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A doktori szigorlat időpontja: 2018. június 27.
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Chapter 1

Introduction

The standard model of particle physics is the most well-tested and precise theory
of the microscopic world constructed thus far. Although this model is believed to
be theoretically self-consistent and has been able to predict experimental data with
high accuracy, it still does not account for a number of phenomena that are be-
lieved to belong in the domain that such a theory should be able to describe. Hence,
the construction of a complete theory of elementary particles and their fundamental
interactions, of which currently only the electromagnetic, the weak and the strong
interactions are incorporated in the standard model, is an ongoing effort. This endeav-
our benefits much from the search for deviations between the results of our current
standard model and measurement data.

In order to acquire more information on what the boundaries of the validity of
the standard model are, it is necessary to measure particle-level phenomena with
high accuracy. The centerpiece of experimental particle physics is the Large Hadron
Collider (LHC) which makes precise tests of current theories possible through the vast
amounts of data collected from highly energetic proton-proton collisions. The analysis
of these data requires similarly accurate theoretical predictions. Fig. 1.1 shows recent
measurements at the LHC along with the corresponding theoretical predictions.

Since LHC processes are initiated by nucleons, the strong interaction plays a cru-
cial role in every event. Furthermore, at energies relevant at the LHC the strength of
the strong interaction is nearly ten times greater than the strength of the electromag-
netic interaction. As a consequence, the final state of every collision is dominated
by strongly interacting matter, making a highly precise description of the strong
interaction necessary.

One of the possible methods for computing predictions from our theoretical model
is perturbation theory. Since the non-interacting quantum field theory on which our
model is based can be solved exactly we look for an approximate solution to the

5
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Figure 1.1: Cross sections of standard model processes measured by the CMS col-
laboration. Highly accurate measurements must be matched with similarly precise
theoretical calculations. The figure was taken from the 2019 archived edition of the
Review of Particle Physics. (pdg.lbl.gov) [1, 2]

interacting theory in the form of a series expansion in terms of some small parameter.
Such a solution can be computed order by order and the more terms we obtain in the
series expansion the more accurate the approximation will be. The small parameter
in our case is a so-called coupling which determines the strength of the interaction. In
the case of the strong interaction the first term in the perturbative series provides only
a crude quantitative prediction and the computation of the first radiative correction is
indispensable if any comparison to measurement data needs to take place. However,
these days in many situations, achieving satisfactory precision requires the calculation
of the second radiative correction.

In the first part of this dissertation I describe the theoretical background of my
results, which is the quantum field theory of the strong interaction. There, I introduce
the terminology and notation used in our field and also discuss the computation of
cross sections in perturbation theory in detail. I finish by presenting our method for
the computation of second radiative corrections for physical observables measured in
electron-positron collisions.

In the second part I present my work done to measure the coupling of the strong
interaction. I start by describing the calculation of an observable called energy-energy
correlation incorporating second radiative corrections for the first time and assess the
impact of those corrections on the extraction of the coupling from measurements based
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on this observable. Next, I discuss the determination of the value of the coupling
based on a global analysis of experimental data and our theoretical calculations.
Then I proceed by describing a similar procedure where we extracted the value of the
coupling from measurements of so-called jet rates. I finish by presenting the values
of the coupling obtained using the two procedures.

Finally, in the third part I describe recent developments of our perturbative frame-
work. This scheme has already been worked out for collisions which do not contain
strongly interacting particles in the initial state. I have worked on extending this
framework to be applicable to LHC processes as well.

The fourth part contains the summary of the work presented in this dissertation.
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Chapter 2

Quantum chromodynamics

2.1 SU(3)C symmetry and the QCD Lagrangian

Quantum chromodynamics (QCD) is the quantum field theory of the strong interac-
tion [3–5] that acts between colored spin-1/2 fermions called quarks and it is mediated
by spin-1 bosons called gluons that also possess color charge. These particles are col-
lectively labelled as partons. QCD is characterized by a local SU(3)C symmetry
where the index C stands for color charge. The generators of the symmetry group
are denoted as ta and they satisfy

[ta, tb] = ifabctc, (2.1)

where fabc are the structure constants and the Einstein summation convention is
also used for repeated color indices. The quarks transform under the fundamental
representation of the group in which the generators are the 3×3 matrices T a, while the
gluons transform under the adjoint representation. The quadratic Casimir invariants
in the fundamental and the adjoint representation are given by

CF = TR
N2
C − 1

NC

and CA = 2TRNC (2.2)

respectively, where TR is a normalization constant that we choose to be 1/2 and the
number of colors NC (which is set NC = 3 when performing numerical computations)
is kept explicit in every formula for the sake of clarity.

When constructing a field theory, we generally start by determining the action
functional which for a field φ is the integral of the Lagrangian density L:

S[φ] =

∫
dDx L(φ, ∂φ, x), (2.3)

9
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where D = 4 is the number of spacetime dimensions. In order to constrain the form
of the action, we impose certain symmetries upon it. For example, the action must be
invariant under the Poincaré group thus it must be a Lorentz scalar. This condition,
through Noether’s theorem leads to the emergence of familiar conservation laws, like
the conservation of momentum. This type of symmetry is labelled global since it
implies an invariance under global transformations that are independent of spacetime
coordinates. When considering interacting fields, the conservation of charge can be
enforced in a similar manner. In the case of color charge the existence of global
SU(3)C symmetry leads to color charge conservation. However, we also require the
action to be invariant under local SU(3)C transformations, i.e. gauge invariant, which
necessitates the introduction of so-called gauge fields and this leads to the emergence
of the strong interaction.

The Lagrangian of interacting massive quarks is the SU(3)C invariant expression

Lquark =

nf∑
k=1

q̄k,i(i /Dij −mkδij)qk,j, (2.4)

which contains nf quark flavors. The Dirac spinor qk,i stands for a quark field of
flavor k and color i with mass mk. The Einstein summation convention is used for
both Lorentz and color indices, while summation over flavor is left explicit. In Eq. 2.4

Dij,µ = δij∂µ + igSA
a
µT

a
ij (2.5)

is the SU(3)C covariant derivative which contains the strong coupling gS and the
N2
C − 1 vector fields Aaµ for the gluons.

The complete QCD Lagrangian contains another gauge invariant term that ac-
counts for the dynamics of the gauge fields. This term is

Lgluon = −1

4
F a
µνF

a,µν (2.6)

where
F a
µν = ∂µA

a
ν − ∂νAaµ − gSfabcAbµAcν (2.7)

is the field strength tensor. We can also include yet another gauge invariant but CP -
violating term but since its coefficient is constrained by experiments to be smaller
than 10−9 and it is outside the scope of my dissertation1, this term is omitted.

In a classical theory we are looking for field configurations that produce a station-
ary action, meaning δS = 0. This condition gives us the classical equations of motion

1This CP violating term is proportional to εαβγδF aαβF
a
γδ (with εαβγδ being the four-dimensional

Levi-Civita symbol) which does not give contributions in perturbation theory. However, its presence
affects the full non-perturbative QFT.
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for the fields. In quantum field theory, however, we need to include such contribu-
tions that do not belong to a stationary action. Since we seek to describe the result
of particle collisions, we compute cross sections that can ultimately be obtained from
time-ordered correlation functions. Thus it is natural to construct our quantum field
theory using the path integral formalism. In this framework, the correlation functions
we seek to compute are obtained from the generating functional which is constructed
using the action defined earlier.

2.2 The running coupling

The parameters that appear in the QCD Lagrangian are the bare quark masses and
the so-called bare strong coupling gS. The latter describes the strength of the interac-
tion. First, these parameters appear as constants in the QCD Lagrangian, however,
some modification is necessary as the one-particle irreducible (1PI) Green functions
obtained using the original action are divergent. These singularities come from high
energy contributions and hence they are called ultraviolet (UV) divergences. Since
the 1PI Green functions are interpreted as physical quantites we need to introduce
counterterms that cancel the singular contributions. One way of doing this is us-
ing multiplicative renormalization which means that we replace the unphysical bare
fields and parameters of the original action with the physical renormalized quantities
that are proportional to the bare ones. The proportionality factors can depend on
renormalized parameters, like couplings and masses.

Before any calculation can take place, first we must regularize our theory to ob-
tain mathematically sensible expressions. One way of doing so is called dimensional
regularization which means we set the number of spacetime dimensions to D = 4−2ε.
This procedure does not violate the symmetries of the action but now the 1PI Green
functions become functions of the regularization parameter ε and the UV singularities
appear as poles at ε = 0, i.e. D = 4. To keep the coupling a dimensionless parameter,
we must also introduce the unphysical parameter µ0 whith mass dimension and mul-
tiply gS by µε0. In light of this change, multiplicative renormalization of the coupling
must be carried out as

µε0g
(B)
S = µεg

(R)
S Zg, (2.8)

where indices (B) and (R) refer to bare and renormalized parameters respectively.
After renormalization an unphysical parameter µ still appears in the expressions but
now it has a different meaning than the original µ0. While µ0 is a dimensional
regularization scale introduced to keep the coupling dimensionless in D dimensions,
µ is the renormalization scale which gives the energy scale of the coupling. Since µ0

and µ are unphysical, physical quantities must be independent of them.

In our calculations we use massless QCD which means we neglect quark masses,
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thus the only parameter is the strong coupling. Performing multiplicative renor-
malization we find that the renormalized coupling becomes scale dependent and its
behaviour is described by the renormalization group equation (RGE) which is built on
the idea that the bare coupling does not depend on the renormalization scale. Hence
the RGE derived from Eq. (2.8) takes the form

µ2 dαS(µ2)

dµ2
= β(αS(µ2)). (2.9)

From now on we drop the index (R) from renormalized quantities. Furthermore,
instead of gS that appears in the Lagrangian we use αS = g2

S/(4π) and refer to it as
the strong coupling. We can solve the RGE perturbatively by computing the beta
function as a series of the coupling,

β(αS(µ2)) = −
(αS

4π

)2
∞∑
n=0

(αS
4π

)n
βn. (2.10)

The βn are the n+1-loop coefficients of the β function which are given up to three-loop
order in the modified minimal subtraction scheme (MS) as

β0 =
11CA

3
− 4nfTR

3
,

β1 =
34

3
C2
A −

20

3
CATRnf − 4CFTRnf ,

β2 =
2857

54
C3
A −

(
1415

27
C2
A +

205

9
CACF − 2C2

F

)
TRnf +

(
158

27
CA +

44

9
CF

)
T 2
Rn

2
f .

(2.11)

Using the three-loop running of the strong coupling we can determine the scale
dependence iteratively and express αS(µ) in terms of the value of αS at some fixed
scale Q,

αS(µ) = αS1(µ) + αS2(µ) + αS3(µ),

αS1(µ) =
αS(Q)

(1 + αS(Q)β0L)
,

αS2(µ) = −αS1(µ)2 β1

4πβ0

ln(1 + αS(Q)β0L),

αS3(µ) =
αS1(µ)3

16π2

{
β2

1

β2
0

ln(1 + αS(Q)β0L)

[
ln(1 + αS(Q)β0L)− 1

]

+

(
β2

1

β2
0

− β2

β0

)
αS(Q)β0L

}
, (2.12)
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where L = ln(µ/Q).

At this point it is apparent that the QCD coupling, i.e. the strength of the inter-
action decreases as the scale increases and it vanishes as µ tends to infinity2. This
characteristic of QCD is known as asymptotic freedom and it validates the use of
perturbation theory at high energies. Confinement is another property of the strong
interaction which means that at low energies partons are not the appropriate degrees
of freedom since they are confined into colorless states called hadrons. Although par-
tons at low energies form bound states through a process called hadronization, they
are still the relevant degrees of freedom in high energy collisions. This allows us to
compute cross sections of high energy processes using partonic degrees of freedom even
though the final states observed in experiments are made up of hadrons, albeit the
partonic cross sections require non-perturbative corrections before any comparison to
measurement data can take place.

The strong coupling can also be expressed by introducing the dimensionful con-
stant ΛQCD,

αS(µ) =
4π

β0t

[
1− β1

β2
0t

ln t+

(
β1

β2
0t

)2(
ln2 t− ln t− 1 +

β0β2

β2
1

)]
, (2.13)

where t = ln(µ2/Λ2
QCD). The scale ΛQCD ≈ 208 MeV where the running coupling

diverges is called the Landau pole and it marks the point where the perturbative
approach completely breaks down. As opposed to QED, in QCD the Landau pole
can be found at relatively low energy since the value of the coupling decreases at
higher energy scales. The strong coupling was measured at multiple energy scales
and the experimental results are in good agreement with the theoretical prediction of
the αS running as shown in Fig. 2.1.

It is important to note that although the behavior of the strong coupling is deter-
mined through the RGE and the necessary coefficients can be computed from theory,
the actual value of αS is still not determined and must be set at one energy scale by
measurement. As of 2019 the so-called world average of the strong coupling in the
MS scheme at the scale of the Z boson mass (MZ = 91.2 GeV) was determined to be
αS(MZ) = 0.1179 ± 0.0010 [1, 2]. For a summary of results on the value of αS(MZ)
obtained by multiple measurements see Fig. 2.2.

2This can be seen by substituting the actual number of colors (NC = 3) and number of light quark
flavors (in our case nf=5) into β0 which then becomes positive, making the leading contribution
αS1 monotonically decreasing.
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Figure 2.1: Measurements of αS at different Q energy scales. The figure was taken
from [6].
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Chapter 3

Cross sections

When computing physical quantities, we must face the problem that the degrees of
freedom in QCD are partons, however, we can only detect the bound states of these
particles. Thus the question naturally arises; can we use QCD to predict the outcome
of high energy collisions in particle physics?

It is the so-called parton-hadron duality that bridges the gap between theoretical
calculations and experimentally observable quantities. The idea behind this concept,
which was first formulated by Poggio, Quinn and Weinberg [7], is that certain inclusive
hadronic cross sections at high energies have to coincide (approximately) with the
partonic cross sections.

The cross section σ of a proton-proton collision can be computed from the cross
sections σ̂i,j of parton collisions (often called as hard scattering cross sections) as [8]

σ(Q2;µR, µF ) =
∑
i,j

∫
dx1 fi(x1;µF )

∫
dx2 fj(x2;µF ) σ̂i,j(x1x2Q

2;µR, µF )+O(1/Qp),

(3.1)
where O(1/Qp) stands for final-state non-perturbative corrections that become small
at high energies, since p > 0. The process-independent fi(x, µF ) functions are called
parton density functions (pdf s for short) and they provide the probability fi(x) dx
that parton i carries a fraction of the proton momentum that is between x and
x + dx. Q stands for the center-of-mass momentum of the protons and µF is (like
the renormalization scale) an unphysical parameter called factorization scale. The
fact stated in Eq. 3.1 is referred to as the factorization theorem and it means that
the long- and short-distance physics, that are represented by the pdfs and the hard
scattering cross seciton respectively, are factorized and individual contributions of the
partonic processes in hadron collisions must be summed incoherently.

The parton-hadron duality and the factorization theorem together validate the use

17



18 CHAPTER 3. CROSS SECTIONS

of partonic cross sections. However, for a complete description of particle collisions
with hadronic final states we need to consider non-perturbative corrections that take
into account the effects of parton to hadron transition.

3.1 Definition

Let us turn from hadronic collisions to electron-positron annihilation. In this case,
the computation of cross sections is simplified, since the initial state of the process of
interest does not contain partons.

The total cross section for electron-positron annihilation is obtained from the
n-particle quantum mechanical transition probability, also known as the n-particle
squared matrix element, |Mn|2 as

σ =
1

2Q2

∑
n

∫
dΦn({p}n;Q)

1

S

∑
spin

|Mn|2, (3.2)

where averaging is carried out over the spin of the initial state particles for unpolarized
beams and the result is also summed over the final state configurations. Division by
the symmetry factor S is needed to handle identical particles. The integration is
performed using the Lorentz-invariant phase space measure for n particles

dΦn({p}n;Q) =
n∏
k=1

dDpk
(2π)D−1

δ+(p2
k −m2

k) (2π)D δ(D)
( n∑
k=1

pk −Q
)
, (3.3)

with Q being the total incoming momentum, pk and mk are the momentum and mass
of the kth particle respectively and D is the number of spacetime dimensions. ({p}n
denotes the set of n final-state momenta.) The index of the Dirac-delta-plus function
simply stands for an additional Heaviside step function,

δ+(p2 −m2) = δ(p2 −m2) Θ(E −m) (3.4)

which provides the constraint that each particle in the final state must have an energy
greater than its mass. Finally, 1/(2Q2) is the flux factor for massless initial-state
particles.

The hadrons observed in the final state form structures, streams of collimated
particles that we call jets. We use so-called observables to describe these structures.
The cross section for an observable J is defined as

σ[J ] =
1

2Q2

∑
n

∫
dΦn({p}n;Q)

1

S

∑
spin

|Mn|2Jn, (3.5)
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where Jn is the value of J on an n-particle phase space. The observables typically
considered are either event shapes which assign numbers (or functions) to final-state
configurations, or jet functions which select final states where particles form a certain
number of jets. One example of an event shape is thrust which is defined as

T = max
~n

(∑
i |~n · ~pi|∑
j |~pj|

)
, (3.6)

where ~pi are the three-momenta of partons and ~n defines the direction of the thrust
axis, ~nT , by maximizing the sum. In general, 1/2 ≤ T ≤ 1, with T = 1/2 for
spherically symmetric events and T → 1 in the case of two back-to-back jets.

Another example is the C-parameter,

Cpar = 3(λ1λ2 + λ2λ3 + λ3λ1), (3.7)

where λ1, λ2 and λ3 are the eigenvalues of the momentum tensor

Θαβ =
1∑
j |~pj|

∑
i

pαi p
β
i

|~pi|
, α, β = 1, 2, 3. (3.8)

Since Θ is a symmetric non-negative tensor with unit trace, its eigenvalues are real
and non-negative with

∑
i λi = 1. Therefore 0 ≤ λi ≤ 1. In the dijet limit, the

C-parameter vanishes and for spherical events Cpar = 1, so 0 ≤ Cpar ≤ 1.

3.2 Perturbative expansion in αS

When computing the cross section of n-jet production in high energy collisions we can
take a perturbative approach and perform a series expansion in the strong coupling.
This is justified by the asymptotic freedom of QCD which means that αS tends to
zero as the energy scale of the collision increases. Hence at sufficiently high energies
αS � 1.

The first term in this so-called fixed-order perturbative expansion, which is lowest
order in the coupling, is referred to as the Leading Order (LO) contribution. The
second term is the Next-to-Leading Order (NLO) and the third is the Next-to-Next
-to-Leading Order (NNLO) correction,

σ[J ] = σLO[J ] + σNLO[J ] + σNNLO[J ] + . . . . (3.9)

Since the cross section is just the integral of the n-particle squared matrix element
|Mn|2 over the phase space of final-state particles (see Eq. (3.2)), the fixed-order
expansion can be carried out on the level of the integrand.
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The loop expansion of the bare n-particle amplitude1 in terms of the bare coupling
α

(B)
S is

|An〉 =
(

4πα
(B)
S

) q
2

|A(0)
n 〉+

(
α

(B)
S µ2ε

0

4π

)
|A(1)

n 〉+

(
α

(B)
S µ2ε

0

4π

)2

|A(2)
n 〉+O(α3

S)

 ,
(3.10)

where q is some non-negative integer that gives the power of gS in the first non-
vanishing term. The superscript of An stands for the loop order of the amplitude.
The first term in the expansion is the tree-level2 contribution, the second is the one-
loop correction, the third is the two-loop correction and so on and so forth.

Since quantities obtained from the bare Lagrangian contain UV singularities we
need to perform renormalization. Considering that we neglect quark masses, this
procedure amounts to replacing the bare coupling with the renormalized one according
to Eq. (2.8). Furthermore, if we seek to compute cross sections up to NNLO accuracy
in perturbative QCD (pQCD) it is sufficient to use the three-loop running of αS and
make the substitution in the expression for the amplitudes according to the following
formula (see e.g. [9]),

α
(B)
S µ2ε

0 S
MS
ε = αS(µ)µ2ε

[
1− αS(µ)

4π

β0

ε
+

(
αS(µ)

4π

)2(
β2

0

ε2
− β1

2ε

)
+O(α3

S)

]
, (3.11)

which can be obtained using Eqs. (2.8) and (2.9). SMS
ε is a scheme-dependent factor

and it does not affect physical results. It is defined in the MS scheme as

SMS
ε = (4π)εe−εγE , (3.12)

where γE is the Euler-Mascheroni constant. This scheme-dependent factor is often
denoted simply as Sε in the literature but that notation here is reserved for

Sε =
(4π)ε

Γ(1− ε) (3.13)

which comes from the integration of the angular part of the dimensionally regularized
phase space.3

The renormalized amplitude can be derived by substituting Eq. (3.11) into Eq. (3.10).
We write the loop expansion of the renormalized amplitude as

|Mn〉 = |M(0)
n 〉+ |M(1)

n 〉+ |M(2)
n 〉+ . . . , (3.14)

1In our case the loop expansion of an n-particle amplitude is equivalent with its perturbative
expansion in the coupling.

2There are loop-initiated processes, like the production of a Higgs-boson in gluon fusion, which
we do not discuss here.

3Γ(x) will represent the Gamma function throughout the dissertation, unless otherwise noted.
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with

|M(0)
n 〉 =C(µ)|A(0)

n 〉,

|M(1)
n 〉 =C(µ)

[
αS
4π

(
µ2

µ2
0

)ε
S−1
ε

][
|A(1)

n 〉 −
q

2

β0

ε

(
µ2

µ2
0

)−ε
Sε|A(0)

n 〉
]
,

|M(2)
n 〉 =C(µ)

[
αS
4π

(
µ2

µ2
0

)ε
S−1
ε

]2
[
|A(2)

n 〉 −
q + 2

2

β0

ε

(
µ2

µ2
0

)−ε
Sε|A(1)

n 〉

+

(
q(q + 2)

8

β2
0

ε2
− q

2

β1

2ε

)(
µ2

µ2
0

)−2ε

S2
ε |A(0)

n 〉
]
. (3.15)

The common factor is simply

C(µ) =

[
4παS

µ2ε

µ2ε
0

S−1
ε

] q
2

. (3.16)

Now we can compute the n-particle squared matrix element up to NNLO and we
obtain

|Mn|2 = |M(0)
n |2 + 2Re〈M(0)

n |M(1)
n 〉+ 2Re〈M(0)

n |M(2)
n 〉+ |M(1)

n |2 + . . . . (3.17)

The first term is just the tree-level contribution that appears in what we call the Born
cross section,

dσBn =
1

2Q2
dΦn|M(0)

n |2 (3.18)

which is understood as the fully differential LO cross section. For the sake of sim-
plicity, averaging over spin states from now on is kept implicit. The second term
contributes to the NLO correction and it is referred to as the virtual term,

dσVn =
1

2Q2
dΦn2Re〈M(0)

n |M(1)
n 〉. (3.19)

Finally, the remaining parts of Eq. (3.17) comprise the double virtual contribution,

dσV Vn =
1

2Q2
dΦn

[
2Re〈M(0)

n |M(2)
n 〉+ |M(1)

n |2
]
. (3.20)

When attempting to compute loop corrections to any process a major difficulty
arises. Namely, the loop integrals diverge even after renormalization. Since we have
already removed UV singularities at this point, such ill behavior originates from
the infrared (IR) regime. To tackle this problem first we need to realize that loop
corrections are not the only higher-order contributions we can consider. Remembering
that in electrodynamics an accelerated charge gives off electromagnetic radiation we
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can argue that a similar effect arises in QCD as well. Following such reasoning it
seems apparent that we must also include such corrections that contain more than
n particles in the final state but are the same order in αS as the loop corrections
discussed before.

Computing the tree-level squared matrix element of an n + 1-particle process we
find that when a particle in the final state becomes soft (that is, its energy goes to
zero) or its momentum becomes collinear with that of another particle, the phase
space integral of the squared matrix element diverges in such way that it cancels the
singularities of the one-loop correction at the level of the cross section. Indeed, the
Kinoshita-Lee-Nauenberg theorem [10, 11] ensures us that the IR singularities of the
loop integrals are cancelled by the divergences of phase space integrals order by order
in the αS expansion for observables that are inclusive enough (IR-safe).

Hence, the complete NLO correction should be understood as

σNLO[J ] =

∫
n+1

dσRn+1Jn+1 +

∫
n

dσVn Jn, (3.21)

which is finite for IR-safe observables. The first term on the right-hand side is called
the real contribution and it is obtained from the tree-level n + 1-particle squared
matrix element,

dσRn+1 =
1

2Q2
dΦn+1|M(0)

n+1|2. (3.22)

Following the same reasoning, the complete NNLO correction is

σNNLO[J ] =

∫
n+2

dσRRn+2Jn+2 +

∫
n+1

dσRVn+1Jn+1 +

∫
n

dσV Vn Jn, (3.23)

with the first two terms, called the double real and real-virtual, defined similarly to
Eqs. (3.22) and (3.19) but with one more particle in the final state. The double real
term accounts for the correction containing two more final-state particles than the
Born process,

dσRRn+2 =
1

2Q2
dΦn+2|M(0)

n+2|2, (3.24)

while the real-virtual contribution is a mixed term containing the one-loop correction
to the process with an additional final-state particle,

dσRVn+1 =
1

2Q2
dΦn+1 2Re〈M(0)

n+1|M(1)
n+1〉. (3.25)

As it was stated before, the finiteness of the cross section requires IR-safe observ-
ables, i.e. observables which are not sensitive to the emission of additional soft or
collinear particles which at NLO means that

Jn({p}n)→ 0 if pi · pj → 0

Jn+1({p}n+1)→ 0 if pi · pj → 0, pk · pl → 0, i 6= k. (3.26)



3.3. TREATING INFRARED SINGULARITIES 23

Furthermore

Jn+1({p}n+1)→ Jn({p}n) if pµi = λqµ with λ→ 0,

Jn+1({p}n+1)→ Jn({p}n) if pµi → zpµ, pµj → (1− z)pµ, (3.27)

with the vectors q and p fixed. These conditions can be generalized to higher orders
but they are not spellt out here since the NLO case illustrates the essence of IR-safe
observables perfectly: the observable is insensitive to soft and collinear radiation and
vanishes when there are less than n well-separated hard particles present.

3.3 Treating infrared singularities

When computing cross sections to a certain fixed αS order (hence the name, fixed-
order perturbation theory) the singular behavior of the constituents still poses great
difficulty, even though the poles are present only in intermediate steps of a physically
consistent calculation and cancel each-other in the end. One way of surpassing such
difficulty is reorganizing the constituents into well-behaved finite terms and there are
a several methods available to do the job. We utilize our own so-called subtraction
scheme which bears the name CoLoRFulNNLO (Completely local subtraction for fully
differential predictions at NNLO).

Before any subtraction can take place we need to make the singular behavior
explicit which, as for UV divergences, we achieve by dimensional regularization which
means that we define our integrals in D = 4−2ε dimensions instead of 4. This method
has the benefit of leaving Lorentz invariance and gauge invariance intact and the IR
singularities of the cross section now emerge as poles in the Laurent-expansion with
respect to ε.

The CoLoRFulNNLO method [12–14] has been completed for processes that con-
tain partons only in the final state and its capabilities were shown in the computation
of the decay of Higgs boson into a pair of b-quarks [15], and three-jet production in
electron-positron annihilation [14,16].

The components of the NLO correction in Eq. (3.21) can be made finite by sub-
tracting a suitably defined approximate cross section from the real contribution and
adding its integral over the unresolved particle to the virtual term,

σNLO[J ] =

∫
n+1

[
dσRn+1Jn+1 − dσR,A1

n+1 Jn

]
D=4

+

∫
n

[
dσVn +

∫
1

dσR,A1

n+1

]
D=4

Jn. (3.28)

There are several prescriptions for constructing the approximate cross section [17–19].
In the CoLoRFulNNLO scheme it is written as

dσR,A1

n+1 =
1

2Q2
dΦn+1A1|M(0)

n+1|2, (3.29)



24 CHAPTER 3. CROSS SECTIONS

where the approximate matrix element is given by

A1|M(0)
n+1|2 =

n+1∑
r=1

[
S(0,0)
r +

n+1∑
s=1
s 6=r

(
1

2
C(0,0)
rs − CrsS(0,0)

r

)]
. (3.30)

The terms C(0,0)
rs and S(0,0)

r denote subtractions that regularize the ~pr||~ps collinear and

the pr → 0 soft singularities respectively. The CrsS(0,0)
r soft-collinear counterterm

makes sure that no double subtracting takes place in the overlapping soft-collinear
phase space region. The superscript (l1, l2) means that the corresponding counterterm
involves the product of an l1-loop subtraction kernel and an l2-loop squared matrix
element.

The approximate squared matrix element takes into account all spin and color
correlations in the infrared limits, making the subtraction completely local. This
feature is a necessary condition for the regularized real contribution,∫

n+1

[
dσRn+1Jn+1 − dσR,A1

n+1 Jn

]
, (3.31)

to be mathematically well-defined in four dimensions.

Similarly to the NLO subtraction method explained before, the CoLoRFulNNLO
scheme utilizes completely local counterterms in order to obtain mathematically well-
defined regularized contributions. In this scheme we render the terms of Eq. (3.23)
finite by the following rearrangement,

σNNLO[J ] =

∫
n+2

dσNNLOn+2 +

∫
n+1

dσNNLOn+1 +

∫
n

dσNNLOn , (3.32)

where

dσNNLOn+2 =

{
dσRRn+2Jn+2 − dσRR,A2

n+2 Jn −
[
dσRR,A1

n+2 Jn+1 − dσRR,A12

n+2 Jn

]}
D=4

, (3.33)

dσNNLOn+1 =

{(
dσRVn+1 +

∫
1

dσRR,A1

n+2

)
Jn+1 −

[
dσRV,A1

n+1 +

(∫
1

dσRR,A1

n+2

)A1
]
Jn

}
D=4

,

(3.34)

dσNNLOn =

{
dσV Vn +

∫
2

[
dσRR,A2

n+2 − dσRR,A12

n+2

]
+

∫
1

[
dσRV,A1

n+1 +

(
dσRR,A1

n+2

)A1
]}

D=4

Jn.

(3.35)
Eq. (3.33) contains the double real correction which diverges whenever one or two
partons become unresolved. To regularize the two-parton unresolved singularities we
subtract

dσRR,A2

n+2 =
1

2Q2
dΦn+2A2|M(0)

n+2|2, (3.36)
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where the approximate squared matrix element for processes with m + 2 partons in
the final state is

A2|M(0)
n+2|2 =

∑
r,s
r 6=s

{
1

2
S(0,0)
rs +

∑
i 6=r,s

[
1

6
C(0,0)
irs +

1

2

(
CS(0,0)

ir;s − CirsCS(0,0)
ir;s

)

+
∑
j 6=i,r,s

(
1

8
C(0,0)
ir;js −

1

2

∑
j 6=i,r,s

Cir;jsCS(0,0)
ir,s +

1

2
Cir;jsS(0,0)

rs

)

− CS ir;sS(0,0)
rs + CirsS(0,0)

rs + CirsCS ir;sS(0,0)
rs

]}
(3.37)

The functions C(0,0)
irs , C(0,0)

ir;js , CS(0,0)
ir;s and S(0,0)

rs regularize the squared matrix element in
the ~pi||~pr||~ps triple-collinear, the ~pi||~pr, ~pj||~ps double-collinear, the ~pi||~pr and ps → 0
collinear-soft and the pr, ps → 0 double soft limits. The rest of the counterterms
account for the overlaps between limits.

After subtracting the double unresolved approximate cross section, the remainder
is still divergent in the single unresolved regions of phase space, thus we also need to
subtract

dσRR,A1

n+2 =
1

2Q2
dΦn+2A1|M(0)

n+2|2, (3.38)

where A1 has been defined in Eq. (3.30). In order to avoid the double subtraction in
the overlapping single and double unresolved regions of phase space, we must add the
single unresolved limit of the term regularizing the double unresolved singularities

dσRR,A12

n+2 =
1

2Q2
dΦn+2A12|M(0)

n+2|2, (3.39)

which contains the iterated single unresolved approximate squared matrix element
with the A12 operator defined as

A12|M(0)
n+2|2 =

n+2∑
t=1

[
StA2|M(0)

n+2|2 +
n+2∑
k=1
k 6=t

(
1

2
CktA2|M(0)

n+2|2 − CktStA2|M(0)
n+2|2

)]
.

(3.40)

In Eq. (3.34) we have the sum of the real-virtual correction and the integrated
single unresolved subtraction from the double real correction,

dσRVn+1 +

∫
1

dσRR,A1

n+2 , (3.41)

which is finite in ε, since the poles of the one-loop matrix element are cancelled by the
integrated counterterm, however, it still contains kinematic singularities in the single
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unresolved part of the n + 1-parton phase space. These singularities are regularized

by two suitably defined approximate cross sections, dσRV,A1

n+1 and
(

dσRR,A1

n+2

)A1

.

Finally, the two-loop correction appears in Eq. (3.35) and its explicit infrared
singularities are cancelled by the four remaining integrated counterterms. In the work
that was published in Ref. [14] I implemented the two-loop contribution of three-jet
production based on Refs. [20, 21]. Furthermore, I also partook in the integration
of the subtraction terms from the double real contribution. These integrals were
obtained as a Laurent expansion in ε. The coefficients of the poles were ultimately
obtained analytically and the finite part was computed numerically.

The CoLoRFulNNLO subtraction scheme was implemented for three-jet produc-
tion in electron-positron annihilation [14]. The performance of the subtraction scheme
is shown by comparing theoretical predictions computed through the use of CoLoR-
FulNNLO and other methods denoted by SW [22] and GGGH [23] to measurement
data. Results obtained at LO, NLO and NNLO accuracy on τ ≡ 1 − T thrust and
Cpar are shown in Figs. 3.1 and 3.2. The effect of neglecting higher-order terms was
estimated by varying the renormalization scale in the range µR ∈ [Q/2, 2Q]. On the
lower panels of each figure the ratio of other predictions to CoLoRFulNNLO results
can be seen along with a red band showing the relative scale variation of our NNLO
results.
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Figure 3.1: Perturbative predictions for thrust distribution (τ = 1− T ) at LO, NLO
and NNLO accuracy. The bands were obtained by varying the renormalization scale
in the range µR ∈ [Q/2, 2Q]. (In the published paper the dimensionless variable
ξR = µR/Q was used.) The two lower panels show the ratio of the predictions of [22]
(SW) and EERAD3 [23] (GGGH) to CoLoRFulNNLO.
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Figure 3.2: Perturbative predictions for C-parameter distribution at LO, NLO and
NNLO accuracy. The bands were obtained by varying the renormalization scale in the
range µR ∈ [Q/2, 2Q]. (In the published paper the dimensionless variable ξR = µR/Q
was used.) The two lower panels show the ratio of other predictions of [22] (SW) and
EERAD3 [23] (GGGH) to CoLoRFulNNLO.
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Chapter 4

Motivation

Knowing the precise value of the strong coupling is absolutely essential for the cal-
culation of highly accurate QCD cross sections. As I discussed in the previous part
of this work, perturbative QCD predicts only the behavior of the strong coupling at
different energy scales but to obtain numerical values we need to measure αS at a
fixed scale. This can be achieved by performing fits to experimental data with the
value of the coupling treated as a free parameter. To this end, in the framework of
perturbative QCD, event shapes describing global event topology and jet rates have
been used extensively in the past.

One of the best sources for the precise extraction of αS are quantities related to
three-jet production in e+e− annihilation [24, 25] due to a number of reasons. First
of all, the deviation from the simple two-jet configuration is directly proportional to
αS. Furthermore, since the strong interactions occur only in the final state, non-
perturbative QCD corrections are restricted to hadronization and power corrections,
which may be extracted by comparing measurement data to Monte Carlo simula-
tions or estimated using analytic models. Therefore, the precision of the theoretical
computation is limited mostly by the accuracy of the perturbative expansion.

The state of the art for event shape observables currently includes fixed-order
NNLO corrections for the six standard three-jet event shapes of thrust, heavy jet
mass, total and wide jet broadening, C-parameter and the two-to-three jet transition
variable y23 [14,22,26] as well as jet cone energy fraction [14], oblateness and energy-
energy correlation [16]. The three-jet rate in electron-positron annihilation has been
computed at NNLO precision [22, 26–28]. Using these results and the total cross
section at N3LO accuracy [29] the two-jet rate can be obtained with N3LO precision.

However, fixed-order predictions have a limited kinematical range of applicabil-
ity. Let us consider a generic event shape y defined such that y → 0 corresponds
to the two-jet limit. When the two-jet limit is approached multiple emissions of soft
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and collinear gluons give rise to large logarithmic corrections in the form of αnS lnm y
where m ≤ 2n − 1 is a natural number. These contributions spoil the convergence
of the perturbative series for small values of y and thus invalidate the use of fixed-
order perturbation theory in that region. In order to obtain a description appropriate
to this limit, the logarithms must be resummed to all orders. Resummation in the
highest-order logarithmic correction (the terms containing αnS ln2n−1 y in our exam-
ple) is referred to as Leading Logarithmic (LL) while the sub-leading contributions
(αnS ln2n−2 y, αnS ln2n−3 y, ...) are labelled as Next-to-Leading Logarithmic (NLL), Next-
to-Next-to-Leading Logarithmic (NNLL) and so on. For three-jet event shapes such
logarithmically enhanced terms can be resummed at NNLL accuracy [30–36] and even
at next-to-next-to-next-to-leading logarithmic (N3LL) accuracy for thrust [37] and the
C-parameter [38]. A prediction incorporating the complete perturbative knowledge
about the observable can be derived by matching the fixed-order and resummed cal-
culations [39].

For the standard event shapes of thrust, heavy jet mass, total and wide jet broad-
ening, C-parameter and y23, NNLO predictions matched to NLL resummation were
presented in [40]. Predictions at NNLO matched to N3LL resummation are also
known for thrust [31,37] and the C-parameter [38].

In this part I will present our results on extracting the value of αS(MZ) from
measurement data using up-to-date theoretical calculations on hadronic observables
in electron-positron annihilation. In Chapter 5 I describe the calculation of energy-
energy correlation in perturbation theory using NNLO fixed-order and NNLL re-
summed results. Furthermore, I present an assessment of the impact of NNLO cor-
rections on the extraction of αS(MZ) from experimental data. In Chapter 6 I discuss
a more detailed analysis using the results presented in the previous chapter in tan-
dem with hadronization corrections obtained with state-of-the-art Monte Carlo event
generators and NLO corrections for b-quark mass. Finally, in Chapter 7 I show a
similar analysis based on jet rates.



Chapter 5

Energy-energy correlation in
perturbation theory

The completion of the CoLoRFulNNLO scheme for final state radiation allowed us
to compute any IR-safe event shape up to NNLO accuracy in electron-positron anni-
hilation. However, this perturbative description in fixed αS order is, as we will see,
insufficient for a full description of physical observables and thus we should consider
resummation as well. Previously, the event shape called energy-energy correlation
was known only at NLO+NNLL precision. Thus, our aim was to present an upgrade
on perturbative results available in the literature by incorporating the NNLO correc-
tion and assess its impact on analyses of measurement data. This way we were able
to provide the most accurate theoretical prediction on the observable.

5.1 Definition of the observable

Energy-energy correlation (EEC) is the normalized energy-weighted cross section de-
fined in terms of the angle between two particles i and j [41]:

1

σt

dΣ(χ)

d cosχ
≡ 1

σt

∫ ∑
i,j

EiEj
Q2

dσe−e+→ij+Xδ(cosχ− cos θij), (5.1)

where Ei and Ej are the energies of particles i and j, Q2 is the center-of-mass energy
squared, θij = χ is the angle between the three-momenta of the two particles and σt
is the total hadronic cross section for e+e− → hadrons. The normalization ensures
that the integral of the observable between χ = 0◦ and χ = 180◦ is one.

The correlation between energies of final-state hadrons is strongest when the par-
ticles under consideration are either going in roughly the same or opposite direction.
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Figure 5.1: Energy-energy correlation in e+e− → hadrons measured by the OPAL
Collaboration [42].

Since the production rate of k > 2 number of jets is suppressed by a factor of αkS
relative to the two-jet case, the greatest contribution to EEC comes from two-jet
final states. Hence, final-state particles appear mostly with parallel or antiparallel
three-momenta and the event shape peaks at low and high values of χ as can be
seen on Fig. 5.1. We refer to these regions as the forward and back-to-back region
repsectively.

5.2 Fixed-order calculations

The fixed-order expansion of the differential EEC distribution at scale Q up to NNLO
can be written as[

1

σ0

dΣ(χ,Q)

d cosχ

]
f.o.

=
αS(Q)

2π

dA(χ)

d cosχ
+

(
αS(Q)

2π

)2
dB(χ)

d cosχ
+

(
αS(Q)

2π

)3
dC(χ)

d cosχ
+O(α4

S).

(5.2)
In experiments the measured distribution is normalized to the total hadronic cross
section σt. Thus to obtain a physical distribution we need to multiply the expansion
in Eq. (5.2) by σ0/σt. For massless quarks this ratio is

σ0

σt
= 1− αS(Q)

2π
At +

(
αS(Q)

2π

)2

(A2
t −Bt) +O(α3

S) (5.3)

with

At =
3

2
CF , Bt = CF

[(
123

8
− 11ζ3

)
CA −

3

8
CF −

(
11

2
− 4ζ3

)
nfTR

]
. (5.4)
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The renormalization scale dependence of the fixed-order distribution can be re-
stored using the renormalization group equation for αS (see Eq. (2.9)) and we find[

1

σt

dΣ(χ, µ)

d cosχ

]
f.o.

=
αS(µ)

2π

dĀ(χ, xR)

d cosχ
+

(
αS(µ)

2π

)2
dB̄(χ, xR)

d cosχ

+

(
αS(µ)

2π

)3
dC̄(χ, xR)

d cosχ
+ O(α4

S) (5.5)

where the expansion coefficients can be expressed in terms of the ones computed at
the scale Q as

Ā(χ, xR) =A(χ),

B̄(χ, xR) =B(χ) +

(
1

2
β0 ln(x2

R)− At
)
A(χ),

C̄(χ, xR) =C(χ) + (β0 ln(x2
R)− At)B(χ)

+

(
1

4
β1 ln(x2

R) +
1

4
β0 ln2(x2

R)− Atβ0 ln(x2
R) + A2

t −Bt

)
A(χ),

(5.6)

with xR = µ/Q.

The predictions for EEC up to NNLO accuracy are presented in Fig. 5.2 where
measured data by the OPAL collaboration [42] is also shown. The bands represent the
effect of varying the renormalization scale about its default value of µ = Q by a factor
of two in both directions. Adding higher order corrections reduces the discrepancy
between the predictions and data, although considerable differences remain. On one
hand, the fixed-order predictions diverge at the edges of the kinematic region but the
measured data show no such behavior. On the other hand, there is still some non-
negligible difference between the NNLO prediction and the data for medium values
of χ.

It should also be noted that in the region of intermediate angles the LO scale
variation band does not overlap with the NLO band, while the overlap between the
NLO and NNLO bands is marginal down to χ ≈ 120◦, below which they no longer
touch. This indicates that up to at least NLO the customary prescription for scale
variation is not a reliable estimate of the size of higher-order corrections and casts
some doubt on the reliability of the NNLO band to estimate the uncertainty of the
perturbative calculation. This phenomenon is not unique to EEC and in fact very
similar comments apply also to other three-jet observables in e+e− annihilation [14,
22,26].

Numerical results for the NNLO fixed-order calculation were obtained using the
CoLoRFulNNLO subtraction scheme [12–14]. Computations were performed at the
scale Q = MZ considering nf = 5 light quark flavors.
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Figure 5.2: Fixed-order predictions for EEC at LO, NLO and NNLO accuracy and
OPAL data [42]. The bands are obtained by varying the renormalization scale by a
factor of two around the central scale µ = Q.

5.3 Resummation

As we have seen in the previous section, the fixed-order predictions of EEC diverge
for both χ = 0◦ and χ = 180◦ due to large logarithmic contributions of infrared
origin. Concentrating on the back-to-back region χ→ 180◦, these contributions take
the form αnS ln2n−1 y, where

y = cos2 χ

2
.

As y decreases, the logarithms become large and invalidate the use of the fixed-order
perturbative expansion. In order to obtain a proper description of EEC in this limit,
the logarithmic contributions must be resummed to all orders.

The resummed prediction has been computed at NNLL accuracy in the back-to-
back region in Ref. [30]. At the central scale µ = Q it can be written as[

1

σt

dΣ(χ,Q)

d cosχ

]
res.

=
Q2

8
H(αS(Q))

∫ ∞
0

db bJ0(bQ
√
y)S(Q, b). (5.7)

The large logarithmic corrections are exponentiated in the Sudakov form factor

S(Q, b) = exp

{
−
∫ Q2

b20/b
2

dq2

q2

[
A(αS(q2)) ln

Q2

q2
+B(αS(q2))

]}
(5.8)

The zeroth order Bessel function J0 in Eq. (5.7) and b0 = 2e−γE in Eq. (5.8) have a
kinematic origin. The functions A, B and H are free of logarithmic corrections and
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can be computed as perturbative expansions in αS,

A(αS) =
∞∑
n=1

(αS
4π

)n
A(n), (5.9)

B(αS) =
∞∑
n=1

(αS
4π

)n
B(n), (5.10)

H(αS) = 1 +
∞∑
n=1

(αS
4π

)n
H(n). (5.11)

It is possible to perform the q2 integration in Eq. (5.8) analytically and the Su-
dakov form factor can be written as

S(Q, b) = exp[Lg1(aSβ0L) + g2(aSβ0L) + aSg3(aSβ0L) + . . . ], (5.12)

where aS = αS(Q)/(4π) and L = ln(Q2b2/b2
0) corresponds to ln y at large b (the y � 0

limit corresponds to Qb� 1 through a Fourier transformation). The functions g1, g2

and g3 correspond to the LL, NLL and NNLL contributions. The explicit forms of
the gi functions are

g1(λ, xR) =
A(1)

β0

λ+ ln(1− λ)

λ
,

g2(λ, xR) =
B(1)

β0

ln(1− λ) +
A(1)β1

β3
0

(
1

2
ln2(1− λ) +

ln(1− λ)

1− λ +
λ

1− λ

)
− A(2)

β2
0

(
λ

1− λ + ln(1− λ)

)
− A(1)

β0

(
λ

1− λ + ln(1− λ)

)
ln(x2

R),

g3(λ, xR) = −A
(3)

2β2
0

λ2

(1− λ)2
− B(2)

β0

λ

1− λ +
A(2)β1

β3
0

(
λ(3λ− 2)

2(1− λ)2
− (1− 2λ) ln(1− λ)

(1− λ)2

)
+
B(1)β1

β2
0

(
λ

1− λ +
ln(1− λ)

1− λ

)
− A(1)

2

λ2

(1− λ)2
ln2(x2

R)

−
[
B(1) λ

1− λ +
A(2)

β0

λ2

(1− λ)2
+ A(1) β1

β2
0

(
λ

1− λ +
1− 2λ

(1− λ)2
ln(1− λ)

)]
ln(x2

R)

+ A(1)

[
β2

1

2β4
0

1− 2λ

(1− λ)2
ln2(1− λ) + ln(1− λ)

(
β0β2 − β2

1

β4
0

+
β2

1

β4
0(1− λ)

)

+
λ

2β4
0(1− λ)2

(β0β2(2− 3λ) + β2
1λ)

]
. (5.13)

These functions diverge as λ→ 1. This behavior is caused by the Landau pole in the
QCD running coupling, thus Eq. (5.7) cannot be treated naively as a real integral. To
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evaluate it we follow the prescription introuced in Refs. [43–45]. In order to obtain
a sensible result we must interpret Eq. (5.8) as a complex contour integral. Due to
the presence of the Landau pole, however, the integration contour cannot be simply
the real axis. Hence one must write the expression in Eq. (5.7) as the sum of two
complex integrals over the contours C1 and C2. Parametrizing the contours as

C1 : b =

{
t 0 ≤ t ≤ bc

bc − te−iφb 0 ≤ t ≤ ∞ , C2 : b =

{
t 0 ≤ t ≤ bc

bc + teiφb 0 ≤ t ≤ ∞
the singularity caused by the presence of the Landau pole can be avoided by choosing
the parameters bc and φb appropriately which is visualized in Fig. 5.3. The upper
limit of bc is determined to be 2/Qe−γE . This way the expression in Eq. (5.7) can
be rewritten as the sum of the two complex integrals over the contours C1 and C2.
The first segment of these contours is equivalent to taking the original real integral
restricted to the region [0, bc]. The imaginary part of the sum of the remaining parts
cancels and what remains are just the real parts that are equal. The complexified
integral takes the form[

1

σt

dΣ(χ,Q)

d cosχ

]
res.

=
Q2

8
H(αS(Q))

∫ bc

0

dt t J0(tQ
√
y)S(Q, t)

+
Q2

8
H(αS(Q))

∫ ∞
0

dt 2Re
[
e−iφb bH0(bQ

√
y)S(Q, b)

]
|b=bc−te−iφb ,

(5.14)

where H0 denotes the zeroth order Hankel function of the first kind which arises from
extending the Bessel function over the entire complex plane.

b

bc

C1

C2

Figure 5.3: Integration contours C1 and C2 chosen to avoid the Landau pole.

The constants A(1), A(2) and A(3) 1 that appear in the formulae for the gi functions

1The coefficient A(3) presented in [30] is incomplete. The complete coefficient can be found
in [36,46].
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are

A(1) = 4CF ,

A(2) =

[
CA

(
67

9
− π2

3
− 20

9
nfTR

)]
A(1),

A(3) =
[
C2
A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CFnfTR

(
−55

3
+ 16ζ3

)
+ CAnfTR

(
−418

27
+

40π2

27
− 56

3
ζ3

)
− 16

27
n2
fT

2
R

]
A(1) + 2β0d

q
2, (5.15)

where

dq2 = CACF

(
808

27
− 28ζ3

)
− 224

27
CFnfTR. (5.16)

For B(1) and B(2) we have

B(1) = −6CF ,

B(2) = −2γ(2)
q − CFβ0

(
8− 10π2

3

)
, (5.17)

with

γ(2)
q = C2

F

(
3

2
− 2π2 + 24ζ3

)
+ CFCA

(
17

6
+

22π2

9
− 12ζ3

)
− CFnfTR

(
2

3
+

8π2

9

)
.

(5.18)
Finally, H(1) is

H(1) = −CF
(

11 +
2π2

3

)
. (5.19)

Fig. 5.4 shows the resummed calculations for EEC up to NNLL accuracy compared
to OPAL data. Although these predictions are finite in the back-to-back region and
capture the general behavior of data for angles close to 180◦, the resummed results
become significantly different from the measured data as we move away from the
χ→ 180◦ limit.

The factorization between the constant and logarithmic terms H(αS) and S(Q, b)
involves some arbitrariness, since the large logarithm L can be modified by a multi-
plicative constant at order one in the argument of the logarithm. This arbitrariness
can be parametrized by introducing the constant xL as

L = ln(Q2b2/b2
0) = ln(x2

LQ
2b2/b2

0)− ln(x2
L), (5.20)

that must satisfy xL = O(1) when Qb � 1. This parameter plays a similar role
as the renormalization scale xR in the fixed-order computations. The rescaling of
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Figure 5.4: Resummed predictions for EEC at LL, NLL and NNLL accuracy and
OPAL data. The bands are obtained by varying the renormalization scale by a factor
of two around the central scale µ = Q.

the logarithm L modifies the resummation formulae and the expansion coefficients in
Eqs. (5.9) – (5.11),

Ã(n)(xL) = A(n),

B̃(n)(xL) = B(n) − A(n) ln(x2
L),

H̃(1)(xL) = H(1) − β0g
′
2(0) ln(x2

L) + β0g
′
1(0) ln2(x2

L), (5.21)

while the Sudakov form factor in Eq. (5.12) also changes as

S(Q, b, xR, xL) = exp

[
L̃g1

(
aSβ0L̃,

xR
xL

)
+ g2

(
aSβ0L̃,

xR
xL

)

+ aSg3

(
aSβ0L̃,

xR
xL

)
+ . . .

]
, (5.22)

where L̃ = ln(x2
LQ

2b2/b2
0). Similarly to the case of the renormalization scale, the

resummation scale can be used to assess the impact of neglected higher-order terms
in resummation.
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5.4 Matching the fixed-order and resummed pre-

dictions

At this point two perturbative predictions have been described for EEC that are valid
in separate kinematic regions. The fixed-order expansion applies when αS ln2 y � 1
while the resummation is only reliable for small values of y. They can be understood
as series expansions of the same quantity in different ways as shown schematically in
Eq. (5.23). The rows correspond to terms in the fixed-order series while the columns
represent terms in the resummation expansion.

1

σt

dΣ

d cosχ
∼ 1

y

{
αS

[
log y + 1

]
LO

+ α2
S

[
log3 y + log2 y + log y + 1

]
NLO

+ α3
S

[
log5 y + log4 y + log3 y + log2 y . . .

]}
NNLO

...

LL NLL NNLL (5.23)

The two calculations must be matched if we are to obtain a description that is
valid over a wide range of y. There are multiple matching procedures worked out and
described in the literature (see for example [47]) but they all come down to taking the
sum of the two predictions and subtracting the fixed-order expansion of the resummed
part to avoid the double counting of the overlap as shown in Eq. (5.24).

1

σt

dΣ(χ, µ)

d cosχ
=

[
1

σt

dΣ(χ, µ)

d cosχ

]
res.

+

[
1

σt

dΣ(χ, µ)

d cosχ

]
f.o.

−
{[

1

σt

dΣ(χ, µ)

d cosχ

]
res.

}
f.o.

(5.24)

However, subtracting the fixed-order expansion of the resummed distribution alone is
insufficient to produce a physical prediction. Unless the order of logarithmic approx-
imation is high enough to reproduce all logarithmic singularities of the fixed-order
calculation, the last two terms on the right-hand side of Eq. (5.24) will still contain
unexponentiated logarithmic contributions that diverge in the forward and back-to-
back regions.

In the case of EEC the NNLL approximation is sufficient for the cancellation of
singular terms in the LO and NLO fixed-order calculation but that is no longer true
at NNLO. Hence, Eq. (5.24) can be used to define a sensible matched prediction
at NNLL+NLO precision but not at NNLL+NNLO. For the later case a different
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matching procedure must be used to obtain a distribution which behaves physically
in the back-to-back region. In this work the log-R matching scheme [39] was employed.

In log-R matching one must consider a cumulative event shape distribution de-
noted here by R(y, µ) for some event shape y,

R(y, µ) =
1

σt

∫ y

0

dy′
dσ(y′, µ)

dy′
(5.25)

which has the following fixed-order expansion[
R(y, µ)

]
f.o.

= 1 +
αS
2π
Ā(y, µ) +

(αS
2π

)2

B̄(y, µ) +
(αS

2π

)3

C̄(y, µ) +O(α4
S). (5.26)

The specific formulae for log-R matching in the literature [39] apply to event
shapes with the cumulative resummed distribution taking a fully exponential form,[

R(y, µ)
]

res.
= (1 + C1αS + C2α

2
S + . . . )

× exp
[
Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .

]
+O(αSy), (5.27)

where L = ln y and Cn are known constants and the functions gn can be expanded in
powers of αS and L as

gn(αSL) =
∞∑
i=1

Gi,i+2−n
(αS

2π

)i
Li+2−n. (5.28)

Performing the log-R matching means expanding the logarithm of Eq. (5.26) as a
power series in αS,

ln
[
R(y, µ)

]
f.o.

=
αS
2π
Ā(y, µ) +

(αS
2π

)2
(
B̄(y, µ)− 1

2
Ā(y, µ)2

)
+
(αS

2π

)3
(
C̄(y, µ)− Ā(y, µ)B̄(y, µ) +

1

3
Ā(y, µ)3

)
+O(α4

S) (5.29)

and similarly rewriting Eq. (5.27) as

ln
[
R(y, µ)

]
res.

= Lg1(αSL) + g2(αSL) + αSg3(αSL)

+ αSC1 + α2
S

(
C2 −

1

2
C1

)
+ α3

S

(
C3 − C1C2 +

1

3
C3

1

)
+O(α4

S).

(5.30)
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Replacing the terms in Eq. (5.30) up to O(α4
S) by the ones in Eq. (5.29) we obtain

the final formula for the log-R-matched NNLL+NNLO distribution,

ln
[
R(y, µ)

]
= Lg1(αSL) + g2(αSL) + αSg3(αSL)

+
αS
2π

(
Ā(y, µ)−G11L−G12L

2
)

+
(αS

2π

)2
(
B̄(y, µ)− 1

2
Ā(y, µ)2 −G21L−G22L

2 −G23L
3

)
+
(αS

2π

)3 (
C̄(y, µ)− Ā(y, µ)B̄(y, µ) +

1

3
Ā(y, µ)3 −G32L

2 −G33L
3

−G34L
4
)
. (5.31)

The constants Cn do not enter Eq. (5.31) as the non-logarithmically enhanced terms
containing them must be factorized with respect to the form factor and should not
be exponentiated [39].

For EEC two difficulties arise with the application of Eq. (5.31). First, the fixed-
order expansion of the event shape diverges at both ends of the kinematic region
making the determination of a simple cumulant unfeasible. Second, the resummed
distribution is not in a completely exponentiated form. To solve the first issue, we
considered a linear combination of moments

1

σt
Σ̃(χ, µ) ≡ 1

σt

∫ χ

0

dχ′ (1− cosχ′)
dΣ(χ′, µ)

dχ′
. (5.32)

Once the matching procedure is carried out it is straightforward to reproduce the
differential EEC distribution from Eq. (5.32) as

1

σt

dΣ(χ, µ)

dχ
=

1

1− cosχ

d

dχ

[
1

σt
Σ̃(χ, µ)

]
. (5.33)

The singularity of the differential distribution in the forward region (χ → 0) is
suppressed by the factor (1− cosχ) and in massless QCD

1

σt
Σ̃(π, µ) =

1

σt

∫ ∑
i,j

EiEj
Q2

(1− cos θij)dσe+e−→ij+X = 1. (5.34)

Thus the cumulant can be determined reliably. Now the integration of the fixed-order
differential distribution can be carried out and the constraint Σ̃(π, µ)/σt = 1 can be
used to set the constants of integration to obtain[

1

σt
Σ̃(χ, µ)

]
f.o.

= 1+
αS(µ)

2π
Ā(χ, µ)+

(
αS(µ)

2π

)2

B̄(χ, µ)+

(
αS(µ)

2π

)3

C̄(χ, µ)+O(α4
S).

(5.35)
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For the resummed prediction we can obtain the integral expression for the cumulative
distribution using Eq. (5.7) and the definition of Σ̃ from Eq. (5.32),[

1

σt
Σ̃(χ, µ)

]
res.

=
H(αS(µ))

2

∫ ∞
0

db

[
Q
√
y(1− y)J1(bQ

√
y) +

2y

b
J2(bQ

√
y)

]
S(Q, b)

(5.36)
In order to obtain numerical results, I implemented the numerical integration of the
cumulative resummed prediction in a C++ code based on Gauss quadratures. Due
to the Landau-pole, however, a direct computation of Eq. (5.36) as a real integral
is impossible. Thus, as it was discussed in the previous chapter for the case of the
differential resummed result, I coded the evaluation of the cumulant as a complexified
integral.

Although the cumulative resummed prediction is not in a completely exponenti-
ated form, the matching procedure can be performed in the same manner as given
before,

ln

[
1

σt
Σ̃(χ, µ)

]
= ln

{
1

H(αS(µ))

[
1

σt
Σ̃(χ, µ)

]
res.

}
− ln

{
1

H(αS(µ))

[
1

σt
Σ̃(χ, µ)

]
res.

}
f.o.

+
αS(µ)

2π
Ā(χ, µ) +

(
αS(µ)

2π

)2 [
B̄(χ, µ)− 1

2
Ā(χ, µ)2

]
+

(
αS(µ)

2π

)3 [
C̄(χ, µ)− Ā(χ, µ)B̄(χ, µ) +

1

3
Ā(χ, µ)3

]
. (5.37)

Here, the second term on the right hand side of the equation stands for the fixed-order
expansion of the resummed prediction,{

1

H(αS(µ))

[
1

σt
Σ̃(χ, µ)

]
res.

}
f.o.

=1 +
αS(µ)

2π
Āres.(χ, µ) +

(
αS(µ)

2π

)2

B̄res.(χ, µ)

+

(
αS(µ)

2π

)3

C̄res.(χ, µ) +O(α4
S). (5.38)

The exact forms of the coefficients Āres., B̄res. and C̄res. are given in Appendix A.
We must also pay attention to the non-logarithmically enhanced constant terms that
come in the form of H(n)αnS. These contributions must not be exponentiated and thus
we need to remove them from the formula of the log-R matched prediction. This is
why the resummed prediction is divided by H(αS(µ)) in Eq. (5.37).

There are other viable matching procedures for NNLL+NNLO calculations in
the literature. One can utilize a method similar to Eq. (5.24) which is commonly
referred to as R-matching for event shapes and it has been worked out for EEC at
NLL+NLO in Refs. [39, 48]. Yet this procedure requires the extraction of certain
matching coefficients from the behaviour of the fixed-order prediction deep in the
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back-to-back limit. Since the computation of the fixed-order distribution in this region
is particularly challenging numerically, the necessary coefficients can be obtained only
with large numerical uncertainties. This problem becomes more significant at higher
orders. Hence, we did not utilize this method. In the case of log-R matching all
coefficients can be extracted analitically from the resummed calculation. However,
the R-matching in the case of NLO+NNLL can be performed as dictated by Eq. (5.24)
without the need for numerically extracted matching coefficients. This allowed us to
compare results given by the two matching schemes at NLO+NNLL accuracy which
makes for a good check of consistency.

Finally, I note that the unitarity constraint Σ̃(π, µ)/σt = 1 can be satisfied by
modifying the resummation formula in Eq. (5.7) such that in the kinematic limit
y = 1 the Sudakov form factor is unity. There are several methods to achieve this
and we chose to modify the coefficients Ã(n) and B̃(n) as

Ã(n)(xL)→ Ã(n)(xL)(1− y)p,

B̃(n)(xL)→ B̃(n)(xL)(1− y)p, (5.39)

where p is a positive number. A similar method was employed in Ref. [49], although
in a different context. This modification does not alter the logarithmic structure of
the result and introduces only power-suppressed terms. The default value is chosen
to be p = 1.

5.5 Comparison to data

In Ref. [50] we presented the first results on EEC obtained at NNLO+NNLL accuracy
and also made comparisons to measurement data. In order to assess the impact
of the NNLO contribution we computed the NLO+NNLL predictions as well. At
NLO+NNLL accuracy both R and log-R matching can be used to obtain physically
sensible results that are valid for medium angles and in the back-to-back region as
well. These results are shown in Fig. 5.5 along with the fixed-order NLO prediction.
In such comparisons we set the center-of-mass energy to the Z-boson mass, Q =
MZ = 91.2 GeV and the strong coupling is fixed to αS(MZ) = 0.118. The fixed-order
calculation diverges to −∞ as χ→ 180◦ but the matched results remain well-behaved
in both matching schemes. The ratio of the fixed-order NLO and the R-matched
calculations to the log-R-matched result is shown in the lower panel of Fig. 5.5. The
colored bands were obtained by varying the renormalization scale about its default
value in the region µR ∈ [Q/2, 2Q] using the two-loop running of the strong coupling.
It is apparent that the two matching schemes are in good agreement with each other
with the relative difference of the R-matched calculation from the log-R-matched one
changing from about −2% near χ = 180◦ to 0% for χ = 60%. Around χ = 180◦, the
difference is about +0.5%.
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Figure 5.5: Comparison of R-matched and log-R-matched NNLL+NLO predictions
for EEC. The bottom panel shows the ratio of fixed-order NLO and R-matched
NNLL+NLO predictions to the log-R matched one. The bands were produced by
variation of renormalization scale by a factor of two with two-loop running of αS.

When including the NNLO correction in our discussion we must keep in mind
that in order to obtain a result that is physically sensible in the back-to-back region
(i.e. for angles close to χ = 180◦) we need to use log-R matching. The log-R matched
NNLL+NNLO calculation is shown in Fig. 5.6 along with the fixed-order NNLO
prediction. Here too, the center-of-mass energy is set to Q = 91.2 GeV and we used
αS(MZ) = 0.118. The fixed-order prediction diverges to +∞ as χ → 180◦ (which
is not visible on the plot as the NNLO result seems to diverge to −∞). Again,
the matched prediction stays well-behaved for angles close to χ = 180◦. The ratio
of the fixed-order NNLO result to the log-R-matched NNLL+NNLO calculation is
shown in the lower panel of Fig. 5.6. The colored bands were obtained by varying the
renormalization scale about its default value in the region µR ∈ [Q/2, 2Q] using the
three-loop running of the strong coupling.

In Fig. 5.7 we compare the NNLL+NLO and NNLL+NNLO results in the log-R
matching scheme. The ratio of the NNLL+NLO to the NNLL+NNLO result is shown
in the lower panel. It can be seen that the inclusion of the NNLO correction lowers
the prediction in the region of the peak by −5% to −2% while for medium to low
angles we see an increase which is +7% at χ = 120◦ and grows up to +14% at χ = 60◦

and even higher, 20−25% for angles near 0◦. Hence we can deduce that the inclusion
of NNLO corrections has a strong impact on the shape of the distribution.

Using the matched prediction described in the previous sections I performed a fit
based on the χ2 method to obtain the value of αS(Mz) with the goal of assessing the
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Figure 5.6: NNLL+NNLO matched prediction for EEC compared to the fixed-order
NNLO result. The bottom panel shows the ratio of the fixed-order NNLO prediction
to the NNLL+NNLO result. The band represents renormalization scale variation of
the matched result by a factor of two with three-loop running of αS.
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Figure 5.7: Comparison of NNLL+NLO and NNLL+NNLO matched prediction for
EEC computed using the log-R scheme. The bottom panel shows the ratio of the
NNLL+NLO result to the NNLL+NNLO prediction. The bands were produced by
variation of renormalization scale by a factor of two.
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impact of the NNLO correction on the final result. I implemented the fit procedure in
the same C++ code as the integration of the resummed prediction and the matching
of perturbative results. In order to find the optimal value of αS(MZ), I used the
MINUIT2 program [51,52] to minimize

χ2(αS) =
∑
i

(Di − Pi(αS))2

σ2
i

, (5.40)

with the MIGRAD method, where the Di, Pi(αS) and σi stand for the data points, the
calculated predictions and the variance respectively. More specifically, the fit was
performed by comparing R-matched NNLL+NLO and log-R-matched NNLL+NLO
and NNLL+NNLO calculations to precise OPAL [42] and SLD [53] data. In general,
both statistical and systematic errors are correlated between bins but the experimen-
tal publications provide no information on the matter. Thus, we treat statistical and
systematic errors as uncorrelated between data points and add them in quadrature.

In our first fit we neglected hadronization corrections. In order to make the
comparison of our results to previous work presented in Ref. [30] straightforward
we choose our fit ranges accordingly. Note that our definition of χ differs from the
one used in Ref. [30] which can be obtained by simply changing χ to 180◦ − χ.
The output of the one-parameter fits is shown in Tab. 5.1. The uncertainties are
computed by adding the fit uncertainty and the theoretical uncertainty from missing
higher-order contributions in quadrature. The latter is obtained by repeating the
fit with several values of the renormalization scale µR in the range µR ∈ [Q/2, 2Q]
and taking the envelope of the results. This renormalization scale variation gives the
dominant contribution in the total uncertainty.

Fit range
NNLL+NLO (R) NNLL+NLO (log-R) NNLL+NNLO (log-R)

αS(MZ) χ2/d.o.f. αS(MZ) χ2/d.o.f. αS(MZ) χ2/d.o.f.

117◦ < χ < 180◦ 0.133± 0.001 1.96 0.131± 0.003 1.21 0.129± 0.003 4.13

117◦ < χ < 165◦ 0.132± 0.001 0.59 0.131± 0.003 0.54 0.128± 0.003 1.58

60◦ < χ < 165◦ 0.135± 0.002 3.96 0.134± 0.004 5.12 0.127± 0.003 1.12

Table 5.1: Results of the fits of the matched predictions at NNLL+NLO and
NNLL+NNLO accuracy to OPAL and SLD data. The number of degrees of free-
dom of the fits are d.o.f. = 50 for 117◦ < χ < 180◦, d.o.f. = 38 for 117◦ < χ < 165◦

and d.o.f. = 86 for 60◦ < χ < 165◦, where d.o.f. stands for degrees of freedom
obtained as #(data points)−#(parameters)− 1.

Our obtained values of αS(MZ) based on the R-matched NNLL+NLO calculations
are quite close to the results presented in Ref. [30]. The marginal differences are due
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to the fact that the fits in Ref. [30] were computed using the incomplete A(3) NNLL
resummation coefficient.

We observed that by taking the NNLO correction into account the extracted value
of αS(MZ) was reduced. This decrease is 2− 3% for fits performed in the [117◦, 180◦]
range, 2− 4% for [117◦, 165◦] and 5− 7% for [60◦, 165◦], depending on the matching
scheme used in the NNLL+NLO calculations. Therefore, it is apparent that the
NNLO correction must be included in a precise determination of αS(MZ).

So far we have omitted hadronization corrections in our analysis, although we can
expect that non-perturbative effects would be relevant, especially at angles close to
χ = 180◦ [41,54–57]. The OPAL analysis of Ref. [42] also found hadron-parton correc-
tion factors ranging from 1.5 in the back-to-back region to 0.9 in the forward region.
Thus we must also consider such corrections when aiming for a precise extraction of
αS(MZ). These non-perturbative corrections can be estimated either by comparison
to the output of Monte Carlo event generators or by analytic calculations. Here, we
follow the latter option and apply the model presented by Dokshitzer, Marchesini
and Weber (hence the label DMW ) in Ref. [48], which incorporates non-perturbative
corrections by multiplying the Sudakov form factor of Eq. (5.8) by

SNP = e−
1
2
a1b2(1− 2a2b), (5.41)

where the two parameters a1 and a2 as well must be fitted to data.

After complementing our calculations with the analytic non-perturbative model
we have performed three-parameter fits to the OPAL and SLD data in the range
[117◦, 180◦] using our NNLL+NNLO prediction as well as the NNLL+NLO predic-
tions obtained in both matching schemes. At NNLL+NLO accuracy in the R match-
ing scheme we obtain the following values:

αS(MZ) = 0.134+0.001
−0.009 , a1 = 1.55+4.26

−1.54 GeV2 , a2 = −0.13+0.50
−0.05 GeV , (5.42)

with χ2/d.o.f. = 38.7/48 = 0.81. Once again, all uncertainties are computed by
adding the fit uncertainties and theoretical uncertainties in quadrature. The theo-
retical uncertainties were computed by changing the renormalization scale µR about
its default value µR = Q in the range [Q/2, 2Q] and repeating the fit. The overall
uncertainties are dominated by the theoretical contribution with the exception of the
upper limit for the strong coupling. The correlation matrix of the fit for the central
values is

corr(αS, a1, a2) =

 1 0.04 −0.70
0.04 1 −0.03
−0.70 −0.03 1

 . (5.43)

The obtained values of the strong coupling and the parameter a2, evidently, are
strongly anti-correlated.
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The analysis presented in [30] gave |a2| < 0.002 GeV and hence they set a2 = 0 and
performed a two-parameter fit producing the best fit values of αS(MZ) = 0.130+0.002

−0.004

and a1 = 1.5+3.2
−0.5 GeV2 with χ2/d.o.f. = 0.99. Our result of Eq. (5.42) is in agreement

with these values. Nevertheless, we have verified that the source of the discrepancy
between the two analyses is, once again, the fact that in Ref. [30] the incomplete A(3)

coefficient was used.

Repeating the same fit of NNLL+NLO calculations, this time using the log-R
scheme we get

αS(MZ) = 0.128+0.002
−0.006 , a1 = 1.17+1.46

−0.29 GeV2 , a2 = 0.13+0.14
−0.09 GeV , (5.44)

with χ2/d.o.f. = 40.8/48 = 0.85 for the central values with a correlation matrix of

corr(αS, a1, a2) =

 1 −0.17 −0.98
−0.17 1 0.08
−0.98 0.08 1

 . (5.45)

We observed that the quality of the fits for the NNLL+NLO is very similar, as
indicated by the reduced χ2 values, although the strong coupling and the parameter
a2 are even more strongly anti-correlated in the latter case. The fit results are also
compatible within uncertainties. The extracted value of αS(MZ) is 5% lower for the
log-R-matched NNLL+NLO fit but it still remains higher than the world average
[1,2,58]. Comparison of the NNLL+NLO fits and data is presented in Fig. 5.8 which
shows a nice overall agreement with the experimental data. However, there is a slight
systematic deviation for intermediate angles. This deviation becomes evident when
we consider the ratio of data to log-R-matched calculation as shown in the lower
panel of Fig. 5.8. Clearly the shape of the measured EEC distribution is not entirely
reproduced by the NNLL+NLO calculation.

Next we repeated the three-parameter fit in the same region using the log-R-
matched NNLL+NNLO prediction and extracted the following values:

αS(MZ) = 0.121+0.001
−0.003 , a1 = 2.47+0.48

−2.38 GeV2 , a2 = 0.31+0.27
−0.05 GeV , (5.46)

with χ2/d.o.f. = 56.7/48 = 1.18 indicating an improvement of the fit quality com-
pared to the NNLL+NLO results. Yet again, the values obtained for αS(MZ) and a2

are strongly anti-correlated as evidenced by the correlation matrix

corr(αS, a1, a2) =

 1 0.05 −0.97
0.05 1 −0.07
−0.97 −0.07 1

 . (5.47)

The extracted value of the strong coupling is greatly reduced and it is compatible
with the world average within uncertainties [1, 2, 58].
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Figure 5.8: NNLL+NLO matched predictions for EEC in the R and log-R matching
schemes. The analytic model of Eq. (5.41) is used to account for hadronization
corrections (NP). The bottom panel shows the ratio of the data and the R matched
prediction to the log-R matched result. The bands represent the effect of varying the
renormalization scale µR in the range [Q/2, 2Q] with two-loop running of the strong
coupling.
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In Fig. 5.9 we compare the NNLL+NNLO fit, supplemented with the analytic non-
perturbative correction, to the experimental data. Altogether we see that the shape
of the EEC distribution is better modelled by the NNLL+NNLO prediction since
the systematic deviation present in the NNLL+NLO case is now completely erased.
We can also see a narrower renormalization scale band on the NNLL+NNLO results
that indicates smaller theoretical uncertainties. However, the strong anti-corrlation
between the value of αS(MZ) and one of the parameters of Eq. (5.41) suggests that the
effect of hadronization was partially taken into account by an adjustment of the value
of the coupling. We concluded that the inclusion of the NNLO correction is essential
for a precise determination of the strong coupling from EEC but the corrections from
the analytic hadronization model are unable to fully describe the data.
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Figure 5.9: NNLL+NNLO matched prediction for EEC. The analytic model of
Eq. (5.41) is used to account for hadronization corrections (NP). The bottom panel
shows the ratio of the data to the matched result. The band represents the variation
of the renormalization scale µR in the range [Q/2, 2Q] with three-loop running of the
strong coupling.



Chapter 6

Precise determination of αS(MZ)
from EEC

In the previous chapter we have seen that the NNLO correction to energy-energy
correlation has a significant impact on extracting the precise value of the strong
coupling from this event shape. Hadronization corrections were taken into account
by applying an analytic model. This approach, however, proved to be insufficient for
handling non-perturbative effects.

The estimation of hadronization corrections is an integral part of comparing the
parton-level pQCD predictions to data measured at hadron level. Despite the fact
that under certain conditions the local parton-hadron duality leads to close values of
qunatities at parton and hadron level, the difference between them is not negligible.

Building on the results of the previous chapter, here I present a more extensive
analysis of energy-energy correlation which utilizes modern Monte Carlo event gener-
ators for obtaining non-perturbative corrections with the goal of extracting the precise
value of the strong coupling at the MZ scale.

6.1 Data and non-perturbative corrections

In order to extract the strong coupling the theoretical predictions described in chapter
5 were fit to the available measurement data obtained in the SLD [53], L3 [59],
DELPHI [60], OPAL [42, 61], JADE [62], MAC [63], MARKII [64], TASSO [65],
CELLO [66], PLUTO [67] and TOPAZ [68] experiments. Information on datasets is
detailed in Tab. 6.1. The criteria to include data were high precision of differential
distributions with charged and neutral final-state particles in the full kinematic range,
presence of corrections for detector effects, correction for initial state photon radiation

53
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and sufficient amount of supplementary information.

Experimental datasets selected for the extraction of the strong coupling have high
precision and the measurements from different experiments performed at close ener-
gies are consistent which justified their use in a wide center-of-mass energy interval.

Experiment
√
s, GeV, data

√
s, GeV, MC Events

SLD [53] 91.2(91.2) 91.2 60000
OPAL [42] 91.2(91.2) 91.2 336247
OPAL [61] 91.2(91.2) 91.2 128032

L3 [59] 91.2(91.2) 91.2 169700
DELPHI [60] 91.2(91.2) 91.2 120600
TOPAZ [68] 59.0− 60.0(59.5) 59.5 540
TOPAZ [68] 52.0− 55.0(53.3) 53.3 745
TASSO [65] 38.4− 46.8(43.5) 43.5 6434
TASSO [65] 32.0− 35.2(34.0) 34.0 52118
PLUTO [67] 34.6(34.6) 34.0 6964
JADE [62] 29.0− 36.0(34.0) 34.0 12719

CELLO [66] 34.0(34.0) 34.0 2600
MARKII [64] 29.0(29.0) 29.0 5024
MARKII [64] 29.0(29.0) 29.0 13829

MAC [63] 29.0(29.0) 29.0 65000
TASSO [65] 21.0− 23.0(22.0) 22.0 1913
JADE [62] 22.0(22.0) 22.0 1399

CELLO [66] 22.0(22.0) 22.0 2000
TASSO [65] 12.4− 14.4(14.0) 14.0 2704
JADE [62] 14.0(14.0) 14.0 2112

Table 6.1: Data used in the extraction procedure. The average of
√
s (used for MC

generation) is given in the brackets.

In this analysis, non-perturbative effects in e+e− → hadrons process were mod-
elled by using state-of-the-art particle-level Monte Carlo (MC) generators. The non-
perturbative corrections of EEC were extracted as ratios of EEC distributions at
hadron and parton level in the simulated samples. To tame statistical fluctuations,
hadronization corrections were parametrized by smooth functions that are valid only
in the fit range. These corrections were then applied as multiplicative factors to the
perturbative prediction. In this study the Monte Carlo generators SHERPA2.2.4 [69]
and Herwig7.1.1 [70] were utilized. For information on generator settings used in
our study, see [71].

In order to test the hadronization model dependence, the events generated with
SHERPA2.2.4 were hadronized using the Lund string model [72] and the cluster model
[73]. Results obtained with the two setups are labelled SL and SC respectively. For
the cross-check of SHERPA2.2.4 samples, the Herwig7.1.1 generator was used with
the default implementation of the cluster model. This setup is labelled HM .
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Predictions obtained with each setup describe the data well for all ranges of χ
with the exception of regions near χ = 0◦ and χ = 180◦, for all

√
s energy scales.

For
√
s < 29 GeV the HM setup is sensitive to the value of b-quark mass and the

corresponding predictions are not reliable.

Since the SHERPA2.2.4 setups give the most stable and physically reliable pre-
dictions, they were used in the analysis for reference hadronization corrections (SL)
and systematic studies (SC). Samples of the corresponding non-perturbative correc-
tions together with parametrizations are shown in Fig. 6.1. As expected, the size of
hadronization correcitons decreases as Q increases.
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Figure 6.1: Hadronization corrections obtained with different setups of Monte Carlo
event simulations and corresponding parametrizations. The used fit range is indicated
with a thick line.

Furthermore, the analytic DMW model presented in Chapter 5 was also imple-
mented in this analysis as a cross-check.



56 CHAPTER 6. PRECISE DETERMINATION OF αS(MZ) FROM EEC

6.2 Finite b-quark mass corrections

The perturbative description presented in Chapter 5 assumes that all quark masses
are negligible. However, as we have included experimental data with energy scales as
low as

√
s = 14 GeV this assumption is no longer fully justified as the mass of the

b-quark can no longer be neglected. Mass effects were included directly at the level
of matched distributions

1

σt

dΣ(χ,Q)

d cosχ
= (1− rb(Q))

1

σt

[
dΣ(χ,Q)

d cosχ

]
massless

+ rb(Q)
1

σt

[
dΣ(χ,Q)

d cosχ

]NNLO∗
massive

, (6.1)

where the first term on the right hand side is the NNLO+NNLL matched distribu-
tion computed in massless pQCD with the log-R scheme and the second term is the
massive fixed-order prediction. Since the full NNLO correction to this distribution
was unknown at the time this dissertation was written, we modelled it by combining
the massive NLO prediction of the parton-level Monte Carlo generator Zbb4 [74] with
the NNLO contribution of the massless distribution.

The fraction of b-quark event that appears in Eq. (6.4) is defined as the ratio of
the total b-quark production cross section to the total hadronic cross section, both
computed in the framework of massive QCD, to NNLO with exact mass depedence
at O(αS) and to leading order in m2

b/Q
2 at O(α2

S) [75]

rb(Q) =
σmassive(e

+e− → bb̄)

σmassive(e+e− → hadrons)
. (6.2)

Distributions for the massive differential cross section were generated at every con-
sidered energy scale with a pole b-quark mass of mb = 4.75 GeV, which is consistent
with the world average estimations of pole mass 4.78± 0.06 GeV [58].

In order to estimate the uncertainty of the b-quark mass corrections, we have
investigated two alterntive approaches for including them in our calculations. In
approach A Eq. (6.4) is modified as

1

σt

dΣ(χ,Q)

d cosχ
=

1

σt

[
dΣ(χ,Q)

d cosχ

]
massless

+ rb(Q)
1

σt

[
dΣ(χ,Q)

d cosχ

]NLO∗
massive

− rb(Q)
1

σt

[
dΣ(χ,Q)

d cosχ

]NLO∗
massless

, (6.3)

where we just subtract the massless fixed-order NLO prediction weighted by rb(Q)
and add the corresponding massive NLO distribution. In approach B we consider
mass effects similarly to Eq. (6.4) but we do not include any NNLO corrections to
the massive distribution,

1

σt

dΣ(χ,Q)

d cosχ
= (1− rb(Q))

1

σt

[
dΣ(χ,Q)

d cosχ

]
massless

+ rb(Q)
1

σt

[
dΣ(χ,Q)

d cosχ

]NLO
massive

. (6.4)
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6.3 Fit procedure and estimation of uncertainties

In order to obtain an αS(MZ) value that best describes the experimental data con-
sidered, the MINUIT2 program was used to minimize

χ2(αS) =
∑

data sets

χ2(αS)data set (6.5)

with the χ2(αS) values calculated for each data set as

χ2(αS) = ( ~D − ~P (αS))V −1( ~D − ~P (αS))T , (6.6)

where ~D stands for the vector of data points, ~P (αS) for the vector of calculated
predictions and V for the covariance matrix. The default scale was set to µ = Q.
The measurements in the original publications were provided without correlations.
The correlation matrix was estimated from the Monte-Carlo-simulated samples and
together with the statistical uncertainties it was used to build the statistical covari-
ance matrix. The systematic covariance matrix was constructed from the systematic
uncertainties provided in the original publications with the assumption that these
are correlated with correlation coefficient 0.5 between closest points. The covariance
matrix used in the fit for every data set was the sum of the statistical and systematic
covariance matrices.

Fits were performed in the ranges 117◦− 165◦, 60◦− 165◦and 60◦− 160◦that were
chosen such as to avoid regions where either the perturbative calculations break down
or non-perturbative corrections become unreliable. The fit uncertainty was computed
according to the χ2+1 criterion as it was implemented in MINUIT2. Fit results for each
range are presented in Tab. 6.2 for both NLO+NNLL and NNLO+NNLL perturbative
predictions with the aim of estimating the effect of the NNLO correction. The value
of the reduced χ2 indicates an overall better fit quality for the NNLO+NNLL and
the predictions also show an increased stability to the variation of the fit range in the
case of SL, SC and HM but not for the DMW analytic hadronization model.

The uncertainty of the fit results was estimated by considering the effect of neglect-
ing higher-order terms in the perturbative expansion, the bias of hadronization model
selection and the uncertainty of the fit procedure. Since the perturbative results were
obtained by combining fixed-order and resummed predictions, the estimation of their
uncertainties was two-fold. The effect of missing higher-order contributions on the
NNLO+NNLL distribution was assessed by repeating the fits at different renormal-
ization and resummation scales, separately varying them in the ranges xR ∈ [1/2, 2]
and xL ∈ [1/2, 2] respectively.

Furthermore, to estimate the bias arising from the ambiguity of the prescription
for implementing the unitarity constraint in the resummed calculation, fits were per-
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Fit range, NLO+NNLL NNLO+NNLL
Hadronization χ2/d.o.f. χ2/d.o.f.

117◦ − 165◦ 0.12042± 0.00025 0.11760± 0.00020
SL 765.39/298 = 2.57 513.39/298 = 1.72

60◦ − 165◦ 0.12134± 0.00023 0.11746± 0.00018
SL 1720.22/664 = 2.59 1211.37/664 = 1.82

60◦ − 160◦ 0.12200± 0.00023 0.11750± 0.00018
SL 1417.21/623 = 2.27 1021.80/623 = 1.64

117◦ − 165◦ 0.11796± 0.00022 0.11521± 0.00017
SC 630.96/298 = 2.12 394.75/298 = 1.32

60◦ − 165◦ 0.11900± 0.00021 0.11530± 0.00015
SC 1556.64/664 = 2.34 950.54/664 = 1.43

60◦ − 160◦ 0.11973± 0.00022 0.11545± 0.00016
SC 1320.86/623 = 2.12 844.94/623 = 1.36

117◦ − 165◦ 0.11272± 0.00037 0.11044± 0.00029
HM 1841.85/298 = 6.18 1201.25/298 = 4.03

60◦ − 165◦ 0.11472± 0.00033 0.11180± 0.00023
HM 3845.09/664 = 5.79 2203.31/664 = 3.32

60◦ − 160◦ 0.11634± 0.00033 0.11281± 0.00023
HM 3091.25/623 = 4.96 1738.38/623 = 2.79

117◦ − 165◦ 0.12154± 0.00045 0.11781± 0.00034
An.DMW 730.15/295 = 2.48 557.60/295 = 1.89

60◦ − 165◦ 0.13555± 0.00053 0.12937± 0.00041
An.DMW 7525.37/661 = 11.38 4896.26/661 = 7.41

60◦ − 160◦ 0.13933± 0.00017 0.12950± 0.00043
An.DMW 5325.52/620 = 8.59 4826.57/620 = 7.78

Table 6.2: Fit results for the matched predictions at NLO+NNLL and NNLO+NNLL
accuracy. The given uncertainty is the fit uncertainty scaled by

√
χ2/d.o.f., where

d.o.f. stands for degrees of freedom obtained as #(data points)−#(parameters)− 1.
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Figure 6.2: Fits of theoretical predictions to data at different center-of-mass energies.
The used fit range is indicated on each plot.
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formed at p = 1 and p = 2. (See Eq. (5.39).) The difference of the obtained results
is miniscule and as such it was neglected in the estimation of the total uncertainty.

In order to estimate the uncertainty caused by neglecting the b-quark mass, fits
were performed using the default massless setup along with the massive setup and
approaches A and B as discussed in Section 6.2.

In all cases detailed above, the numerical value of the uncertainties was computed
as half of the difference between the maximal and minimal αS value obtained in the
corresponding set of fits. The bias caused by the choice of hadronization model and
parton shower model was assessed by performing fits using all previously described
setups. The numerical value of the uncertainty was computed as half of the difference
between the αS values obtained using non-perturbative corrections from Lund and
cluster hadronization models implemented in SHERPA2.2.4. The size of the biases
discussed here is shown on Fig. 6.3. Since the estimated uncertainties are mostly
independent they are combined as a sum of quadratures in the final result.

Besides the estimation of uncertainties, we performed several cross checks on the
results. The data sets were sorted according to energy and were fitted separately
at each energy scale. The obtained αS(MZ) values are shown on Fig. 6.4. The fit
results do not show any visible trend in the case of SL and SC . For HM the results
are unreliable below 29 GeV which is caused by the sensitivity of the setup to the b
quark mass.

Additionally, the extraction of αS(MZ) was also performed using the DMW ana-
lytic hadronization model instead of the Monte Carlo setups. The parameters a1 and
a2 that appear in Eq. 5.41 can be related to certain moments ᾱp,q of the coupling
αS [48]. These moments are the fit parameters of the analytic hadronization model in
our second analysis. The results obtained with this setup show a strong dependence
on the selected fit range, however, the extracted value of αS(MZ) is close to the ones
obtained using the Monte Carlo setups in the fit range 117◦ − 165◦. This suggests
that the analytic model cannot fully describe non-perturbative effects away from the
back-to-back region.

6.4 Phenomenological results

In Ref. [71] we presented the first combined analysis and extraction of the strong
coupling αS at NNLO+NNLL accuracy from energy-energy correlation in electron-
positron annihilation using Monte Carlo generators for estimating non-perturbative
effects. Furthermore, ours is the first extraction of the strong coupling based on
Monte Carlo hadronization corrections obtained from NLO Monte Carlo setups at
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Figure 6.4: Dependence of the fit results on the used data sets. The fit range for
every shown setup is 60◦ − 160◦

NNLO+NNLL precision. For the central value of the final result I quote the results
obtained with the SL hadronization model in the fit range 60◦ − 160◦.

A global fit at NNLO+NNLL accuracy yielded the best fit value of

αS(MZ) = 0.11750± 0.00018(exp.)± 0.00102(hadr.)± 0.00257(ren.)± 0.00078(res.).
(6.7)

In order to assess the effect of the NNLO correction on the extracted value of the
strong coupling I also quote the fit result obtained with NLO+NNLL precision,

αS(MZ) = 0.12200± 0.00023(exp.)± 0.00113(hadr.)± 0.00433(ren.)± 0.00293(res.).
(6.8)

There are no correlations between the estimated biases, therefore, we can combine
the uncertainties in quadrature. Thus for the NNLO+NNLL we get,

αS(MZ) = 0.11750± 0.00287, (6.9)

while the combined value of the result of the NLO+NNLL precision fit is

αS(MZ) = 0.12200± 0.00535. (6.10)

The effect of the NNLO correction on the central value is moderate but not neg-
ligible, hwever, the overall uncertainty decreased roughly by a factor of two. This
improvement of precision comes from the decrease in the perturbative uncertainties,
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which is roughly a factor of two for renormalization scale variation and a factor of
three for resummation scale variation. However, the total estimated bias is still dom-
inated by the perturbative uncertainties. The value produced by the analysis using
NNLO+NNLL calculations is in agreement with the 2017 world average of αS(MZ) =
0.1181± 0.0011 [6,58] and the current world average αS(MZ) = 0.1179± 0.0010 [1,2]
as well.
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Chapter 7

Extraction of αS(MZ) from jet rates

Jet rates are known to be less affected by hadronization than event shapes [76], hence
they allow for a more precise determination of the strong coupling. In addition, fully
differential predictions for three-jet production in e+e− annihilation are available at
NNLO accuracy and using the predictions for the three-jet rate at NNLO and the
total cross section at N3LO, the two-jet rate can be obtained at N3LO accuracy.

The fixed-order calculations for jet rates break down in those parts of the phase
space which are dominated by soft and collinear QCD radiation. In these regions
the resolution parameter ycut (defined in the following section) approaches 0 and the
perturbative prediction contains logarithmic divergences in the form of αnS lnm ycut

where m ≤ 2n. Once again, resummation of such logarithmic divergences is required
to obtain physical predictions that are also valid for small values of ycut. Resummation
for two-jet rate is known up to NNLL accuracy.

In this chapter I present the extraction of αS(MZ) from two-jet rate at N3LO+NNLL
accuracy. Hadronization corrections were modelled once again using Monte Carlo
event generators.

7.1 Definition of the observable

In order to classify final-state events according to jet multiplicities we need to use
a so-called jet finding algorithm. In this work we used the Durham clustering algo-
rithm [77], which sequentially combines final-state momenta. The algorithm assigns
a distance in phase space to every (ij) pair of momenta according to the formula

yij = 2
min(E2

i , E
2
j )

E2
vis

(1− cos θij), (7.1)

65
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where θij is the angle between the spatial components of the corresponding momenta
and Evis is the visible energy in the event. If the smallest of these yij distances
ymin is below a predefined limit ycut, the corresponding pair is combined into a single
momentum. We adopted the E-scheme [77], which means that the momenta are
combined by simple addition. The algorithm proceeds with the combination until all
remaining distances become larger than ycut.

The n-jet rate is then defined as

Rn(ycut) =
σn-jet(ycut)

σt
, (7.2)

with σn-jet(ycut) being the cross section for n-jet production in hadronic final states
obtained using Durham clustering and σt is the total hadronic cross section. It is
easy to see from Eq. (7.2) that ∑

n

Rn = 1. (7.3)

Fig. 7.1 shows n-jet rates for n = 1, 2, 3, 4, 5 and n ≥ 6 as functions of ycut
measured by the ALEPH Collaboration [78]. For large values of ycut, the two-jet rate
dominates but as we decrease the resolution parameter, hadrons will be clustered into
more jets, making three-, four- and eventually five-jet rates more significant. At the
finest resolution, the n-jet rate for n ≥ 6 becomes dominant.

n-
je

t f
ra

ct
io

n

ALEPH  Ecm = 206 GeV

PYTHIA6.1

HERWIG6.1

ARIADNE4.1
1-jet

2-jet

3-jet

4-jet

5-jet

+6-jet

log10(ycut)

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0

Figure 7.1: Jet rates measured by the ALEPH Collaboration [78] and the prediction
of Monte Carlo models.
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7.2 Perturbative calculations

Fixed-order predictions for jet rates were obtained, once again, using the CoLoR-
FulNNLO method. The expansion of the n-jet rate Rn in αS as a function of ycut at
the default scale Q is

Rn(ycut) = δ2,n+
αS(Q)

2π
An(ycut)+

(
αS(Q)

2π

)2

Bn(ycut)+

(
αS(Q)

2π

)3

Cn(ycut)+O(α4
S),

(7.4)
where A, B and C are the perturbative coefficients. For massless quarks, these
coefficients are independent of Q. The renormalization scale dependence of the fixed-
order distribution can be restored using the renormalization group equation for αS
(see Eq. (2.9)) and we find

Rn(ycut, µR) =δ2,n +
αS(µR)

2π
An(ycut, xR) +

(
αS(µR)

2π

)2

Bn(ycut, xR)

+

(
αS(Q)

2π

)3

Cn(ycut, xR) +O(α4
S), (7.5)

where

An(ycut, xR) =An(ycut),

Bn(ycut, xR) =Bn(ycut) +
1

2
β0 ln(x2

R)An(ycut),

Cn(ycut, xR) =Cn(ycut) + β0 ln(x2
R)Bn(ycut) +

(
1

4
β1 ln(x2

R) +
1

4
β2

0 ln2(x2
R)

)
An(ycut).

(7.6)

Fixed-order predictions of n-jet rates for n = 2, 3, 4, 5 can be seen in Fig. 7.2 along
with renormalization scale variation in the range of xR ∈ [1/2, 2].

For the two-jet rate R2 resummation was performed with the ARES program [79]
and the matching to the fixed-order prediction was done according to the log-R scheme
[80]. The resummation technique used here was formulated in [36,79,81].

The resummation of the three-jet rate R3 is much more involved than in the two-jet
case due to the extra number of emitting particles. Accordingly, the state-of-the-art
resummed predictions have a much lower logarithmic accuracy. While R3 is more
sensitive to αS than R2, the low precision cannot provide a good theoretical control
in the region where the logarithms of the resolution parameter y become large. Thus,
for this analysis, resummation was not performed for R3 and the fit was limited to a
range where the fixed-order result is reliable.
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Figure 7.2: Fixed-order calculations for two-, three-, four- and five-jet rates compared
to ALEPH data [78]. The bands were obtained by varying the renormalization scale
xR between 1/2 and 2.

The perturbative prediction described in this section was complemented with b-
quark mass corrections. Mass effects were included according to the formule,

R2(ycut) = (1− rb(Q))RN3LO+NNLL
2 (ycut)massless + rb(Q)RNNLO

2 (ycut)massive,

R3(ycut) = (1− rb(Q))RNNLO+NNLL
3 (ycut)massless + rb(Q)RNLO

3 (ycut)massive. (7.7)

The massive contributions were obtained by combining the total cross section at
NNLO including mass corrections as obtained from Ref. [75] and the O(α2

S) three-
and four-jet rate predictions as computed with the Zbb4 program.

The fraction of b-quark events rb(Q) was computed as it is described by Eq. (6.2)
in Chapter 6. For the b-quark mass we used mb = 4.78 GeV which is consistent with
the corresponding world average [1].

7.3 Hadronization corrections and extraction of αS

In order to extract the value of the strong coupling the complete perturbative predic-
tions described in the previous sections were compared to experimental data, taking
non-perturbative effects into account using Monte Carlo models. Information on the
data sets selected for extraction is summarized in Tab. 7.1.

Similarly to the analysis performed on energy-energy correlation, non-perturbative
effects were modelled by state-of-the-art particle-level Monte Carlo event genera-
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Data MC
Experiment

√
s,

√
s, Events

GeV GeV

OPAL [82] 91.2(91.2) 91.2 1508031
OPAL [82] 189.0(189.0) 189 3300
OPAL [82] 183.0(183.0) 183 1082
OPAL [82] 172.0(172.0) 172 224
OPAL [82] 161.0(161.0) 161 281
OPAL [82] 130.0− 136.0(133.0) 133 630

L3 [83] 201.5− 209.1(206.2) 206 4146
L3 [83] 199.2− 203.8(200.2) 200 2456
L3 [83] 191.4− 196.0(194.4) 194 2403
L3 [83] 188.4− 189.9(188.6) 189 4479
L3 [83] 180.8− 184.2(182.8) 183 1500
L3 [83] 161.2− 164.7(161.3) 161 424
L3 [83] 135.9− 140.1(136.1) 136 414
L3 [83] 129.9− 130.4(130.1) 130 556

JADE [82] 43.4− 44.3(43.7) 44 4110
JADE [82] 34.5− 35.5(34.9) 35 29514

ALEPH [78] 91.2(91.2) 91.2 3600000
ALEPH [78] 206.0(206.0) 206 3578
ALEPH [78] 189.0(189.0) 189 3578
ALEPH [78] 183.0(183.0) 183 1319
ALEPH [78] 172.0(172.0) 172 257
ALEPH [78] 161.0(161.0) 161 319
ALEPH [78] 133.0(133.0) 133 806

Table 7.1: Data used for the extraction of αS from jet rates. The ranges of collision
energies, their weighted average value (in brackets) and the number of events for each
experiment are given as quoted in the original publications.
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tors. As before, the hadronization corrections were estimated by comparing jet rate
distributions at parton and hadron level in the simulated samples. We used the
Herwig7.1.4 event generator [70] to obtain our final results and the Sherpa2.2.6 [69]
event generator for cross-checks. In order to test hadronization model dependence,
the events generated by Herwig7.1.4 were hadronized using either the cluster model
or the Lund string model. These setups are denoted by HC and HL respectively.

Monte Carlo generators have already been used to take hadronization effects into
account in previous analyses of e+e− annihilation [71, 84]. Typically, hadron-level
predictions were obtained by multiplying perturbative calculations by factors derived
from the analysis of Monte-Carlo-generated samples described previously in Chapter
6. In this analysis, this procedure was modified to take into account constraints on
Rn, specificaly that jet rates are positive and their sum is unity. These constraints
were implemented by the introduction of variables ξ1 and ξ2 such that at parton level

R
(p)
2 = cos2 ξ1, R

(p)
3 = sin2 ξ1 cos2 ξ2, R

(p)
≥4 = sin2 ξ1 sin2 ξ2 (7.8)

which satisfies the constraint

R
(p)
2 +R

(p)
3 +R

(p)
≥4 = 1. (7.9)

The corresponding relations at hadron level are

R
(h)
2 = cos2(ξ1 + δξ1), R

(h)
3 = sin2(ξ1 + δξ1) cos2(ξ2 + δξ2),

R
(h)
≥4 = sin2(ξ1 + δξ1) sin2(ξ2 + δξ2). (7.10)

The functions δξ1(y) and δξ2(y) account for non-perturbative effects and were ob-
tained numerically using the Monte-Carlo-simulated samples. For a given y bin ξ1(y)
and ξ2(y) were extracted from the parton-level two-jet and three-jet rates and the
shifts δξ1(y) and δξ2(y) were obtained the same way from the hadron-level results.
Samples of the obtained hadronization corrections are shown in Fig. 7.3. Plots show-
ing the distributions of δξ1 and δξ2 that were used to produce hadronization correc-
tions according to Eqs. (7.8) and (7.10) can be found in Appendix B. We observed
that hadronization corrections increase at small values of the two- and three-jet rates,
as expected, and the corrections become less significant at higher center-of-mass en-
ergies.

7.4 Phenomenological results

In Ref. [85] we presented the extraction of αS from jet rates. Our primary result is
based on the N3LO+NNLL accurate predictions for two-jet rate. To find the optimal
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Figure 7.3: Hadronization corrections for R2 and R3 obtained with different Monte
Carlo event simulations. The used fit range is indicated with vertical lines.
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value of αS(MZ), we performed a fit based on the χ2 method as described in section
6.3, using the MINUIT2 program.

In order to assure that the implementation of hadronization corrections satisfies
the constraint in Eq. (7.9) we set the upper bound of the fit range below the kinemat-
ical limit for four-jet production log10(y) = log10(1/6) ≈ −0.8. Therefore, we chose
log10(y) = −1 as the upper bound. Moreover, we adapt the lower bound to the center-
of-mass energy in order to take into account that hadronization corrections become
more prominent at low energies. Accordingly, we fix the lower bound log10(ymin(Q))
of the fit range as log10(ymin(Q)) = log10(ymin(MZ)) + L with L = log10(M2

Z/Q
2).

The results of the fit at N3LO and N3LO+NNLL are shown in Tab. 7.2 with
different hadronization schemes. As our reference fit we chose the result obtained
with the HL hadronization model in the range [−2.25 + L,−1],

αS(MZ) = 0.11881± 0.00063(exp.)± 0.00101(hadr.)± 0.00045(ren.)± 0.00034(res.) .
(7.11)

Comparison of data at different energies with theoretical predictions using αS(MZ)
obtained from our global fit as written in Eq. (7.11) is shown in Fig. 7.5.

Uncertainties were estimated similarly to the case of the analysis based on energy-
energy correlation; they come from the χ2+1 criterion as computed by MINUIT2 (exp.),
variation of renormalization scale (ren.), variation of resummation scale (res.) and
choice of hadronization model (hadr.). The bias due to the choice of hadronization
model is analysed based on the difference between the HL and HC setups. The depen-
dence of the fit results on the renormalization and resummation scales for the various
Monte Carlo setups is shown in Fig. 7.4. In particular, the systematic uncertainty
was computed as half of the difference between the αS(MZ) results obtained with the
HL and HC setups.

The value of αS(MZ) extracted using N3LO+NNLL predictions for R2 with com-
bined uncertainties is

αS(MZ) = 0.11881± 0.00131 (7.12)

which is in agreement with the world average as of 2019 (αS(MZ) = 0.1179± 0.0010
[1,2]), although it is noticeably lower than the results from other measurements per-
formed for e+e− observables using NNLO fixed-order calculations and Monte Carlo
hadronization models. The uncertainties are approximately of the same sizes.
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Fit ranges, log10(y) N3LO N3LO+NNLL
Hadronization χ2/d.o.f. χ2/d.o.f.

[−1.75 + L,−1] 0.12121± 0.00095 0.11849± 0.00092
SC 20/86 = 0.24 20/86 = 0.24

[−2 + L,−1] 0.12114± 0.00081 0.11864± 0.00075
SC 26/100 = 0.26 26/100 = 0.26

[−2.25 + L,−1] 0.12119± 0.00060 0.11916± 0.00063
SC 44/150 = 0.29 44/150 = 0.29

[−2.5 + L,−1] 0.12217± 0.00052 0.12075± 0.00055
SC 89/180 = 0.50 107/180 = 0.59

[−1.75 + L,−1] 0.11957± 0.00098 0.11698± 0.00093
HC 22/86 = 0.26 22/86 = 0.25

[−2 + L,−1] 0.11923± 0.00079 0.11687± 0.00076
HC 29/100 = 0.29 28/100 = 0.28

[−2.25 + L,−1] 0.11868± 0.00068 0.11679± 0.00064
HC 43/150 = 0.28 40/150 = 0.27

[−2.5 + L,−1] 0.11849± 0.00050 0.11723± 0.00053
HC 58/180 = 0.32 58/180 = 0.32

[−1.75 + L,−1] 0.12171± 0.00109 0.11897± 0.00092
HL 21/86 = 0.25 21/86 = 0.24

[−2 + L,−1] 0.12144± 0.00078 0.11893± 0.00075
HL 28/100 = 0.28 26/100 = 0.26

[−2.25 + L,−1] 0.12080± 0.00069 0.11881± 0.00063
HL 43/150 = 0.28 39/150 = 0.26

[−2.5 + L,−1] 0.12024± 0.00051 0.11897± 0.00053
HL 57/180 = 0.32 52/180 = 0.29

Table 7.2: Fit of αs(MZ) from experimental data for R2 obtained using N3LO and
N3LO+NNLL predictions, three different hadronization models and four different
choices of the fit range, as given in the brackets, with L = log10(M2

Z/Q
2). The

reported uncertainty is the fit uncertainty as given by MINUIT2. Once again, d.o.f.
stands for degrees of freedom obtained as #(data points)−#(parameters)− 1.
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Figure 7.5: Comparison of data and perturbative predictions supplemented by
hadronization corrections in the HL model using for the strong coupling the value
obtained from our global fit, eq. (7.11).
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Part III

Subtractions with hadronic initial
states

77





Chapter 8

Extending the CoLoRFulNNLO
scheme

In the following sections, the extension of the CoLoRFulNNLO subtraciton scheme
will be presented on the example of the double real contribution of the Drell-Yan
process, that is, vector boson production in proton-proton collisions. I define the nec-
essary counterterms with suitable parametrization to cancel all kinematic singularities
of the n+2-particle squared matrix element and show that the regularized expression
is free of non-integrable divergences. I also briefly discuss the analytic integration of
the obtained counterterms which is needed to regularize the loop corrections.

8.1 Structure of the regularized double real emis-

sions

The construction of subtractions follows along the lines of Section 3.3 with the defini-
tions of the approximate cross sections in Eqs. (3.36), (3.38) and (3.39) left unchanged.
The definition of operators A1, A2 and A12, however, need to be extended to take into
account the singularities related to partons emitted by the colored initial-state par-
ticles. Furthermore, the NNLO correction contains additional singular terms dσC1

n+1

and dσC2
n that are needed for pdf renormalization, see Eq. 3.1. With this modification

the NNLO cross section becomes

σNNLO[J ] =

∫
n+2

dσRRn+2Jn+2 +

∫
n+1

dσRVn+1Jn+1 +

∫
n

dσV Vn Jn

+

∫
n+1

dσC1
n+1Jn+1 +

∫
n

dσC2
n Jn. (8.1)
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This expression must be rearranged following the method outlined in Section 3.3 and
it will be cast in the form

σNNLO[J ] =

∫
n+2

dσNNLOn+2 +

∫
n+1

dσNNLOn+1 +

∫
n

dσNNLOn , (8.2)

where

dσNNLOn+2 =

{
dσRRn+2Jn+2 − dσRR,A2

n+2 Jn −
[
dσRR,A1

n+2 Jn+1 − dσRR,A12

n+2 Jn

]}
D=4

,

dσNNLOn+1 =

{[
dσRVn+1 + dσC1

n+1 +

∫
1

dσRR,A1

n+2

]
Jn+1

−
[
dσRV,A1

n+1 + dσC1,A1

n+1 +

(∫
1

dσRR,A1

n+2

)A1
]
Jn

}
D=4

,

dσNNLOn =

{
dσV Vn + dσC2

n +

∫
2

[
dσRR,A2

n+2 − dσRR,A12

n+2

]
+

∫
1

[
dσRV,A1

n+1 + dσC1,A1

n+1 +

(
dσRR,A1

n+2

)A1
]}

D=4

Jn. (8.3)

In this part of the dissertation I focus on the double real contribution dσRRn+2 which
must be regularized by subtraction as shown in section 3.3. The approximate squared
matrix element defined in Eq. (3.38) is extended as

A1|M(0)
n+2|2 =

∑
r∈F

[
S(0)
r +

∑
i∈F

(
1

2
C(0),FF
ir −CFFir S(0)

r

)
+
∑
a∈I

(
C(0),IF
ar −CIFar S(0)

r

)]
. (8.4)

We have modified the notation that was used previously in order to clarify whether
an index stands for an initial- (I) or a final-state (F ) parton. In the case of soft
counterterms such indices are not added since only final-state partons can become
soft.

The approximate squared matrix element in Eq. (3.36) is extended as

A2|M(0)
n+2|2 =

∑
r∈F

∑
s∈F
r 6=s

{
1

2
S(0)
rs

+
∑
i∈F
i 6=r,s

[
1

6
C(0),FFF
irs +

1

2
CS(0),FF

ir,s − 1

2
CFFFirs CS(0),FF

ir,s − 1

2
CFFFirs S(0)

rs − CSFFir,sS(0)
rs
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+ CFFFirs CSFFir,sS(0)
rs +

∑
j∈F
j 6=i,r,s

(
1

8
C(0),FF,FF
ir,js − 1

2
CFF,FFir,js CS(0),FF

ir,s +
1

2
CFF,FFir,js S(0)

rs

)]

+
∑
a∈I

[
1

2
C(0),IFF
ars + CS(0),IF

ar,s − CIFFars CS(0),IF
ar,s − 1

2
CIFFars S(0)

rs − CSIFar,sS(0)
rs

+ CIFFars CSIFar,sS(0)
rs

+
∑
j∈F
j 6=r,s

(
1

2
C(0),IF,FF
ar,js − 1

2
CIF,FFar,js CS(0),FF

js,r − 1

2
CIF,FFar,js CS(0),FF

js,r + CIF,FFar,js S(0)
rs

)

+
∑
b∈I
b6=a

(
1

2
C(0),IF,IF
ar,bs − CIF,IFar,bs CS(0),IF

ar,s +
1

2
CIF,IFar,bs S(0)

rs

)]}
. (8.5)

The formula above was obtained by utilizing the fact that for any combination of
initial- or final-state particles n and m,

Cnr,msCSnr,sSrs = Cnr,msSrs. (8.6)

Finally, the term in Eq. (3.39) necessary for avoiding double subtraction becomes

A12|M(0)
n+2|2 =

∑
t∈F

[
StA2|M(0)

n+2|2 +
∑
k∈F
k 6=t

(
1

2
CktA2|M(0)

n+2|2 − CktStA2|M(0)
n+2|2

)

+
∑
a∈I

(
CatA2|M(0)

n+2|2 − CatStA2|M(0)
n+2|2

)]
, (8.7)

where each element represents a sum of several terms.

8.2 Constructing the counterterms

I will illustrate the concepts behind the construction of the subtraction terms on the
example of the single collinear C(0),FF

ir and C(0),IF
ar counterterms entering dσRR,A1

n+2 . The
final-state single collinear subtraction term for massless final-state partons i and r is

C(0),FF
ir ({p}n+2) =8παSµ

2ε
R

1

sir

× 〈M(0)
n+1({p̂}n+1; p̂(ab))|P̂ (0)

fi fr
(zi,r, zr,i, k⊥;ir)|M(0)

n+1({p̂}n+1; p̂(ab))〉,
(8.8)
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where sir = 2pi ·pr. In the case of massless partons, this Lorentz-invariant quantity is
just the squared sum of momenta, sir = (pi + pr)

2. The {p̂}n+1 set of momenta that
appear in the factorized matrix elements is constructed from the original {p}n+2 set
using the following phase space mapping

p̂µa = (1− αir)pµa ,
p̂µb = (1− αir)pµb ,
p̂µir = (pµi + pµr )− αir(pµa + pµb ),

p̂µk = pµk , k 6= i, r. (8.9)

The value of αir is fixed by requiring the so-called parent momentum p̂µir to be mass-
less, p̂2

ir = 0 and we get

αir =
1

2

s(ir)(ab)

sab
−
√
s2

(ir)(ab)

s2
ab

− 4sir
sab

 , (8.10)

where s(ir)(ab) = 2(pi + pr) · (pa + pb).

The momenta of the daughter partons in the (ir)→ i+r splitting can be expressed
as

pµi = zi,rp̂
µ
ir + kµ⊥,ir −

k2
⊥,ir
zi,r

nµ

2p̂ir · n
, pµr = zr,ip̂

µ
ir − kµ⊥,ir −

k2
⊥,ir
zr,i

nµ

2p̂ir · n
, (8.11)

which is called the Sudakov parametrization. The momentum p̂µir defines the collinear
direction and the transverse momentum kµ⊥,ir is perpendicular to it and the gauge
vector nµ

k⊥,ir · p̂ir = k⊥,ir · n = 0. (8.12)

The zi,r and zr,i coefficients are called momentum fractions and they satisfy the con-
straint

zi,r + zr,i = 1 (8.13)

In the collinear limit kµ⊥,ir → 0 while

pµi → zi,rp̂
µ
ir, pµr → zr,ip̂

µ
ir, and sir = −

k2
⊥,ir

zi,rzr,i
, (8.14)

but the explicit form of the transverse momentum and the momentum fractions is
otherwise left unspecified by the requirement of cancellation of single collinear di-
vergences. In order to construct a self-consistent subtraction scheme, however, the
counterterms must be defined throughout the entire phase space and not just in the
unresolved limit. In the CoLoRFulNNLO scheme, the momentum fractions are

zi,r =
si(ab)
s(ir)(ab)

, zr,i =
sr(ab)
s(ir)(ab)

, (8.15)
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where si(ab) = 2pi · (pa + pb), sr(ab) = 2pr · (pa + pb), and the transverse momentum is
defined as

kµ⊥;ir = ζi,rp
µ
r − ζr,ipµi + Zirp̂

µ
ir, (8.16)

where the newly introduced quantities are

ζi,r = zi,r−
sir

αir s(ir)(ab)

, ζr,i = zr,i−
sir

αir s(ir)(ab)

, Zir =
sir

αir sîr(ab)
(zr,i− zi,r). (8.17)

The object P̂
(0)
fi fr

(zi,r, zr,i, k⊥;ir) is a so-called Altarelli-Parisi splitting function
which is an operator defined on the vectorspace of the spin states of the parent
parton in the (ir) → i + r splitting. The lower indices fi and fr denote the flavors
of the daughter partons, so fi/r = q, q̄, g. The function itself is parametrized by the
transverse momentum k⊥;ir and the momentum fractions zi,r and zr,i which satisfy
the constaint Eq. (8.13). Hence, the Altarelli-Parisi functions depend only on one
momentum fraction,

P̂
(0)
fi fr

(zi,r, zr,i, k⊥) = P̂
(0)
fi fr

(zi,r, k⊥) (8.18)

In order to evaluate C(0),FF
ir in Eq. (8.8) we should compute the coefficients of the

abstract vector |M(0)
n+1({p̂}n+1; p̂(ab))〉 in a certain basis. Since the vector is defined on

the vectorspace of color and spin states, the basis of our choice (following Ref. [17])
consists of vectors of the form

|c1, . . . , cn+1〉 ⊗ |s1, . . . , sn+1〉, (8.19)

where |c1, . . . , cn+1〉 is a vector in the space of n+1 particle color states and |s1, . . . , sn+1〉
is a vector in the space of n+1 particle spin states. The final-state splitting functions
expressed in spinor basis for a quark parent and Lorentz basis for a gluon parent are

〈s|P̂ (0)
q g (z, k⊥)|s′〉 = CF

(
1 + z2

1− z − ε(1− z)

)
δss′ ,

〈s|P̂ (0)
g q (z, k⊥)|s′〉 = CF

(
1 + (1− z)2

z
− εz

)
δss′ ,

〈µ|P̂ (0)
q q̄ (z, k⊥)|ν〉 = TR

(
−gµν + 4z(1− z)

kµ⊥k
ν
⊥

k2
⊥

)
,

〈µ|P̂ (0)
g g (z, k⊥)|ν〉 = 2CA

[
−gµν

(
z

1− z +
1− z
z

)
− 2(1− ε)z(1− z)

kµ⊥k
ν
⊥

k2
⊥

]
. (8.20)

Once the final-state subtraction is specified, the initial-state subtraction can be
constructed as follows. The counterterm itself for an initial-state parton a and a
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final-state parton r becoming collinear is

C(0),IF
ar ({p}n+2) =8παSµ

2ε
R

1

xa,r

1

sar

× 〈M(0)
n+1({p̂}n+1; p̂(ab))|P̂ (0)

far fr
(xa,r, xr,a, k⊥;r)|M(0)

n+1({p̂}n+1; p̂(ab))〉.
(8.21)

The phase space mapping is defined as

p̂µa = ξap
µ
a ,

p̂µb = pµb ,

p̂µk = Λ(Q, Q̂)µνp
ν
k, k 6= r, (8.22)

where Λ(Q, Q̂) is a proper Lorentz transformation that takes the massive momentum
Qµ into a momentum Q̂µ of the same mass. We have

Qµ = pµa + pµb − pµr and Q̂µ = p̂µa + p̂µb = ξap
µ
a + pµb . (8.23)

The value of ξa can be obtained by requiring Q2 = Q̂2 and we get

ξa = 1− sr(ab)
sa(ab)

. (8.24)

The Altarelli-Parisi splitting function in Eq. (8.21) can be computed from the final-
state splitting function as

P̂
(0)
far fr

(xa,r, xr,a, k⊥) = (−1)F (fa)+F (far)+1xa,rP̂
(0)

fa f̄r
(1/xa,r,−xr,a/xa,r, k⊥), (8.25)

where F (q) = F (q̄) = 1, F (g) = 0. Once again, xa,r, xr,a, which must satisfy the
constraint xa,r+xr,a = 1, and k⊥,r must be specified in order to define the counterterm
over the entire phase space. In the CoLoRFulNNLO scheme we use

xa,r = ξa, xr,a = 1−ξa, kµ⊥,r = pµr−
(
sa(ab)

sab
− 2sar

sab

)
pµa−

sar
sab

(pµa+pµb ). (8.26)

By this definition the transverse momentum is the component of pr perpendicular
to pa and (pa + pb). Due to the contraint on xa,r and xr,a, the initial-state splitting
functions depend only on xa,r and the transverse momentum,

P̂
(0)
far fr

(xa,r, xr,a, k⊥) = P̂
(0)
far fr

(xa,r, k⊥) (8.27)

and their explicit forms are

〈s|P̂ (0)
q g (x, k⊥)|s′〉 = CF

(
1 + x2

1− x − ε(1− x)

)
δss′ ,

〈µ|P̂ (0)
g q (z, k⊥)|ν〉 = TR

(
−gµνx− 4

1− x
x

kµ⊥k
ν
⊥

k2
⊥

)
,

〈s|P̂ (0)
q g (x, k⊥)|s′〉 = CF (1− ε− 2x(1− x)) δss′ ,

〈µ|P̂ (0)
q q̄ (z, k⊥)|ν〉 = 2CA

[
−gµν

(
x(1− x) +

x

1− x

)
− 2(1− ε)1− x

x

kµ⊥k
ν
⊥

k2
⊥

]
. (8.28)
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Similarly to the demonstrated example, initially all counterterms are defined in
their appropriate limit and these definitions must be extended over the entirety of
the phase space in a way that they do not spoil the cancellation of singularities in
other limits. This requires a careful choice of definitions for various parameters such
as zs, xs and k⊥s, as well as the momentum mappings for all terms.

8.3 Checking the regularized double real emissions

After constructing all the necessary counterterms I implemented the subtraction
scheme on vector boson production in proton-proton collision which is the simplest
process with partons in the initial state that allows us to test almost all subtraction
terms. The subprocesses that contribute to the double real correction in case of W+

production are

u(p1) + d̄(p2)→ W+(p3) + q(p4) + q̄(p5)

u(p1) + d̄(p2)→ W+(p3) + g(p4) + g(p5)

u(p1) + g(p2)→ W+(p3) + d(p4) + g(p5)

d̄(p1) + g(p2)→ W+(p3) + ū(p4) + g(p5)

g(p1) + g(p2)→ W+(p3) + ū(p4) + d(p5),

where q stands for a light quark of arbitrary flavor, u refers to a quark of flavor u or
c and d denotes a quark of flavor d, s or b. The four-momentum of each particle is
shown in parentheses. The NNLO correciton for this process has three types of single
unresolved kinematical singularities:

� CFF
rs single collinear with two final-state partons r and s becoming collinear,

� CIF
ar single collinear with initial-state parton a and final-state parton s becoming

collinear,

� Sr single soft with final-state gluon r becoming soft,

and four types of double unresolved kinematical singularities:

� CIFF
ars triple collinear with initial-state parton a and final-state partons r and s

becoming collinear,

� CIF,IF
ar,bs double collinear with two pairs of initial- and final-state partons (ar)

and (bs) becoming collinear simultaneously,
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� CSIFar,s collinear-soft with initial-state parton a and final-state parton r becoming
collinear while final-state gluon s becomes soft,

� Srs double soft with final-state partons r and s (either two gluons or a quark
and antiquark of the same flavor) becoming soft simultaneously.

As a first test I checked if the subtraction successfully removes all non-integrable
singularities pointwise in phase space. To do so I computed the ratio of the regulator
and the unregularized squared matrix element,

R =
1

|M(0)

ud̄→W+gg
|2
[
A1|M(0)

ud̄→W+gg
|2 +A2|M(0)

ud̄→W+gg
|2 −A12|M(0)

ud̄→W+gg
|2
]

(8.29)

in a series of phase space points, approaching each limit separately. The control
parameter that measures the distance from an unresolved limit in phase space is
determined by the dimensionless variables yij = sij/sab. Checks for the ud̄→ W+gg
subprocess are shown on Figs. 8.1-8.7. The left-hand side on every pair of figures
shows the ratio of the subtraction term appropriate to each limit to the squared
matrix element. On the right-hand side we can see |1 − R|, which goes to zero in
each limit since the regularized quantity does not contain infrared singularities. The
reason for this is simply that when the regulators match the singular structure of the
squared matrix element, R goes to unity as we approach an unresolved limit.
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Figure 8.1: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the CFF

45 single collinear limit along with |1−R|.

I have also plotted the ratio of subtractions to squared matrix elements in a series
of randomly generated points of phase space at some fixed values of the control pa-
rameter. As we approach each limit by decreasing the value of the appropriate control
parameter, we can observe on Figs. 8.8-8.14 that the generated samples agglomerate
at unity. These results further ensure the correctness of the subtraction scheme,
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Figure 8.2: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the CIF

14 single collinear limit along with |1−R|.
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Figure 8.3: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the CIF,IF
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Figure 8.7: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the S45 double soft limit along with |1−R|.
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however, one last check must be performed to verify that the regularized double real
contribution is indeed finite. Namely, the double real term must be integrated over
the n+ 2 particle phase space. This step is necessary since some parametrizations of
the counterterms give rise to spurious singularities in the bulk of the phase space and
such errors must be ruled out.
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Figure 8.8: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the C45 single collinear limit.

In order to investigate the finiteness of the integrated double real term, we limit
the domain of integration such that every yij ≥ ymin and perform he integration for
different values of ymin. Without the presence of non-integrable singularities in the
cross section, as the value of ymin decreases the integrated double real contribution
goes to a fixed value, the true value of the integral. This saturation is shown on
Fig. 8.15 for W− production. I note that in any numerical computation there is a
technical cut on the phase space due to the finite precision of numbers in computer
arithmetics. This leads to the existence of a lower limit for every yij, hence this last
step must be performed to show our results are numerically stable.

8.4 Outlook

At this point all possible subtraciton terms of the CoLoRFulNNLO scheme are de-
fined and parametrized in a consistent way. Our checks show that the derived ap-
proximate squared matrix elements possess the necessary pole structure to cancel the
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Figure 8.9: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the C14 single collinear limit.
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Figure 8.11: Ratio of the squared matrix element and the regulator of the double real
for the ud̄→ W+gg subprocess in the C145 triple collinear limit.
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Figure 8.15: Integral of the regularized double real contribution for W− production
subprocess with different values of phase space cut ymin. [86]

non-integrable singularities of the n+ 2 parton contribution of the NNLO correction.
The next step is computing the integrated counterterms which is a long and tedious
procedure. The calculation of such integrals is an ongoing effort which requires the
use of an extensive machinery.

I will illustrate the procedure on the example of the initial-final single collinear sub-
traction which is a part of

∫
1

dσRR,A1

n+2 . We need to evaluate the integral of Eq. (8.21)
over the n+ 1 particle phase space,

∫
dΦn+2({p}n+2; pa + pb) C(0),IF

ar ({p}n+2). (8.30)

In order to perform the integration of the counterterm, first we must factorize the
original phase space measure into a convolution of the measures of phase spaces of
resolved and unresolved particles. The n + 2-particle phase space measure can be
rewritten as

dΦn+2({p}n+2; pa + pb) =

∫ 1

ξmin

dξ dΦn+1({p̂}n+1; ξpa + pb)
s

2π
dΦ2(Q, pr; pa + pb),

(8.31)
where s = (pa + pb)

2. The lower limit of the integration is determined by the mi

masses of non-QCD particles in the final state (since gluons are massless and quark
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masses are omitted in this framework), such that

ξmin =
1

s

(∑
i

mi

)2

. (8.32)

The two-particle phase space measure dΦ2(Q, pr; pa + pb) depends on the convolution
parameter ξ through the momentum Q which has a mass of

√
ξs. Furthermore, this

measure constrains the sum of the final-state momenta Q and pr to be pr+Q = pa+pb.

Using the phase space factorization, the integral we need to evaluate takes the
form of ∫

dΦn+2({p}n+2; pa + pb)C(0),IF
ar ({p}n+2) = 8παSµ

2ε
R

× s

2π

[∫
dΦ2(Q, pr; pa + pb)

1

ξ

1

sar
P̂

(0)
far fr

(ξ, k⊥,r)

]

⊗
∫ 1

ξmin

dξ

[∫
dΦn+1({p̂}n+1; ξpa + pb)|M(0)

n+1({p̂}n+1)|2
]
, (8.33)

where P̂
(0)
far fr

(x, k⊥) is an initial-state Altarelli-Parisi splitting function and the oper-

ation ⊗ denotes P̂ ⊗ |M|2 = 〈M|P̂ |M〉. Since azimuthal correlations vanish when
integrating the splitting function over the phase space of unresolved particles, we can
simply use spin-averaged functions [17, 22]. Hence, the initial problem is reduced to
the integration of spin-averaged kernel functions over the phase space of unresolved
particles. These kernels are generally expressed as functions of the Lorentz-invariant
quantities sij. In this example they depend only on xa,r which in our parametrization
coincides with the convolution parameter ξ. The explicit forms of the spin-averaged
initial-state splitting functions are

P (0)
q g (x; ε) = CF

[
1 + x2

1− x − ε(1− x)

]
,

P (0)
g q (x; ε) = TR

[
x+ 2

1− x
(1− ε)x

]
,

P
(0)
q q̄ (x; ε) = CF [1− ε− 2x(1− x)] ,

P (0)
g g (x; ε) = 2CA

[
x(1− x) +

x

1− x +
1− x
x

]
. (8.34)

The integrals of the splitting functions over the phase space of unresolved particles
yield

−1

ε

Γ2(1− ε)
Γ(1− 2ε)

(1− ξ)−2εP
(0)
far ,fr

(ξ; ε)T 2
ar, (8.35)
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where T 2
ar denotes a color factor which is

T 2
q g = T 2

q q̄ = CF , T 2
g q = TR, T 2

g g = CA. (8.36)

The result obtained in this example is deceptively simple. In general, integrating
the spin-averaged kernel functions is cumbersome and requires the use of advanced
methods, like reverse unitarity [87], integration-by-parts reduction [88, 89], solution
by differential equations [90, 91] with transformation to canonical basis [92] and the
use of generalized polylogarithms [93–95]. This procedure is, however, outside the
scope of this dissertation.
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Summary
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Chapter 9

Discussion of results

Precise theoretical predictions for energetic particle collisions provide an essential tool
for testing the limits of the currently prevalent model of particle physics, the so-called
standard model. The main focus of this dissertation lies on quantum chromodynamics
that describes the interaction between quarks and gluons. Since experiments at the
LHC always involve colored particles in the initial state of collisions and the strength
of the strong interaction at relevant energy scales is ten times greater than that of the
electromagnetic interaction, QCD processes give a significant contribution to every
event, making the calculation of precise QCD predictions mandatory.

The work that serves as the foundation of this dissertation was centered around
the computation of QCD cross sections at next-to-next-to-leading order accuracy in
perturbation theory, with the main goal of developing a general and mathematically
well-defined method, called the CoLoRFulNNLO subtraction scheme, that enables
such calculations. The subtraction scheme was initially completed for processes that
involve colored partons only in the final state to which I contributed in a number
of ways. I partook in the numerical integration of the counterterms and I have also
implemented the two-loop contribution to three-jet production in electron-positron
annihilation. Based on this work we were able to compute physical observables in
electron-positron annihilation at NNLO accuracy. This, along with the necessary
theoretical background is described in the first part.

In the second part of the dissertation, titled Measurement of the strong coupling,
I have presented our analyses of two observables in electron-positron annihilation
which allowed a precise determination of αS(MZ). As discussed in Chapter 5, we
used the CoLoRFulNNLO method to obtain the energy-energy correlation between
final-state partons of three-jet production in electron-positron annihilation at NNLO
accuracy. This fixed-order prediction, however, has a limited range of validity and
breaks down at angles near 0◦ and 180◦ due to large logarithmic contributions of in-
frared origin. I have implemented the resummation of these large logarithms at NNLL
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accuracy in the region around 180◦ and the matching of fixed-order and resummed
results in a C++ code, thus producing the most accurate theoretical description of
this observable to date. Using this NNLO+NNLL matched perturbative result, I
performed fits to OPAL and SLD data with αS(MZ) as a fit parameter and showed
that the impact of including NNLO fixed-order corrections is not negligible and it is
necessary in a highly precise extraction of the coupling. I have also implemented the
Dokshitzer-Marchesini-Weber analytic hadronization model and found that it cannot
fully describe non-perturbative effects. However, the achieved small uncertainty of
obtained results was promising [50].

We continued to work on this project with the goal of extracting the precise value
of αS(MZ) from measurement data obtained by multiple experimental collaborations.
Instead of the analytic hadronization model we have used modern Monte Carlo event
generators for computing non-perturbative corrections and for the χ2 analysis we
upgraded my original C++ code. The obtained value of αS(MZ) was in agreement
with the world average with a quality that is competitive with other state-of-the-art
determinations of the coupling from electron-positron collisions [71]. Later we used
our C++ framework in a wider collaboration aimed at extracting the strong coupling
from jet rates with similarly good results [85]. The details of these works are presented
in Chapters 6 and 7. Our results have been included in the updated αS(MZ) world
average at the end of 2019, see entries ”Verbytskyi (2j)” and ”Kardos (EEC)” on
Fig. 2.2. It is apparent that the obtained values are highly accurate in the category
of measurements based on electron-positron annihilation. Since our results are the
only new entries in this category, we can assess their effect by comparing the average
αS(MZ) for this class of measurements. In 2017 it was 0.1169± 0.0034 [58] and with
the 2019 update it became 0.1171± 0.0031 [1, 2].

Aside from extracting the value of αS(MZ) from observables, I have also worked
on developing the CoLoRFulNNLO scheme. In the third part of this dissertation,
titled Subtractions with hadronic initial states, I have presented work done towards
extending this subtraction scheme to take initial state radiation into account. We
have constructed all the necessary counterterms with a consistent parametrization and
performed a number of checks to verify that the regularized double real contribution of
the cross section is finite [86]. The analytic integration of counterterms is an ongoing
effort which I have briefly illustrated at the end of the third part of this dissertation.
Once this is done we will be able to produce highly accurate theoretical predictions
for LHC observables.



Chapter 10

Magyar nyelvű összefoglaló

A nagyenergiás részecskeütközések pontos elméleti léırása lényeges eszköze a részecs-
kefizikában jelenleg uralkodó elmélet, az úgynevezett standard modell ellenőrzésének.
E disszertáció elsősorban a kvantum sźındinamikára fókuszál, ami a kvarkok és glu-
onok közti kölcsönhatást ı́rja le. Tekintve, hogy az LHC-nál folytatott ḱısérletek során
megvalósuló részecskeütközések mindig tartalmaznak sźınes részecskéket a kezdeti
állapotukban, továbbá az erős kölcsönhatás a releváns energiaskálákon t́ızszer erősebb
az elektromágneses kölcsönhatásnál, a QCD folyamatok jelentős járulékot adnak min-
den eseményhez, ami a pontos QCD jóslatok számolását feltétlenül szükségessé teszi.

A disszertáció alapjául szolgáló munka a QCD hatáskeresztmetszeteknek a per-
turbációszámı́tásban NNLO pontosságú számolására épül. Elsődleges célunk egy ál-
talános és matematikailag jól definiált, CoLoRFulNNLO levonási sémának nevezett
módszer fejesztése, amely lehetővé teszi az emĺıtett számolásokat. Ez a séma kezdet-
ben csak olyan folyamatokra lett kidolgozva, amelyek kizárólag a végállapotukban
tartalmaznak sźınes partonokat. Ehhez a munkához több módon is hozzájárultam.
Részt vettem az ellentagok numerikus integrálásában, valamint beprogramoztam az
elektron-pozitron ütközésben történő három-jet keltés kéthurok járulékát. Erre a
munkára éṕıtve elektron-pozitron ütközésben mérhető mennyiségeket NNLO pon-
tossággal tudtunk meghatározni. Az erre vonatkozó eredményeket a szükséges elméleti
háttérrel együtt az első részben tárgyaltam.

A disszertáció második, Az erős csatolás mérése ćımű részében bemutattam két,
elektron-pozitron ütközésben mérhető mennyiség vizsgálatát, amelyekkel meg tudtuk
határozni az αS(MZ) pontos értékét. A CoLoRFulNNLO sémát, az 5. fejezetben
léırtak szerint, a végállapoti partonok közötti energia-energia korreláció NNLO pon-
tosságú meghatározására alkalmaztuk elektron-pozitron ütközésben történő három
hadronzápor keletkezésének esetére. Ez a rögźıtett rendű jóslat érvényességi tar-
tománya azonban korlátozott, hiszen 0◦ és 180◦ környezetében nagy, infravörös ere-
detű logaritmikus járulékok miatt elromlik. E nagy logaritmusok 180◦ közelében
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érvényes NNLL pontosságú felösszegzését, valamint a rögźıtett rendű és felösszegzett
eredmények kombinálását beéṕıtettem C++ alapú programkódomba, ezzel megadva
az eddigi legpontosabb elméleti jóslatot az emĺıtett mennyiségre. Az ı́gy kapott
NNLO+NNLL pontosságú perturbat́ıv eredménnyel függvényillesztést hajtottam vég-
re OPAL és SLD adatokon, αS(MZ)-t illesztési paraméterként használva. Megmutat-
tam, hogy a rögźıtett rendű NNLO járulék hatása nem elhanyagolható, sőt, figyelembe
vétele szükségszerű a csatolás rendḱıvül pontos meghatározásához. Ezen ḱıvül bepro-
gramoztam a Dokshitzer-Marchesini-Weber analitikus hadronizációs modellt és azt
találtam, hogy a modell képtelen a nemperturbat́ıv hatások teljes körű léırására,
azonban a kapott eredmények kis bizonytalansága biztatónak bizonyult [50].

A továbbiakban folytattuk a munkát ezen a projekten azzal a céllal, hogy kinyer-
jük az αS(MZ) pontos értékét több ḱısérleti együttműködés által mért adatsorból. Az
analitikus hadronizácós modell helyett modern Monte-Carlo eseménygenerátorokat
használtunk a nemperturbat́ıv korrekciók kiszámolására, valamint a χ2 anaĺızis elvég-
zéséhez továbbfejlesztettük a korábban használt C++ kódomat. Az αS(MZ)-re kapott
eredmény jó egyezést mutatott a világátlaggal és minőségét tekintve versenyképesnek
bizonyult a csatolás más, korszerű, elektron-pozitron ütközésre épülő meghatározá-
sával [71]. Később a C++ alapú keretrendszerünket egy szélesebb együttműködésben
használtuk fel az erős csatolás jet rátákra épülő, hasonlóan jó eredményeket pro-
dukáló meghatározásához [85]. E munkák részleteit a 6. és 7. fejezetben mutat-
tam be. Eredményeink 2019 végén bekerültek az új αS(MZ) világátlagba, lásd a
”Verbytskyi (2j)” és ”Kardos (EEC)” bejegyzéseket a 2.2. ábrán. Látható, hogy
a kapott értékek rendkv́ül pontosak az elektron-pozitron ütközésre épülő mérések
kategóriájában. Tekintve, hogy a mi eredményeink az egyedüli új bejegyzések ebben
a csoportban, hatásukat az e mérésekre meghatározott átlagos αS(MZ)-vel mérhetjük
fel. 2017-ben ez az átlag 0.1169±0.0034 [58] volt és a 2019-es aktualizálással 0.1171±
0.0031 [1, 2] lett.

Az αS(MZ) mérhető mennyiségekből történő kinyerése mellett a CoLoRFulNNLO
séma fejlesztésével foglalkoztam. A disszertáció harmadik, Levonások hadronos kezde-
ti állapotokkal ćımű részében bemutattam a levonási séma kiterjesztése érdekében, a
kezdeti állapoti sugárzás figyelembevételének céljával végzett munkát. Következetes
paraméterezést alkalmazva feléṕıtettünk minden szükséges ellentagot és számos el-
lenőrzést elvégezve igazoltuk, hogy a hatáskeresztmetszet regularizált, duplán valós
járuléka véges [86]. Az ellentagok analitikus integrálása egy folyamatban lévő munka,
amelyet röviden illusztráltam a disszertácó harmadik része végén. Amint ez a munka
elkészül, képesek leszünk felettébb pontos elméleti jóslatokat produkálni az LHC-nál
mérhető mennyiségekre.
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The Āres., B̄res. and C̄res. coefficients

The coefficients Āres., B̄res. and C̄res. that are required in the log-R matching scheme
are defined by Eq. (5.38) and they read (recall y = cos2 χ
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Appendix B

Hadronization corrections to jet
rates

Fig. B.1 shows the δξ1 and δξ2 distributions which were used to produce hadronization
corrections for jet rates according to Eqs. (7.8) and (7.10). The size of hadronization
corrections are shown in Fig. 7.3.
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Figure B.1: Hadronization corrections δξ1 and δξ2 obtained with different Monte
Carlo event simulations. The used fit range is indicated with vertical lines.
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