
A Generalized Model for Investigating

Scheduling Schemes in Computational

Clusters

Tien V. Do a,c,∗ ,Binh T. Vu b , Xuan T. Tran a,c

, Anh P. Nguyen a

a Department of Networked Systems and Services,
Budapest University of Technology and Economics,

H-1117, Magyar tudósok körútja 2., Budapest, Hungary.
bInter-University Centre for Telecommunications and Informatics, Budapest

University of Technology and Economics, 4028 Debrecen, Kassai út 26., Hungary
c Vietnam International Research Institute of Sciences,

Ho Hoan Kiem 1428, Hanoi, Vietnam

Abstract

In this paper, we present a generalized model for the performance evalua-
tion of scheduling compute-intensive jobs with unknown service times in com-
putational clusters. We propose the application of parameters defined in the
SPECpower ssj2008 benchmark of the Standard Performance Evaluation Corpo-
ration to construct a performance evaluation model. In addition, we also define
a method to rank physical servers based on either the high performance priority
or the energy efficiency priority, and measures to characterize the performance of
computational clusters.

We investigate three schemes (separate queue, class queue and common queue)
for buffering jobs in a computational cluster that is built from Commercial Off-
The-Shelf (COTS) servers. Numerical results show that the buffering schemes do
not have impact on performance measures related to the energy consumption of
the investigated cluster. However, the buffering schemes play an important role
in the quality of service parameters such the waiting time and the response time
experienced by arriving jobs. Furthermore, Dynamic Voltage and Frequency Scal-
ing should be carefully applied if one wants to reduce the energy consumption of
computational clusters.

Keywords: heterogeneous cluster model, buffering scheme, separate queue, class
queue, common queue, ranking of servers

T. V. Do et al. A Generalized Model for Investigating Scheduling
Schemes in Computational Clusters. Simulation Modell. Practice and Theory,
DOI:10.1016/j.simpat.2013.05.003, 2013

Accepted for publ. in Simulation Modell. Practice and Theory

1 Introduction

The advance of high-speed networking and powerful computers together with
the rapid decline of hardware costs led to the widespread application of dis-
tributed systems to offer services [1,2]. In such computational grid systems,
job scheduling is multi-criteria in nature and is a vital task in state-of-the-art
resource allocation studies. The rapid increase in the complexity of computa-
tional clusters and the number of users has a significant impact on the energy
consumption, which is to be taken into account in the operation of grid sys-
tems.

In the literature job allocation algorithms are proposed to schedule arriving
jobs in computational clusters. These algorithms are applied dominantly at
two levels: grid- and cluster-level. Scheduling policies covering and combining
both of these levels are listed in [3–5] and references therein. In addition, some
algorithms are implemented with regard to the knowledge about characteris-
tics of jobs. These may belong to either clairvoyant [6,7] or non-clairvoyant
algorithms [8,9].

Nowadays, optimizing energy consumption has become as crucial as improv-
ing performance [10,11]. Several power management (PM) practices can be
applied: the on-off technique completely shuts down the idle components (e.g.,
disk, CPU), while Dynamic Voltage and Frequency Scaling (DVFS) [12] lowers
the operating voltage/frequency of CPU to reduce the energy consumption.

It is worth mentioning that PM is supported in modern COTS servers. Fur-
thermore, the energy consumption of computational clusters can be reduced
if the operator of computational clusters systematically exploits the resource
heterogeneity of distributed systems with many different types of processors
of different power characteristics and performance capacities. This was the
main motivation of the investigations performed by Zikos and Karatza [13],
where three policies applicable for cluster-level scheduling were compared:
SQEE (Shortest Queue based policy with Energy Efficiency priority), SQHP
(Shortest Queue based policy with High Performance priority), and PBP-SQ
(Performance-Based Probabilistic - Shortest Queue). Their simulation results
indicated that SQEE is the best from the aspect of energy consumption, SQHP
outperforms the other two schemes at the price of higher energy consumption,
and PBP-SQ proved to be the worst among the three schemes. Note that we

∗ Corresponding author. Tel.: +36 14632070.
Email address: do@hit.bme.hu (Tien V. Do).

2

have also examined the configuration studied by Zikos and Karatza [13] and
can confirm the conclusions of [13]. In addition, Terzopoulos and Karatza [3],
Gkoutioudi and Karatza [14] also investigated the scheduling in real-time grid
systems.

In this paper, we follow the same approach applied in the study by Zikos and
Karatza [13], where compute-intensive jobs with unknown service times are
to be scheduled in a cluster with heterogeneous servers. Jobs are executed
by servers in a cluster. Compared to previous works [13,3,14], this paper
provides a generalized model based on parameters defined by Standard Per-
formance Evaluation Corporation. We also define a method to rank physical
servers based on either high performance priority or energy efficiency priority,
and measures to characterize the performance of computational clusters. We
investigate three schemes (Separate Queue, Class Queue and Common Queue)
for buffering jobs in a computational cluster that is built from Commercial
Off-The-Shelf (COTS) servers. These proposals allow a systematic way to in-
vestigate the performance of computational clusters.

Simulation results show that the buffering schemes do not have impact on
performance measures related to the energy consumption of the investigated
cluster, but are significant factors regarding the waiting time and the response
time experienced by arriving jobs. In addition, we also investigate a saving on
the energy consumption when a specific server is switched off if there is no job
allocated to the specific server and when a specific server applies DVFS if a job
is allocated to the server. Results show that DVFS should be carefully applied
if one wants to reduce the energy consumption of computational clusters.

The rest of the paper is organized as follows. In Section 2, a generalized model
along with methods to rank physical servers is proposed. Simulation results
are presented in Section 3. Finally, Section 4 concludes the paper.

2 A Generalized Model and Scheduling Algorithms

We consider a computational cluster, which serves compute-intensive jobs.
Following [13], we assume that jobs

• can be executed on any server,
• are attended to by the First Come First Served (FCFS) service policy,
• are non-preemptible, which means they cannot be suspended until comple-
tion,
• have service times unknown to the local scheduler.

3

Jobs are to be executed by physical servers according to a specific scheduling
algorithm. In what follows, we describe scheduling algorithms that allocate
arriving jobs to a computational cluster. To make the presentation compre-
hensible, the classification of servers is provided in Section 2.1. Then, the
description of scheduling algorithms is given in Section 2.2.

2.1 Ranking of Servers

In a computational cluster, each physical server belongs to a specific server
type. Let S denote the set of server types and K = |S| be the number of server
types. Server type s, s ∈ S, is characterized by parameters Cs, Pac,s and Pid,s,
where Cs is the ssj ops value (the number of operations finished during the
measurement interval divided by the number of seconds defined for this inter-
val, showing the throughput –workload operations per second– for this period
at 100% target load) and Pac,s denotes the average active power measured ac-
cording to the SPECpower ssj2008 benchmark of the Standard Performance
Evaluation Corporation (SPEC) at 100% target load (99.7% actual load).

We assume that when a server is busy, it functions at the full load with the
power consumption of Pac,s. When a server is idle, the server stops CPU main
internal clocks via software and Pid,s is the power consumption of a server in
idle state.

We introduce two functions as follows.

rp(s) =
Cs

max
i∈S

Ci

, s ∈ S, (1)

re(s) =

Cs

Pac,s

max
i∈S

Ci

Pac,i

s ∈ S. (2)

It is worth emphasizing that Cs/Pac,s, s ∈ S, is the performance to power
ratio of class s.

Let Sp and Se denote the ordered sets of server types that are ranked using
function (1) and (2), respectively. In ranking Sp (the high performance priority

ranking) and Se (the energy efficiency priority ranking),

• server types are ranked from 1 to |S| = K based on the computed values
rp(s) and re(s), s ∈ S, respectively;
• number one is assigned to server type arg max

s
rp(s) and arg max

s
re(s),

respectively;

4

• rank K, assigned to server type arg min
s

rp(s) and arg min
s

re(s), respec-

tively.

For ranking Sp, if there are two server types with the same ssj ops value, the
server type of higher average active power gets a higher index.

We organize physical servers based on their type. Physical servers of the same
type form a class. The classes are ordered according to either ranking Sp

(when the high performance priority is chosen) or ranking Se (when the energy

efficiency priority is preferred). Physical servers are indexed by pair (i, j),
(i = 1 . . . , K; j = 1, . . . ,M(i)). Note that server (1, j), j = 1, . . . ,M(1),
has the highest priority and server (K, j), j = 1, . . . ,M(K), has the lowest
priority.

2.2 Scheduling

The task of scheduling algorithms is to allocate arriving jobs to physical
servers. Scheduling algorithms can take into account several factors such as
the performance, the power consumption, the number of waiting jobs. Fur-
thermore, the organization of waiting space for jobs that are not immediately
served upon their arrival is an important question. In [13], the authors assumed
that an arriving job will wait in a specific physical server after the scheduling
decision, which is quite straightforward from the aspect of implementation. In
this paper, we call this queueing solution as a separate queue scheme which is
illustrated in Figure 1. Furthermore, we also investigate two further schemes
for buffering jobs.

• Separate Queue Scheme: an arriving job will wait in a specific physical server
after the scheduling decision presented in Algorithm 1. As one observes, the
scheduling algorithm chooses the server with the shortest queue. If there are
more idle servers or servers of the same queue length, a server is selected
based on the priority of its server type.
• Class Queue Scheme: there is a common buffer associated to each class
(Figure 2). Jobs scheduled to a specific class wait in the buffer of a specific
class when all servers in the specific class are busy. When a job departs from
any physical server in the specific class, the first waiting job in the buffer of
the specific class will be immediately routed to that server. This procedure
is also performed when an arriving job that is routed to the buffer finds an
empty server in the specific class. Algorithm 2 routes an arriving job based
on criteria: idle servers, the priority and the shortest queue length of classes.
• Common Queue Scheme: there is one buffer for storing jobs. On a job arrival,
if the LS finds all servers busy, the job will be stored in the common queue
and will wait for an idle server. A job is immediately served if Algorithm 3

5

finds an idle server upon its arrival.

LS

.

.

.

. . . } Class 1

. . .

.

.

.

. . . } Class 2

.

.

.

. . . } Class K

Server queues

Fig. 1. Separate Queue

LS

.

. . . } Class 1

. . .

.

. . . } Class 2

.

. . . } Class K

Class queues

Fig. 2. Class Queue

LS

. . . } Class 1

.

. . . } Class 2

. . . } Class K

Common queue

Fig. 3. Common Queue

6

Algorithm 1 The scheduling algorithm for Separate Queue

best server ← (1, 1)
for i = 1→ K do

for j = 1→M(i) do
if server (i, j) is FREE then ⊲ free server found in class i

best server ← (i, j)
GOTO SCHEDULE

else

if queue length of server (i, j) < queue length of server
best server then

best server ← (i, j)
end if

end if

end for

end for

SCHEDULE: ROUTE job to queue of server best server

Algorithm 2 The routing algorithm for Class Queue

best class← 1
for i = 1→ K do

for j = 1→M(i) do
if server (i, j) is FREE then ⊲ free server found in class i

best class← i
GOTO SCHEDULE

else

if queue length of class i < queue length of class best class then
best class← i

end if

end if

end for

end for

SCHEDULE: ROUTE job to queue of class best class

7

Algorithm 3 The routing algorithm for Common Queue

for i = 1→ K do

for j = 1→M(i) do
if server (i, j) is FREE then ⊲ free server found in class i

free server ← (i, j)
GOTO SCHEDULE

end if

end for

end for

SCHEDULE:
if found free server then

ROUTE job to queue of class free server
else

ROUTE job to Common Queue
end if

8

It is worth emphasizing that the practical implementation of the Separate
Queue Scheme is the easiest. That is, waiting jobs can be placed inside each
physical server. For example, jobs and parameters can be allocated in the local
disk of each physical server.

To implement the Separate Queue Scheme, the Class Queue Scheme and the
Common Queue Scheme we propose a practical method as follows.

• A file server is operated in a cluster. Files are accessed using Server Mes-
sage Block/the Common Internet File System (SMB/CIFS) protocol[15] or
Network File System (NFS) protocol [16].
• Each queue is allocated a separate spool area/directory in the file server. The
spool areas are accessible by the Local Scheduler (LS) and the respective
servers.
• The LS maintains the communication with the physical servers in the cluster
with the help of a Grid Computing Framework that allows loading and
executing tasks. The LS also has the knowledge on the information of the
occupancy of each queue and the states of physical servers in the cluster.
Based on the knowledge, the communication mechanism and the common
spool areas, waiting jobs can be easily allocated to servers depending on the
applied buffering approaches. The allocation can be performed quickly in the
fast local network of the cluster, which minimally affects the performance
of the cluster.

2.3 Performance Measures and Energy Metrics

Let wl be the waiting time in queue of job l before service and sl be the service
time that takes the server to process job l. The mean waiting time WT (n)
and mean service time of n completed jobs are calculated as follows:

WT (n) =
1

n

n∑

l=1

wl

and

ST (n) =
1

n

n∑

l=1

sl.

Response time rl of job l is the time period between the arrival instant and
the departure instant of job l. We have rl = wl + sl.

The average response time RT (n) of n jobs that finished service is

RT (n) =
1

n

n∑

l=1

rl.

9

The average service time, the average waiting time and the average response
time are defined as

ST = lim
n→∞

ST (n),

WT = lim
n→∞

WT (n),

RT = lim
n→∞

RT (n).

Let the departure time of job n be tn. Let αi,j(t) denote the total time of
active and ιi,j(t) be the sum of idle time periods of server (i, j) until time
t, respectively. If the cluster starts the operation from time instant 0, then
t = αi,j(t) + ιi,j(t).

Since the idle and the active power consumption of server (i, j) are denoted by
Pid,i and Pac,i, the average energy consumption per job when idle servers are
not switched off (but functioning in the idle state with a lower power) until tn
is

AEno−switch(tn) =

K∑

i=1

Pac,i

M(i)∑

j=1

αi,j(tn) + Pid,i

M(i)∑

j=1

ιi,j(tn)

n
, (3)

and the average energy consumption per job until tn is

AEswitch−off(tn) =

K∑

i=1

Pac,i

M(i)∑

j=1

αi,j(tn)

n
, (4)

The long term average energy consumptions per job (AEno−switch and
AEswitch−off) are defined as

AEno−switch = lim
n→∞

AEno−switch(tn), (5)

AEswitch−off = lim
n→∞

AEswitch−off(tn). (6)

The parameters, along with the performance and energy metrics used in sim-
ulation computations, are summarized in Table 1.

3 Results

Due to the flexibility concerning the modification of codes, we have chosen
the SimPack toolkit [17] for all our simulation studies. We have implemented

10

Table 1
Notations

K Number of server classes

U Average system utilization

WT (n) the average waiting time up to job n

WT the average waiting time

ST (n) the average service time up to job n

ST the average service time

RT (n) the average response time up to job n

RT the average response time

AE(t) the average energy consumption per job up to time t

AE the long term energy consumption per job

the system models and scheduling algorithms in Section 2. In what follows, if
it is not stated otherwise, our simulations are performed with the confidence
level of 99%. The accuracy (i.e. the ratio of the half-width of the confidence
interval and the mean of collected observations) of the energy consumption
metrics is of 10−5, while the accuracy of waiting times is less than 0.001.

3.1 Input parameters

3.1.1 Parameter of Server Types

We assume that the considered computational cluster is built from three types
of Commercial Off-The-Shelf (COTS) servers. These types are listed in Ta-
ble 2.

Table 2
Server specifications

Server type Cs Pac,∗ (W) Cs/Pac,∗ Pid,∗ (W)

Acer AW2000h-Aw170h
F2 (Intel Xeon E5-
2670)[18]

6419253 1700 3776 364

Acer AW2000h-
AW170h F2 (Intel
Xeon E5-2660)[19]

5286503 1275 4146 331

PowerEdge R820 (Intel
Xeon E5-4650L)[20]

2790966 457 6102 108

11

The computing capability (performance) and the power consumption of three
server types based on the specification SPECpower ssj2008 of SPEC [21] are
also presented in Table 2. Note that the computing capability ssj ops [22]
(number of operations finished per second) and the power consumption Pac,∗

are measured at 100% target load, while Pid,∗ is the power consumption when
the servers are in the idle state. The computed rankings based on the rule in
Section 2.1 are reported in Table 3.

Table 3
Ranking function

Server type Ranking based Ranking based

on Performance on Energy Efficiency

Intel Xeon E5-2670 rp(1) = 1.0 re(1) ≈ 0.64

Intel Xeon E5-2660 rp(2) ≈ 0.82 re(2) ≈ 0.66

Intel Xeon E5-4650L rp(3) ≈ 0.43 re(3) = 1.0

3.1.2 Load

Job arrivals follow an exponential distribution with λ parameter. The exe-
cution times of jobs are also exponentially distributed. Each job requires a
computing capacity equivalent to 6419253 (ssj ops) in average, which means
the average execution time of jobs is one second if jobs are routed to a server
of type Intel Xeon E5-2670. Let µ1, µ2 and µ3 denote the service rates, if jobs
are scheduled to a server of type Intel Xeon E5-2670,Intel Xeon E5-2660 and
Intel Xeon E5-4650L, respectively. Then we obtain µ1 = 1/s, µ2 = 0.82/s and
µ3 = 0.43/s as a consequence of the assumption of the average computing
capacity required by jobs and Table 2.

We investigate a computational cluster with three types of COTS servers and
eight physical machines in each server class. Therefore, the total ssj ops of
the computational cluster is 8 ∗ (6419253 + 5286503 + 2790966) = 14496722.
The investigation is carried out with load U equal to 50%, 60%, 70%, 80% and
90%, where U = λ/(8∗ (6419253+5286503+2790966))/6419253 = λ/(8∗ (1+
0.82 + 0.43)). Therefore, the mean inter-arrival time of jobs in our simulation
study takes the values of 0.1111 s , 0.0926 s, 0.0794 s, 0.0694 s and 0.0617 s,
respectively.

3.2 Numerical results

In this section, we present results concerning the three buffering schemes with
two scheduling policies based on Energy Efficiency (EE) priority and High
Performance (HP) priority.

12

3.2.1 Quality of Service

Figure 4 illustrates the mean service time against system load for all system
models and policies.

 1

 1.2

 1.4

 1.6

 1.8

50% 60% 70% 80% 90%

Se
rv

ic
e

T
im

e
(s

)

U

Separate-Queue
Class-Queue

Common-Queue

(a) EE policy applied

 1

 1.2

 1.4

 1.6

 1.8

50% 60% 70% 80% 90%

Se
rv

ic
e

T
im

e
(s

)

U

Separate-Queue
Class-Queue

Common-Queue

(b) HP policy applied

Fig. 4. Mean service time vs. system load

The results show that tendencies observed in case of EE and HP priority are
opposing: system models under the EE policy yield a shorter service time as
system loads increase, while under the HP policy they give a longer service
time. However they all converge to the same service time rounded value of
1.35 (s) at high load.

This can be explained by the dominant utilization of high performing servers
in case of high system loads under EE policy, and generally under HP policy. A
better performing server requires a shorter amount of time to process the exact
job as a lower performing, but less energy demanding server. The anticipation
that the mean service times are not impacted by queueing schemes is confirmed
by Figure 4.

The mean response time is depicted in Figure 5. It can be seen that the
proposed models outperform the traditional model under both policies and in
every system load. In terms of response time, the Common Queue performs the
best, especially under high system utilization. The difference in performance
increase directly with system utilization: while no significant difference can be
discerned at 50%, a noticeable gap appears at 90%.

It can be inferred from Figure 6 that the expected waiting time of a job waiting
in a queue is highest for the Separate Queue buffering scheme, significantly
lower in the Class Queue buffering scheme, and lowest in the Common Queue
buffering scheme. This is explained by the fact that the Common Queue buffer-
ing scheme allows the most efficient utilization of resource because no job is
waiting when there is an idle server.

From Figs. 4, 5 and 6, it can be observed that the difference on the mean
response time between buffering schemes is due to the discrepancy of the mean

13

 1

 1.3

 1.6

 1.9

 2.2

50% 60% 70% 80% 90%

R
es

po
ns

e
T

im
e

(s
)

U

Separate-Queue
Class-Queue

Common-Queue

(a) EE policy applied

 1

 1.3

 1.6

 1.9

 2.2

50% 60% 70% 80% 90%

R
es

po
ns

e
T

im
e

(s
)

U

Separate-Queue
Class-Queue

Common-Queue

(b) HP policy applied

Fig. 5. Mean response time vs. system load

 4e-005

 0.01

 0.05

 0.1

 0.2

 0.4
 0.6

50% 60% 70% 80% 90%

W
ai

tin
g

T
im

e
(s

)

U

Separate-Queue
Class-Queue

Common-Queue

(a) EE policy applied

 4e-005

 0.01

 0.05

 0.1

 0.2

 0.4
 0.6

50% 60% 70% 80% 90%

W
ai

tin
g

T
im

e
(s

)

U

Separate-Queue
Class-Queue

Common-Queue

(b) HP policy applied

Fig. 6. Mean waiting time vs. system load

waiting time. For the EE policy, at U = 50%, the mean waiting time when
Common Queue is applied is 0.00046 s, while the mean waiting time when
the Separate Queue is applied is 0.00557 s. The difference is about 0.005 s,
which is negligible compared to the mean service time of 1.58441 s. Therefore,
no significant difference is observed concerning the mean response time at
U = 50% in Figure 5. However, for the EE policy and U = 90%, the mean
waiting time when Common Queue is applied is 0.302311 s, while the mean
waiting time when the Separate Queue is applied is 0.693619 s. The difference
is 0.3913 s, which is clearly observable in Figs. 5 and 6.

To quantitatively compare the capability of policies and buffering schemes to
fulfill deadlines (i.e. the probability that jobs should be executed within a cer-
tain deadline) we plot the cumulative distribution function (CDF) of response
times in Figure 7 and Figure 8, regarding to 50% and 90% of system load
with both policies applied. It is observed that the Class Queue and Common
Queue buffering schemes have the same performance concerning the capabil-
ity to meet deadlines, and they outperforms the Separate Queue schemes in
a certain ranges of deadlines. At the medium load, HP policy performs much
better because of prior to high performance processors. In the HP policy, the
execution of jobs ends up to 1 at limitation value of 6 seconds, while it is

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F
of

 R
T

Class-queue
Common-queue
Separate-queue

(a) EE policy applied

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F
of

 R
T

Class-queue
Common-queue
Separate-queue

(b) HP policy applied

Fig. 7. CDF of response times at U = 50%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F
of

 R
T

Class-queue
Common-queue
Separate-queue

(a) EE policy applied

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F
of

 R
T

Class-queue
Common-queue
Separate-queue

(b) HP policy applied

Fig. 8. CDF of response times at U = 90%

the value of 10 seconds in the EE policy. However, at 90% system load, when
processors in three sites of every model are utilized quite equally, there is no
noticeable difference between the two policies.

3.2.2 Energy Consumption

 1500

 1600

 1700

 1800

 1900

 2000

50% 60% 70% 80% 90%

A
E

_{
no

-s
w

itc
h}

(W
.s

/jo
b)

U

Separate-Queue
Class-Queue

Common-Queue

(a) EE policy applied

 1500

 1600

 1700

 1800

 1900

 2000

50% 60% 70% 80% 90%

A
E

_{
no

-s
w

itc
h}

(W
.s

/jo
b)

U

Separate-Queue
Class-Queue

Common-Queue

(b) HP policy applied

Fig. 9. AEno−switch vs. system load

15

 1300

 1400

 1500

 1600

 1700

50% 60% 70% 80% 90%

A
A

E
(W

.s
/jo

b)

U

Separate-Queue
Class-Queue

Common-Queue

(a) EE policy applied

 1300

 1400

 1500

 1600

 1700

50% 60% 70% 80% 90%

A
A

E
(W

.s
/jo

b)

U

Separate-Queue
Class-Queue

Common-Queue

(b) HP policy applied

Fig. 10. AEswitch−off vs. system load

In Figures 9 and 10, the energy consumption per job is compared when idle
servers are not switched off and are switched off, respectively. It can be ob-
served that the energy consumption is independent of the scheduling schemes.

When idle servers are not switched off (Figure 9), the average operating ener-
gies of both policies have the greatest difference noticeable at medium system
load, where EE consumes 1769.27 W.s/job and HP 1989.82 W.s/job. The en-
ergy consumption per job converges to 1550 W.s/job as the load increases.

When idle servers are switched off (Figure 10), the HP and EE policies show
opposing tendencies: surprisingly, with HP priority, the energy consumption
per job decreases as system load grows, while AEswitched−off increases with
EE priority. The phenomenon can be explained by the trade-off between per-
formance and energy saving. At medium system load, most job requests are
executed on servers operating with lower energy cost, thus the energy dedi-
cated to the execution of jobs is significantly smaller (1399 W.s/job vs. 1649
W.s/job). As demand for jobs grows, the use of high performance servers
becomes inevitable, since the policies are based on shortest queue. In con-
sequence, the difference in AE between SQEE and SQHP decreases at high
system load (1510 W.s/job vs 1535 W.s/job at 90% of utilization).

The impact of saving energy by switching off servers is illustrated in Figure 11.
It is observed that the saving decreased as the load is increased.

3.2.3 DVFS

To investigate the impact of DVFS, we create a scenario (applying Common
Queue buffering scheme) where processors reduce their frequency and voltage
compared to the full power (at %100 target load). In this scenario, the ssj ops

value (corresponds to 70% of the full capacity) and the power consumption of
the servers applying DVFS when they execute jobs are as follows:

16

 1000

 1100

 1300

 1600

 2000

50% 60% 70% 80% 90%

M
ea

n
sy

st
em

 e
ne

rg
y

co
ns

um
pt

io
n(

W
.s

/jo
b)

U

No switch-off
Switch-off

(a) EE policy applied

 1000

 1200

 1400

 1600

 1800

 2000

50% 60% 70% 80% 90%

M
ea

n
sy

st
em

 e
ne

rg
y

co
ns

um
pt

io
n(

W
.s

/jo
b)

U

No switch-off
Switch-off

(b) HP policy applied

Fig. 11. Mean energy consumption vs. system load

• Acer AW2000h-Aw170h F2 (Intel Xeon E5-2670): ssj ops is 4517449 and
the power is 1169W.
• Acer AW2000h-AW170h F2 (Intel Xeon E5-2660): ssj ops is 3706521 and
the power is 881W.
• PowerEdge R820 (Intel Xeon E5-4650L): ssj ops is 1961157 and the power
is 317W.

In Figures 12 and 13, we plot the average response time and the average energy
consumption per job vs load for the DVFS scenario and the scenario (denoted
as “no DVFS”) with the full processing capacity. It is worth emphasizing that
at the same load value the number of arriving jobs is less in the DVFS scenario
than in the scenario at the full processing capacity (note that DVFS and “no
DVFS” also switch off idle servers). The impact of DVFS is quite drastic: the
increase in the average response time is much higher than the reduction in the
average energy consumption per job.

 1

 1.2

 1.5

 1.8

 2.2

 2.6

50% 60% 70% 80% 90%

R
es

po
ns

e
T

im
e

(s
)

U

DVFS+Switch-off
No DVFS

(a) EE policy and Common Queue
applied

 1

 1.2

 1.5

 1.8

 2.2

 2.6

50% 60% 70% 80% 90%

R
es

po
ns

e
T

im
e

(s
)

U

DVFS+Switch-off
No DVFS

(b) HP policy and Common Queue
applied

Fig. 12. Average response time vs. system load

In Figures 14, 15 and 16, we plot results when DVFS and “no DVFS” handle
the same number of jobs by keeping the same arrival rate. As anticipated,
the price of DVFS is the degradation in the quality of service compared to
a case when processors function at their full processing capacity, which is

17

 800

 1000

 1200

 1400

 1600

 1800

50% 60% 70% 80% 90%

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n(

W
.s

/jo
b)

U

DVFS+Switch-off
No DVFS

(a) EE policy and Common Queue
applied

 800

 1000

 1200

 1400

 1600

 1800

50% 60% 70% 80% 90%

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n(

W
.s

/jo
b)

U

DVFS+Switch-off
No DVFS

(b) HP policy and Common Queue
applied

Fig. 13. Mean energy consumption vs. system load

clearly observable in Figure 14. However, the energy consumption of DVFS is
higher than the non-DVFS when EE policy and Common Queue are applied.
The impact of DVFS on the energy consumption is only observed for the HP
policy and Common Queue buffering (see Figure 16). The results illustrate
that DVFS should be carefully tuned if one wants to apply DVFS to reduce
the energy consumption of computational clusters.

 0.8

 1.1

 1.5

 1.8

 2.2

 2.5

9.0 10.8

R
es

po
ns

e
T

im
e

(s
)

λ

DVFS+Switch-off
No DVFS

(a) EE policy and Common Queue
applied

 0.8

 1.1

 1.5

 1.8

 2.2

 2.5

9.0 10.8

R
es

po
ns

e
T

im
e

(s
)

λ

DVFS+Switch-off
No DVFS

(b) HP policy and Common Queue
applied

Fig. 14. Average response time vs. λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F
of

 R
T

x (seconds)

No DVFS,lambda = 9.0
DVFS+Switch-off,lambda = 9.0

No DVFS,lambda = 10.8
DVFS+Switch-off,lambda = 10.8

(a) EE policy and Common Queue
applied

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F
of

 R
T

x (seconds)

No DVFS,lambda = 9.0
DVFS+Switch-off,lambda = 9.0

No DVFS,lambda = 10.8
DVFS+Switch-off,lambda = 10.8

(b) HP policy and Common Queue
applied

Fig. 15. CDF of response times

18

 1200

 1400

 1600

 1800

 2000

9.0 10.8

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n(

W
.s

/jo
b)

λ

DVFS+Switch-off
No DVFS

(a) EE policy and Common Queue
applied

 1200

 1400

 1600

 1800

 2000

9.0 10.8

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n(

W
.s

/jo
b)

λ

DVFS+Switch-off
No DVFS

(b) HP policy and Common Queue
applied

Fig. 16. Mean energy consumption vs. λ

4 Conclusion

In this paper we presented a generalized model for the performance evaluation
of scheduling compute-intensive jobs with unknown service times in compu-
tational clusters. We gave an implementation of this model on three schemes
(Separate Queue, Class Queue and Common Queue), differing in the way in-
coming jobs are buffered, and on two job-scheduling policies (SQEE, SQHP),
prioritizing either energy efficiency or high performance. We defined a ranking
methodology of physical servers, which is used to schedule jobs.

Numerical results show that the buffering schemes do not affect the energy con-
sumption of the investigated clusters. However, they have a significant impact
on the mean response time and mean waiting time of incoming jobs. Further-
more, the Common Queue and Class Queue schemes markedly outperform the
Separate Queue scheme. Therefore, a good buffering scheme can result in im-
proved overall cluster performance without increased power consumption and
energy cost. Furthermore, Dynamic Voltage and Frequency Scaling should be
carefully applied for the purpose of reducing the energy consumption of com-
putational clusters.

Acknowledgement

The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-
0001 project. The project has been supported by the European Union, co-
financed by the European Social Fund.

19

References

[1] I. Foster, “The anatomy of the grid: enabling scalable virtual organizations,”
The International Journal of High Performance Computing Applications,
vol. 15, no. 3, pp. 200–222, 2001.

[2] B. Yagoubi and Y. Slimani, “Dynamic load balancing strategy for grid
computing,” Transactions on Engineering, Computing and Technology, vol. 13,
pp. 260–265, 2006.

[3] G. Terzopoulos and H. D. Karatza, “Performance evaluation of a real-time grid
system using power-saving capable processors,” The Journal of Supercomputing,
vol. 61, no. 3, pp. 1135–1153, 2012.

[4] A. Tchernykh, J. M. Ramı́rez, A. Avetisyan, N. Kuzjurin, D. Grushin, and
S. Zhuk, “Two level job-scheduling strategies for a computational grid,” in
Proceedings of the 6th international conference on Parallel Processing and
Applied Mathematics, PPAM’05, (Berlin, Heidelberg), pp. 774–781, Springer-
Verlag, 2006.

[5] S. Zikos and H. D. Karatza, “Resource allocation strategies in a 2-level
hierarchical grid system,” Simulation Symposium, Annual, vol. 0, pp. 157–164,
2008.

[6] S. Zikos and H. D. Karatza, “A clairvoyant site allocation policy based on service
demands of jobs in a computational grid,” Simulation Modelling Practice and
Theory, vol. 19, no. 6, pp. 1465–1478, 2011.

[7] S. Zikos and H. D. Karatza, “The impact of service demand variability on
resource allocation strategies in a grid system,” ACM Trans. Model. Comput.
Simul., vol. 20, pp. 19:1–19:29, Nov. 2010.

[8] Y. He, W. Hsu, and C. Leiserson, “Provably efficient online non-clairvoyant
adaptive scheduling,” in Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pp. 1 –10, march 2007.

[9] S. Zikos and H. D. Karatza, “Communication cost effective scheduling policies
of nonclairvoyant jobs with load balancing in a grid,” Journal of Systems and
Software, vol. 82, no. 12, pp. 2103–2116, 2009.

[10] T. V. Do and C. Rotter, “Comparison of scheduling schemes for on-demand
iaas requests,” Journal of Systems and Software, vol. 85, no. 6, pp. 1400–1408,
2012.

[11] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for
system-level dynamic power management,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 8, pp. 299 –316, june 2000.

[12] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced
CPU energy,” in Proceedings of the 1st USENIX conference on Operating
Systems Design and Implementation, OSDI ’94, (Berkeley, CA, USA), USENIX
Association, 1994.

20

[13] S. Zikos and H. D. Karatza, “Performance and energy aware cluster-level
scheduling of compute-intensive jobs with unknown service times,” Simulation
Modelling Practice and Theory, vol. 19, no. 1, pp. 239–250, 2011.

[14] K. Gkoutioudi and H. D. Karatza, “Multi-criteria job scheduling in grid using
an accelerated genetic algorithm,” J. Grid Comput., vol. 10, no. 2, pp. 311–323,
2012.

[15] C. Hertel, Implementing CIFS - The Common Internet File System. Prentice
Hall, 2003.

[16] B. Callaghan, B. Pawlowski, and P. Staubach, “NFS Version 3 Protocol
Specification.” RFC 1813 (Informational), June 1995.

[17] P. Fishwick, “Simulation toolkit.” http://www.cs.sunysb.edu/~algorith/

implement/simpack/implement.shtml.

[18] SPEC, “Acer AW2000h-Aw170h f2 (intel xeon e5-2670) machine.” http://

www.spec.org/power_ssj2008/results/res2013q1/power_

ssj2008-20121212-00590.html, February 2013.

[19] SPEC, “Acer AW2000h-Aw170h f2(intel xeon e5-2660) machine.” http://www.
spec.org/power_ssj2008/results/res2012q4/power_

ssj2008-20120918-00546.html, October 2012.

[20] SPEC, “PowerEdge
r820 (intel xeon e5-4650l) machine.” http://www.spec.org/power_ssj2008/

results/res2012q4/power_ssj2008-20121113-00586.html, November 2012.

[21] Standard Performance Evaluation Corporation. http://www.spec.org/.

[22] SPEC, “ssj ops.” http://www.spec.org/power/docs/SPECpower_

ssj2008-Result_File_Fields.html#Ops.

21

