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Abstract 

Retinoids are morphogens and have been implicated in cell fate commitment of embryonic 

stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. 

However, transcriptional co-factors required for cell and gene-specific retinoid signaling are not 

known. Here we show that Protein aRginine Methyl Transferase (PRMT) 1 and 8 have key roles 

in determining retinoid regulated gene expression and cellular specification in a multistage 

neuronal differentiation of murine ESCs. PRMT1 acts as a selective modulator, providing the 

cells with a mechanism to reduce the potency of retinoid signals on regulatory “hotspots”. 

PRMT8 is a retinoid receptor target gene itself and acts as a cell type specific transcriptional co-

activator of retinoid signaling at later stages of differentiation. Lack of either of them leads to 

reduced nuclear arginine methylation, dysregulated neuronal gene expression and altered 

neuronal activity. Importantly, depletion of PRMT8 results in altered expression of a distinct set 

of genes, including markers of gliomagenesis. PRMT8 is almost entirely absent in human 

glioblastoma tissues. We propose that PRMT1 and PRMT8 serve as a rheostat of retinoid 

signaling to determine neuronal cell specification in a context-dependent manner, and might also 

be relevant in the development of human brain malignancy. 
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1. Introduction 

Animal cells in developing embryos receive positional signals from diffusible molecules, called 

morphogens. Retinoic acid (RA), a natural metabolite of vitamin A, has been proposed to be a 

vertebrate morphogen [1, 2]. Molecularly, RA acts via the activation of RAR:RXR heterodimers. 

RARs and RXRs are two subfamilies of nuclear receptors (NRs) that bind to DNA motifs called 

RA-response elements (RAREs), typically arranged as direct repeats (DR), and regulate 

transcription [3]. Unliganded RAR:RXR heterodimers bind to co-repressor complexes and are 

thought to maintain target genes in a repressed state [4]. Ligand binding stimulates a cascade of 

events resulting in the release of the co-repressor complexes, recruitment of transcriptional co-

activators and thus initiation of transcription [5, 6]. However, the composition of co-activator and 

co-repressor complexes is cell-type and context dependent and contributes to cell specification 

and potentially gene-specific transcription [7]. 

Members of the Protein aRginineMethyltransferase (PRMT) family have been shown to act as 

nuclear receptor co-activators [8-11]. Based on their enzyme activity PRMTs are grouped into 

three groups. Type I enzymes (PRMT1, 2, 3, 4, 6 and 8) catalyze the formation of asymmetric 

dimethylarginine (aDMA) residues while the Type II (PRMT5) enzyme catalyze the formation of 

symmetric dimethylarginine (sDMA) residues. Both Type I and II enzymes generate 

monomethylarginine (MMA) intermediates. The Type III enzyme (PRMT7) only generates a 

MMA mark [12]. 

Importantly, asymmetric arginine methylation is associated with cellular differentiation [13, 14]. 

Early studies revealed high level of aDMA in the nervous system [15], however expression 

profile of Type I PRMTs and their functional contribution to neurogenesis remained largely 

uncharacterized [16-19]. 
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PRMT1 is a major type of protein arginine methyltransferase and the most studied one [20]. 

Importantly, PRMT1 null mice die at an early stage, indicating its essential role in embryonic 

development [17]. PRMT1-dependent methylation of Arg3 on H4 tail peptides facilitates P300-

mediated histone H4 acetylation in vitro [21-23]. These studies collectively suggest that PRMT1 

is likely to collaborate with P300 to regulate transcription. 

Mechanistically, PRMT1 dimerization/oligomerization or heterodimerization may be required for 

PRMT1 to achieve its co-activator function [24]. A comparison of mammalian PRMTs revealed 

that PRMT8 is PRMT1’s closest paralogue within this enzyme family, with an identical exon 

structure and a brain specific expression pattern and can form a heterodimer with PRMT1 [25]. 

In this work, we explored the mechanistic and functional role of PRMT1 and PRMT8 using a 

multistage differentiation model of mouse embryonic stem cells (ESCs) to neurons. Our findings 

implicate asymmetric arginine methylation as a novel way to regulate the potency of retinoic acid 

regulated transcriptional response. We show that PRMT1 and PRMT8 are linked and act as part 

of a rheostat to integrate retinoid signaling into neuronal specific gene expression governed by 

retinoids with implications to neurological disorders. 

 

2. Materials and methods 

Additional details about all of the mehods listed below, information about the antibodies used and 

related citations can be found in the Supporting Information/Extended Experimental Procedures. 

mESC cultureand neural differentiation 

Wild type and genetically modified (see in the text) mouse ESCs (kind gift of Tomo Saric and 

Istvan Szatmari) were cultured on 0.1% gelatin coated plates in feeder-free condition in 5% CO2 

at 37˚C. Cells were differentiated through embryoid body formation [26]. 

Ligands and treatment 
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Cells were treated with vehicle (dimethylsulfoxide) or with the following ligands: LG268 (a gift 

from R. Heyman; Ligand Pharmaceuticals, San Diego, CA), RA (Sigma) or AM580 [27]. 

Gene silencing assays 

shRNA lentiviral plasmids (MISSION shRNA, TRCN0000018490-493 and TRCN0000097479-

482) were purchased from Sigma for targeting the mouse PRMT1 and PRMT8, respectively.  

Chromosome counting 

Cells were treated with colcemid (Sigma) for mitotic arrest and harvested by standard hypotonic 

treatment and methanol: acetic acid (3:1) fixation. Slides were prepared by standard air-drying 

method. Twenty DAPI stained chromosomal spreads were counted in each case. 

Teratoma assay 

Mouse ESCs were trypsinized and resuspended in 0.9% normal saline at a concentration of 5x106 

cells ml-1. SCID mice were anesthetized, and 100 µl of the cell suspension was injected into the 

lower leg. After 4~6 weeks, the teratomas were surgically dissected, fixed, embedded in paraffin 

and sectioned. The sections were then hematoxylin and eosin stained. 

Real-time quantitative RT-PCR 

Total RNA was isolated with TRIZOL reagent (Invitrogen). cDNA synthesis was performed with 

High Capacity cDNA Reverse Trancription kit (Applied Biosystems) according to the 

manufacturer’s recommendation. Quantitative PCR was performed using real-time PCR (ABI 

PRISM 7900, Applied Biosystems). Gene expression was quantified by the comparative CT 

method and normalized to Gapdh. Values are expressed as mean ± SD of the mean. GraphPad 

Prism version 5.02 was used for data interpretation.  The sequences of the primers and probes are 

available upon request.  

Calcium imaging, loose-patch and whole-cell patch-clamp recording  

ESCs were differentiated to neurons for 16 days. Whole cell patch clamp and calcium imaging  
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experiments were conducted on these cells to investigate their functional properties. For the 

measurement of intracellular calcium concentration changes, cells were and loaded with the 

calcium indicator dye Oregon Green 488 BAPTA-1, AM. Calcium imaging measurements has 

been was carried out as described by Koszeghy et al [28] with minor modifications. Patch clamp 

experiments were conducted similarly as in Koszeghy et al [28] with some alterations. 

RNA-seq and analysis 

RNA-Seq library was prepared from two biological replicates by using TruSeq RNA Sample 

Preparation Kit (Illumina) according to manufacturer protocol. Illumina RNA-sequencing was 

performed using standard procedures at the Centre National de Genotypage (CNG) Paris, France. 

The TopHat-Cufflinks-CummeRbund toolkit trio was used for mapping spliced reads, making 

transcript assemblies, and getting, sorting and visualizing gene expression data. Series accession 

number: SRP042072 / PRJNA248061. 

Microarray analysis 

Data has been analyzed using GeneSpring v12.6. All microarray data from this study have been 

submitted to the Gene Expression Omnibus (Series accession number: GSE37060 and 

GSE37060).  

Genelists were imported into IPA (Ingenuity® Systems, www.ingenuity.com) to carry out 

pathway analysis. 

Enrichment of histone modification 

Cells were washed and labeled with rabbit anti-H4R3me2a primary antibody diluted 800× in 1% 

BSA / 1×PBS / 5mM EDTA at 4ºC overnight using a total volume of 150 µl labeling solution on 

each slides. Data evaluation and hardware control was performed by the iCys 3.4 software for 

Windows XP. 

Chromatin immunoprecipitation (ChIP) and sequencing 
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ChIP-qPCR and ChIP-seq experiments were carried out as previously described [29], with minor 

modifications. Primary analysis of the ChIP-seq raw reads has been carried out using the ChIP-

seq analyze command line pipeline. IGV was used for data visualization. 

All ChIP-seq data from this study have been submitted to the Sequence Read Archive (SRA), 

NCBI (Series accession number: SRP042072 / PRJNA248061). 

Tissue samples 

Glioblastoma and normal brain tissues were collected during neurosurgical operations in the 

Department of Neurosurgery, University of Debrecen. Normal samples were collected either 

during functional neurosurgery for epilepsy or non-tumor herniated brain tissue during tumor 

surgery. Sections for histological analysis were cut from the same samples used for mRNA 

analysis. All procedures were approved by the National Ethical Committee, and every patient 

signed an informed consent form. 

 

3. Results 

Asymmetric arginine methylation is present in distinct stages of retinoic acid induced 

neural differentiation 

To explore the involvment of arginine methylation in neuronal development, we set up an 

embryonic stem cell-based model system (Fig.1A). The four stages are: (I) undifferentiated 

embryonic stem cells, (II) aggregates of spontaneously differentiating cells (termed embryoid 

bodies (EBs)) (III) cells commited to neuroectoderm as a result of all-trans retinoic acid (RA) 

treatment and (IV) the fully differentiated neuronal cells [26]. Importantly, these terminally 

differentiated neurons have electrophysiological properties similar to those brain-derived neurons 

and show positive staining for synapsin (Fig.1B, Supporting Information Fig.S1A), this is in line 

with the findings of others on ESC derived neurons differentiated using the same method [30].  
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This model system allows a systematic step-by-step analysis of early cell fate commitment as 

well as late neural cell type specification. As Supporting Information Fig.S1B shows these stages 

can be characterized by distinct gene expression signatures. Undifferentiated ESCs express high 

level of stem cell specific Oct3/4 [31], while upon induction of spontaneous differentiation the 

level of Oct3/4 is declining. Treatment with RA causes the activation of retinoic acid signaling as 

it is reflected by the increased Rarβ expression. At this stage cells become Pax6-positive neural 

progenitor cells with the characteristics of radial glial cells [26]. Members of the Hox-family, 

such as Hoxb1, are also induced. In the last stage, high expression of Tuj1 and Dcx, two well 

established markers of neurogenesis can be detected [32]. 

Using this multistage differentiation system, we have found that proteins with symmetric and 

asymmetric dimethylated arginine (sDMA and aDMA) residues are present in ESCs (Fig.1C and 

Supporting Information Fig.S1C). Asymmetric arginine methylation level of these proteins was 

changing dynamically during retinoic acid induced neural differentiation, suggesting either an 

increased level of target proteins or overall Type I enzyme-activity. A 68 kDa protein (likely 

Sam68, a previously identified arginine methyltransferase target) [33] showed dramatically 

increased Asym24 level. Increased expression of Sam68 during neural differentiation could be 

also detected (Supporting Information Fig.S1C and S1D). Importantly, symmetric arginine 

methylation was not altered significantly (Fig.1C and Supporting Information Fig. S1C).  

As the next step, we assessed the expression profile of PRMT-family members. Gene expression 

data obtained from RNA-seq in undifferentiated ESCs revealed the high level expression of 

PRMT1 in undifferentiated cells, suggesting its dominant role in ESCs arginine methylation 

(Fig.1D). RT-qPCR validation confirmed that PRMT1 is highly expressed in ESCs and its 

expression remained constant during neural differentiation showing a slight increase upon RA-
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treatment (Fig.1E). Other Type I PRMTs, responsible for aDMA were less abundant in ESCs, but 

PRMT2, PRMT6 and PRMT8 showed significantly increased gene expression in differentiated 

neurons. In line with the unaltered sDMA level, expression of Type II PRMT5 was not changed 

(Fig.1E). 

Importantly, we found that asymmetric arginine dimethylation of Histone 4 aRginine 3 

(H4R3me2a) also indicated increased asymmetric arginine methylation upon differentiation 

(Fig.1F). H4R3me2a mark and the identified Sam68 methylation are deposited by PRMT1 and its 

closest paralogue PRMT8 [25, 34], however, their functional redundancy is not understood yet. 

These results drew our attention to the importance of PRMT1 and PRMT8 in neurogenesis. 

PRMT1 maintained a more or less even protein level during the course of RA-dependent neural 

differentiation, while PRMT8 was induced upon RA treatment and was present only in 

differentiated neurons (Fig.1G). H4R3me2a and PRMT8 showed nuclear localization, while 

PRMT1 could also be detected in the cytoplasm of differentiated neurons (Fig.1H). 

 

PRMT1 is responsible for arginine methylation in ESCs and affects transcription 

As a next step we established PRMT1 and PRMT8 knockdown ESCs to get functional insights 

into the role of these two proteins in neurogenesis. Although PRMT1 knockout ESCs were 

established previously [17], a proper genetic control was not available for comperative studies. 

Thus, we established PRMT1 and PRMT8 knockdown ESCs using shRNA based gene silencing 

(Fig.2A and 2B; Supporting Information Fig.S2A-S2F) in addition to PRMT1 knockout cells 

(Supporting Information Fig.S2G). Analysis of asymmetrically arginine dimethylated proteins 

using anti-ASYM24 antibody revealed hypomethylation of certain cellular proteins in PRMT1-

depleted ESCs (Fig.2B, Supporting Information Fig.S2G). PRMT1 was mainly localized in the 

cytoplasmic fraction, however asymmetric arginine methylation was more abundant in the 
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nucleus (Fig.2C, Supporting Information Fig.S1C). ASYM24 decorated signal intensity 

decreased in both fractions as the result of PRMT1 silencing. The total amount of PRMT1 

mediated H4R3me2a histone modification was also decreased (Fig.2D), further demonstrating 

the functional consequences of the loss of PRMT1 activity and indicating the role of PRMT1 in 

the regulation of chromatin. PRMT1-depleted or knockout cells showed typical ESC morphology 

and positive staining for well-established markers of pluripotency (Fig.2E, Supporting 

Information Fig.S2H). 

To clarify the transcriptional consequences of the reduced level of PRMT1 in ESCs we carried 

out global transcriptional analyses using RNA-seq. Pathway analysis clarified that the 165 

differentially expressed genes are mainly related to cellular movement (Hspb1, Fgfbp1, Ctgf, 

Cyr61), proliferation and p53-signaling (Camk2n1, Igfbp3, Smad7, Tpm1), tight junction and 

cytoskeletal elements (Myl9, Thbs1, Sepp1) (Fig.2F, Supporting Table 1). A role for PRMT1 in 

many of these cellular function has been previously suggested in other cellular model systems 

[35, 36]. Importantly, typical pluripotency markers were not affected by the loss of PRMT1, 

suggesting that PRMT1 in contrast to CARM1, is not required for the maintenance of 

pluripotency [14]. Importantly, 39 out of 165 significantly regulated genes showed upregulation 

in PRMT1 depleted ESCs vs. control cells, suggesting the loss of repression on these genes in 

hypomethylated cells (Fig.2F). Taken together, data obtained from gene-expression analysis 

indicate that PRMT1, beside its known transcriptional co-activator  function, has a repressive 

feature on a set of genes, which might be relevant in various cellular functions. 

Importance of arginine methylation of co-regulators was demonstrated by others [37, 38]. It has 

been also shown that methylation of Arg3 on H4 tail peptides facilitates P300-mediated histone 

acetylation in vitro [21-23]. In order to see whether P300 and PRMT1 are present in one complex 

in ESCs we carried out co-immunprecipitation experiments. Several asymmetrically arginine 
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methylated proteins were co-immunprecipitated by P300 but not with the isotope control 

(Fig.2G). Moreover, the asymmetric arginine methylation of these proteins were PRMT1-

dependent. 

To understand the contribution of PRMT1-mediated arginine methylation in P300-mediated 

transcriptional and epigenetic program of ESCs we determined the P300 cistrome in the presence 

and absence of PRMT1. We could identify 3420 consensus P300 binding sites present in both D3 

and E14 control ESCs (see Supporting Information). Motif analysis revealed that P300 is mainly 

recruited to the stem cell specific transcription factor Oct3/4, Sox2, Klf4, Esrrb and Nanog 

(Fig.2H). Considering only those P300 bindings that were detectable and significant in both D3 

and E14 cells between control and PRMT1-depleted cells we could identify only ~90 genomic 

regions. Half of these regions showed increased P300 occupancy in PRMT1 knockdowns 

(Fig.2I). We could identify only few examples where PRMT1-dependent P300 recruitment were 

coupled to differential gene expression (eg. Igsf21, Ankrd35, Sema3e, Colec12). These results 

suggest that, at least in undifferentiated ESCs, P300 occupancy is dominantly PRMT1-

independent. 

We next evaluated the differentiation potential of the PRMT1-depleted cells. Genome-wide 

comparison and RT-qPCR validation of spontaneously differentiated control and hypomethylated 

cells showed that classical lineage markers of endoderm, mesoderm and ectoderm were similarly 

induced upon spontaneous differentiation (Supporting Information Fig.S3A-S3C). Injection of 

PRMT1-/- ESCs into immunodeficient mice resulted in teratoma formation with obvious 

differentiated structures from all three germinal layers, excluding the possibility that residual 

PRMT1, present in knockdown cells, is sufficient for differentiation (Fig.2J). PRMT1-/- cells 

were also able to differentiate to Vimentin+ mesenchymal cells and TroponinC+ cardiomyocytes 
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(Supporting Information Fig.S3D), suggesting that cells can undergo differentiation to various 

cell types in the absence of PRMT1. 

To identify differentiation-related signaling pathways that were affected in hypomethylated cells, 

we compared the gene expression profile at day 4 of differentiation. Pathway analysis based on 

altered expression of Dusp1, Fos, Smad3, Tgfb3, etc predicted RXR:LXR and RXR:RAR 

activation as one of the top canonical pathways being re-activated in the absence of PRMT1 

(Fig.2K). 

 

PRMT1 selectively modulates the regulation retinoid target-genes 

Retinoic acid (RA), acting through the activation of RXR:RAR, is a general inducer of ESCs 

differentiation [39]. In order to characterize the early response of RA in PRMT1-depleted cells, 

we performed genome-wide comparison of gene expression in RA treated embryoid bodies (day 

4). 12h RA treatment changed the expression of 127 genes in control cells and 492 genes in 

hypomethylated cells (Fig.3A). While most of the known retinoid targets, such as Cyp26a1, 

Dhrs3, Dleu7, Rbp1, Stra8 were induced to the same degree in PRMT1-depleted and control 

cells; Hoxa1, Hoxb1, Stra6, Pmp22 and Spsb1 also under retinoic acid control [40, 41], showed 

higher induction in hypomethylated cells (Fig.3B, Supporting Information Fig.S4 and S5A, S5B). 

Importantly, many genes (eg. Foxd3, Otx2) showed more pronounced RA-induced repression in 

PRMT1 knockdown cells, while Zfp428 and Fgf5 were only repressed in PRMT1-depleted cells 

(Fig.3B, Supporting Information Fig.S4). These results suggest a gene-selective regulatory effect 

of PRMT1 in the RA response of ESCs. 

To further investigate this gene-selectivity at the promoter level, we transfected ESCs with the 

Hoxb1-promoter, containing the endogenous DR2 RA-response element, linked to a luciferase 

reporter gene [41] (Supporting Information Fig.S5C). Transient overexpression of PRMT1 
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resulted in a decrease in basal transcription level of Hoxb1 (Fig.3C). To a lesser extent Pmp22 

and Spsb1 enhancers were also suppressed in the presence of PRMT1. The ligand induced 

retinoid response of Hoxb1 and Spsb1 were also decreased (Fig.3D). Accordingly, in the absence 

of PRMT1 RA-dependent transcriptional activity was markedly increased (Fig.3E). Importantly, 

PRMT1 had no effect in case of a synthetic canonical DR2 response element (Fig.3F), suggesting 

a context-dependent and promoter-selective effect of PRMT1 in the regulation of retinoid 

response. 

P300 has been implicated as a regulator of retinoid response in F9 cells [42, 43]. In order to see, 

whether PRMT1-modulated, retinoic acid induced gene expression correlates with P300 binding, 

we first determined the RA-dependent P300 cistrome in ESCs. Upon RA treatment there was a 

~3 fold reduction in the number of P300 binding sites in control cells (Fig.3G) and also the 

occupancy was substantially decreased (Fig.3H). We could observe similar P300 redistribution in 

the PRMT1 knockdown cells (Supporting Information Fig.S6A). 

P300 occupancy highly correlates with active enhancers [44]. As a next step, we identified the 

P300 occupied genomic regions in the close proximity of the 398 PRMT1-sensitive RA regulated 

genes (see Fig.3A) to identify putative common master regulators of these genes. The motif 

analysis of these genomic regions revealed the enrichment of Oct3/4, Sox2 and Nanog beside the 

RAR:RXR bound NR half site (Fig.3I). Interestingly, comparison of promoter regions of 

PRMT1-insensitive (eg. Cyp26a1, Dleu7, Rbp1, Stra8, Dhrs3) and PRMT1-sensitive (eg. Hoxa1, 

Hoxb1, Spsb1, Pmp22, Stra6 and Foxd3, Otx2, Zfp428, Fgf5) genes showed remarkable 

differenes in the overall enrichment of Oct3/4, Sox2 and Nanog (Fig.3J). Moreover, P300 

redistribution could also only be detected on promoter region of PRMT1-sensitive genes (Fig.3J, 

Supporting Information Fig.S6B and S6C), suggesting that P300 and PRMT1 are likely to co-

regulate such transcriptional “hotspots”. 
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To get further mechanistic evidence that these regions are targeted by PRMT1, we determined the 

H4R3me2a signal in the proximity of PRMT1-sensitive and insensitive genes. As shown in 

Fig.3K and Supporting Information Fig.S6D, Hoxa1, Spsb1, Otx2 and Zfp428 enhancers showed 

clear PRMT1-dependent enrichment of H4R3me2a at these regions, while P300 recruitment was 

not altered (Fig.3L and Supporting Information Fig.S6E). RA-dependent changes showed no 

clear tendency between the compared regions (Supporting Information Fig.S6F, S6G). In 

accordance with the P300 ChIP-seq data ChIP-qPCR validation confirmed that RA treatment 

selectively increased the recruitment of P300 to the promoter of Hoxa1 but not to Cyp26a1 or 

Dhrs3 (Fig.3M and Supporting Information Fig.S6H, S6I). Spsb1 already showed increased P300 

binding which was not further enhanced (see also Fig. 3J) As expected, Otx2 and Zfp428 showed 

decreased P300 binding upon RA treatment (Supporting Information Fig. S6H and S6I). 

Interestingly, we detected a constant Oct3/4 binding on the Hoxa1 enhancer even after 24h of RA 

treatment (Fig. 3M), while  Oct3/4 occupancy has significantly decreased on the enhancer of 

repressed Otx2 (Fig. 3N). These data collectively suggest that RA reguleted enhancers can be 

grouped into PRMT1 sensitive and insensitive ones with distinct transcription factor complexes. 

The PRMT1 sensitive ones are characterized by PRMT1-dependent H4R3me2a, OSKN and P300 

binding. 

 

PRMT8 is a retinoic acid inducible co-activator of retinoid signaling 

As it was shown in Figure 1C, retinoic acid treatment resulted in changes in asymmetric arginine 

methylation. Comparison of the expressional profile of PRMTs upon short-term RA-induction of 

day 4 EBs revealed the early upregulation of PRMT8 (Fig.4A and 4B). To prove that PRMT8 is 

regulated in a RA-dependent manner, ESCs were treated with RAR and RXR specific ligands. 

PRMT8 expression could be induced by RAR specific ligand AM580, but as expected RXR 

Page 16 of 59



 

17 

 

specific LG268 had no effect (Supporting Information Fig.S7A). Moreover, RA-dependent 

induction of PRMT8 showed a similar time- and dose dependence as Hoxb1 and Cyp26a1, well-

known direct targets of the retinoid signaling pathway (Fig.4B, Supporting Information Fig.S7B 

and S7C) [45]. A recently published RAR ChIP-seq in F9 cells [46] allowed us to identify a 

putative enhancer in the promoter region of PRMT8. This region (-1400 to -1450 relative to TSS) 

contains a direct repeat with no spacer (AGGTCAAGGTCA, DR0), that can bind RAR:RXR 

(Supporting Information Fig. S7D). Transfecting an enhancer trap vector that contains this 

~300bp genomic region of the PRMT8 promoter, we could validate functionally the element in 

response to RA treatment in ESCs (Fig.4C). These results confirm PRMT8 as a direct RA-

regulated gene. Importantly, using the same construct, we could not detect RA-dependent 

induction of PRMT8 in HEK293T cells (Fig.4C). This suggests a more complex scenario, where 

the presence of additional cell-type specific factors are required for proper enhancer activity. 

PRMT1 and PRMT8 exhibit high sequence similarities [25], thus we were interested whether loss 

of PRMT8 may also affect retinoid response. Unexpectedly, loss of PRMT8 had an inhibitory 

effect on the retinoid response. In a dose-curve comparison of Hoxb1 and Cyp26a1 induction loss 

of PRMT8 resulted in a significant increase in the half maximal effective concentration (EC50) 

value of RA (Hoxb1: 4.8nM to 860nM, Cyp26a1: 148nM to 808nM) (Fig.4D). To validate the 

co-regulatory function of PRMT8 in RAR:RXR signaling, enhancer trap vectors of Hoxb1 or 

Cyp26a1 RARE were used in a luciferase reporter assay (see Supporting Information Fig. S5D). 

As shown in Figure 4E, ESCs transfected with the reporter alone showed RA-dependent 

induction, which was further stimulated by co-transfection of PRMT8. In contrast, loss of 

PRMT8 resulted in a decreased signal intensity (Fig.4F). Moreover, the decrease observed in 

PRMT8-depleted cells could be restored by the overexpression of PRMT8 (Supporting 

Information Fig.S7E). In contrast to PRMT1, loss of PRMT8 also resulted in a decrease in the 
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signal when an artificial canonical DR2 containing reporter was used (Fig.4G), suggesting that 

PRMT8 is a general co-activator of RA signaling. To dissect the role of PRMT1 and PRMT8, we 

used PRMT8 depleted cells on PRMT1-/- background (double knockdown). The inhibitory effect 

in the absence of PRMT8 was found to be independent of the presence of PRMT1 (Fig.4H). 

 

PRMT1 and PRMT8 regulate subtype specification of differentiating neural cells 

Next, we studied if loss of either or both PRMT1 and/or PRMT8 has  consequences on retinoic 

acid induced neuronal differentiation and/or gene expression. The stability of the knockdowns 

has been confirmed in differentiated neurons (Fig.5A, Supporting Information Fig.S8A). 

Importantly, loss of either PRMT1 or PRMT8 resulted in hypomethylation of neurons as detected 

by anti-ASYM24 antibody (Fig.5A). 

At day 12 of differentiation the knockdown derived neural cells showed similar morphology and 

high expression of typical neural markers, such as Lhx1, Pax6 or Tuj1 to wild-type cells (Fig.5B, 

Supporting Information Fig.S8B). PRMT1 knockout cells could also differentiate to TUJ1+ 

neurons (Supporting Information Fig.S8C), further demonstrating that PRMT1 is not an essential 

factor in early neural differentiation. In contrast, genome-wide analysis of day 16 samples 

revealed dysregulation of several genes in PRMT1 or PRMT8-depleted cells (Fig.5C). Loss of 

either PRMT1 or PRMT8 resulted in mainly the downregulation of genes. Interestingly, grouping 

of the differentially expressed genes identified that a large fraction of the genes (473 out of 947) 

showed similar dysregulation in both knockdown cell types (Fig.5D). We validated Phox2b 

(Paired-Like Homeobox 2b), an important transcription factor of neural specification [47] and 

Gfra2 (GDNF Family Receptor Alpha), a regulator of neurite outgrowth [48] by RT-qPCR 

(Fig.5E). Gene expression data suggested that PRMT1 and PRMT8 might act together in the 
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regulation of these genes. Indeed, as shown in Figure 5F, co-immunoprecipitation studies 

confirmed that the two proteins are likely present in one complex.  

To further evaluate the characteristics of early progenitors and differentiated neurons, we 

compared the ratio of dividing vs. non-dividing cells. In the progenitor phase mitotic index of 

PRMT1-depleted cells were significantly higher (Fig.5G). Cell cycle analysis of differentiated 

cells at day 16 also suggested that PRMT1-depleted cells show significantly higher number of 

non-terminally differentiated, dividing cells (Fig.5H).  

Importantly, expression level of ES markers and mesoderm, endoderm or early ectoderm lineage 

markers were similarly low in neurons differentiated from hypomethylated cells (Supporting 

Information Fig.S8D-F), further confirming that loss of PRMT1 and PRMT8 do not inhibit the 

neural differentiation per se. Ingenuity pathway analysis of the 473 genes (Fig.5D) implicated 

PRMT1 and PRMT8 in neuronal synaptic formation, glutamate receptor signaling and axonal 

guidence (Supporting Information Fig.S8G). Next, we studied functional properties of PRMT1 or  

8-depleted neurons by calcium imaging. This method allowed us to compare >200 cells per 

condition. Importantly, the frequency of calcium peaks and the frequency of action potentials 

recorded in the same neuron showed a significant correlation (Supporting Information Fig.S9A), 

in accordance with earlier observations [28, 49, 50]. Approximetly 50% of the cells showed 

neural activity in the control and PRMT8 knockdown cells, while in the PRMT1-depleted cell 

culture the rate of active cells was almost 100% (Fig.5I). As a remarkable difference, we found 

that the frequency of fast calcium signals per active cells was dramatically dropped in PRMT8-

knockdowns, suggesting an important role of PRMT8 in the establishement of neuronal 

excitability (Fig.5J). Another interesting observation was the frequent occurance of synchronous 

activity among the cells of the PRMT1 knockdown cultures (see synchronous events labelled 

with asterisks in Fig.5K).  
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PRMT8 regulates distinct set of genes and loss of PRMT8 is a marker of glioblastoma 

multiforme 

The gene expressional analysis also revealed that several genes, such as Cxcr4, Dhfr or Efemp1 

previously linked to glial differentiation and gliomagenesis [51-53] were expressed differentially 

only in PRMT8 knockdown cells (Fig.6A and 6B). Using PRMT1-PRMT8 double knockdown 

cells we found that these genes are PRMT8-dependent (Fig.6C-E). 

We used a large number of human primary glioma samples to confirm that PRMT8-dependent 

Cxcr4 and Efemp1 indeed show dysregulation in glioblastoma multiforme (GBM) (Fig.6F). 

Prompted by this finding and a result of a recent study that linked SNP variation in PRMT8 

promoter to familial gliomagenesis [54] we also determined expression of PRMT8 in these 

samples. Very strikingly, PRMT8 itself showed a substantially lower expression level in GBM 

samples, while PRMT1 did not show a difference between the groups (Fig.6F). These data 

indicate that loss of PRMT8 and genes regulated by it are putative markers in GBM and might 

participate in its development. 

 

4. Discussion 

We combined genetic approaches with genome-wide gene expression technologies to unravel the 

contribution of PRMT1 and PRMT8 to in vitro neuronal differentiation. We propose the 

following model (Fig. 6G). There are two distinct phases during the course of neural 

differentiation: in early stages only PRMT1 is expressed. PRMT1 acts as a selective repressor of 

a large set of retinoic acid induced genes (Hoxa1, Hoxb1, Pmp22 and Spsb1). The promoter 

regions of these PRMT1-sensitive genes are regulatory “hotspots” as they are occupied by 

Oct3/4, Sox2, Klf4 or Nanog (OSKN) and show P300 recruitment upon RA-treatment. Genes, 
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such as Otx2 and Zfp428, that are active in ESCs and occupied by OSKN and P300 are also 

influenced by PRMT1. This way PRMT1 arms the cells with a negative-feedback mechanism to 

limit RA’s effect on a subset of target genes. 

Subsequently, the RA signal directly induces the expression of PRMT8. In this late stage, 

PRMT8 collaborate with PRMT1, but PRMT8 might also exist as a homodimer [25]. PRMT8 in 

such complex acts as a co-activator that potentiates retinoid response. In this way PRMT1 and its 

closest paralogue PRMT8, integrate the morphogenic RA signal in a temporal manner acting as a 

rheostat. Loss of PRMT1 or PRMT8 results in mostly similar changes in neural specification, but 

PRMT1and PRMT8 have independent regulatory potential as well. 

PRMT1 has been previously identified as a ubiquitously expressed secondary co-activator for 

nuclear receptors. It has been also shown to bind the activation domain (AD2) of primary co-

activators and enhance transcription [10]. In contrast to this, our results now show a repressive 

function of PRMT1, confirming in principle the findings of previous studies  providing evidence 

for co-repressor roles for PRMT1 in different cellular context [55, 56]. These opposing roles in 

gene expression regulation are not unique to PRMT1, similar phenomenon has been reported in 

case of other co-activators as well [57]. 

Gene and enhancer selectivity is also a novel and striking feature of PRMT1, however the exact 

mechanism remained unclear. Strikingly, PRMT1-sensitive sites show characteristics of cell-type 

specific regulatory “hotspots” [58]: key transcription factors, such as Oct3/4, Sox2, Klf4 and 

Nanog are enriched and mark these genomic regions. Importantly, the co-activator P300 is also 

selectively recruited to these sites upon RA-treatment, providing further evidence to the existence 

of distinct epigenetic states between PRMT1-sensitive and insensitive sites. We found no 

indication that loss of PRMT1 would affect P300 recruitment to these “hotspots”, but we could 

detect a remarkable decrease in the level of H4R3me2a mark at these sites in PRMT1-depleted 
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cells, suggesting the presence of PRMT1 at these sites. PRMT1-insensitive regions did not show 

PRMT1-dependent H4R3me2a enrichment, however few exceptions could be noticed (eg. Rarβ). 

Due to the lack of reliable ChIP-grade anti-PRMT1 antibody, we could not get reproducible data 

so far which would provide direct evidence for the presence of PRMT1 at these sites though. A 

potential mechanism for the enhancer selective effect of PRMT1 is that P300 or a member of this 

protein complex is arginine methylated and this affects its co-activator function. This possibility 

would also explain why only P300 recruiting genomic regions are PRMT1-sensitive. Such 

arginine methylation dependent regulation of CBP has been demonstrated by others [37, 38] and 

we also could detect the presence of arginine methylated proteins in the P300 complex. Further 

studies will be required to evaluate this possibility in neuronal differentiation. 

The result of  loss of PRMT1 function in differentiation neurons is altered gene expression. Gene 

expression data obtained can be used in further studies to mechanistically describe the PRMT-

dependent transcriptional network in neurogenesis. Importantly, the detected gene expressional 

differences could be linked to various functional defects. First, we found that loss of PRMT1 

resulted in a delay in the cell cycle exit and elevated number of mitotically active cells. These 

finding are in line with a study which has identified the dominantly PRMT1-mediated H4R3me2a 

as a marker of post-mitotic neurons [59].  

A recent study identified methylation of brain sodium channel Nav1.2 in response to seizures 

[60]. Our preliminary comparison of electrophysiological properties of the knockdown cells led 

us to the conclusion that PRMT1 and PRMT8 likely responsible for the proper function of ion 

channels. Further in vitro and animal studies will be required to identify more precisely the 

functional consequences of loss of these PRMTs. 
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Dysregulation of RA-signaling has also been implicated in disease emergence and progression 

[61]. It is an intriguing question whether PRMT1 and PRMT8 are involved in pathological 

conditions of the brain as well. Our pathway analysis indicates a role of PRMT1 and PRMT8 in 

MAPT (microtubule-associated protein tau), APP (amyloid beta A4 protein), PSEN1 (presenilin 

1) and BDNF (brain-derived neurotrophic factor) related pathways. Moreover, several genes 

showing dysregulated expression in knockdowns  have been also identified in a recent study as 

potential markers of human AD [62] (Supporting Information Fig.S9B and S9C). As PRMT1 or 

PRMT8 expression has not been investigated in such disease conditions it is still very tentative to 

suggest PRMT1 and PRMT8 in the progression of AD. However the observed gene expression 

pattern propound further in vivo correlative as well as mechanistic studies. 

A previous comparison of mammalian PRMTs revealed that PRMT1 and PRMT8 share the 

highest degree of identity within this enzyme family [25]. Not only the amino acid sequence of 

the two proteins, but also the intron-exon boundaries are well conserved, suggesting that PRMT8 

evolved by the duplication of PRMT1. Importantly, a recent study demonstrated that despite the 

similarities, PRMT1 and PRMT8 have non-redundant functions in the neural development of 

Zebrafish [63], suggesting that PRMT8 has acquired novel functions since its duplication. Our 

genome-wide screen and double knockdown experiments also provide evidence of a PRMT1-

independent program of PRMT8.  

Dysregulation of RA-signaling has been also implicated in progression of different subtypes of 

cancers [64]. In a recent study, up-regulation of PRMT1 has been reported in glioma tissues and 

glioma cell lines [65]. In order to revisit this issue we used a large patient cohort and found that 

the RNA levels of PRMT8 are almost completely down-regulated in glioma tissues. A trivial 

explanation may be that PRMT8, a highly specific neural marker, is not expressed in astrocyte-

derived tumors [66]. Alternatively, loss of PRMT8 positively affects astrocyte differentiation, 
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resulting in a shift in cell fate commitment. Further in vivo and in vitro studies are required to 

provide evidence to this. Our results show that loss of PRMT8 results in a decrease in the level of 

Gfra2 and increase in the level of Cxcr4, Dhfr and Efemp1 in a single and double knockdown 

cells as well. These are established markers of astrocyte-derived glioma [52, 67, 68]. 

Furthermore, a recent genome-wide linkage study of glioma families linked a PRMT8 related 

SNP to gliomagenesis [54]. Downstream effect of this SNP has not been linked to the expression 

of PRMT8 yet. Although further work is required, these results already provide strong support to 

the  notion that PRMT8 might be a genetic risk factor in gliomagenesis and also a putative 

therapeautic target. Regardless of the mechanism, our results implicate PRMT8 as a biomarker of 

glioma tissues. 

 

5. Conclusions 

In summary, the results of this study suggest a novel and so far unprecedented mechanism of how 

two evolutionary linked proteins with similar enzymatic activity can have distinct effects on 

cellular differentiation through the integration of retinoid signaling acting as parts of a rheostat. 

These results provide a new conceptual framework for the interpretation of retinoid signaling in 

neuronal differentiation and potentially in other tissues as well. These proteins, PRMT1 and 

PRMT8, can also be targeted pharmacologically to modulate neuronal differentiation in vitro or 

in vivo and might also be a relevant target in a major unresolved clinical issues such as gliomas 

and Alzheimer’s disease. 
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8. Figure legends: 

Figure 1. Asymmetric arginine methylation is changing in distinct stages of retinoic acid induced 

neural differentiation 
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(A) Flow diagram of the multistage differentiation procedure that involves: (I) undifferentiated 

stem cell culture, (II) embryoid body formation, (III) all-trans retinoic acid (RA) treatment and 

(IV) neuronal culture on Poly-L-ornithin/laminin-coated plates. Indicated stages are shown with 

bright field microscopy. 

(B) Typical single-cell voltage clamp and current clamp measurements of terminally 

differentiated (day 16) neurons. Upper panel: Voltage-gated inactivating and non-inactivating 

inward currents (from -30mV) are marked on the figure. Lower panel: ESC-derived neurons were 

used in depolarising current injection steps. AP-trains with over-shoot are shown. 

(C) Immunoblot analysis of different stages of neural differentiation. Samples were collected at 

day 0, 4, 8, 12 and 16 of neural differentiation. Anti-ASYM24 antibody recognizes proteins that 

contain arginines that are asymmetrically dimethylated. Anti-SYM11 antibody recognizes 

proteins that contain arginines that are symmetrically dimethylated. GAPDH serves as a loading 

control. 

(D) Genome browser view of the merge of mESC RNA-seq, and RNA Pol and H3K27ac ChIP-

seq activity on the indicated loci. 

(E) Expression profile of PRMTs as detected by RT-qPCR. RNA samples were collected at day 0 

(I), day 4 (II), day 8 (III) and day 12 (IV). Gene expression data are expressed as a ratio of the 

indicated genes’ transcript relative to Gapdh. 

(F) Total intranuclear levels of Histone 4 aRginine 3 asymmetric dimethylation as compared by 

indirect immunofluorescence, on a cell-by-cell basis, by laser scanning cytometry. The columns 

show the means of the fluorescence intensity distribution histograms obtained for G1 cells in four 

independent experiments (p≤0.001). The bars on the columns are SDs. 
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(G) Immunoblot analysis of different stages of neural differentiation. Samples were collected at 

day 0, day 4, day 8 (+/- RA treatment) and day 12 (+/- RA treatment). GAPDH serves as a 

loading control. 

(H) Localization of H4R3me2a, PRMT1 and PRMT8 (each in red) in stem cell derived neuronal 

cells as detected by immunocytochemistry. Neurons were co-stained by anti-TUJ1 antibody 

(green). Arrows indicate the cytoplasmic localization of PRMT1. 

ns - non significant, *P ≤0.05, **P ≤0.01 *** P ≤0.001 

Abbreviations: LIF, leukemia inhibitory factor; βME, beta-mercaptoethanol; FBS, fetal bovine 

serum. 

 

Figure 2. PRMT1 is responsible for arginine methylation in ESCs and affects transcription 

(A) Genome browser view of RNA-seq data comparing the PRMT1 coding locus in the indicated 

ESCs. Biological duplicates are shown. 

(B) Immunoblots of protein samples from the indicated D3 ESCs lines; probed for expression of 

PRMT1, ASYM24 and OCT3/4. ACTIN was used as a loading control. 

(C) Western blot analysis of subcellular fractionations. Cytoplasmic (CYTO) and nuclear 

fractions (NUC) of undifferentiated shSCR and shPRMT1 ESCs were isolated and probed for 

PRMT1 and ASYM24. GAPDH is a loading control for cytoplasm. 

(D) Total intranuclear levels of H4R3 asymmetric dimethylation as compared by indirect 

immunofluorescence between undifferentiated shSCR and shPRMT1 ESCs. 

(E) Characterization of unmodified D3, shSCR, shPRMT1 and shPRMT8 ESCs. Expression of 

ES marker SSEA-1 and OCT3/4 were determined by immunocytochemistry. Alkaline 
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Phosphatase (AP) staining show undifferentiated colonies. Chromosome counting was performed 

as described in the Supporting Information. 

(F) Heatmap display of gene expression data of D3, E14 and PRMT1-/- ESCs, normalized to D3 

and shSCR vs shPRMT1 ESCs, normalized to shSCR. Total RNA was isolated from 

undifferentiated ESCs and RNA-seq experiment was carried out to determine those genes  that 

were significantly (FDR ≤0.1 and Log2FC ≥1.2) up-regulated (n=39, red), or down-regulated 

(n=126, blue) in both PRMT1-/- and shPRMT1 ESCs vs. their control. See also Supporting Table 

1. 

(G) Asym24 immunoblot of P300 interacting complex. Nuclear extract of control and PRMT1-

depleted cells were used to co-immunprecipitate proteins with anti-P300 or IgG isotype control.  

(H) De novo identification of motifs under peaks from P300 ChIP-seq data using Homer. Top 

1000 binding sites in each samples and the matrix files of the best motifs (highest score) were 

used for forced motif search in D3 shSCR and E14 shSCR P300 ChIP-seq samples. % refers to 

the ratio of peaks having the given motif. 

(I) Histogram of PRMT1-dependent P300-binding. P300 ChIP-seq was carried out in shSCR and 

shPRMT1 D3 and E14 ESCs. Regions showing significantly different (p<0.05) P300 occupany 

between shSCR and shPRMT1 in both D3 and E14 were identified by differential binding 

analysis, resulting 40 up- (red) and 47 down-regulated (black) P300 occupied genomic regions in 

shPRMT1 (dashed line) vs shSCR (continual line). 

(J) Hematoxylin and eosin staining of teratoma derived from PRMT1-/- ESCs. Cells were 

injected into lower leg of SCID mice at a concentration of 5x106 cells ml-1.After 4~6 weeks the 

teratoma were surgically dissected, fixed, embedded in paraffin and sectioned. 
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(K) Ingenuity pathway analysis of genes differentially expressed at day 4. Microarray experiment 

was carried out using RNA samples obtained from shSCR and shPRMT1 ESCs differentiated for 

4 days. Top biological functions predicted by the software and p-values are shown. 

ns - non significant, *P ≤0.05, **P ≤0.01 *** P ≤0.001 

Abbreviations: AP, alkaline phosphatase. 

 

Figure 3. PRMT1 acts as selective regulator of retinoid regulated genes 

(A) Proportional Venn-diagram that represents the overlap between gene expression changes in 

retinoid induced differentiation of control (shSCR) and PRMT1-depleted cells as determined by 

microarray. Embryoid bodies at day 4 were treated with DMSO or 5µM retinoic acid (RA) for 

12h. 

(B) Gene expression changes from control and PRMT1-depleted cells upon RA-treatment. Cells 

were spontaneously differentiated for four days and then treated with RA or vehicle for 12h. Fold 

inductions were calculated from per chip normalized microarray data (vehicle vs. RA treated, n=3 

per condition) for each gene. Calculated values of PRMT-depleted cells then were normalized by 

values of the control. Red line shows when the induction is equal in both cell types (eg. Cyp26a1, 

Dhrs3). 

(C) PRMT1-dependent repression of retinoic acid-induced enhancers. pcDNA.3.1-PRMT1 

(PRMT1) or empty pcDNA3.1 (empty) plasmids were co-transfected with NHf290-Hoxb1-

Luciferase plasmid[41] or Pmp22 and Spsb1 enhancers cloned into Luciferase encoding vector 

(see Supporting Information Fig.S5C). Luciferase signal intensity was determined and 

normalized to βgal signal. 
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(D) RA-dependent activation of Hoxb1 promoter and Spsb1 enhancer. Indicated plasmids were 

co-transfected with NHf290-Hoxb1-Luciferase or Spsb1-Luciferase plasmid and cells were 

treated with RA. 

(E) NHf-Hoxb1-Luciferase plasmid was transfected into shSCR or shPRMT1 cells. Cells were 

treated with RA for 24h using the indicated ligand concentration and normalized luciferase values 

determined. 

(F) DR2 retinoic acid response element containing luciferase plasmid was co-transfected with 

pcDNA3.1-empty or pcDNA3.1-PRMT1 expression vector. Cells were treated with RA for 24h 

using the indicated concentrations.  

Normalized luciferase activity was determined and the mean of triplicate determinations +/- SD is 

shown. 

(G) Area-proportional Venn-diagram of RA induced P300 redistribution. Cistromes of P300 were 

determined in control (vehicle) and RA-treated (1µM, 24h) D3 shSCR ES cells by ChIP-seq. 

(H) Histogram of the genome-wide occupancy of common P300 peaks (n=1103) in vehicle and 

RA-treated (1µM, 24h) cells, centralized to common P300 occupied regions. 

(I) De novo identification of motifs under P300 peaks from ChIP-seq data using Homer. P300 

occupied genomic regions were identified in promoter regions of the 398 PRMT1-sensitive RA-

regulated genes (see Fig.3A). % of targets refers to the ratio of peaks having the given motif. 

(J) Genome browser view of the indicated ChIP-seq data on PRMT1-sensitive and PRMT1-

insensitive loci. H3K27ac, RXR and P300 ChIP-seq data were obtained from untreated ESCs and 

cells treated with 1µM RA for 24h. 

(K) H4R3me2a ChIP-qPCR signals on the indicated individual enhancers (see Fig.3J) as detected 

in untreated shSCR, shPRMT1 and shPRMT8 ESCs. 
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(L) P300 ChIP-qPCR signals on the indicated individual enhancers as detected in untreated 

shSCR, shPRMT1 and shPRMT8 ESCs. 

(M) RAR, RXR, P300 and Oct3/4 ChIP-qPCR signals on the Hoxa1 enhancer (see Fig.3J) in 

undifferentiated and RA-treated ESCs. 

(N) P300 and Oct3/4 ChIP-qPCR signals on the Otx2 enhancer (see Fig.3J) in undifferentiated 

and RA-treated ESCs. 

ns - non significant, *P ≤0.05, **P ≤0.01 *** P ≤0.001 

Abbreviations: DR, direct repeat; Luc, luciferase; wt, wild-type; veh, vehicle. 

 

Figure 4. PRMT8 is a Retinoic Acid Receptor regulated gene and acts as a co-activator of 

retinoid signaling 

(A) Heatmap analysis of gene expression microarray data of PRMT family members. Values are 

normalized to undifferentiated ESCs (day 0). 

(B) Ligand response of PRMT8 upon RA treatment at various time points. Undifferentiated ESCs 

were treated for the indicated times with 1µM RA.Values are expressed as mean of technical 

triplicates ± SD of the mean. 

(C) TK-Luc-PRMT8 was constructed by cloning ~300bp promoter region of PRMT8, containing 

the DR0 element, into a TK-Luc-empty plasmid. ESCs or HEK293T cells were transiently 

transfected and treated with 0.1µM RA for 24h. Above the identified DR0 element and 

surrounding sequence is shown. 

(D) Dose response curves of Hoxb1 and Cyp26a1 as measured by RT-qPCR. shSCR and 

shPRMT8 ESCs were treated with the indicated concentrations of RA for 24h. EC50 values are 

shown. 
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(E) TK-Luc Hoxb1 or TK-Luc Cyp26a1 enhancer traps were constructed by cloning ~300bp 

regions of Hoxb1 and Cyp26a1, respectively (see Supporting Information Fig.S5D). ESCs were 

transfected along with pCMV-Tag2-empty or pCMV-Tag2-PRMT8 expression plasmid. Cells 

were treated with RA for 24h using the indicated ligand concentrations. 

(F) Hoxb1 (DR2) or Cyp26a1 (DR5) enhancer trap was transfected into shSCR or shPRMT8 

ESCs. Cells were treated with RA for 24h using the indicated ligand concentrations. 

(G) 2xDR2 retinoic acid response element containing luciferase plasmid was transfected into 

shSCR or shPRMT8 ESCs. Cells were treated with RA for 24h using the indicated ligand 

concentrations. 

(H) 2xDR2 retinoic acid response element containing luciferase plasmid was transfected into 

PRMT1 knockout (P1-/-) or shPRMT8 PRMT1 double “knockout” (P1-/- shP8) ESCs. Cells 

were treated with RA for 24h using the indicated ligand concentrations. Normalized luciferase 

values were determined and the mean of three determinations +/- SD are shown. 

ns - non significant, *P ≤0.05, **P ≤0.01 *** P ≤0.001 

Abbreviations: EC50, half maximal effective concentration; DR, direct repeat; P1-/- /shP8, 

PRMT1 knockout / shPRMT8. 

 

Figure 5. PRMT1 and PRMT8 affect neuronal differentiation 

(A) Immunoblot analysis of day 16 differentiated neurons derived from the indicated cell types 

probed for the indicated proteins. 

(B) TUJ1-staining of day 12 neurons. DAPI co-staining was used to visualize cell nuclei. 

(C) Heatmap display of microarray gene expression data obtained from D3, shSCR, shPRMT1 

and shPRMT8-derived neurons at day 16, normalized to D3 neurons. Hierarchical cluster 
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analysis is shown. Blue color indicates downregulated, red shows upregulated genes compared to 

D3-derived neurons. 

(D) Area-proportional Venn-diagram compares PRMT1-dependent and PRMT8-dependent gene 

expression changes in differentiated neurons. Cells differentiated for 16 days were used for 

microarray experiments. Significantly changing genes (FC≥1.5, p<0.05) were determined by 

comparing shSCR vs. shPRMT1 or shSCR vs. shPRMT8-derived neurons. 

(E) RT-qPCR validation of expression level of Phox2b and Gfra2 in the indicated cells. 

(F) Co-immunoprecipitation of PRMT1 by full-length FLAG-PRMT8. HEK293T cells were 

transfected with the indicated constructs. Anti-MYC antibody was used for immunoblot analysis. 

(G) Mitotic index of day 8 embryoid bodies were evaluated and compared by counting mitotic 

figures on H&E-stained slides. A representative mitotic figure and a rosettoid structure are 

shown. Average number of mitotic figures per 20 consecutive high-power fields (HPF, 40x 

magnification) is shown. 

(H) Cell cycle analysis of the differentiated shSCR, shPRMT1 and shPRMT8 knockdown cells. 

Nuclei of agarose embedded and permeabilized cells were stained with propidium iodide and 

measured by laser scanning cytometry. In the left panel, the bar charts show the percentage of 

cells in the different cell cycle phases. Error bars: SD calculated from n≥3 independent 

experiments. The dot-plots and DNA histograms (right panel) show one representative 

measurement for each cell line. In the case of shSCR and shPRMT1 neurons, the difference 

between the ratio of non-dividing and dividing cells ((G1+G0)/(S+G2+M)) was statistically 

significant (p=0,029; Mann Whitney rank sum test).  

(I) Ratio of cells with recorded fast calcium signal. Recordings and analysis has been carried out 

in the indicated ESC-derived neural cultures. A representative experiment is shown (>200 

measured neurons/condition). 
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(J) Counts of calcium signals per minute normalized to the number of cells with positive calcium 

signal. A representative experiment is shown (>200 measured neurons/condition). 

(K) Synchronous activity among the cells of the PRMT1 knockdown cultures. Synchronous 

events labelled with asterisks. Calcium imaging records of 6 randomly chosen ROIs / condition 

are shown. 

ns - non significant, *P ≤0.05, **P ≤0.01 *** P ≤0.001 

Abbreviations: WB, Western Blot; IP, Immunoprecipitation; HPF, high-power fields. 

 

Figure 6. Loss of PRMT8 results in a gene expression profile that resemble neurological disorder 

(A) Heatmap visualization of microarray data of the indicated glioma releated markers in ES-

derived neurons. Cells differentiated for 16 days were used for microarray experiments and data 

was normalized to wt D3-derived neurons.  

(B) Gene expression level of Cxcr4 and Dhfr as measured by RT-qPCR in day 16 ESC-derived 

neurons. 

(C) Gene expression level of PRMT8 in PRMT1 -/- shSCR vs. PRMT1 -/- shPRMT8 ESC-

derived neurons as measured by RT-qPCR at day 12 of differentiation. 

(D) Immunoblot analysis of TUJ1 in different stages of PRMT1 -/- shSCR vs. PRMT1 -/- 

shPRMT8 neural differentiation. Samples were collected at day 8, 12 and 16. GAPDH serves as a 

loading control. 

(E) Gene expression level of indicated genes in PRMT1 -/- shSCRvs PRMT1 -/- shPRMT8 ESC-

derived neurons as measured by RT-qPCR at day 14 of differentiation. 

(F) Gene expression level of Cxcr4, Efemp1, PRMT1 and PRMT8 as measured by RT-qPCR. 

Human normal (n=54) and glioblastoma multiforme (GBM) (n=83) samples were compared. 

Each dot represents an individual sample. 
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(G) Proposed model of PRMT1 and 8’s action on early and late stage of neuronal differentiation. 

PRMT1 is expressed in early stage and acts as a selective repressor of retinoic acid induced gene 

expression. PRMT1-sensitive (eg. Hoxb1) regions are occupied by Oct3/4, Sox2, Klf4 or Nanog, 

while PRMT1-insensitive sites (eg. Cyp26a1) are not enriched for these transcription factors. 

P300 is also selectively recruited to the PRMT1-sensitive sites only. H4R3me2a marks can be 

detected in a PRMT1-dependent manner on the close proximity of all these PRMT1-sensitive 

enhancers. PRMT1-sensitive, RA-repressed genes (eg. Otx2) also show P300 and OSKN 

occupancy in untreated ESCs. In the late stage, RA-induced PRMT8 are present in a complex 

with PRMT1 but PRMT8 might also exist as a homodimer [25]. PRMT8 in such complexes acts 

as a co-activator that potentiates retinoid response. Hox-genes, Mapt and Phox2b are regulated by 

both PRMT1 and PRMT8. Pathway analysis predicts REST, MAPT, APP, PSEN1 as upstream 

regulators responsible for dysregulated gene expression. PRMT8 has a PRMT1-independent 

regulatory potential as well, affecting gliomagenesis-related genes, such as Cxcr4, Dhfr or 

Efemp1.  
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Gene Location PRMT1 KO vs D3 PRMT1 KO vs E14 shPRMT1 vs shSCR 

log2FC p-value log2FC p-value log2FC p-value 

1700030C10Rik chr12:20810252-20821640 1.83372 5.00E-05 2.28297 5.00E-05 1.08975 5.00E-05 

2310046K01Rik chr2:151822246-151834994 1.02763 5.00E-05 1.9927 5.00E-05 0.649408 0.00025 

2610002M06Rik chrX:104978090-105011673 -1.25181 5.00E-05 -0.71153 5.00E-05 -0.52773 8.00E-04 

2900011O08Rik chr16:13986729-14101587 -1.43578 5.00E-05 -1.77644 5.00E-05 -0.62182 3.00E-04 

6230409E13Rik chr4:21858472-21928608 -0.999754 5.00E-05 -1.33394 5.00E-05 -0.71506 5.00E-05 

9130008F23Rik chr17:41012430-41017507 -3.86922 0.00075 -2.62254 0.00515 -1.49854 0.00025 

Aass chr6:23022172-23082986 -2.00649 5.00E-05 -2.53942 5.00E-05 -0.56045 0.00025 

Acta2 chr19:34315580-34329826 -7.32174 0.00075 -10.3179 0.00075 -0.80701 1.00E-04 

Adamts1 chr16:85794072-85803360 -3.80065 5.00E-05 -3.79962 5.00E-05 -1.25657 5.00E-05 

Aes chr10:81022304-81029109 1.20724 5.00E-05 0.443892 0.0016 0.490396 0.00035 

Ahr chr12:36182650-36219661 -0.733575 5.00E-05 -1.06212 5.00E-05 -0.55653 9.00E-04 

AI662270 chr11:83037077-83040086 -1.19181 5.00E-05 -1.05957 5.00E-05 -0.93374 5.00E-05 

Aim1 chr10:43670112-43724652 -1.88033 5.00E-05 -1.60654 5.00E-05 -0.71313 0.0012 

Ankrd1 chr19:36186454-36194334 -0.866334 0.01015 -3.24372 5.00E-05 -1.53165 2.00E-04 

Ankrd35 chr3:96474053-96494957 1.86417 5.00E-05 0.842451 5.00E-05 0.573932 9.00E-04 

Anxa1 chr19:20447923-20465161 -4.14478 5.00E-05 -4.73546 5.00E-05 -0.58817 8.00E-04 

Anxa3 chr5:97222403-97274987 -1.412 5.00E-05 -1.36884 5.00E-05 -0.71337 1.00E-04 

Atp10a chr7:65913571-66084796 -3.33172 5.00E-05 -3.47959 5.00E-05 -0.86429 5.00E-05 

Atp2a3 chr11:72774670-72806545 1.74777 5.00E-05 2.36242 5.00E-05 0.661102 5.00E-05 

AW551984 chr9:39394980-39411709 -1.14325 5.00E-05 -1.66055 5.00E-05 -0.64955 0.00025 

Bche chr3:73439730-73512337 -3.22899 5.00E-05 -2.00731 5.00E-05 -0.64838 0.00095 

Calcr chr6:3635719-3714713 -2.92656 5.00E-05 -1.86029 1.00E-04 -1.30968 5.00E-05 

Camk2n1 chr4:138011062-138016041 4.17485 5.00E-05 1.24493 5.00E-05 0.818474 5.00E-05 

Car2 chr3:14886425-14900770 -2.49805 5.00E-05 -2.23579 5.00E-05 -0.81198 5.00E-05 

Ccdc85a chr11:28285691-28484296 -2.64409 5.00E-05 -0.82887 0.00065 -0.61651 1.00E-04 

Cd59a chr2:103935957-103955508 -2.22883 5.00E-05 -1.13626 5.00E-05 -0.65355 3.00E-04 

Cdh2 chr18:16747385-16967558 -4.90404 5.00E-05 -4.24413 5.00E-05 -0.68073 5.00E-05 

Cdk14 chr5:4803384-5380251 -1.54955 5.00E-05 -1.07496 5.00E-05 -0.81221 3.00E-04 

Chrdl1 chrX:139720216-139828805 -2.75647 5.00E-05 -2.90885 5.00E-05 -1.17149 2.00E-04 

Chst1 chr2:92439863-92455409 -1.23383 0.00125 -2.1473 5.00E-05 -0.76301 1.00E-04 

Chst15 chr7:139427937-139509974 -0.724828 5.00E-05 -1.03064 5.00E-05 -1.15243 5.00E-05 

Cldn7 chr11:69778280-69781388 -0.813758 5.00E-05 -0.63703 1.00E-04 -0.57245 1.00E-04 

Clvs2 chr10:33232139-33344406 -3.84228 5.00E-05 -2.86465 5.00E-05 -1.1861 5.00E-05 

Col1a2 chr6:4455696-4491543 -3.94804 5.00E-05 -9.66705 5.00E-05 -0.82387 1.00E-04 

Col5a2 chr1:45431175-45560127 -3.34171 5.00E-05 -4.02944 5.00E-05 -0.97221 5.00E-05 

Colec12 chr18:9707645-9877993 -2.14771 5.00E-05 -1.5118 5.00E-05 -0.8756 5.00E-05 

Cpeb1 chr7:88491911-88599644 -0.536218 0.0015 -1.75171 5.00E-05 -0.58583 3.00E-04 

Crispld1 chr1:17717497-17756288 -3.42753 5.00E-05 -1.92292 5.00E-05 -1.21302 5.00E-05 

Csf1 chr3:107543965-107563387 -2.71659 5.00E-05 -4.20064 5.00E-05 -0.90157 9.00E-04 
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Ctgf chr10:24315247-24318488 -2.50087 5.00E-05 -2.54953 5.00E-05 -1.13214 5.00E-05 

Cthrc1 chr15:38908477-38918665 -0.75674 1.00E-04 -0.74237 2.00E-04 -0.84097 5.00E-05 

Cubn chr2:13197964-13413503 0.34178 0.01355 1.37041 5.00E-05 0.461708 0.0013 

Cyr61 chr3:145309934-145312949 -2.3809 5.00E-05 -2.46991 5.00E-05 -1.1706 5.00E-05 

Dcaf12l1 chrX:42139743-42143374 -1.19862 5.00E-05 -0.73228 5.00E-05 -0.81278 5.00E-05 

Ddx3y chrY:597157-623056 -1.32685 5.00E-05 -2.31784 5.00E-05 -0.85324 0.00035 

Dnaja4 chr9:54547365-54564124 -1.88232 5.00E-05 -1.79913 5.00E-05 -0.65074 1.00E-04 

Dppa3 chr6:122576441-122580289 -0.899457 5.00E-05 -2.97794 5.00E-05 -0.99738 5.00E-05 

Dtx4 chr19:12540825-12576486 -1.60719 5.00E-05 -2.10655 5.00E-05 -0.86347 5.00E-05 

Eif5a2 chr3:28680232-28697768 -0.728228 5.00E-05 -0.47744 0.00165 -0.46814 0.00095 

Elmo1 chr13:20182375-20700222 -0.665753 5.00E-05 -0.62048 1.00E-04 -0.57477 0.00015 

Enpp2 chr15:54670452-54751701 -5.29971 5.00E-05 -1.92725 5.00E-05 -0.93937 5.00E-05 

Erap1 chr13:74777319-74829323 -2.14088 5.00E-05 -0.82456 5.00E-05 -0.62681 6.00E-04 

Etv4 chr11:101631055-101646624 1.17857 5.00E-05 2.21751 5.00E-05 0.68176 5.00E-05 

Fam102b chr3:108773914-108830525 -0.520599 0.00165 -1.60277 5.00E-05 -0.5144 0.00125 

Fam120c chrX:147778765-147908677 1.2379 5.00E-05 0.534974 0.00085 0.701652 3.00E-04 

Fam46a chr9:85214045-85220757 -1.46585 5.00E-05 -1.00874 5.00E-05 -0.60492 3.00E-04 

Fgf13 chrX:56315327-56387613 -1.93367 5.00E-05 -1.81784 5.00E-05 -0.74374 1.00E-04 

Fgfbp1 chr5:44370098-44373001 -3.90251 5.00E-05 -1.86958 5.00E-05 -1.09523 5.00E-05 

Fgfr2 chr7:137305964-137410322 -0.834932 5.00E-05 -1.05924 5.00E-05 -0.51254 0.00065 

Fndc3c1 chrX:103615381-103680568 -4.52857 5.00E-05 -3.79785 5.00E-05 -0.81795 5.00E-05 

Frem2 chr3:53317859-53461277 -1.45557 5.00E-05 -1.86431 5.00E-05 -0.52122 0.00025 

Gab2 chr7:104230260-104457461 -1.40682 5.00E-05 -2.46838 5.00E-05 -0.71212 0.001 

Gad1 chr2:70327996-70440069 -1.52569 5.00E-05 -2.03477 5.00E-05 -0.56107 2.00E-04 

Gbp1 chr3:142257810-142282140 -4.99914 5.00E-05 -4.81088 5.00E-05 -1.03337 5.00E-05 

Gbp2 chr3:142283626-142300972 -4.29012 5.00E-05 -4.27035 5.00E-05 -0.87053 5.00E-05 

Gbp3 chr3:142223015-142236176 -5.40262 5.00E-04 -4.92103 5.00E-04 -1.03504 0.00015 

Gbp7 chr3:142193301-142213047 -3.60664 5.00E-05 -4.17095 5.00E-05 -0.90663 5.00E-05 

Gm13251 chr4:145728598-145749009 1.20067 5.00E-05 2.54502 5.00E-05 1.10747 5.00E-05 

Gm7325 chr17:45737915-45739051 0.593475 0.00015 1.87248 5.00E-05 0.970834 5.00E-05 

Gm8615 chr5:149931140-149993612 0.573727 0.00015 0.471491 0.0021 0.492085 0.00095 

Gna14 chr19:16510156-16685308 -0.889821 5.00E-05 -0.92787 5.00E-05 -0.8288 1.00E-04 

Gpm6b chrX:162676874-162826965 -1.16954 5.00E-05 -0.71357 0.00445 -0.9757 1.00E-04 

Gramd1c chr16:43980462-44028058 -1.76733 5.00E-05 -1.32769 5.00E-05 -0.85265 0.00045 

H19 chr7:149761436-149764051 -2.21183 5.00E-05 -1.74644 5.00E-05 -1.06596 5.00E-05 

Has2 chr15:56497181-56526101 -2.56874 5.00E-05 -1.90017 5.00E-05 -0.62228 6.00E-04 

Hdac1 chr4:129193347-129219890 1.78895 5.00E-05 2.35874 5.00E-05 0.762522 0.00025 

Hmga2 chr10:119798330-119913991 -0.813537 5.00E-05 -1.64483 5.00E-05 -0.59619 0.00045 

Hmgn3 chr9:83003548-83040214 -2.51204 5.00E-05 -2.1834 5.00E-05 -0.59777 0.0011 

Hspa8 chr9:40609355-40613282 0.742855 5.00E-05 0.519679 2.00E-04 0.715594 5.00E-05 

Hspb1 chr5:136363788-136365433 0.800543 5.00E-05 0.817489 5.00E-05 1.02759 5.00E-05 
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Id2 chr12:25778663-25780957 -1.63996 5.00E-05 -1.13785 5.00E-05 -0.78226 5.00E-05 

Igfbp3 chr11:7106095-7113926 -2.09348 5.00E-05 -1.964 5.00E-05 -0.76508 5.00E-05 

Igsf11 chr16:38902457-39027270 -1.99499 5.00E-05 -2.24447 5.00E-05 -0.83717 5.00E-05 

Igsf21 chr4:139582766-139802726 2.73105 5.00E-05 1.95693 5.00E-05 0.840501 5.00E-05 

Inhbb chr1:121312041-121318825 0.997349 5.00E-05 2.65833 5.00E-05 0.591109 5.00E-05 

Irs1 chr1:82229679-82288014 -2.83759 5.00E-05 -3.64504 5.00E-05 -0.74025 5.00E-05 

Jph1 chr1:16985020-17087970 -1.89612 5.00E-05 -1.57162 5.00E-05 -0.61068 4.00E-04 

Kcnj3 chr2:55289566-55447936 -5.88978 5.00E-05 -3.39887 5.00E-05 -0.76117 5.00E-05 

Kcnk1 chr8:128519001-128554585 -0.700896 5.00E-05 -0.59184 1.00E-04 -0.57311 0.00035 

Kctd12b chrX:150119696-150130823 -3.21317 5.00E-05 -2.31653 5.00E-05 -1.84932 5.00E-05 

Kif1a chr1:94912032-94998442 -1.78213 5.00E-05 -2.94451 5.00E-05 -0.72651 5.00E-05 

Klf6 chr13:5860734-5869639 -1.06601 5.00E-05 -1.038 5.00E-05 -0.50887 2.00E-04 

Krt19 chr11:100002125-100007233 -1.07321 5.00E-05 -1.18812 5.00E-05 -0.64269 5.00E-05 

Lama4 chr10:38685320-38829994 -2.08813 5.00E-05 -2.61885 5.00E-05 -0.75846 0.0013 

Lpl chr8:71404453-71430831 -1.32872 5.00E-05 -1.67174 5.00E-05 -0.7298 5.00E-05 

Mal2 chr15:54402920-54434401 -1.26894 5.00E-05 -0.92199 5.00E-05 -0.62483 9.00E-04 

Mapt chr11:104092749-104193407 2.84632 5.00E-05 2.73179 5.00E-05 0.754977 5.00E-05 

Mcf2 chrX:57309132-57400820 0.968176 5.00E-05 1.21632 5.00E-05 0.874408 1.00E-04 

Mcoln3 chr3:145784754-145803610 -1.55308 0.00035 -2.21241 5.00E-05 -0.96224 5.00E-05 

Mfap3l chr8:63111656-63155528 -1.21868 5.00E-05 -1.55394 5.00E-05 -0.83347 5.00E-05 

Mgst1 chr6:138089057-138105273 -1.2109 5.00E-05 -1.61203 5.00E-05 -0.71538 5.00E-05 

Mlf1 chr3:67178018-67203922 -1.17853 5.00E-05 -1.48939 5.00E-05 -0.66325 2.00E-04 

Myl9 chr2:156601199-156607393 -4.24239 5.00E-05 -4.7499 5.00E-05 -0.94502 7.00E-04 

Ncoa4 chr14:32973077-32992549 2.82582 5.00E-05 2.09691 5.00E-05 0.997778 0.0011 

Nes chr3:87775014-87784373 -3.16089 5.00E-05 -2.56683 5.00E-05 -1.0488 5.00E-05 

Pax6 chr2:105376236-105537521 -3.21451 5.00E-05 -3.0544 5.00E-05 -0.80191 0.001 

Pcsk1 chr13:75227434-75269946 -1.54216 5.00E-05 -1.43255 5.00E-05 -0.7224 0.001 

Pde9a chr17:31523178-31613254 2.53226 5.00E-05 1.84753 5.00E-05 0.632934 8.00E-04 

Pdgfa chr5:139452928-139470907 1.17407 5.00E-05 1.20029 5.00E-05 0.785688 5.00E-05 

Pdlim3 chr8:46970838-47004900 -1.31697 0.0015 -4.17517 5.00E-05 -0.98907 5.00E-05 

Penk chr4:4060682-4065592 -2.49441 5.00E-05 -2.22269 5.00E-05 -0.77443 0.00015 

Pion chr5:20692084-20797519 -1.13982 2.00E-04 -2.69632 5.00E-05 -1.08871 5.00E-05 

Pkia chr3:7366603-7445365 -2.1954 5.00E-05 -1.33577 5.00E-05 -0.97775 5.00E-05 

Pla2g4a chr1:151676751-151808414 -2.4174 5.00E-05 -2.47701 5.00E-05 -0.86973 5.00E-05 

Pm20d2 chr4:33257381-33276712 -1.48276 5.00E-05 -1.51768 5.00E-05 -0.63003 5.00E-05 

Pof1b chrX:109752035-109812260 -3.48979 5.00E-05 -3.08002 5.00E-05 -0.90324 5.00E-04 

Polr3gl chr3:96381796-96398081 1.17243 5.00E-05 2.22132 5.00E-05 0.781693 5.00E-05 

Prmt1 chr7:52232124-52241790 -3.22664 5.00E-05 -2.42597 5.00E-05 -2.13685 5.00E-05 

Prom1 chr5:44384860-44492975 -1.807 5.00E-05 -1.87344 5.00E-05 -0.61318 1.00E-04 

Prtg chr9:72655080-72765114 -1.54327 5.00E-05 -2.27627 5.00E-05 -0.63292 5.00E-05 

Pvrl1 chr9:43552658-43615544 0.526535 6.00E-04 0.546627 5.00E-04 0.584936 0.00025 
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Rapgef3 chr15:97575200-97598097 2.65567 5.00E-05 1.62714 5.00E-05 0.748318 5.00E-05 

Rem2 chr14:55094936-55099271 -1.54936 5.00E-05 -1.91353 5.00E-05 -1.22567 5.00E-05 

Robo4 chr9:37209630-37221607 2.00539 5.00E-05 2.15718 5.00E-05 0.892419 0.0011 

Rpl21 chr5:147644465-147648608 0.699351 5.00E-05 0.51325 0.0018 0.581381 0.00085 

Rpl24 chr16:55966387-55971550 4.65949 5.00E-05 1.59877 5.00E-05 3.2531 2.00E-04 

Scg3 chr9:75491172-75531863 -2.85376 5.00E-05 -1.16249 0.01035 -1.02597 0.00055 

Sel1l3 chr5:53498321-53604691 -1.50661 5.00E-05 -2.01273 5.00E-05 -0.95405 5.00E-05 

Sema3c chr5:17080633-17236085 -4.30566 5.00E-05 -3.94691 5.00E-05 -1.20154 5.00E-05 

Sema3e chr5:14025275-14256689 -3.91725 5.00E-05 -3.06641 5.00E-05 -0.95584 5.00E-05 

Sema6a chr18:47404907-47528522 -4.44329 5.00E-05 -2.70868 5.00E-05 -0.66631 6.00E-04 

Sepp1 chr15:3220766-3230508 -2.12447 5.00E-05 -2.23704 5.00E-05 -0.6718 5.00E-05 

Sep-01 chr7:134357955-134361959 2.33373 5.00E-05 2.52384 5.00E-05 0.586146 5.00E-05 

Serpinb9b chr13:33119282-33132427 -1.78457 5.00E-05 -0.91234 5.00E-05 -1.14882 0.00085 

Setbp1 chr18:78947116-79306130 -1.46674 5.00E-05 -2.01701 5.00E-05 -0.68813 0.00065 

Sfrp2 chr3:83570242-83578236 -2.17096 5.00E-05 -3.06482 5.00E-05 -0.50099 0.00095 

Sik1 chr17:31981194-31992737 0.75926 5.00E-05 0.327054 0.02085 0.614043 5.00E-05 

Slc25a24 chr3:108926066-108971327 -1.66006 5.00E-05 -1.74601 5.00E-05 -0.64495 0.001 

Slc25a31 chr3:40512792-40530016 -0.741482 0.00105 -0.58178 0.00825 -0.79233 0.00125 

Slc39a8 chr3:135488454-135551536 -3.93631 5.00E-05 -1.15251 5.00E-05 -1.55514 5.00E-05 

Slc40a1 chr1:45964914-45982439 -1.52468 5.00E-05 -1.80446 5.00E-05 -0.60181 9.00E-04 

Slc6a7 chr18:61155033-61173853 3.13082 5.00E-05 0.687493 2.00E-04 0.871278 0.0013 

Smad7 chr18:75527018-75555588 0.573627 5.00E-05 1.3165 5.00E-05 0.707397 5.00E-05 

Sorbs2 chr8:46593141-46913260 -2.97706 5.00E-05 -2.5608 5.00E-05 -0.88513 5.00E-04 

St7 chr6:17699215-17893022 -1.26058 5.00E-05 -0.62256 0.00875 -0.74614 5.00E-04 

Stmn1 chr4:134024234-134029758 0.720447 5.00E-05 0.4846 0.0011 0.566525 4.00E-04 

Tagln chr9:45671773-45744141 -6.90224 0.00025 -7.9612 0.00025 -1.12309 5.00E-04 

Tbx3 chr5:120120677-120134610 1.07551 5.00E-05 1.61276 5.00E-05 0.904689 5.00E-05 

Tcl1 chr12:106454964-106460947 2.48719 5.00E-05 1.86504 5.00E-05 0.51919 0.00025 

Tgfbi chr13:56710963-56740700 2.28708 5.00E-05 0.700327 5.00E-05 0.793369 5.00E-05 

Tgm3 chr2:129838109-129876135 0.670486 5.00E-05 1.77105 5.00E-05 0.762677 0.00085 

Thbs1 chr2:117937657-117952869 -4.61257 5.00E-05 -6.2151 5.00E-05 -1.49919 5.00E-05 

Tmcc3 chr10:93977601-94053699 -1.24245 5.00E-05 -0.91384 5.00E-05 -0.60138 0.001 

Tmem30b chr12:74644100-74647382 -0.566376 6.00E-04 -0.53465 0.00115 -0.57181 0.00115 

Tmem47 chrX:78315982-78343214 -2.77613 5.00E-05 -1.16845 5.00E-05 -0.65156 5.00E-05 

Tmprss2 chr16:97786288-97832802 -1.10488 5.00E-05 -0.91877 0.00085 -1.07183 0.00045 

Tns1 chr1:73956804-74171021 1.15144 5.00E-05 0.48111 6.00E-04 0.76259 5.00E-05 

Tpm1 chr9:66870399-66897020 -2.17158 5.00E-05 -2.77872 5.00E-05 -0.59161 5.00E-05 

Tpm4 chr8:74659190-74677028 -0.58716 5.00E-05 -0.76154 5.00E-05 -0.50075 0.00025 

Tspan7 chrX:10062241-10173730 -0.960243 5.00E-05 -0.8971 5.00E-05 -0.53634 4.00E-04 

Unc45b chr11:82724754-82778352 -2.29703 5.00E-05 -1.58203 5.00E-05 -0.95523 5.00E-05 

Wls chr3:159502658-159598139 -0.590246 5.00E-04 -1.7651 5.00E-05 -0.71641 5.00E-05 
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Zfp521 chr18:13845522-14131242 -1.08291 5.00E-05 -0.80898 0.00115 -0.68869 4.00E-04 

Zfp677 chr17:21520711-21536229 -1.53443 5.00E-05 -2.64016 5.00E-05 -0.81992 1.00E-04 

Zfp953 chr13:67440244-67461508 0.413845 0.00695 1.87281 5.00E-05 0.579432 6.00E-04 
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