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Abstract
Visual aberrations are the imperfections in human vision, which play an important role in our everyday lives. Existing algorithms
to simulate such conditions are either not suited for low-latency workloads or limit the kinds of supported aberrations. In this
paper, we present a new simulation method that supports arbitrary visual aberrations and runs at interactive, near real-time per-
formance on commodity hardware. Furthermore, our method only requires a single set of on-axis phase aberration coefficients
as input and handles the dynamic change of pupil size and focus distance at runtime. We first describe a custom parametric eye
model and parameter estimation method to find the physical properties of the simulated eye. Next, we talk about our parameter
sampling strategy which we use with the estimated eye model to establish a coarse point-spread function (PSF) grid. We also
propose a GPU-based interpolation scheme for the kernel grid which we use at runtime to obtain the final vision simulation by
extending an existing tile-based convolution approach. We showcase the capabilities of our eye estimation and rendering pro-
cesses using several different eye conditions and provide the corresponding performance metrics to demonstrate the applicability
of our method for interactive environments.

Keywords: human vision simulation, depth of field, ocular wavefront aberrations, point-spread functions
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1. Introduction

The human visual system provides one of our most important sens-
ing mechanisms. Our eyes allow us to capture a continuous, dense
snapshot of our surroundings by absorbing the reflected light waves
that bounce off of the objects in our field of view. Without vision,
we would lose a large fraction of our ability to perceive our environ-
ment, making it substantially harder to perform the vast majority of
tasks in our everyday lives.

Just like all of our sensory organs, the human eye is incredi-
bly fragile. Its ability to focus light degrades naturally with age,
which is further exacerbated by the various internal and external
effects that affect parts or the entirety of the visual system. These
imperfections are commonly referred to as visual aberrations, or
aberrations for short. Studies indicate that a large portion of the
human population suffers from at least a moderate amount of vi-
sual aberration [PGCW01, THBC02, HSH*02, NKN*14], to which

ageing is a large contributing factor [GGR*99, MMB01, BTA10].
Besides natural effects, medical operations (such as LASIK and
LASEK surgery and intraocular lens implantation) are also signif-
icant sources of visual aberrations. While the aim of these proce-
dures is to improve the visual performance of the patients, they of-
ten comewith significant side-effects [dVWT*11, TFTA16]. Lastly,
visual aberrations also heavily depend on factors such as the light
wavelength [VDC*15], the pupil size [WZJ*03], and the accom-
modative state of the eye [CBV*04].

Because of these reasons, visual aberrations affect each person
uniquely, making it greatly important to develop methodologies
that correctly and plausibly simulate visual impairments. Such tech-
niques could not only help deepen our understanding of these con-
ditions, but they have the potential to improve the effectiveness of
such visual impairments as well. More specifically, vision simula-
tions can pave the way for better tailoring the corrective elements to
the visual impairments of the individual, which could, for instance,
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play a significant role when choosing the proper corrective spectacle
lenses and intraocular lens implants.

Besides using the vision-simulated imagery as-is, their interpre-
tation could also be performed using neural networks, via machine
learning (ML) approaches. ML-based techniques for data extraction
tasks are commonplace today, with the success of the training pro-
cedure often depending on the magnitude and quality of the avail-
able training data. The problem is often solved by using simulations
to artificially generate the training dataset, and as such, developing
robust and efficient vision simulation methods is essential for ML-
based algorithms to be viable for such workloads.

Researchers have invented a wide array of algorithms that mimic
aspects of human vision. Unfortunately, however, no existing al-
gorithm is capable of delivering high fidelity results while sup-
porting arbitrary visual aberrations and achieving the throughput
required by interactive applications and data generation purposes.
Furthermore, existing algorithms often focus on a small visual an-
gle, the results of which can be highly misleading for the un-
trained observer. Lastly, the reliance on input data that can only
be obtained with expensive medical devices is a fairly common
limitation to the wide-range usability of many existing solutions.
Overcoming these problems was the primary motivating factor for
our work.

In this paper, we present our efficient rendering solution for the
simulation of human vision that is affected by visual aberrations.
Our algorithm simulates the on-axis image formed by a single hu-
man eye, using a single phase-aberration description (via Zernike
coefficients) as input. The main benefits of our proposed method in-
clude the ability to run at near real-time performance, the minimal
input data required, the possibility to simulate arbitrary focus states
and pupil sizes from the small input data, and the ability to mod-
ify these settings dynamically at runtime. Furthermore, we achieve
these goals without having to sacrifice the output quality. To this
end, our main contributions are:

• A custom parametric eye model and the corresponding estimation
procedure, which we use to reconstruct the physical properties of
the simulated eye.

• A coarse PSF parameter sampling approach and a kernel compu-
tation scheme for arbitrary PSF parameters.

• A runtime kernel interpolation strategy, which we use to dynam-
ically construct the out-of-focus point-spread functions (PSFs)
from a pre-computed coarse kernel grid and approximate the true
PSFs with negligible errors.

The rest of the paper is structured as follows: first, we give
an overview of related work in Section 2. We then describe our
proposed method in Section 3, with Section 3.2 focusing on the
pre-computation steps, and Section 3.3 explaining the runtime
part. Following this, we demonstrate the quality and performance
characteristics of our approach on several different test scenarios
and eye conditions in Section 4, and we also evaluate how well
our parametric eye model and reconstruction approach simulates
visual aberrations. Lastly, we give our closing thoughts and outline
potential future research ideas in Section 5.

2. Previous Work

Faithfully replicating the virtual world as seen from the perspec-
tive of the main protagonist is a crucial part of most video games
in existence today. Although the pinhole camera model that is most
often used by these real-time environments is not well suited for
reproducing the complex behaviour of light, the more interesting
visual effects are typically added on top of the generated raster im-
ages via post-process filters. One of the most prominent ingredients
for achieving truly immersive simulations is the use of the so-called
depth of field (DOF) effect, which is not only an essential artistic
and storytelling tool but also a crucial part of our everyday lives.

The problem of simulating DOF can be thought of as a special
subset of vision simulation. In the more general case, the simple
pinhole camera is replaced by a physically-based representation of
the human eye. Such an extension facilitates the computation of the
various high-level effects that are impossible with a simple model,
but at the expense of significantly increased computation times.

Throughout the history of computer graphics, a vast array of
algorithms have been developed to solve these problems, ranging
in complexity from a simple mean filter to full-blown, physically-
based algorithms. In this section, we briefly recall the existing depth
of field and vision simulation methods that we consider most rele-
vant to our work.

Ray Tracing. A general solution for simulating the depth of field
of an optical system is given by ray-tracing techniques. These meth-
ods are often favoured in applications where the importance of
output quality significantly outweighs that of the necessary com-
putation times. Since most offline rendering environments already
employ some form of ray-tracing, a large variety of algorithms
[CPC84, KMH95, FLB*09, HQL*10, LES09, LES10] exist to fa-
cilitate depth of field effects to be rendered in these systems.

Plausibly simulating human vision via ray-tracing is typically
done by incorporating a detailed model of the human eye. Most
algorithms employ either an analytic [MKL97, FM06, DWRW16,
LMB*19] or polygonal [WPP14] representation to model the vari-
ous refracting elements of the eye. Alternatively, wavefront tracing
can be used to derive the most important characteristics of the op-
tical system, then fall back to a simplified lens model for the actual
ray-tracing process [LSS01, NSG12].

Since the emphasis is on achieving the most realistic simulations
possible, such algorithms are typically not well suited for interac-
tive environments. The problem is even more severe for vision sim-
ulation, where the complexity of the optical system and the associ-
ated aberrations result in significantly increased sample counts and
much more costly ray-surface intersection tests. Because of these
reasons, algorithms of this kind are inappropriate for low-latency
applications.

Multi-view synthesis. Another approach for simulating lens sys-
tems is the use of multiple views to reproduce the wave-related
properties of the optical system. The pioneering work in multi-view
DOF rendering is the accumulation buffer [HA90], which places
multiple samples on the camera aperture, then produces the final
output by rendering the scene from each different viewpoint and
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Figure 1: Example outputs of our proposed method for simulating human vision, which produces plausible results for arbitrary aberration
types with interactive frame rates, on commodity hardware. The two images demonstrate the difference between an (a) ideal (healthy) and (b)
aberrated (highly myopic) vision, with the focus point positioned in the background of the scene. The images were rendered at 720p on an
NVIDIA TITAN Xp graphics card, with our vision simulation process taking (a) 17.17 ms and (b) 26.74 ms, respectively.

accumulating the results in a dedicated buffer. The idea has later
been extended to support more complex optical systems, either
by directly tracing against the lens geometry [HSS97] or using
wavefront tracing to pre-compute a per-vertex displacement map
[KTMN07, KTN10].

These methods are well known for their output quality, as it is
possible to generate high fidelity simulations by using a sufficiently
large number of viewpoints. On the other hand, it takes an ex-
cessive number of samples to avoid artefacts like object ghosting,
which makes algorithms of this kind unsuitable for interactive, low-
latency applications.

Convolution. An improvement in speed is obtained by using con-
volution filters to produce the final blurred image. Such algorithms
fall into two main categories: gather-based techniques [WBB11,
MRD12, NSG12, Sou13,McG14, Gar17], where each pixel collects
data from its surroundings, and scattering algorithms [PC81, Shi94,
KvB03, KTB09, LH13, MH14, FHSS18], in which case pixel con-
tributions are splat to the neighbours. While conceptually similar,
the two approaches differ vastly both in quality and performance,
with gather-based methods winning in terms of speed, but kernel
splatting yielding substantially more plausible outputs.

A variant of scattering is obtained by not splatting the kernels
directly, but using the derivatives instead [Hec86, SBHL99, KHB09,
HS17, LSR18]. Thesemethods can achieve fast running times, often
with fewer visual artefacts as well. In themajority of cases, however,
these benefits come at the expense of a limited subset of supported
kernel types.

Convolution-based approaches have been used to simulate hu-
man vision as well. Instead of using a uniformly distributed disk
to approximate the blur kernel, convolution-based vision simula-
tions typically employ a highly detailed version of the optical sys-
tem’s PSF. While such methods have the advantage of not requir-
ing any knowledge about the physical structure of the eye, they
are either limited in the supported aberration types [TX15, BP17,
CLB18] or have running times not suitable for interactive applica-
tions [GSMM95, Bar11].

Our goal is to preserve the best properties of the various ap-
proaches while trying to avoid as many of the associated pitfalls
as possible. More specifically, our proposed solution has the gener-
ality of the ray-traced approaches, which means that it is not limited
to simulating a single focus setting or object distance. Furthermore,
our approach works without the need for an elaborate description
of the eye structure, and it is fast enough to operate without having
to wait several seconds (or more) for a single output. All of this is
achieved by reconstructing the eye model and generating a coarse
set of PSFs in a pre-computational step, after which our runtime
tiled kernel splatting approach produces outputs in an interactive,
close to real-time fashion.

3. Our Approach

3.1. Algorithm overview

Conceptually, our algorithm comprises two main steps: a pre-
computation of the necessary kernels (Figure 2, a–c), followed by a
runtime kernel splatting process (Figure 2, d–g).

Pre-computation. With the on-axis Zernike coefficients as the
only input, the purpose of the pre-computation step is to prepare
the sparsely evaluated PSF grid. This process necessitates the es-
timation of the simulated eye’s physical structure so that we can
compute the missing wavelength- and accommodation-dependent
aberration coefficients, which is the first part of this stage.

With a suitable set of structural parameters known, we can pro-
ceed with the sampling of the multi-dimensional parameter space,
which consists of the object distance, light wavelength, pupil diam-
eter, and focus distance. Given each unique combination of the dis-
crete parameter samples, the next step of the pre-computation stage
is the generation and processing of the corresponding PSFs. Clos-
ing off this phase, we upload the results to a sufficiently large GPU
buffer for the runtime stage of our algorithm.

Runtime. The rendering stage relies on a tiled kernel splatting ap-
proach, based on the algorithm of Franke et al. [FHSS18]. The
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Figure 2: Overview of our rendering algorithm. During pre-computation, (a) we first take a set of on-axis phase-aberration coefficients.
Following this, (b) we estimate the physical structure of the eye. Next, (c) we take a coarse set of parameters (comprised of depth, aperture
diameter, focus, and light wavelength) and compute the PSFs for each unique combination using the estimated eye model. At runtime, (d)
we first build a 3D texture out of a reduced set of PSFs. Following this, (e) we take the input scene information and (f) populate a set of
screen-aligned tiles with it. In the last step of our algorithm, (g) we produce the final result by traversing the tiles for all the overlapping
fragments, using the previously generated PSF buffer for the correct and efficient weighting of the samples.

inputs of this stage are the set of PSFs generated during pre-
computation and textures containing scene colour and depth infor-
mation. We render these before the blurring step, using a traditional
pinhole camera model, the parameters of which (field of view, aper-
ture size, clip planes, and resolution) are also taken as input.

First, we interpolate the input PSFs along the aperture diameter
and focus distance dimensions to produce a reduced PSF set for
the current frame. Next, the pixels of the input textures are com-
bined and transformed into a GPU-consumable format to populate
the screen-space bins. Following this, we perform a pixel spreading
step to copy the converted information to neighbouring tiles. Next,
we sort these tiles by depth. As the last step of this stage of our
algorithm, we traverse the fragment bins for each output pixel, tak-
ing the weighted sum of the list elements using the depth-dependent
interpolation of the previously generated, reduced PSF set.

3.2. Pre-computation: Kernel generation

The pre-computation step is responsible for producing the convolu-
tion kernels for the runtime stage. Figure 3 depicts a brief look at the
required inputs and flow of data in this stage of the simulation. Here,
we provide a detailed description of the various sub-steps involved
in the pre-computation stage of our algorithm.

Parametric eye model. As stated earlier, our input comprises the
on-axis aberration coefficients, as well as the pupil diameter and
wavelength at which these coefficients were measured. To obtain
the rest of the needed aberration coefficients, we thus had to devise
some method to reconstruct the eye’s physical structure.

Our eye estimation process builds on the same idea as the work of
Liu and Thibos [LT19]; we also employ a custom eye model and an
optimization process to obtain the final physical parameters. On the
other hand, we do not possess any physical measurement data prior
to optimization; we thus try to reconstruct the entire structure of
the simulated eye from the input coefficients. Furthermore, to make
our algorithms reproducible in a wide array of programming lan-
guages and software environments, we choose to avoid any reliance
on special-purpose tools (like OpticStudio).

Figure 3: Overview of the pre-computation stage of our algorithm.

One crucial consideration when building our eye model was the
overall computational complexity of measuring the aberrations of
the system. Since we plan on using this eye model in an expensive
optimization process, we want it to be simple enough to efficiently
support the required computations, but maintain the ability to gen-
erate arbitrary visual aberrations.

With these factors in mind, we started from Navarro’s unac-
commodated aspherical eye model [NSB85]. This model comprises
the retina, pupil, and four refracting surfaces; two surfaces for the
cornea (anterior and posterior cornea) and another two for the crys-
talline lens (anterior and posterior lens). All surfaces (except the
pupil) are represented using quadrics of revolution, which can be
described with the following formula [PGO08]:

z(x, y) = x2 + y2

Rs ·
(
1 +

√
1 − (1 + k) · x2+y2

R2s

) , (1)
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Figure 4: Cross-sectional view of our parametric model simulat-
ing a healthy eye. The output of our estimation process is a re-
laxed model (a), which in the case of a healthy eye, properly focuses
paraxial rays (blue) on the retina, but fails to focus rays emanating
at an object distance of 0.2 meters (green). On the other hand, when
the lens diameter is altered to focus the model at 0.2 meters (b), the
model correctly focuses the rays that originate from such an object
distance but fails at focusing the paraxial bundle.

where Rs is the radius of curvature, and k is the conic constant (as-
phericity factor) of the surface. The conic constant identifies the type
of the surface, which is either a hyperboloid (k < −1), paraboloid
(k = −1), prolate spheroid (−1 < k < 0), sphere (k = 0), or oblate
spheroid (k > 0).

Since the Navarro model was constructed to represent a healthy
eye, we had to extend it with several parameters to simulate vi-
sual aberrations. To this end, we added an astigmatism parameter
to both surfaces of the cornea (Rs = (Rx, Ry)) and enhanced the
anterior cornea with an offset function (using Zernike-polynomials
[BW54]), which we use to describe the fine-scale corneal irregular-
ities. Lastly, we also added axial rotation to the cornea and a set of
tilt and decentration parameters to the crystalline lens.

To support focusing at arbitrary distances, we model the crys-
talline lens similar to how the real eye works. That is, we used the
lens volume, equatorial diameter, asphericity, and the constant ratio
between the anterior and posterior thicknesses [HPD*09] to define
the overall shape of the lens, which allows us to compute the corre-
sponding radii of curvature using an efficient, closed-form expres-
sion. An example output of this refocusing process is demonstrated
in Figure 4 on the model of a healthy eye.

One limitation of using symmetric crystalline lens surfaces is that
we cannot model lenticular astigmatismwith it. We decided to make
this simplification, as we can still reproduce astigmatism through
the cornea, and the parameter space of our model is already fairly
extensive. If handling such conditions is necessary, it is possible to
extend the lens surfaces with the necessary astigmatism parameters,
at the expense of a costlier reconstruction step.

Eye estimation. Given our parametric eye model and the target
Zernike aberration coefficients, we can proceed with the optimiza-
tion process. Our goal is to find a set of model parameters such that
the induced aberrations of the resulting eye are sufficiently close to
the input, while also preserving the structural integrity of the model
eye. The result of this process is an estimation of the physical struc-

Table 1: Optimization parameters of our custom eye model. The main types
of parameters: thickness (T ), diameter (D), volume (V ), radius of curvature
(R), conic constant (k), Zernike elevation coefficients of radial order n (Zn),
translation (�), tilt (α), and rotation about the optical axis (�). The upper
index is used to differentiate between the anterior (·A) and posterior (·P)
surfaces, with multi-axis parameters following an (h, v) pattern.

Unit xl σl Limit al

Eye T mm 23.82 0.81 [21.82, 25.82] 2.0
Cornea T mm 0.55 0.03 [0.4, 0.7] 32.0

RA mm (7.81, 7.81) (0.25, 0.25) [6.5, 9.81] 1.0
RP mm (6.44, 6.44) (0.23, 0.23) [5.5, 8.44] 1.0
kA −0.29 0.09 [−2.29, 1.71] 1.0
kP −0.34 0.24 [−2.34, 1.66] 1.0
�A deg 0.0 0.0 [−45.0, 45.0] 0.1
�P deg 0.0 0.0 [−45.0, 45.0] 0.1
ZA1−4 mm 0.0 0.0 [−0.10, 0.10] 1.0
ZA5−6 mm 0.0 0.0 [−0.05, 0.05] 1.0

Aqueous T mm 2.90 0.39 [2.2, 3.5] 1.0
Lens D mm 11.1 0.3 [10.6, 11.6] 1.0

V mm3 160.1 2.5 [153.1, 167.1] 0.1
kA −4.4 1.6 [−10.4, −1.0] 2.0
kP −4.0 2.0 [−10.0, −1.0] 2.0
� mm (0.0, 0.0) (0.0, 0.0) [−0.8, 0.8] 8.0
α deg (0.0, 0.0) (0.0, 0.0) [−7.0, 7.0] 1.0

ture of the simulated eye in an unaccommodated state, which forms
the basis of the Zernike coefficient computation procedure.

To ensure that the eye models generated by our reconstruc-
tion procedure are physically plausible, we rely on popula-
tion data to control the weighting of the anatomical parame-
ters. We extracted these values from several different sources
to obtain the average values, standard deviations, and bounds
of the parameters, for the cornea [RAT11, RRNT16, DSVdH06,
CMDlCSNM*16, PAA*10], the crystalline lens [DVdH01, RAT11,
RRNT16, RAK*12, KPV*18, HPD*09], and the axial lengths of
the various elements [GD07, Lar79, KMNN10]. We also made sure
to cover several different age groups and eye conditions in this pro-
cess, in order to have the necessary representative power to support
as many different visual aberrations as possible. The full list of op-
timization parameters and their associated statistical properties are
listed in Table 1. We would like to point out that the range of our
lens diameters is slightly larger than that of a real human eye, which
is the result of modelling both lens surfaces with a single aspheri-
cal surface.

Next is the computation of the aberration coefficients, which we
implement via ray-tracing. We start the process by tracing a parallel
ray through the centre of the cornea to determine the starting retinal
location for the reverse ray-tracing process. Following this, we shoot
a dense ray grid through the posterior lens surface and obtain the exit
pupil size by finding the minimal volume enclosing ellipsoid around
the expected corneal ray positions. To obtain the final Zernike co-
efficients, we take the slope information of the outgoing ray bundle
and use it to perform a least-squares fitting process [Her80], using
scaling [LU07] to handle the slightly elliptical pupil projections.
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After having established the bounds and statistical properties of
the model parameters, we attempt to find a set of values with which
our eye model approximates the target aberrations suitably well. To
this end, we perform a constrained minimum search with the fol-
lowing objective function:

L =
∑
k

(w f · fk|α̂k − αk|)2 +
∑
l

(wa · al · max(|xl − xl | − σl, 0))2, (2)

where αk and α̂k are the kth expected and generated Zernike coef-
ficients, fk is the weight of the kth coefficient, xl and al are the lth
model parameter and its associated weight, and xl and σl are the
mean and standard deviations of the lth parameter.

The user-defined parameters w f and wa allow for an overall
weighting of the functional and anatomical properties of the result-
ing eye model, controlling which aspect of the model the optimizer
should favour. Based on the magnitudes of the associated variables,
our default weights are wa = 0.1 and w f = 200.

As for the optimizer algorithm, our experience is that gradient-
based optimizers are prone to get stuck early in a local minimum due
to the highly complex loss landscape that results from the anterior
corneal surface of our eye model. Based on this observation, we
decided to use a generalized pattern search (GPS) algorithm for all
of our test cases, which we found capable of providing adequate
solutions to our proposed optimization problem.

PSF model. Classic depth of field rendering algorithms typically
ignore wavefront aberration theory altogether and rely solely on the
circle of confusion of the optical system. The reason why such an
approximation works is that the on-axis aberrations of traditional
cameras comprise mainly defocus and spherical aberrations, which
can be well approximated by an aperture-shaped kernel. Omitting
high-frequency details is often an acceptable trade-off, given the
sampling ambiguity caused by the finite resolution of camera sen-
sors. On the other hand, wavefronts with non-spherical aberrations
undergo considerable changes through the focal region, which ne-
cessitates a more general out-of-focus PSF model.

In the field of ophthalmology, the point-spread function (the pro-
jection of an infinitely small point source on the retina) of a human
eye is typically computed using Fraunhofer’s far-field diffraction
formula [Goo17,Wat15]. Since aberrations are oftenmeasured in an
unaccommodated eye state, such a representation is generally valid
and enables the simple and fast evaluation of the PSFs. For a more
elaborate analysis of the eye – such as computing its out-of-focus
diffraction patterns – a different formulation is desirable.

An efficient means of obtaining the point-spread function at arbi-
trary defocus is given by the Extended Nijboer-Zernike (ENZ) the-
ory of diffraction integrals [Jan02, VH10]. The ENZ diffraction the-
ory offers a wide selection of analytical expressions for the Debye
diffraction integrals, leading to the following PSF formulation:

U (x, y) = 2
∑
n,m

βm
n i

mVm
n (r, f ) exp(imφ), (3)

whereU (x, y) is the point-spread function, x, y and r, φ are, respec-
tively, Cartesian and polar coordinates in the image plane, and f is
the defocus parameter, which equals zero at best focus and is related

Figure 5: Example monochromatic point-spread functions com-
puted using Equation (3) for three different eye conditions, at five
object distances. The images use a varying scale, with each image
focusing on the interesting parts of the PSFs; the physical extents
thus differ on a per-PSF basis. Note that the repeating ringing pat-
tern (commonly referred to as Fresnel-rings) is a natural result of
diffraction. The number of Fresnel-rings increases with the defocus
parameter, which allows the comparison of the true physical PSF
extents.

to the free-space focus shift z as f = −2πu0
λ

z, with u0 = 1 −
√
1 − s20

and s0 denoting the image-side numerical aperture of the optical
system. The Vm

n functions are the linearized products of Zernike
polynomials, and the βm

n terms are complex values that can be de-
rived from the real αm

n phase-aberration coefficients. We used the
Bessel-Bessel series expression for the Vm

n terms [JBD04] and the
fitting approach described in [AV15] with a cosine sampling strat-
egy [JvHJ*08] to compute the βm

n coefficients. Figure 5 shows a few
PSFs computed using this formulation.

There are several benefits of such a PSF representation. First, in
terms of accuracy, the ENZ diffraction theory is known to have a
clear edge over FFT-based approaches [BvHJD08], allowing the
PSFs to be computed with only negligible errors. Second, the linear
representation of the point-spread functions means we only need to
evaluate the Vm

n terms once for each unique combination of n and
m; the results can be stored and reused in every PSF computation.
Finally, the use of a dedicated defocusing term allows us to handle
the object distance in a relatively simple manner, omitting the full
computation of the α and β coefficients.

Parameter sampling. Since our PSF parameter space is four-
dimensional (aperture diameter, focus & object distance, and light
wavelength), evaluating the PSF at an arbitrary point poses some
difficulties if we want to keep the rendering efficiency. We over-
come this issue by evaluating the point-spread function only at the
intersection points of a coarsely sampled parameter grid. Due to the
sampling ambiguity caused by the finite number of input pixels,
we can fill in the gaps in the PSF grid via the linear interpolation
of the evaluated kernels without severe visual artefacts.

Following Barsky’s insights [Bar11], we also sample the focus
and the object distances using dioptres. The reason for this is that
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the PSFs scale linearly with dioptres, but not with meters. Thus,
uniformly sampling a diopter-based representation of the distance
parameters significantly reduces the number of required parame-
ter evaluations. Our typical configuration uses No = 41 and Nf = 5
samples for the object and focus distance parameters.

As for the pupil diameter, we employ a simple linear sampling
strategy to obtain the final coarse parameter set for PSF evaluation.
Our goal is to cover the typical range of human pupil sizes; based
on the unified formula of Watson et al. [WY12], we found NA = 4
unique samples in the range of 2–7 mm to be sufficient for covering
the vast majority of realistic scenarios. Lastly, we use Nλ = 3 dis-
tinct samples for the light wavelength parameter, with one sample
corresponding to each channel of the RGB image.

To proceed with PSF computation, we need to obtain the aber-
ration coefficients for each unique parameter combination. To this
end, we first take the previously estimated eye model and compute
the lens diameter for the current pupil size and focus distance. We
consider a ray bundle that originates from the on-axis object point
with the desired focus distance, then find the lens diameter with
which the system best focuses these rays on the retina. Given this re-
focused eye model, we obtain the final aberration coefficients using
the ray-traced least-squares approach that we explained earlier.

As stated previously, we can handle object distances differently:
we rely on the defocus parameter of the ENZ model to obtain the
through-focus PSFs. Here we recall that it is defined to be zero at the
best focus; we thus have to work out the distance of this plane first.
In our case, we can rely on the estimated eye model, but we note that
other approaches, such as Strehl ratio minimization [JvHBD07] and
quadratic approximation [BvHJD08], also exist.

Based on these observations, we compute the defocus parameter
from the corresponding focal shift using the defocus-focal shift re-
lationship. To this end, we first take the focal shifts resulting from
the aberrated eye condition (zα) and the distance between the focus
and object planes (zd), which we compute in the following way:

zα = dpr − f , zd = f − 1
1
f + 1

do

, (4)

where f is the focal length of the focused eye, dpr is the pupil-retina
distance, and do is the target object depth. We then obtain the final
combined focal shift zo and defocus parameter fo as follows:

zo = zα + zd = dpr − 1
1
f + 1

do

, fo = zo · −2π · u0
λ

, (5)

where u0 = 1 −
√
1 − s20, s0 is the image-side numerical aperture,

and λ is the light wavelength. Figure 6 demonstrates the different
types of focal shifts using our schematic eye model.

Kernel computation. Having obtained all the necessary parame-
ters, we compute the PSFs for each unique parameter combination
using Equation (3). To this end, we place a grid on the exit pupil and
evaluate U at the intersection points. The samples have a uniform
size (μs), with N total samples allocated for each 2π increment of
the defocus. We typically use μs = 4 μm and N = 4 to generate our
convolution kernels.

Figure 6: Overview of the main types of focal shifts used in the
computation of the defocus parameter. The total focal shift zo is the
sum of the aberration-induced focal shift zα , and the out-of-focus
focal shift zd , both of which are signed. The ray colors follow the
same scheme as we used in Figure 4.

Figure 7: Through-focus projected PSF sizes of a healthy eye in
two focus states. The x-axis follows a diopter-based scaling, demon-
strating that the blur size scales linearly with dioptres. Also, observe
that each channel focuses at a different distance, which highlights
the significance of treating all channels separately.

Following the computation of the PSF grid, the last step of ker-
nel computation is the transformation from physical to screen-space
coordinates. Our PSF sampling yields sub-pixel image-space reso-
lutions; our goal here is to downscale the kernels such that a one-
to-one mapping can be established between the generated PSFs and
convolution kernels. We thus need to compute the projected PSF
sizes (in pixels), which we define in the following way:

Dp =
⌈
f

2π

⌉
· N · σ, σ = μs · H

μθ · fovy , (6)

where f is the defocus parameter, f ovy is the vertical field of view of
the camera used for rendering the input image (in degrees), H is the
input image height, μθ is the size of a one-degree area in the foveal
part of the retina (approximately 288 μm [DF74]), and σ is the
minification factor. Figure 7 visualizes the projected PSF sizes for
a healthy eye model computed using our formula. With f ovy = 60◦

and H = 720, the minification factor is σ ≈ 0.1667, which results
in 6 × 6 samples in the full-resolution PSFs per image-space pixel.
We also show a few example outputs of our kernel computation ap-
proach in Figure 8.

Since a single PSF may span several different blur radii (depend-
ing on the sizes of its neighbouring PSFs), we need to accommodate
for every blur size that might occur in the runtime step for the in-
terpolation process to work properly. We thus use Equation (6) to
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Figure 8: Kernel computation step demonstrated on two different
out-of-focus PSF images. The full-resolution images display the re-
sults of the PSF computation process, with the empty regions re-
moved. Next to them are the downscaled kernels that we use for
splatting, at multiple different blur radii. As can be seen, while the
full-resolution PSFs capture the high-frequency details of the PSFs
very well, the downscaled versions vary much less with object dis-
tance, which is what makes our interpolation strategy viable.

compute and store the projected sizes of each kernel, but we down-
scale each PSF to each radius in the [0,Rmax] interval, where Rmax
denotes the largest blur radius found among the projected PSFs.

Finally, we would like to point out that the sampling scheme de-
scribed above results in moderate amounts of empty space in our
PSF images. We overcome this issue by introducing a cropping step
between the computation and projection phases. For each PSF, we
identify the centre areawhere the sumofweights is sufficiently close
to the total sum.We then drop an equal number of rows and columns
from all four sides of the PSFs, which ensures that the resulting PSFs
are still correctly centred.

3.3. Runtime: Kernel splatting

The runtime step of our algorithm is responsible for producing the
output renderings of the aberrated vision. Our approach uses tiled
kernel splatting to efficiently convolve the input image with the
spatially-varying kernels. Figure 9 provides an overview of our ex-
tended rendering algorithm. This section outlines the details of our
main contributions involving vision simulation; the reader should
consult the original work of Franke et al. [FHSS18] for a more elab-
orate explanation of tiled splatting.

Intermediate PSF buffer. As described earlier, our PSF convolu-
tion approach relies on interpolation to fill in the gaps in the coarse
kernel grid. We take the PSFs generated in the pre-computation step
(corresponding to the sparse grid points) and perform the actual in-
terpolation on-the-fly, in the runtime step of the simulation.

One very important property of our generated kernels is that while
the pre-computation process aims to cover the entire range of pos-
sible input parameters, we typically only need a fraction of these
kernels to produce a single output image. More specifically, we can
treat the focus distance and pupil diameter parameters as constants
throughout the lifespan of a single frame. This observation essen-
tially means that we can interpolate our PSFs across these parame-
ters before splatting, storing the results in a smaller buffer dedicated
to this purpose. During splatting, we can then employ on-demand

Figure 9: Overview of the runtime stage of our algorithm.

interpolation using the per-pixel object distances, for all three of the
RGB channels.

To this end, we treat the focus distance as a configurable input,
but determine the current pupil size automatically, using the Moon
and Spencer formula [MS44, WY12]. With these parameters, we
first interpolate the blur radii for each unique combination of light
wavelength and object distance and store the results in a per-frame
PSF parameter buffer.

Next, we proceed with the interpolation of the kernel weights.
Here we need to account for the fact that our kernels could be sam-
pled at an arbitrary radius; we thus need to produce a PSF buffer that
can support this requirement.We build a 3D texture for this purpose,
which has the following dimensions:

W = 2Rmax + 1, H = 2Rmax + 1, D = No · (Rmax + 1), (7)

where W , H, and D are the width, height, and depth of the result-
ing texture, Rmax is the largest possible blur radius, and No is the
number of different object distances. We then lay out the kernels
continuously across the texture layers, sorted by kernel radius first,
then object distance, with the different wavelengths encoded in the
RGB channels. This layout is also visualized in Figure 10.

One benefit of this PSF layout is that we can rely on hardware
acceleration when looking up the kernel weights, as only a single
texture sample is needed to interpolate between two neighbouring
object distances. Since each kernel resides in a different texture layer
and starts at the same pixel, we also avoid complex texture coor-
dinate computations and all bleeding artefacts, which are common
with texture atlases. The only pitfall is that the lower layers con-
tain empty regions, and thus the layout is wasteful of texture space.
In our experience, however, the increased texture size rarely im-
pacts the rendering performance; we thus consider the single-texture
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Figure 10: Layout of the PSF texture. Each layer holds three out-of-
focus kernels (one per channel), downscaled to a single blur radius.
We place the kernels in the texture layers in a continuous fashion,
sorting them by blur radius first, then by object distance. This layout
allows us to sample two neighbouring PSFswith a single, hardware-
accelerated texture lookup.

approach a simple and efficient alternative to atlasing or using mul-
tiple textures.

PSF evaluation. The second part of the interpolation process is
carried out on-demand, during the per-pixel traversal of the tile
buffers (Convolution step in Figure 9). We perform a single interpo-
lation operation for each channel of every sample fragment, to com-
pute the weighting of the individual channels in the front-to-back
blending process. The description below outlines the main steps of
evaluating the kernel for a single channel, which we repeat for all
three channels.

To approximate the PSF, we first have to find the indices of the
two closest pre-computed kernels, which we do in the following
way:

Is = 1

D�

(
1

ds
− Dmin

)
, (8)

where ds is the object space depth of the sample, Dmin is the depth
(in dioptres) of the PSF corresponding to the closest object distance,
and D� is the distance between two neighbouring PSFs (also in
dioptres). This index uniquely identifies the two point-spread func-
tions that we need to interpolate and gives an interpolation factor in
the fractional part of the number.

Given the fractional PSF index, we first compute the correspond-
ing blur radius Rs, using frac(Is) as the interpolation factor. We then
take two texture samples, one for each neighbouring integer blur
size, with the PSF centred on the output fragment. We use the frac-
tional PSF index Is and the integer blur radii to compute the third tex-
ture coordinates of the two samples, which ensures that the samples
are properly interpolated with respect to the object depth. Lastly, we
finish the process by interpolating between the two samples using
frac(Rs). Figure 11 demonstrates the process for one channel of a
single PSF sample.

It is possible to halve the number of per-pixel texture samples by
rounding the PSF radius upwards only, but that would also lead to
visible jumps as the blur radius of one-pixel shifts from one discrete
value to the next. The issue is fairly well hidden in still images by
the multi-channel PSF convolution but becomes jarring as we start
moving around in the environment. The main advantage of the sam-
pling strategy described above is that it gradually fades between the
different kernel sizes. Because of this, our solution is completely

Figure 11: Overview of the PSF interpolation process for a single
sample pixel. We first round the interpolated fractional blur radius
(Rs) to the two neighbouring integers (R0 and R1) and sample the
PSF texture at both blur radii. Given the two PSF values, we obtain
the final sample weight by interpolating between the two values us-
ing the fractional of the blur radius. This visualization also demon-
strates how the lower level PSF samples fall outside the main kernel
region near the PSF edges, which is the main reason why our sample
placement strategy results in smooth transitions.

devoid of this problem and produces smooth outputs across the en-
tire focal region, and the results remain stable under motion as well.
The downside of this approach is that it also leads to higher com-
putation times, but in our experience, the increase in output quality
vastly outweighs its impact on performance.

4. Results

Implementation. To evaluate the quality and the performance of
our algorithm, we created a proof-of-concept implementation. We
integrated it into a custom real-time renderer that was written in
C++, using the OpenGL graphical library for rendering. As such,
we also made the reference implementation using the same tools.

The pre-computation phase of our implementation runs purely
on the CPU. Of particular interest are the eye-related parts of this
pre-computation step (eye structure estimation and aberration mea-
surements), for which we used theMATLAB software environment.
We considered it a good choice for our goals, due to the vast array
of well-documented algorithms, the large library of third party sam-
ples, and the ability to interface with it from C++.

As for the runtime stage, we implemented all the sub-steps using
GLSL compute shaders. We run the entire process on the GPU since
we already have all the pre-computed PSF data available at the start
of this stage. The algorithm takes the colour and depth textures that
were produced in the current frame, with anti-aliasing already ap-
plied to the colour buffer. We then perform the runtime step either
before or after the tone mapper stage, depending on the type of input
dynamic range (HDR or LDR) we would like to use.

Test setup. In an attempt to cover a wide range of different visual
aberrations, we tested our algorithm with four unique eye condi-
tions. First, we constructed a healthy eye model by training with an
input set of phase coefficients comprising only zeros. Next, we cre-
ated models for eyes with moderate amounts of myopia and astig-
matism, for which we obtained the aberration coefficients from the
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corresponding corrective lens prescriptions, using a conversion for-
mula [Dai08]. Lastly, we also tested our algorithm with a vision
suffering from keratoconus, using coefficients that resulted from a
real eye aberration measurement.

For all four eye conditions, we simulated the eye in a relaxed
state, setting the focus on the far plane. We tested several differ-
ent test scenes, from which we present two in this paper: a simple
setup with just three basic objects and a complex scene that rep-
resents a real-world environment. We also present our algorithm
with a third scene, the famous Sponza atrium, in the supplemen-
tal videos. The pinhole camera used in all our simulations had a
60-degree vertical field of view, which resulted in a horizontal field
of view of about 106 degrees with the aspect ratio of our input
images.

Quality. To evaluate the visual quality of our approach, we com-
pare our results with two different convolution-based approaches.
First, we implemented Barsky’s existing vision simulation algo-
rithm [Bar11], which generates its outputs by splitting up the in-
put images to separate depth slices. The thus computed partial im-
ages are convolved with a single PSF corresponding to the centre
of the depth regions. We used the same ENZ PSF model for the
through-focus PSF computation, with the goal of minimizing the
differences stemming from the different PSF models and to focus
solely on the rendering parts of the algorithms. Furthermore, we re-
lied on our estimated eye models to derive the necessary Zernike
coefficients, which facilitates the simulation of chromatic aberra-
tion with the previous algorithm as well. All outputs shown in this
paper for the previous technique were rendered using the same
41 depth slices (and corresponding PSFs) that we used with our
algorithm.

The second algorithm computes the ground truth images by eval-
uating the true PSFs at every input pixel. This reference algorithm
works by assigning each pixel to a diopter-based bin (with a preci-
sion of 3 decimal places), which resulted in 4085 unique bins for
the primitives scene, and 8 088 bins for San Miguel. The algorithm
then produces the final output using front-to-back blending on all
the pixels with overlapping PSFs. We consider this approach as the
upper limit of what is possible with such convolution-based tech-
niques; our goal is to match the quality of these renderings while
keeping the rendering times as low as possible.

Our outputs for the test cases that we described earlier are shown
in Figure 12 and Figure 13. Additionally, we also include four ex-
ample videos (one for each eye condition) as supplemental material.
These videos demonstrate our algorithm under motion, and – in the
case of myopia, astigmatism, and keratoconus – compare the vision
with that of the healthy eye. We exported these outputs by generat-
ing 60 unique frames for each second of the videos, which resulted
in smooth and synchronous outputs for the comparison.

As can be seen from the results, our algorithm interpolates the
kernels smoothly throughout the entire focal region, with no visi-
ble banding artefacts. The different characteristics of the individual
eye conditions are clearly visible as well. Furthermore, our outputs
also exemplify the importance of handling chromatic aberration and
show that separately processing the individual channels is necessary
to produce plausible vision simulations. This observation is in line

with the results of Cholewiak et al. [CLS*17], and as concluded by
the authors, a significant contributor to realism.

In comparison to the previous technique, the biggest difference
in output quality results from the correct per-pixel alpha blending.
Because the depth slices in Barsky’s solution are blurred using a
traditional convolution process, the handling of partial occlusion is
limited to the depth slice boundaries. Disregarding per-pixel depth
ordering can result in morphed object boundaries, which can be
best observed in Figure 12. Our proposed solution handles these
cases correctly.

We note that the handling of partial occlusion in our examples
is limited to visible surfaces. This is not a limitation for our run-
time stage, as the tiled kernel splatting approach already works with
layered inputs, and our PSF interpolation process is only concerned
with the object-space depth of the sample pixel. On the other hand,
the hidden layers would require computing the true coverage ratio to
properly work with our physically-based kernels. Since the resulting
errors are limited to object boundaries, we decided to only process
the visible front layer of the scene, which increases the overall per-
formance of our simulation.

Next, we followwith the quantification of differences between the
reference images and the outputs of both our algorithm and Barsky’s
solution. To this end, we first computed the peak signal-to-noise-
ratio (PSNR) for each output-reference pairing, which can be used
to get an objective measure of the overall per-pixel noise levels.
Besides PSNR, we also calculated the structural similarity index
(SSIM) and HDR-VDP [MKRH11] probability of error detection
metrics, both of which can be used to get a better understanding of
the higher level similarity of the compared images. The per-image
mean SSIM andHDR-VDP probability of detection values are given
in Table 2, with false-colour visualizations of the corresponding per-
pixel maps shown in Figure 12 and Figure 13.

As demonstrated by the similarity metrics, there is no substan-
tial difference between our renderings and the ground-truth images.
Despite the very small number of pre-computed kernels, our PSF in-
terpolation process faithfully reconstructs the true, dense PSFs. Our
algorithm also correctly handles partial coverage and well preserves
the overall shape and size of the PSFs, with only a slight overblur
in certain areas. These differences can be best observed near object
edges and can mostly be attributed to the fragment merging step.
Nevertheless, considering the overall similarity of our results and
the ground-truth images, we can safely conclude that the proposed
algorithm is capable of producing images that are comparable to
the reference renderings, while also achieving higher visual quality
with respect to the previous algorithm.

Performance. The performance of our algorithm was measured
on an AMD Ryzen 7 1700 3.00 GHz with an NVIDIA TITAN
Xp graphics card, using our reference OpenGL implementation, at
720p resolution. Table 3 summarizes the computation times using
the same test scenarios and parameter settings that we used for the
outputs shown in Figure 12 and Figure 13. Besides the convolution
step of Barsky’s solution and the rendering stage of our method,
we include the measurements for the pre-computation stage as well.
To minimize the impact of frame-to-frame variance on the results,
we used the average of 100 consecutive frames for measuring the
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Figure 12: Results of simulating four different eye conditions on a simple scene. The object distances are 0.2 m (sphere), 0.5 m (cube), and
7.5 m (letter), which leads to different amounts of blurring for each object. The first three rows show, respectively, the outputs of our algorithm,
a previous technique [Bar11], and the ground-truth images. A side-by-side comparison of the ground-truth and the other two algorithms is
included for a few smaller regions in the fourth and fifth rows. The last four rows show a visualization of the SSIM and HDR-VDP metrics for
the two algorithms, with brighter pixels representing a lower structural similarity and a higher probability of error detection.
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Figure 13: Results of simulating four different eye conditions on the famous San Miguel hacienda test scene. The images follow the same
layout that we used in Figure 12.
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Table 2: Peak signal-to-noise ratio (PSNR), mean structural similarity index (MSSIM), and HDR-VDP-3 probability of error detection (HDR-VDP) metrics
for the outputs shown in Figure 12 and Figure 13.

Primitives (Figure 12 San Miguel (Figure 13

PSNR MSSIM HDR-VDP PSNR MSSIM HDR-VDP

Prev. Ours Prev. Ours Prev. Ours Prev. Ours Prev. Ours Prev. Ours

Healthy 33.57 dB 50.82 dB 0.984 0.998 0.998 0.062 27.26 dB 45.61 dB 0.938 0.997 0.988 0.353
Myopia 33.45 dB 49.10 dB 0.983 0.998 0.970 0.172 29.99 dB 47.81 dB 0.966 0.995 0.994 0.100
Astigmatism 34.55 dB 48.84 dB 0.985 0.997 0.784 0.244 29.90 dB 47.22 dB 0.961 0.995 0.995 0.317
Keratoconus 34.40 dB 46.19 dB 0.982 0.998 0.963 0.069 27.99 dB 43.53 dB 0.941 0.993 0.993 0.113

Table 3: Running times of the pre-computation step, the previous vision simulation method [Bar11], and the rendering stage of our algorithm, for the same
test scenarios and parameter settings that we used to generate the outputs shown in Figure 12 and Figure 13.

Primitives (Figure 12) San Miguel (Figure 13)

Pre-computation Proposed Algorithm Previous Proposed Algorithm Previous

Coeff. PSFs #PSFs PSFs Conv. Total Conv. PSFs Conv. Total Conv.

Healthy 141.07 s 622.06 s 2 460 0.47 ms 10.23 ms 14.88 ms 11.54 s 0.45 ms 9.91 ms 14.40 ms 12.13 s
Myopia 119.82 s 196.00 s 2 460 0.15 ms 13.56 ms 16.67 ms 9.43 s 0.16 ms 20.48 ms 24.49 ms 10.31 s
Astigmatism 115.52 s 246.17 s 2 460 0.20 ms 10.54 ms 13.49 ms 9.65 s 0.19 ms 13.89 ms 17.32 ms 9.31 s
Keratoconus 127.60 s 450.58 s 2 460 0.28 ms 8.51 ms 11.86 ms 9.65 s 0.24 ms 12.60 ms 16.73 ms 10.75 s

running times of our algorithm. Lastly, we only include the new and
modified parts of the rendering stage, since only those are affected
by our extended approach; we omit the rest for brevity.

As can be seen from the results, our algorithm achieves the de-
sired interactive performance and clearly outperforms the previous
approach. Since we do the vast majority of the interpolations in
the tile traversal step, the cost of the PSF texture generation step is
negligible. Most of the processing time is spent in the convolution
step, which is a consequence of treating each channel separately.
We identified the memory bandwidth (texture accesses) to be the
most limiting factor; replacing the PSF texture lookup with a sim-
ple weight (based on the inverse kernel area) significantly reduced
the cost of the convolution step.

Furthermore, as the performance measurements demonstrate, the
relative processing times follow our expectations and change with
the overall blurriness of the output. The one exception to this pattern
can be observed in the simulation of the healthy eye with primitives
test scene, where the processing time of the mostly sharp image is
higher than that of most other eye conditions. The phenomenon is
caused by the blur radius threshold of the merge process, which we
use to preserve the sharpness of the image in the focused region.
This particular output is thus a good demonstration of the impor-
tance of fragment merging on the computation times.

Memory. The memory consumption of the PSF buffer is mainly
defined by the maximum blur radius Rmax; we used Rmax = 48 in our
examples. Using such a large Rmax not only facilitates the rendering

of arbitrary conditions, but it also leans more towards the worst-case
scenario that can be expected. With this configuration, the full PSF
grid consumes 1 472 MB of GPU memory (74 MB for each unique
combination of focus distance and pupil diameter), with another
72 MB used by the PSF texture.

Storing all the kernels on the GPU allows the eye parameters to
be dynamically changed at runtime, which is a very large benefit for
interactive applications. On the other hand, extending the approach
with support for off-axis aberrations is not trivial. Our eye model
can be used to obtain the necessary off-axis aberration coefficients,
but the asymmetric nature of the eye increases the number of light
angles that we need to handle. We believe that the combination of
PSF texture packing and streaming the kernels from main memory
(to handle parameter changes) would make it possible to extend our
method with support for off-axis PSFs, but further experiments are
needed to verify the practicality of such an approach.

Eye estimation. Closing off, we also evaluate the performance
characteristics and reconstruction precision of the eye estimation
procedure. We used the patternsearch optimizer in MATLAB
and the loss function described in Section 3.2 to implement this
process. We also used manual parameter normalization and a very
conservative initial mesh size of 0.01. With this setup, the over-
all convergence speed depends mainly on the input eye condition:
on an AMD Ryzen 7 1700 CPU, with the simple, low-order aber-
rations, the optimizer gets very close to the final output in less
than an hour. On the other hand, the highly complex eye with
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Figure 14: Difference between the input (Zi) and generated (Ẑi)
Zernike coefficients, for the four estimated eye models correspond-
ing to eye conditions shown in this paper. For reference, the RMS
wavefront aberrations are: 0.009μm (healthy), 5.409μm (myopia),
4.488 μm (astigmatism), and 6.01 μm (keratoconus).

keratoconus took longer to estimate, with a total running time of
about 4 hours.

The differences between the input and generated aberration co-
efficients for the demonstrated eye conditions are visualized in
Figure 14. As can be seen, the errors are mainly present in the
very high Zernike orders, which is likely the outcome of the sim-
plified structure of the crystalline lens that we used in our model.
However, the results also clearly show that the error magnitudes are
very low, and thus the accuracy of our estimation process is per-
fectly suitable for our vision simulation purposes. Furthermore, de-
spite the significant variance of the input aberration coefficients for
the tested eye conditions, our proposed parametric eye model han-
dles each scenario efficiently, as demonstrated by the resulting er-
ror metrics. We can thus also see from this test that our proposed
eye model is capable of representing the various kinds of visual
aberrations.

5. Conclusions

In this paper, we presented an efficient new method for simulat-
ing the visual aberrations of the human eye. Our approach signifi-
cantly outperforms previous techniques and runs at interactive, near
real-time performance, which we achieve by combining the ren-
dering power of tiled splatting with physically-based point-spread
functions. We also require only a minimal amount of input data
and support arbitrary visual aberrations, offering a high degree
of usability. As demonstrated, our proposed solution produces vi-
sion simulations that closely match the reference images, while
also approaching real-time rendering performance on commodity
hardware.

As for future work, we would first like to decrease the running
time of the pre-computation step. We believe that deep learning
could be useful for the eye estimation process, as we can generate
an arbitrary number of training data with the help of our paramet-
ric eye model. Moving the PSF computations to the GPU would
significantly reduce the length of the pre-computation step as well.
We also plan on extending our PSF sampling strategy to support
off-axis aberrations. Since the centre of the visual field typically

receives the most attention, our current approach of only using on-
axis aberrations can generate convincing results. Our eye estimation
method is capable of generating the required aberration coefficients,
and as such, we see integrating off-axis aberrations into our exist-
ing pipeline as another promising area for future research. Lastly,
we would also like to further improve the performance of the run-
time step, with the end goal of supporting partial occlusion with
layered inputs.

Closing off, we hope that our proposed method will help increase
the graphical fidelity of vision simulations. We would mainly hope
to see more medical applications make use of such techniques, as
we believe the area could greatly benefit from these types of al-
gorithms. We also hope that sophisticated vision simulations will
eventually find their way to entertainment software as well, as we
believe it could raise public awareness of the significance of these
conditions.
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