1.000 6.42
149Ce + 99Sr + 4He 0.013 1.000 1.000
147Ce + 101Sr + 4He 0.012 1.000 1.000
147Ba + 101Zr + 4He 0.011 1.000 1.000
145Ba + 103Zr + 4He 0.011 0.414 1.000
142Xe + 106Mo + 4He 0.011 0.290 1.000 9.26
140Xe + 108Mo + 4He 0.010 0.120 1.000 11.00
132Sn + 116Pd + 4He 0.009 0.075 1.000 21.33

trivial way. This conclusion is very much in line with those
of other theoretical considerations [21,22]. Some aspect of this
dependence can be understood based on simple geometrical ar-
guments, like the similarity or difference in the shapes of the
clusters and parent nucleus, while other aspects seem to be more
hidden. Systematic investigations in order to reveal the possible
role of the shell effects, for example, could be very illuminative
along this line.

Another interesting phenomenon found in this work is, how-
ever, less well recognized so far. This is the appearance of
the same cluster-configuration in very different states, e.g. in
the ground-state and superdeformed state of a nucleus, or in
the superdeformed and hyperdeformed states, or in each of
these three. In the 36Ar case e.g. the 24Mg + 8Be + 4He,
20Ne + 12C + 4He, 16O + 12C + 8Be clusterizations are al-
lowed in each of the three states. Furthermore, they are ener-
getically favored as well. (Please, note their similarity to the
24Mg + 12C binary configuration, which turned out to be al-
lowed in the ground-state, superdeformed and hyperdeformed
states of 36Ar as well [3]. Energetically the ternary configura-
tions are more favored, shown by the higher values of D(1,2,3)

in Table 1, in comparison with the 5.135 MeV value for the bi-
nary configuration.) The reason for this phenomenon is that if
the deformation of the clusters is taken into account, and their
different orientations are allowed in the description, and fur-
thermore the effect of the antisymmetrization is included, then
different spatial configurations of the same clusters may result
in states of the parent nucleus with very different quadrupole
configurations. This conclusion is new and unexpected in com-
parison with the conclusions of the phenomenological models
on this phenomenon, and it turns out to be an effect which is
ruled out in some approaches by some simplifying model as-
sumptions (e.g. not taking into account triaxial deformations,
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some relative orientations, or the exclusion principle). Similar
observation was made for the molecular resonances of the light
nuclei when the description was elaborated enough: like in the
two-center shell model [23] or in the cluster models [24,25], if
unconstrained calculations were carried out.

As for the clusterization of the 252Cf nucleus, indicated by
the spontaneous fission experiments, we have found that most
of the ternary configurations we have investigated are forbid-
den in the ground-state. Many of them are allowed, however,
in the superdeformed and hyperdeformed states. This finding
also indicates that the spontaneous fission takes place via the
(tiny) component of the ground-state wave function which cor-
responds to an extremely deformed state, similarly to the con-
jecture of [26]. (Please, note that the effective quantum numbers
correspond to a kind of average, which may contain contri-
bution from many pure SU(3) states, i.e. from many differ-
ent quadrupole shapes.) Only the 4He + 4He + core and the
4He + 16O + core configurations are present in the ground state
with considerable weight.
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