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Introduction and objectives

In recent years, the reactions of chlorine and hypochlorous acid with amines, 

amino acids and peptides have been the subject of intensive research due to their 

relevance in environmental chemistry, and in vivo processes. Depending on the 

conditions, these reactions lead to the formation of a wide variety of N-

chloramines. Various amino compounds can react with chlorine or hypochlorous 

acid in chlorination wastewater and drinking water treatment technologies. N-

chloro amino acids are secondary disinfectants, because they are involved in the 

destruction of microorganisms. Environmental concerns have generated immense 

interest in the chemistry of these compounds and the products of their 

decomposition. 

The same reactions are also important in biological systems. During 

inflammatory processes in the body, hypochlorous acid is formed in the 

myeloperoxidase enzyme catalyzed reaction between chloride ion and hydrogen 

peroxide. In subsequent oxidation processes, hypochlorous acid chlorinates amino 

acids and related compounds in a few seconds. N-chloro amino acids are unstable 

on a longer timescale, and their decomposition yields various intermediates and 

products. While these compounds play an important role in the defense 

mechanism against pathogens, they also have adversary biological effects. The 

biological activity of N-chloro amino acids is due to their ability to penetrate into 

the cell. Inside the cell, they induce oxidative stress which leads to apoptosis or 

necrosis. Beside the pathogens, healthy cells are also killed in this process. In 

addition, N-chloro amino acids may have indirect cytotoxic and/or genotoxic 

effects caused by the intermediates and products of their degradation.  

The chemistry and biological role of N-chloro amino acids have been studied 

in detail, but many questions remained unanswered and some of the results are 

highly controversial. Therefore, our aim was to answer these questions, to gain a 
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deeper understanding of the kinetics and mechanism of the formation and 

degradation reactions of these compounds, and to clarify the contradictions. 

Instrumentation and computational methods 

Iodometric and pH-metric titrations were performed with a Metrohm 888 

titrator, to which a Metrohm Platinum 6.0451.100 Platinum or a Metrohm 

6.0262.100 combined glass electrode was attached. 

The acid dissociation constants of the amino acids were determined by pH-

metric titration, and the experimental data were evaluated using the 

SUPERQUAD software. 

In order to investigate the formation of N-chloro amino acids, an Applied 

Photophysics SX-20 stopped-flow device was used which was equipped with a 

photoelectron multiplier detector. Kinetic curves were recorded using 10.0 mm 

optical path length. A single kinetic curve was obtained as the average of 3 to 5 

replicate kinetic runs. First-order kinetic curves were evaluated with the 

controlling software of the instrument. All other data fittings were performed with 

OriginPro 2018 using a non-linear least squares routine. 

Decomposition kinetic studies were performed with an Agilent Technologies 

Cary 8454 UV-Vis diode array spectrophotometer. Measurements were made in 

a closed tandem cuvette with a light path of 8.74 mm. The cell temperature was 

kept constant with the Peltier-type thermostat built into the device. 

NMR measurements were performed on a Bruker DRX 400 (9.4 T) 

spectrometer equipped with a Bruker VT-1000 temperature controller and a BB 

inverted gradient head (5 mm). Since NMR measurements were carried out with 

aqueous solutions, a water suppression technique was used. The signal of the 

protons of water (4.8 ppm) was eliminated with a watergate pulse sequence (12.6 

dB). A sealed capillary containing DSS (4,4-dimethyl-4-silapentane-1-sulfonic 
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acid) dissolved in D2O was also placed in the NMR tubes. DSS served as an

external standard for determining the chemical shift of 1H NMR signals. For the 
1H NMR spectra, 32 scans were made in one experiment with an acquisition time 

of 1.366 s. Spectra were analyzed with Bruker WinNMR and MestReNova 

software packages. J-modulated 13C NMR spectra were recorded in a 22075 Hz 

window with 0.74 s acquisition time and 5 s relaxation time. Standard Bruker 

pulse programs were used for COSY, NOESY, HSQC and HMBC experiments. 

Mass spectra were recorded in positive and negative ion modes on a Bruker 

micrOTOF-Q type Qq-TOF-MS. The parameters were optimized for the desired 

mass/charge range (50-500 m/z). A Na-formate solution was injected after each 

sample for internal calibration (relative weight error <2 ppm). Collision-induced 

fragmentation (CID) was used for the MS/MS analysis of reaction products. 

Different collision energies were applied between 5 and 30 eV, and the optimum 

fragmentation energy was ca. 13 eV. Mass spectra were recorded with otofControl 

4.1 and processed with Compass DataAnalysis 4.4 (200.55.2969) softwares. 

Matrix rank analysis (MRA) was performed using MatLab software to 

determine the number of colored species taking part in the decomposition 

processes. 
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New scientific results

1. The rate constants for the formation of 17 N-chloro amino acids were 

determined over a wide pH range. We have shown that the pH dependence 

of the reaction rate is controlled by the protonation equilibria of the 

reactants. The chlorination reaction was confirmed to occur between HOCl 

and the deprotonated amino group. 

 

The formation of N-chloro amino acids from hypochlorous acid and amino 

acids occurs in an overall second order reaction according to equation (1). 

  (1) 

The stopped-flow method was used to determine the pH-dependent rate 

constants (kobs
2nd) as function of pH (Figure 1). 

On the basis of the experimental results, it has clearly been demonstrated that the 

formation of N-chloro amino acids takes place between the protonated HOCl and 

the deprotonated amino acid from the 4 possible reaction paths. 

The experimental data (Figure 1) were fitted to equation (2) in order to 

determine the pH independent second order rate constants (k). The results are 

shown in Figure 2. The activation enthalpy and entropy were determined for the 

formation of N-chloro amino acids on the basis of temperature dependent kinetic 

studies. These parameters are very similar for each system indicating that the 

structures and the N  Cl bond strengths of the activated complexes are not 

-carbon atoms of the amino acids. 

  (2) 
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Figure 1. The pH dependence of kobs
2nd. Markers: experimental data. Solid lines: 

fitted curves based on equation (2). 
cNCl = 5. 4 M, cAA = 7. 4 M, I = 1.00 M (NaClO4), T = 25.  

 

Figure 2. The pH independent second order rate constants of the chlorination 
reactions of various amino acids. 

I = 1.00 M (NaClO4), T = 25.  
 

We have shown that the chlorination of lysine is most likely to occur solely 

on the -amino group under physiological conditions, but the simultaneous 

reaction of the -amino group cannot be excluded in alkaline medium. 
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2. We proved that, with the exception of histidine, the aromatic side chain 

is not involved in the chlorination reaction when the amino acid is used in 

excess. The chlorination of histidine occurs via two pH dependent paths 

leading to the formation of N-chloramine and a product chlorinated on the 

side chain. 

 

It was confirmed that the aromatic side chain does not react with HOCl in 

the case of phenylalanine. According to our detailed studies, deprotonation of the 

OH group of the tyrosine side chain does not affect the reactivity of the amino 

group. The NMR spectra of the respective reaction mixtures verify that the 

chlorination of the aromatic rings of the side chains of tryptophan and tyrosine 

does not occur under the applied conditions. 

NMR measurements confirmed that there are two pH-dependent parallel 

paths in the histidine  HOCl reaction leading to the formation of N-chloramine 

and a product chlorinated on the aromatic side chain. The pH-dependent second-

order rate constants were fitted using equation (3). The pH-dependent second 

order rate constant and the contributions of the two paths to the overall process 

are shown as function of pH in Figure 3. 

  (3) 
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Figure 3. The pH dependence of the rate constant of the histidine  HOCl 
reaction. Markers: experimental data. Solid line: the result of fitting based on 

equation (3). Dashed lines: the contributions of the parallel reaction paths to the 
overall reaction. 

cNCl
0 = 5. 4 M, cAA

0 = 7. 4 M, I = 1.00 M (NaClO4), T = 25.  
 

3. It was confirmed that the decomposition of N-chloroglycine yields N-

formylglycine as the main product. N-oxalylglycine was identified as an 

important intermediate in this reaction. On the basis of detailed kinetic, 

NMR and MS studies, a comprehensive mechanism was postulated which 

provides a coherent interpretation of all experimental observations. 

 

During the decomposition of N-chloroglycine (MCG), the steady decrease 

of the absorbance at the absorption maximum ( max = 255 nm) and at higher 

wavelengths corresponds to the first order decay of MCG (kobs1) (Figure 4). At 

 the absorbance change features a maximum as 

function of time (Figure 5). These observations are consistent with the formation 

of an intermediate which is transformed into the final product in a first order 

process (kobs2). 
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Figure 4. Time resolved UV-Vis spectral change after mixing hypochlorous 
acid and glycine. 

cGly
0 = 2. 4 M, cNCl

0 = 1. 3 M, cOH = 5. 2 M, I = 1.00 M 
(NaClO4), T = 25. , t = 5000 s, t = 40 s. 

 

Figure 5. Representative kinetic curves for MCG decomposition at 280 nm (a) 
and at 228 nm (b) at different concentrations of excess glycine. Markers: 

experimental data. Solid lines: data fitting based on equation (4). 
kobs1 = (3.2  0. 3 s 1, kobs2 = (1.2  0. 3 s 1 

cNCl
0 = 3. 3 M, cOH = 5. 2 M, cGly

0 = 1. 3 ( ), 3. 3 
( ), 1. 2 ( ), 2. 2 ( ) M, I = 1.00 M (NaClO4), T = 25.  
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The rate constants of the 2 processes were estimated by fitting the kinetic 

curves to equation (4) at different wavelengths. It was confirmed that the second 

process does not contribute to the absorbance change at higher wavelengths, thus 

the kobs2 term was neglected in the corresponding calculations. 

 (4) 

The rate of decomposition exhibits a significant dependence on pH, i.e. kobs1 

increases linearly as function of hydroxide ion concentration. Under neutral 

conditions, the decomposition is extremely slow. In contrast, kobs2 is independent 

of the hydroxide ion concentration (Figure 6). 

 

Figure 6. The rate constants for the decomposition of MCG as function of 
hydroxide ion concentration. 

I = 1.00 M (NaClO4), T = 25.  
 

The decomposition of N-chloroglycine was also followed by 1H and 13C 

NMR methods. It was confirmed that the major product is N-formylglycine. This 

compound forms as a mixture of cis and trans isomers in 1:9 ratio (Figure 7). N-

oxalylglycine was identified as an intermediate. Glyoxalate ion is also an 

intermediate in this system and its reaction with the excess of glycine yields a 
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Schiff base which was clearly identified in the NMR spectra. This product is 

formed at a significantly lower concentration than the main product, N-

formylglycine. 

 

 

Figure 7. Time-dependent 1H NMR spectra during the decomposition of N-
chloroglycine in aqueous media. The two parts of the spectra are shown in 

different magnifications. 
MCG: N-chloroglycine; Gly: glycine; P1: trans-N-formylglycine; P2: cis-

N-formylglycine; P3: Schiff-base; P4: formate ion. 
cNCl

0 = 1. 2 M, cGly
0 = 1. 2 M,  

cOH = 5. 2 M, T = 25.  
 

On the basis of kinetic and NMR experiments, a detailed mechanism was 

postulated for the decomposition of N-chloroglycine. The major steps of the 

mechanism is shown in Scheme 1. 
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Scheme 1. The outline of the decomposition mechanism of N-chloroglycine. 

According to the proposed mechanism, the rate determining step 

characterized by the kobs1 rate constant corresponds to 2 processes. The first one 

is the formation of a carbanion from N-chloroglycine in an equilibrium 

deprotonation step (KOH), which is converted to iminoacetate in a subsequent 

irreversible reaction (k1) (Scheme 2). 

kobs1 = KOH k1[OH ]  (5) 

 

 

Scheme 2. The initial steps for the decomposition of N-chloroglycine as seen in 
Part I. of Scheme 1. 

The second rate determining process (kobs2) is interpreted as the conversion 

of the N-oxalylglycine intermediate to N-formylglycine. 
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4. It was established that the decomposition of N-chloroalanine takes 

place via 2 parallel paths that are controlled by the pH. In neutral medium, 

acetaldehyde is the only product of the reaction. Under alkaline conditions, 

pyruvate ion is the major product, but N-acetyl- -alanine also forms. We 

have shown that the decomposition of N-chloroglycine and N-chloroalanine 

takes place by different mechanisms. 

 

In alkaline media, at 253 nm and higher wavelengths, the exponentially 

decreasing kinetic curves are associated with the decomposition of N-

chloroalanine (kobs1), while at lower wavelengths, an additional process is also 

observed corresponding to the product formation (kobs2). These kinetic traces were 

fitted with equation (4) (Figure 8). 

 

Figure 8. Representative kinetic traces for the decomposition of N-chloroalanine 
in alkaline media. Markers: experimental data Solid lines: fitted curves based on 

equation (4). 
kobs1 = (1.09  0. 3 s 1, kobs2 = (1.46  0. 4 s 1 

cAla
0 = 3. 3 M, cNCl

0 = 3. 3 M, c  = 5. 2 M,  
I = 1.00 M (NaClO4), T = 25.  
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It was found that the spectral changes in neutral and slightly alkaline

solutions are significantly different from those in strongly alkaline media. 

Accordingly, it is clear that the decomposition process takes place via different 

reaction paths depending on the pH, and the intermediates and final products are 

also different. It was shown that the rate constant of decomposition (kobs1) 

increases by increasing pH, thus the stability of the N-chloramine solution 

decreases at higher alkalinity (Figure 9). 

 

Figure 9. The pseudo-first order rate constant of the decomposition of N-
chloroalanine as function of pH. 

cAla
0 = 2. 3 M, cNCl

0 = 2. 3 M,  
I = 1.00 M (NaClO4), T = 25.  

 

We found that the methyl side chain functional group of alanine has a 

significant effect on the decomposition of the N-chloro amino acid. The non-zero 

intercept of the kobs1 versus [OH ] plot confirms that the decomposition of N-

chloroalanine occurs via 2 parallel reaction paths, i.e. in a spontaneous and a 

hydroxide ion-catalyzed process. Accordingly, the pseudo-first order rate constant 

of the decomposition (kobs1) is given by equation (6), where k and kOH are the rate 
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constants for the 2 paths. These parameters were determined by fitting the 

experimental data to equation (6). 

kobs1 = k + kOH [OH ]  (6) 

k = (2. . 4 s 1 and kOH = (1. . 2 M 1s 1. 

In the case of N-chloroalanine, the rates of the 2 paths are comparable in the 

neutral  alkaline pH range. In contrast, the rate of the spontaneous decomposition 

of N-chloroglycine is negligible, as evidenced by the corresponding plot in Figure 

6. This difference was interpreted by the electron-donating effect of the methyl 

substituent on the -carbon of -alanine. 

 

Figure 10. The pseudo-first order rate constant of the decomposition of 
N-chloroalanine as function of hydroxide ion concentration. 

cAla
0 = 2. 3 M, cNCl

0 = 2. 3 M, I = 1.00 M (NaClO4), T = 25.  
 

NMR studies have shown that pyruvate ion is the major product in the 

hydroxide ion catalyzed reaction. N-acetylalanine also forms as a by-product at 

low concentration level in a subsequent reaction between pyruvate ion and N-

chloroalanine. By decreasing the pH of the reaction mixture, the concentrations 

of these products decrease, and acetaldehyde becomes the main product at pH ~ 

10 (Figure 11). 
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Figure 11. 1H NMR spectra recorded at the end of the decomposition 
reaction of N-chloroalanine at various pH values. 

Ala: alanine, Pyr: pyruvate ion, Aca: acetaldehyde, NAA: N-
acetylalanine. 

cAla
0 = 2. 3 M, cNCl

0 = 2. 3 M, T = 25.  

In contrast to assumptions in the earlier literature, we confirmed that the 

decomposition of N-chloroalanine does not occur by the one-step Grob 

mechanism. In accordance with the experimental results, a detailed mechanism of 

the decomposition reaction was postulated. The outline of this mechanism is 

shown in Scheme 3. Similarly to the decomposition of N-chloroglycine, the 

catalytic effect of the hydroxide ion is interpreted by the formation of a carbanion 

from N-chloroalanine. 
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Scheme 3. The outline of the decomposition mechanism of N-chloroalanine. 

 

The carbanion is converted to iminopropionate by the loss of a chloride ion, 

in the rate-determining step (k1). The formation of iminopropionate from N-

chloroalanine is almost five times slower than the corresponding reaction in the 

N-chloroglycine system (kOH 2 2 M 1 s 1). This difference 

is attributed to the presence of the electron-donating CH3 group in N-

chloroalanine. This substituent is expected to increase the density of electrons on 

the -carbon and on the nitrogen. Due to this effect, the CH group becomes a 

weaker acid and, as a consequence, the KOH is smaller compared to that of MCG. 

At the same time, the higher electron density on the N atom favors the dissociation 

of the chloride ion and increases k1. The rate constant kOH is practically set by the 

interplay of these two opposing effects. 
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The reaction of iminopropionate with water produces hydroxyalanine, which 

decomposes to pyruvate ion and ammonia. The hydration of iminopropionate is a 

relatively slow step followed by the rapid conversion of hydroxyalanine. 

 

5. It was confirmed that the decompositions of N-chloro branched-chain 

amino acids yield the corresponding aldehydes in the neutral  alkaline pH 

range. We explored the kinetic features of these reactions and proposed a 

common mechanism for the interpretation of the results. We have shown that 

the aldehydes are converted into the corresponding Schiff bases in reversible 

reactions under alkaline conditions when the amino acids are in excess. 

 

According to time resolved UV-Vis spectral changes during the 

decomposition of N-chloro branched-chain amino acids, N-chlorovaline and N-

chloroisoleucine exhibit very similar kinetic features in the entire neutral  

alkaline pH range (Figure 12). A single exponential expression fits the kinetic 

curves extremely well in the whole wavelength range. The pseudo-first order rate 

constants obtained at different wavelengths agree with each other by 1-2%. 

We have shown that the spectral changes that accompany the decomposition 

of N-chloroleucine significantly differ from those observed in the decomposition 

of N-chlorovaline and N-chloroisoleucine under alkaline conditions (Figure 13). 

Similarly to the other 2 systems, the first order kinetic traces at 270 nm and higher 

wavelengths are consistent with the decomposition of the N-chloro amino acid. 

Spectral changes at lower wavelengths clearly show that a slow secondary 

reaction also occurs which is far from completion even after 12 h. We concluded 

that this process cannot directly be attributed to the decomposition of N-

chloroleucine.  
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Figure 12. Time-dependent spectral changes that accompany the decomposition 
of N-chloroisoleucine. 

cIle
0 = 3. 3 M, cNCl

0 = 3. 3 M, c  = 5. 2 M, I = 1.00 M 
(NaClO4), T = 25. , t = 60 s, t = 10800 s. 

 

   

 

Figure 13. Time-dependent spectral changes that accompany the decomposition 
of N-chloroleucine. 

cLeu
0 = 3. 3 M, cNCl

0 = 3. 3 M, c  = 5. 2 M, 
I = 1.00 M (NaClO4), T = 25. , t = 60 s, t = 10800 s. 
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As shown in Figure 14, the pseudo first order rate constant of the 

decomposition of N-chloro branched-chain amino acids (kobs) is a linear function 

of [OH ] (equation (6). This is similar to the case of N-chloroglycine and N-

chloroalanine. The fitted straight lines in Figure 14 have non-zero intercepts, 

meaning that these reactions are analogous to the decomposition of N-

chloroalanine in that they proceed via 2 competing reaction paths. 

 

 

Figure 14. The pseudo-first order rate constants of the decompositions of N-
chloro amino acids as function of hydroxide ion concentration. 

cAA
0 = 3. 3 M, cNCl

0 = 3. 3 M, I = 1.00 M (NaClO4), T = 25.  
 

It was also confirmed that the reactivity of N-chloroisoleucine and N-

chlorovaline is very similar, but the decomposition of N-chloroleucine is 

approximately twice and four times faster via the pH-independent and [OH ]-

dependent paths, respectively. 

In the decomposition of each N-chloro branched-chain amino acid, the 

formation of the corresponding aldehyde was observed, and the overall process is 

described by equation (7). 

R-CH(NHCl)COO  + H2O = R-CHO + CO2 + NH3 +Cl  (7) 
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By increasing the pH, new peaks were identified in the NMR spectra. These 

confirmed the formation of the corresponding Schiff base in a reversible reaction 

between the aldehyde and the excess amino acid. As the amino acid concentration 

increases, the intensity of the Schiff base signal increases continuously, even 

when the concentration ratio of amino acid to aldehyde is greater than 1: 1. This 

indicates that only a part of the aldehyde is converted into a Schiff base under 

these conditions. 

The decompositions of the chloramines of branched-chain amino acids show 

different features compared to the decompositions of the chloramines of glycine 

and alanine. In the decomposition of the latter compounds, 2 successive rate-

determining steps are operative via the hydroxide ion-catalyzed path. The second 

step was interpreted by considering the reactions between reactive intermediates 

and N-chloro amino acids. Such a process does not take place during the 

decomposition of N-chloroleucine, -isoleucine and -valine. Experimental results 

show that the same aldehyde is formed via the pH-independent and the [OH ]-

dependent paths. This is an unexpected result, especially by considering that 

different products form during the decomposition of N-chloroalanine under 

neutral and strongly alkaline conditions. 

Similarly to the systems discussed in the previous chapters, the [OH ] 

dependency of the pseudo first order rate constants of the decompositions of the 

N-chloro branched-chain amino acids (kobs) are also consistent with the formation 

of carbanions in fast equilibrium steps with OH . These are followed by the rate 

determining steps (k1). In the case of N-chloroalanine, deamination of the imine 

leads to the stabilization of the 2-keto-carboxylic acid product. This reaction step 

can be ruled out for the chloramines discussed in this chapter, because 

decarboxylation must precede the deamination to give the aldehyde as the final 

product. It is hypothesized that the presence of a relatively large alkyl side chain 

results in the release of CO2 instead of NH3 (Scheme 4). This sequence leads to 

the formation of the same hemiaminal as the pH-independent path does. 
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Scheme 4. General mechanism of the decompositions of chloramines formed 
from branched-chain amino acids. 
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Possible utilization of the results

We extensively studied the kinetics and mechanism of the chlorination 

reactions between hypochlorous acid and different amino acids. The details of the 

formation and decomposition kinetics of N-chloro amino acids formed in these 

processes have been described. We have confirmed the formation of various 

intermediates and end products, and estimated their concentrations and 

concentration ratios. This may contribute to the identification of compounds that 

form during water treatment technologies. Some of these compounds can cause 

taste and odor issues in drinking water. Their presence may also induce health 

problems associated with the consumption of treated water. Our results may 

contribute to optimizing water treatment processes and producing higher quality 

drinking water. 

The reactions studied have significant biological roles, as well, because they 

occur in living organisms. Thus, the elucidation of the detailed mechanism of 

these reactions is biologically important and contributes to a deeper understanding 

of in vivo processes. Many of the identified intermediates and products are 

actively involved in various biological processes, for example, by affecting the 

functions of enzymes. Thus, our results also help to understand the molecular 

background of the biological effects attributed to the in vivo decomposition of N-

chloro amino acids.  






