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1 Abstract In this paper the integer-valued autoregressive model of order one, con-
> taminated with additive outliers is studied in some detail. Moreover, parameter estima-
s tionis also addressed. Supposing that the timepoints of the outliers are known but their
4 sizes are unknown, we prove that the conditional least squares (CLS) estimators of the
s offspring and innovation means are strongly consistent. In contrast, however, the CLS
s estimators of the outliers’ sizes are not strongly consistent, although they converge to
7 arandom limit with probability 1. We also prove that the joint CLS estimator of the
s offspring and innovation means is asymptotically normal. Conditionally on the values
s of the process at the timepoints neighboring to the outliers’ occurrences, the joint CLS
10 estimator of the sizes of the outliers is also asymptotically normal.
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1 Introduction

Recently, there has been considerable interest in integer-valued time series models and
a sizeable volume of work is now available in specialized monographs (e.g., Cameron
and Trivedi 1998) and review papers (e.g., Weils 2008). Several integer-valued time
series models were proposed in the literature, we only mention the INteger-valued
AutoRegressive model of order p (INAR(p)). This was first introduced by McKenzie
(1985) and Al-Osh and Alzaid (1987) for the case p = 1. The INAR(p) models have
been investigated and extended by several authors, see, e.g., Du and Li (1991), Latour
(1988) and for a short survey, see also the introduction of Barczy et al. (2009).
Moreover, topics of major current interest in time series modeling are to detect
outliers in sample data and to investigate the impact of outliers on the estimation of
conventional ARIMA models. Fox (1972) introduced the notion of additive and inno-
vational outliers and proposed the use of maximum likelihood ratio test to detect them.
Chang and Chen (1988) extended Fox’s results to ARIMA models and proposed a like-
lihood ratio test and an iterative procedure for detecting outliers and estimating the
model parameters. Some generalizations were obtained by Tsay (1988) for the detec-
tion of level shifts and temporary changes. Abraham and Chuang (1993) applied the
EM algorithm to the estimation of outliers. Other useful references for outlier detection
and estimation in time series models can be found, e.g., in Barczy et al. (2009). It is
worth mentioning that all the references above are about continuous-valued processes.
A general motivation for studying outliers for integer-valued time series can be the
fact that it may often difficult to remove outliers in the integer-valued case, and hence
an important and interesting problem, which has not yet been addressed, is to investi-
gate the impact of outliers on the parameter estimation of series of counts which are
represented through integer-valued autoregressive models. This paper aims at giving
a contribution towards this direction. A more specialized motivation is the possibility
of potential applications, for example in the field of statistical process control (a good
description of this topic can be found in Montgomery (2005, Chapter 4, Section 3.7)).
In this paper we consider the problem of Conditional Least Squares (CLS) estimation
of some parameters of the INAR(1) model contaminated with additive outliers starting
from a general initial distribution (having finite second or third moments). We suppose
that the timepoints of the outliers are known, but their sizes are unknown. Under the
assumption that the second moment of the innovation distribution is finite, we prove
that the CLS estimators of the means of the offspring and innovation distributions
are strongly consistent, but the joint CLS estimator of the sizes of the outliers is not
strongly consistent; nevertheless, it converges to a random limit with probability 1.
This random limit depends on the values of the process at the outliers’ timepoints and
also on the values at the preceding and following timepoints. Under the assumption
that the third moment of the innovation distribution is finite, we prove that the joint
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Additive outliers in INAR(1) models

CLS estimator of the means of the offspring and innovation distributions is asymp-
totically normal with the same asymptotic variance as in the case when there are no
outliers. Conditionally on the values of the process at the timepoints neighboring to
the outliers’ occurrences, the joint CLS estimator of the sizes of the outliers is also
asymptotically normal. We calculate its asymptotic covariance matrix as well. In this
paper we consider one or two additive outliers for INAR(1) models, the general case
of finitely many additive outliers may be handled in a similar way, but we renounce
to consider it.

The rest of the paper is organized as follows. Section 2 provides a background
description of basic theoretical results related to the asymptotic behavior of CLS esti-
mators for the INAR(1) model. In Sect. 3 we consider INAR(1) models contaminated
with one or two additive outliers. The cases of one outlier and two outliers are handled
separately. Moreover, in case of two outliers we distinguish two subcases, namely,
neighbouring or not neighbouring outliers’ timepoints. However, we will formulate
our results only in the case of two not neighbouring outliers’ timepoints estimating
the mean of the offspring and innovation distributions and the outliers’ sizes. The full
presentation of our (other) results can be found in our Arxiv preprint Barczy et al.
(2009). In Sect. 4 we give a proof of our results in the above mentioned case.

In a companion paper we examine the INAR(1) model contaminated with one or two
innovational outliers, see Barczy et al. (2010) and also Barczy et al. (2009, Section 4).

2 The INAR(1) model

Let Z4 and N denote the set of non-negative integers and positive integers, respec-
tively. Every random variable will be defined on a fixed probability space (2, <7, P).

Definition 1 Let (ex)reny be an independent and identically distributed (i.i.d.)
sequence of non-negative integer-valued random variables. An INAR(1) time series
model is a stochastic process (Xy)rez, satisfying the recursive equation

Xi—1

Xp= D &;+e, keN, 0]
j=1

where forall k € N, (&, ;) jen is a sequence of i.i.d. Bernoulli random variables with
mean « € [0, 1] such that these sequences are mutually independent and independent
of the sequence (&¢)¢cy, and Xo is a non-negative integer-valued random variable
independent of the sequences (§k,j) jeN, k € N, and (&¢)¢enN.

We note that the INAR(1) model in (1) can be written in another way using the
binomial thinning operator « o (due to Steutel and van Harn 1979), namely, X; =
oo Xp_1+er,keN.

In the sequel we will assume that « € (0, 1), EX% < oo and that Ee% < 00,
P(ey # 0) > 0. In this case, it is well-known (e.g., Barczy et al. 2009, Lemma
5.1) that there exists a unique stationary distribution of the INAR(1) model in (1).
Let us denote the mean and variance of ¢; by u. and 082, respectively. Clearly,
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M. Barczy et al.

0 < ue < 00. We denote by ka the o—algebra generated by the random variables
Xo, X1, ..., Xk.

We only consider the joint CLS estimation of « and p,. (details for estimat-
ing only « can be found, e.g., in Barczy et al. 2009). Clearly, for all k € N,
E(Xk | 77X ) = aXi—1 + i, and thus

DXk —EX | FED =D (X —aXp —pe)’, neN. (2
k=1 k=1

Forall n € N, aCLS estimator (&, il ) forthe parameter (o, i) € (0, 1)x (0, 00)
can be obtained by minimizing the sum of squares (2) with respect to (a, ie) € R2.
One may prove that asymptotically as n — oo, a unique CLS estimator (¢, e, n)
exists with probability one and

~ N it Xi—1 Xk — (ZZ:] kal) (ZZ:1 Xk)

n — )

2
n Z}Z:1 XI%—I - (ZZ:1 kal)

(ZZ:I Xl%—l) (ZZ=1 Xk) - (ZZ=1 Xk—l) (ZZ=1 Xk—IXk)
n ZZ:1 X/%—1 - (ZZ=1 kal)z

hold asymptotically as n — oo with probability one, see, e.g., Hall and Heyde (1980,
formulae (6.36) and (6.37)). Hereafter by the expression ‘a property holds asymptot-
ically as n — oo with probability one’ we mean that there exists an event S € &7
such that P(S) = 1 and for all w € S there exists an n(w) € N such that the
property in question holds for all n > n(w).

It is well-known that (&, e, ») is a strongly consistent estimator of (c, i) as
n — oo forall (¢, ) € (0,1) x (0, 00), see, e.g., Hall and Heyde (1980, Section
6.3). Moreover, if EXg < oo and Ea? < 00, by Hall and Heyde (1980, formula

—~
Hen =

)

(6.44)),
\/E(ix\n —o) i N ([O}, Ba,g) as n — 0o,
\/ﬁ(ﬂe,n — He) 0
where
EX2EX] EX2EX]
Bae 1= [E)? 1 } A‘“[Ei 1 }
1 1 —EX] 1 —-EX
~ (Var X)2 [—E)? EX? | Ace [—E)? EX? } )
EX3EX?] ,L[EX?EX
Aus ._a(l—oc)|:E)~(2 £X _“8[5;? ; ] )
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Additive outliers in INAR(1) models

and X denotes a random variable with the unique stationary distribution of the
INAR(1) model in (1). Further, we note that

_ 02+¢Y,U« Mz
EX2 _ _¢ & e , 6
1—a? (1 —a)? ©

see, e.g., the Appendix of Barczy et al. (2009) (where one can also find an ex-
plicit expression for EX?3). Finally, we recall that, by ergodic theorems (see, e.g.,
Bhattacharya and Waymire 1990, Sect. II, Theorem 9.4d),

- 5
P(nll)n;O;ZXk:EX)zl, (7

k=1
1 n
. 2 _ev2 ) _
P(nlggo;Zxk_Ex)_], 8)
k=1
1< ~ >
P(lim —Zxk,lxk =erX2+u€EX)= 1. 9)
n—>oonk=]

3 The INAR(1) model with additive outliers

Forall k,¢ € Z4, let

s . |1 k=t
KEZ1000f k# ¢

We introduce, below, the INAR(1) model contaminated with additive outliers.

Definition 2 A stochastic process (Yi)rez, is called an INAR(1) model contami-
nated with finitely many additive outliers if

1
Yo =Xt D st kely,

i=1

where (Xp)rez, isan INAR(L) process given by (1) with « € (0, 1), EX(Z) < 00,
Esf < o0, P(e; #0) >0, and I €N, s;,6; €N, i =1,..., 1 suchthat s5; #s;
ifi#j,i,j=1,...,1.

Notice that 6;, i = 1,..., I, represents the ith additive outlier’s size and &y 5, 1is
an impulse taking the value 1 if £k =s; and O otherwise. Roughly speaking, an
additive outlier can be interpreted as a measurement error at time s;, i = 1,...,1,
or as an impulse due to some unspecified exogenous source. Note also that Yy = Xj.
Let .7, kY be the o—algebra generated by the random variables Yy, Y7, ..., Yx.
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In what follows we formulate our results only in the case of two not neighbouring
outliers’ timepoints estimating the mean of the offspring and innovation distributions
and the outliers’ sizes. Our other results are presented in Barczy et al. (2009).

First we present a formula for E(Yy | .%, kY_l) incase of / = 2 and arbitrary known
timepoints s1, 52 € N, 51 7# s2. Since Y = Xi + 8k 5,01 + Sk 5,60, k € Zy, we get
forall k e N,

EWie | FL)) = aXio1 + e + 85,01 + Sk,5,02
=Y 1+ e + (—abp—1,5; + 8k,5)01 + (—Sk—1,5, + Ik 5,)02. (10)

In the sequel we also suppose that s; < s» — 1, i.e., the timepoints s; and s, are
not neighbouring. Then, it follows by (10) that forall n > so + 1, n € N,

n

> Vi —Ei | F))?
k=1

= D Ui-aYi )
ko1t T osr0+1)
+ (Y — a1 — pe — 007 + gy p1 — ¥y — e +ab))?
+ Yy, —a¥sy | — e —02)> + (Y q1 — @Yy, — pe + ). (11)

By minimizing the sum of squares (11) with respect to (o, ue, 01, 62) € R* a
CLS estimator (b?,j_, ﬁ;n, 91""'”, Qz_tn) for the parameter (o, pe,61,62) € (0,1)
x (0, 00) x N2 can be obtained for all n > s» + 1. In Sect. 4 we prove that

0. é\;n) exists with

asymptotically as n — oo, a unique CLS estimator (6?,1T , ﬁJ ns 01 s

probability one.
The next result shows that 67,1 is a strongly consistent estimator of «, ﬁ; n 18

a strongly consistent estimator of ., whereas é?n and é\;n fail to be strongly
consistent estimators of 8; and 6, respectively.

Theorem 1 Consider the CLS estimators (a, , ﬁg s O

Ln é\;n)neN of the parameter

(a, g, 01, 602) € (0, 1) x (0, 00) x N2. Then the sequences (&J)nEN and (,TI;,,),,EN
are strongly consistent for all («, ue, 01,602) € (0, 1) x (0, c0) x N2 e,

P( lim & :a) — 1 V(@ e, 01,6) €0, 1) x (0,00 x N2, (12)

P(nli)néoﬁ;n = Ma) —1 V(e 01,6 € (0,1) x (0, 00) x N2, (13)

B
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Additive outliers in INAR(1) models

whereas the sequences (’0\:")”61\1 and (@TH)HEN are not strongly consistent for any
(a, g, 01, 602) € (0, 1) x (0, 00) x N2, namely,

~ 1 -
P(1im o =v, — — (Vg1 + Vo) — —pe ) =1, i=1,2,
n—oo bM ol " 1 +a?

(14

forall («, jie, 61, 62) € (0,1) x (0, 00) x N2,
Proof The proof can be found in Sect. 4. O
The asymptotic distributions of the CLS estimators are given in the next theorem.
Theorem 2 Under the additional assumptions EXg < 00 and EE% < 00, we have
|:\/ﬁ(&\n7i—a) :| ﬁ%([o}, Ba,g) as n— o0 (15)

@ — ) 0

with By ¢ defined as in (3). Moreover, conditionally on the values Y _1, Ys,—1 and
Y51+1; Ys2+ly

S~
V@, kgn;o Q0| o 0 T

~ o~ — N , CaeByeC, . as n — oo,
\/E(QZ,H - kll)ngo 92,k) 0 ,

(16)
where
| (@ = D(¥5 -1 + Yy 0) + (1 + 20 — @) e (@ = D(1 +a?)
Ca,si=m
(@ = D (Y51 + Vi) + (1420 — @) (@ = 1(1 +a?)
Proof The proof can be found in Sect. 4. O
4 Proofs

We retain the notations introduced earlier. Moreover, let us define

Yn = (YO,YI,...,Yn), Yn = (y()’yla"'?yn)a
Y (o) == Yo(w), Yi(0), ..., Yr(w)
forall n e N, yp,...,y, € R and w € . First we give a proof that asymptotically
as n — oo, aunique CLS estimator (&‘,j', ;’ISI,,, 01'}:11, 02"'1) exists with probabil-

ity one. Motivated by (11), for all n > s» + 1, n € N, we define the function
Q}; (R RY 5 R,
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0
Qh(yns &', 11}, 67, 65) = > k—dymer—p)’
k¢{31,S|IfF=1,1S2,Sz+1}
+ (s — @51 — 1l — 0D + (1 — & ys, — 1l + 0]
(0, — @'yt — 1 — 05+ (1t — o'y, — il + 062,

for all y, € R""! o/, wy, 01,605 € R. By definition, for all n > s + 1, a CLS
estimator for the parameter (o, g, 61, 62) € (0, 1) x (0, 00) X N? is a measurable
function

@ Al 0.0, )8 = R

ne H’g,na

such that

OF (Vs & (V) B ). 0y, ). B3, ()

= inf Ol (yn; o, 1L, 01,605  Vyu€ S,
(a’,ué,@{,@é)eR“

where S, is suitable subset of R”*! (defined in the proof of Lemma 1). We note that
we do not define the CLS estimator (b?,j', ﬁg} ns Bl'fn 4 92_",!) for all samples y, € R**1,

0,6, ).

The next result is about the existence and uniqueness of (@, , ﬁJ ns 01 s

Lemma 1 There exist subsets S, C R"! n > max(5, so + 1) with the following
properties:

(1) there exists a unique CLS estimator (&J , /’I; ., 0, é\;n) 0 S, > RY

1,n°
(i) forall y, € Su, @ ¥n)s Ban¥n): By, ¥a), B, (¥)) i the unique solution
of the system of equations

90, 90,
Tg/(yn; a/a I’L:c;s 9{1 95{) = 07 %(yn; a/v :u"/c/w 9{7 eé) = Ov

90} (v . _ 00} (v . _
a_el/(yna (X/, /vL:c;’ 9]/5 Gé) —0’ 395 (Yna alv :ufgv 9]/7 95) —07

a7)

(i) Y, € S, holds asymptotically as n — oo with probability one.

Proof For any fixed y, € R”“,I n > max(5,s2 + 1) and o' € R, the quadratic
function R3 3 (uy, 07, 605) — On(yn; o, Wy, 01, 65) can be written in the form

Iy !
Of(yws o 1l 01,65 =[| 0] | = An@) 'ta(yus &) | An(@)
0,
e
x| 0 | = An@) ty(yns &) | + O (yas o),
9;
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Additive outliers in INAR(1) models

where

SOk —a'ye—1)
ta(yn; o) i= | (1 +(@)?)ys, — &' sy—1 + Vsi41) |
(I+ (a,)z)ysz - a/()’sz—l + Y1)

n
Oh(yns @) i= Dk — &'y 1)> = ta (¥ &) T An (@)t (yn; o),
k=1
and the matrix
n 1—d 1—do
Ap @)= 1= 14+ @)? 0
1—a 0 1+ ()?

is strictly positive definite forall n > 5 and o’ € R.
The inverse matrix A,(a’)~! takes the form

(1+ (@)? —(1— a1+ @)?) —(1—a)(1+ @)
San ~(1 =1+ @) n(1+ @) -1 —-a)? (1-d)? :
n@| _1—ah1+ @)D (1) (1 + @)2) — (1 — ay?
where

Dy(e) := (14 (@))((n — 2)(@)* + 4o’ +n —2).

The polynomial R > &’ + D, () is of order 4 with leading coefficient n — 2.
We have 0 (¥; @) = Ru(yn; @)/Dy(@), where R 3 & > Ry(yu;a) isa
polynomial of order 6 with leading coefficient

n n 2
Cn(¥n) = (n=2) D yi | = (Z J’kl) —(n=DO; +y5)
k=1

k=1

n
+2(ys; + ¥sy) Z Vi—1 = 2Ys5; Vs, -
k=1

Let

@r o= {y,, e R cn(yn) > O}.

For y, € :Sj, we have limy/|— o0 QJ(yn; a’) = oo and the continuous function
R3ao — /Q\,-f (yn; @) attains its infimum. Consequently, for all n > 5 there exists

a CLS estimator (@, ﬁ;n é\lTn, é\;n) . S7 — R*, where

@ Springer

a Journal: 362 Article No.: 0398 [ TYPESET [_|DISK [_]LE [_]CP Disp.:2011/7/12 Pages: 15 Layout: Small-X ‘




G
]
]
S
(=W}
-
o
=
+—
=
<

287

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

M. Barczy et al.

0, (yn: @, (yn) = inf 0 (yn; ) Vy,eSl,
o

ﬁzin()’n)

0 (yn) | =A@ (y)  ta(yn: @, () St (18)
1,2\ Yn n 0, (Yn n\Yn; @, (Yn)), Yu €9,

05, (¥n)

and forall y, € S, (@, (Yn) Aen (). 51}” (¥n), é\zIn (yn)) is a solution of the system
of equations (17).

By (7) and (8), we get P (lim,,_)C>o n~2c,(Y,) = Var )N() = 1, where X denotes a
random variable with the unique stationary distribution of the INAR(1) model in (1).
Hence Y, € :S:Z holds asymptotically as n — oo with probability one.

Now we turn to find sets S, C §Z, n > max(5, so + 1) such that the system of
equations (17) has a unique solution with respect to (a’, uj, 6, 65) forall y, € S,.
Let us denote by H,(y,: o, uy, 0, 605) the (4 x4) Hessian matrix of QZ consisting
of the second order partial derivatives of QZ with respect to the variables o', i, ]
and 6. Further let A; ,(yn; o', i, 01, 63) beits i-th order leading principal minor,
i=1,2,3,4, and, for all n > max(5, s, + 1), let

Sy =y €S2 Aia e, i, 67.65) > 0,

i=1,2,3,4,V (@, 1,065 c R4}.

By Berkovitz (2002, Theorem 3.3, Chapter III), the function R* 5 (o, Wy, 07, 65) —
Q:, (Yn: o, py,, 07, 05) is strictly convex forall y, € S,. Since it was already proved
that the system of equations (17) has a solution for all y, € /.57,1', we obtain that this
solution is unique for all y, € S,.

One can also check that Y, € S, holds asymptotically as n — oo with probability
one, see, Barczy et al. (2009, Lemma 3.6.1). O

By Lemma 1, ((’)ZnT (Yn), Be.n(Yn), é\;rn (Y,), é\;n (Y,)) exists uniquely asymptot-
ically as n — oo with probability one. In the sequel we will simply denote it by
N S
(an ) /“Lﬁ,na 91’,11 02,}1)'

Proof of Theorem 1 The aim of the following discussion is to show that the sequences
C T 01)nen and (GZTH — 6h)neN are bounded with probability one. First we note

1,n

that for all y, € R"™! and (o, 1., 01,0 € R*, we have

20,
30!
= =205 —@ys—1 — sy — ) + 20/ (g1 — @y, —pp +'6),  i=1,2.
(19)

(Yns &', py, 671, 63)
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By (17), (19) and Lemma 1, we get

6 =y @ (Ys—1 + Y 41) =@ o0, (20)
in = Lsi — T 7., Wsi—1 i+l T T M, =12
Y r@hr T T r@r

By (18) and the explicit form of the inverse matrix A, (o’ )~!, we obtain

ug ’ . [G
0] n = A.;« Hn )
é;,n Dy (o) Ju

where

Gni=—-1-a)(1+@H%
X (U4 @Dy +Yi) =& K1+ Yoo + Yot + Y1)
+ 1+ @) D (N =&, Vi),
k=1
Hy = (1 + @)D = (1 =@h) (A + @DAY, — &) (Vo1 + Y1)

S A (R CA DA AV D)

n
—(1=a)(+@Hh) D (i —a v ),
k=1
Joi= =@+ @Dy = Gt + Vo)
+ @+ @D = (1 =gHI(A+ @DAY, — &) V1 + Yor)
n
— (1 =gHA+@HH D Ve =a, Y ).
k=1
Using (7) and that for all p; e R, i =0,...,4,

sup n(pax* + p3x® + pax? + pix + po)
veR n>s (L Hx2)((n —2)x2 +4x +n —2)

one can think it over that H,/D, (a,,-) n €N, and J,/D, (ozn) ne N, are
bounded with probability one, which yields also that the sequences (91 n — 0)neN

and (92,n 62)neN are bounded with probability one.
Again by Lemma 1 and Eqgs. 17 we get that

a\nT | an by, - Cn 21
/vaTn B b"n dn ( )
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288 holds asymptotically as n — oo with probability one, where

n
wo @y = Xi 00— 8, )61 =8, +2X,) + (62 = 6),) (62 — B, +2X)),
k=1
af
+ 6, — 92,n’

1,n

n
20 b, = Zxk_l + 01 —é\T
k=1

n

w Cni= ) Xeo1 Xk (01 = 0 ,) (X1 + Xypn) + (62 = 8 ,) (X1 4 Xy,
k=1

G
]
]
S
(=W}
-
o
=
+—
=
<

n
200 dy = ZXk—i-@l—’Q\lTn—i-@z—,@\;n.
k=1

203 Here we emphasize that the (2 x 2)-matrix in (21) is invertible asymptotically as
204 n — oo with probability one, since one can check that

205 P ( lim & = E)?Z) —1, P ( lim 2% — Ei) —1, (22)

n—oo n n—o0o n

2 which implies that P(limy, oo -5 (na, — b2) = EX? — (EX)> = VarX) = 1, and
7 hence P(lim,_ ~(na, — b%) =00) = 1.
298 Further

o~ —1

o, —a a, by, |:e,, ]

~ = (23)
= |:/L;,n_,usi| [bnn jl In

o holds asymptotically as n — oo with probability one, where

2

©

3

o

n
301 en = Zxk—l(Xk —aXg—1 — Me)
k=1
+(601 = 0} ) (X1 + X1 — 20Xy — pte — (61 = ;)
02— 0y ) (X1 + X1 — 20Xy, — 10 — (62 — 05,)).
n
foi= D (X — Xy — o) + (L= )@ — 0,1, + 6, — 6, ).
k=1

305 Then, using again (5), (7), (8), (9) and that the sequences (5131 — 01)nen and

3 (é\;n — 62),eN are bounded with probability one, we get

=3
&

7 P(lim e—":aE}~(2+u8E)~(—aE)~(2—u£E)~(=0) —1,
n—-oo n
208 P(lim ﬁ:Ei—aEi—m:o):l.
n—oo n
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9 Hence, by (23), we obtain

o 1 | @ —a | _[EXPEX]'TOT_[0])_,
° n—00 ﬁ;,n_ﬂs T EX 1 0| |0 N

3

=}

e 31
o
o
$—
(=B
;5 a1 which yields (12) and (13). Then (12), (13) and (20) imply (14). O
s}
2 312 Proof of Theorem 2 By (3) and (23), to prove (15) it is enough to show that
an by |[[EX2EX T _
o P(nlinéo'[b n HEX 1 =1 24)
Llen | 2 (19 4 25
vl 0 Awec) BT 2

3

s where X isarandom variable having the unique stationary distribution of the INAR(1)
s model in (1) and the (2 x 2)-matrix Ay, is defined in (4). By (22), we have (24).
By formula (6.43) in Hall and Heyde (1980, Sect. 6.3),

1 n
= Dkt Xk—1 (X — aXg—1 — e) 0
ﬁZk_l k=1 X,Jy([ i| A ) as n — 0o
8 |:\/]EZZ=1(Xk—(¥Xk1_,U«s) 0f 7%* .

3

3

3

3

3

s Hence using that the sequences (9 —01)nen and (92 2 — 02)nen are bounded with
probability one, by Slutsky’s lemma we get (25). i
321 Now we turn to prove (16). Using the notation B, := (1 + (&, T) )1, where I
> denotes the (2 x 2) indentity matrix, by (20), we have

3:

o
o

3:

R

323

[Oﬁn} _ ! [(1 + @)D, — @ (Yoot + Vo) — (1 —aj)ﬁin}

/;n " (1+ (e T)z)Ysg 6l\nT(Ysz—l + Vo) - —ay ),us n

a4 holds asymptotically as n — oo with probability one. Then Theorem 1 yields that
ws P(limyoo B, = (1 +a2)I, = BY) = 1. By (14), we have

Jn@, - Jim AN

ﬁ(@;n - klin;o 92,k)

= \/E(BT)fl 1+ (&T)Z)Ys] - Oln (Ysl 1+ Y51+1) -1 - )Ma )
' (1 + @AY, — @) Yeyot + Yegi1) — (1 — @)

326

327

(BH)-! I+ oYy, —a(¥s -1+ Y1) — (1 —a)pe
328 - )
" (1 + )Yy, — (Vg1 4 Yipr1) — (1 — a)pee
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and hence
~ L
NACHE kli)n;o 011
o L
Vn@,, — kll)ngo 0.4
(‘/x\rj"'a)Ysl _(Ys1—1+Ysl+l)+//IeT,na_l 6[\,7—05
@1 + @)Yy, — Vgt + YD) + Bip o = 1| | By — st

¢! +052)Ys1 - C‘f(Ysl—l + Ysl-i-l) — (1 —o)pe
(A +ad)Ys, —a(Yy—1+ Y1) — (I —a)pe

= Vn(B)H™
+/n(B) ' (BT — Bl)(BT)™!
Then

R T
«/5(91.71 klinoloel,k) Ji@ =)

= Cn,ot,s e (26)
N (527 ~ lim g;;k) @ = 2e)
o k—o0 =

holds asymptotically as n — oo with probability one, where C, . is defined by

@ + )Yy, — Vg1 = Yyp1 +Rdpa— 1
@ + )Yy, — Yoot — You1 + Bapa — 1
(I4+a®)Y —a¥s_1+ YD) — (1 —a)pe 0
(14 o))y, —a(Yo-1 + Yyrt) = (1 —a)pte 0

BH™!
—-@, +a)(BH (BH!

By (12) and (13), we have C, 4 converges almost surely as n — 00 to Cgye.
By (26), (15) and Slutsky’s lemma, we have (16). m]
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