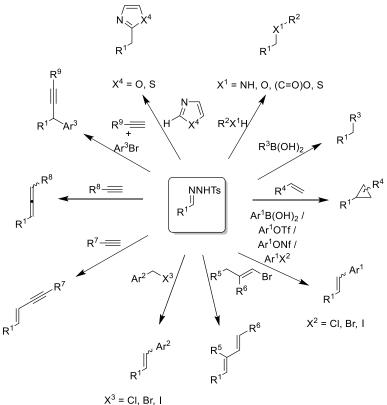
Theses of doctoral (PhD) dissertation

Coupling reactions of anhydro-aldose tosylhydrazones

Kaszás Tímea

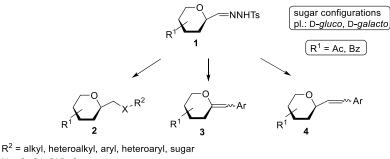
Supervisors: Vágvölgyiné Dr. Tóth Marietta, Dr. Somsák László


UNIVERSITY of DEBRECEN PhD Program in Chemistry

Debrecen, 2018.

1. Introduction and objectives

Metal-catalysed and metal-free coupling reactions have fundamentally changed the way how complex organic molecules are assembled nowadays. Couplings of carbohydrates are not frequent because the subtituents easily eliminate. Functional and protecting group intolerance of most of the necessary organetallic reagents is another drawback.


In the last decade *N*-tosylhydrazones emerged as partners in both metal-catalysed and metal-free coupling reactions. Synthetic utility of these compounds as carbene precursors is very large (Scheme 1). Tosylhydrazones can be easily prepared from aldehydes or ketones, however, tosylhydrazones of anhydro-aldoses are not readily available, and their preparation needs special methods. Our group has elaborated a simple synthetic procedure for this type of compounds: reduction of glycosyl cyanides with *in situ* trapping of the intermediate imine by tosylhydrazine.

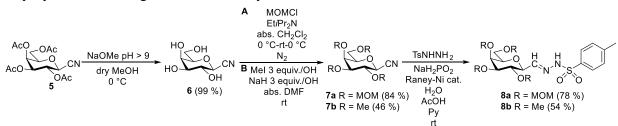
Scheme 1 Synthetic utilities of N-tosylhydrazones

Based on this background our aim was the examination of metal-free and Pd-catalysed coupling reactions of anhydro-aldose tosylhydrazones 1 (Scheme 2), which is a new field in carbohydrate chemistry. We envisaged to investigate the coupling reactions of tosylhydrazones 1 with alcohols, phenols, carboxylic acids and thiols under metal-free conditions to get glycopyranosylmethyl compounds 2. Another goal of our work was to study the Pd-catalyzed couplings of tosylhydrazones 1 with aryl and benzyl halides to give substituted *exo*-glycals 3 and ω -*C*-glycosyl styrenes 4. The low hydrolytic stability of natural *O*-glycosidic bonds reduces the applicability of carbohydrate-type molecules as drug candidates. The replacement of the glycosidic oxygen with other atoms, such as S, N, and C may result in hydrolytically more

stable moieties, thus the planned transformations may open simpler and shorter ways for the syntheses of glycomimetic compounds.

X = O, C(=O)O, S

Scheme 2 Planned transformations of anhydro-aldose tosylhydrazones


2. Applied methods

In the course of our synthetic work, macro, semi micro and micro methods of modern preparative organic chemistry were applied. Reactions were monitored by thin-layer chromatography. Products of the reactions were purified by column chromatography and/or by crystallization. New compounds were characterized by their physical property (optical rotation) and their structures were elucidated by 1D- and 2D-, ¹H- and ¹³C-NMR methods as well as mass spectrometry.

3. New results of the dissertation

3.1. Synthesis of *C*-(β -D-galactopyranosyl)formaldehyde tosylhydrazones with ether type protecting groups

Galactopyranosyl cyanide **5** was deacetylated under Zemplén conditions to give the deprotected **6**, which was reacted with MOMCl (method **A**) to yield the *O*-permethoxymethylated compound **7a**. Reaction of **5** with methyl-iodide (method **B**) resulted in cyanide **7b**. Reduction of compounds **7** in the presence of tosylhydrazine furnished tosylhydrazones **8** in good to moderate yields.

Scheme 3 Synthesis of C-(β -D-galactopyranosyl)formaldehyde tosylhydrazones with ether type protecting groups

3.2. Examination of the generation of C-glucosylmethylene carbenes

Generation of *C*-glucosylmethylene carbene from tosylhydrazone **9** was studied in the presence of various bases to result in *exo*-glucal **10**. The best results were achieved in the presence of K_3PO_4 in 1,4-dioxane at reflux temperature or with LiO*t*Bu at 110 °C in a sealed tube (Table 1). Based on these results coupling reactions were mainly performed under these reaction conditions.

BzO BzO	OBZ H H OBZ N N S OBZ OBZ	base → BzO~ dry solvent BzC	OBz + BzO OBz + BzO	OBZ CHO ⁺ BZO BZC	
	3		10	11	12f
Entry	Base	dry		Yield (%)	
Linu y	(equiv.)	Solvent	10	11	12f
1	NaH (10)	1,4-dioxane	72	-	-
2	K ₂ CO ₃ (1.5)	1,4-dioxane	21	5	16
3	$K_{2}CO_{3}(5)$	1,4-dioxane	26	6	9
4	K ₂ CO ₃ (10)	1,4-dioxane	25	9	5
5	LiOtBu (1.5)	1,4-dioxane	50 ^a	-	-
6	LiOtBu (5)	1,4-dioxane	24	-	-
7	(<i>n</i> -Bu) ₄ NF (5)	1,4-dioxane	44	+	14
8	K ₃ PO ₄ (3)	1,4-dioxane	46	-	-
9	K ₃ PO ₄ (5)	1,4-dioxane	70	-	-
10	K ₃ PO ₄ (5)	PhF	10	-	-
11	K ₃ PO ₄ (5)	PhF	29 ^b	-	-

 Table 1 Generation of C-glucosylmethylene carbenes

^a Performed in a sealed tube, 110 °C, Ar

^b Performed in a sealed tube, 100 °C

3.3. Metal-free coupling reactions – Formation of C-O bonds

3.3.1. Synthesis of β -D-glucopyranosylmethyl ethers

Tosylhydrazone 9 was reacted with alcohols and phenols under UV-irradiation, microwave or conventional thermic activation. Coupling of compound 9 with alcohols failed, except 1,1,1,3,3,3-hexafluorpropanol which provided ether 13a in moderate yield. Reactions with phenols resulted in the corresponding ethers 13b,d,e in low and moderate yields. Exoglucal 10 was isolated as a by-product in these experiments (Table 2).

Table 2 Coupling of *C*-(β -D-glucopyranosyl)formaldehyde tosylhydrazone with alcohols and phenols

and pix	mon	5							
		BZO BZO OBZ 9	HNS O	<u> </u>	OBZ OBZ OBZ	+ BzO BzO-	OBz OBz OBz		
Entry		R	ROH	Base	dry	Т	t	Yield	d (%)
Liiti y		K	(equiv.)	(equiv.)	Solvent	(°C)	(h)	13	10
1		CH ₃ CH ₂ -		K ₃ PO ₄ (5)	ethanol	78	3		om- tion
2		(CH₃)₃C-	20	K ₃ PO ₄ (10)	1,4-dioxane	80	3	-	28
3			20	LiOtBu (1.2)	PhF	100 ^a	0.25	-	42
4			20	LiOtBu (1.2)	PhF	100 ^a	0.25	-	+
5	a	(CF ₃) ₂ CH-	20	LiOtBu (1.2)	1,4-dioxane	110 ^b	0.5	35	28
6			20	LiO <i>t</i> Bu (1.2)	PhF	100 ^a	0.25	25	5

7	b		35	K ₃ PO ₄ (10)	1,4-dioxane	101	1	-	-
8			33	LiOtBu (1.5)	1,4-dioxane	110 ^b	1	25	45
9			20	LiOtBu (1.5)	1,4-dioxane	25 ^c	1.5	8	33
10	c	H ₃ C-	5	K ₃ PO ₄ (2)	1,4-dioxane	110 ^b	0.5	+	42
11			20	LiOtBu (1.2)	1,4-dioxane	110 ^b	0.5	+	55
12	d	CI-	20	K ₃ PO ₄ (5)	1,4-dioxane	110 ^b	1	20 ^d	-
13			20	LiOtBu (1.2)	1,4-dioxane	101	0.5	30	13 ^d
14			20	LiOtBu (1.2)	PhF	100 ^b	17.5	39	-
15			2	K ₂ CO ₃ (3.5)	PhF	155 ^a	0.3	17	+
16	e	0 ₂ N-	20	K ₃ PO ₄ (10)	1,4-dioxane	110 ^b	0.5	28	-
17			20	LiOtBu (1.2)	1,4-dioxane	110 ^b	0.5	34	+

^a MW (150 W 100 °C, 200 W 155 °C)

^b Performed in a sealed tube

^c Irradiation with mercury vapour lamp (250 W, λ_{max} =365 nm)

^d Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

The acidity of the reagents and the yield of the reactions showed a good correlation. Reactions in the presence of alcohols and phenols with $pK_a > 10$ failed (Table 3, entries 1–4), but resulted in products **13a,b,d,e** with low and moderate yields (Table 3, entries 5–8) when $pK_a < 10$.

Entry	ROH	ROH (equiv.) (number of compounds)	Yield (%) (number of compounds)	p <i>K</i> a
1	(CH₃)₃COH	20 (9)	-	17.0
2	CH ₃ CH ₂ OH	20 (9)	-	15.5
3	ОН	20 (9)	-	14.4
4	Н₃С−√−ОН	20 (9)	in trace (13c)	10.3
5	Он	20 (9)	25 (13b)	9.9
6	СІ-ОН	20 (9)	30 (13d)	9.4
7	(CF ₃) ₂ CHOH	20 (9)	35 (13a)	9.3
8	O ₂ N-OH	20 (9)	34 (13e)	7.2

Table 3 Comparison of the acidity (pK_a) of the investigated alcohols and phenols and its influence on the yields

3.3.2. Synthesis of β-D-glycopyranosylmethyl esters

The coupling reactions of tosylhydrazone 9 and carboxylic acids resulted in esters 12. Aliphatic esters 12a–e were prepared in poor (12a,e) to moderate (12b–d) yields (Table 4, entries 1–6). The aromatic 12f–l and sugar esters 12m–p were isolated in low (12f,h), moderate (12g,i–l and 12m,o) and good (12n,p) yields (Table 4, entries 7–18).

		BZO BZO OBZ OBZ O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O BZO O S O BZO O S O S O S O S O S O S O S O S O S O	RCOOH K ₃ PO ₄ dry 1,4-dioxane reflux	$BzO \xrightarrow{OBz} O \\ BzO \xrightarrow{OBz} O \\ OBz$	
Entry		R	RCOOH (equiv.)	K ₃ PO ₄ (equiv.)	Yield (%) 12
1	a	CH₃-	20	10	31
2	b	CH ₃ CH ₂ -	20	10	49
3	c		20	10	58
4		,	2	2	39
5	d	S-S	5	5	39
6	e	N N	5	5	28
7	f		40	20	22
8	g		20	10	37
9	h	H ₃ CO-	20	25	29
10	i	но	20	20	43
11	j		20	25	51
12		0 ₂ N-	5	9	33
13	k	H ₂ N-	3	8	36
14	1	NH ₂	20	15	51
15	m	AcO	5	5	48
16	n	BZO BZO OBZ	5	4	60
17	0	AcO OAc AcO OAc	5	3	58
18	р		5	5	66

Table 4 Coupling of *C*-(β -D-glucopyranosyl)formaldehyde tosylhydrazone with carboxylic acids

Experiments were extended to the D-*galacto* configured tosylhydrazone 14. The corresponding aliphatic β -D-galactopyranosylmethyl esters 15a–c were obtained in low (15b,c) and moderate (15a) yields, the sugar ester 15d was isolated in good yield (Table 5).

euroon,	yne aeius				
		$\begin{array}{c} AcO \\ AcO \\ AcO \\ OAc \\ OAc \\ 0 \end{array} \begin{array}{c} H \\ N \\ O \\ O$	RCOOH K ₃ PO ₄ dry 1,4-dioxane reflux	AcO OAc OAc OAc OAc OAc OAc OAc OAc OAc	
Entry		R	RCOOH (equiv.)	K ₃ PO ₄ (equiv.)	Yield (%) 15
1	a	CH ₃ -	20	10	51
2	b	CH ₃ CH ₂ -	5	4	30
3	c		2	2	25
4	d	BZO BZO OBZ	5	3	75

Table 5 Coupling of *C*-(β -D-galactopyranosyl)formaldehyde tosylhydrazone with carboxylic acids

The correlation of the acidity of the reagents and the yields was also examined. Carboxylic acids with $pK_a > 3$ gave esters in low to moderate yields (**12a–j**, **15a–c**, Table 6, entries 1–10), however with $pK_a < 3$ furnished the coupled products in moderate and good yields (**12k–p**, **15d**, Table 6, entries 11–16).

Table 6 Comparison of the acidity (pK_a) of the investigated carboxylic acids and its influence on the yields

Entry	RCOOH	RCOOH (equiv.) (number of compounds)	Yield (%) (number of compounds)	p <i>K</i> a
1	CH ₃ CH ₂ COOH	20 (9)	49 (12b)	4.9
1		5 (14)	30 (15b)	4.9
2	CH₃COOH	20 (9)	31 (12a)	4.8
2		20 (14)	51 (15a)	1.0
3	S-S COOH	5 (9)	39 (12d)	4.8
4	но-Соон	20 (9)	43 (12h)	4.6
5	н₃со- Соон	20 (9)	29 (12i)	4.5
6	Соон	20 (9)	58 (12c)	4.3
0		2 (14)	21 (15c)	т.5
7	Соон	20 (9)	22 (12f)	4.2
8	СООН	20 (9)	37 (12g)	4.2
9	и соон	5 (9)	28 (12e)	3.6
10	02N-СООН	20 (9)	51 (12j)	3.4
11	H ₂ N-СООН	3 (9)	36 (12k)	2.5

12	NH2 СООН	20 (9)	51 (12l)	2.2
13	AcO ÖAc OAc COOH	5 (9)	48 (12m)	2.3–2.6
14		5 (9) 5 (14)	60 (12n) 75 (15d)	
15	ACO OAC ACO OAC OAC	5 (9)	58 (120)	
16	HOOC	5 (9)	66 (12p)	

3.4. Metal-free coupling reactions – Formation of C-S bonds Synthesis of β -D-glycopyranosylmethyl sulfides

Coupling reactions of tosylhydrazone **9** with thiols was optimized with thiophenol (Table 7). The best reagent and base ratios were $20 : 10, 5 : 2 \notin 2 : 2$, which provided sulfide **16h** in good yields (Table 7, entries 1, 5 and 7). So these conditions were employed in the following transformations.

Table 7 Optimization of the reaction conditions and the coupling of C-(β -D-glucotopyranosyl)formaldehyde tosylhydrazone with thiophenol

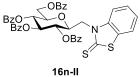
	BZO BZO BZO OBZ OBZ OBZ OBZ N N S 9	K ₃ PO4 O dry 1,4-diox reflux 45 min	\xrightarrow{BzO}_{BzO}	OBz OBz 16h OBz CHO + BzC Bz		≻ +)Bz
	Reaction	conditions		Yield	d (%)	
Entry	PhSH (equiv.)	K ₃ PO ₄ (equiv.)	16h	10	11	12f
1	20	10	70	3	-	-
2	10	10	40	23	-	-
3	2	10	33	18	-	-
4	5	5	44	13	+	-
5	5	2	76	+	+	+
6	4	2	53	12	-	+
7	2	2	72	-	+	-
8	1	1,5	59	-	+	-

Next, analogous reactions with other thiols were performed. The couplings gave the corresponding aliphatic sulfides **16a–g** in low (**16b,c,f**) and moderate (**16a,d,e,g**) yields (Table 8, entries 1–13), while low (**16l**), moderate (**16k**) and good (**16h–j,m,n-I**) yields were achieved in the case of aromatic and heteroaromatic sulphides **16h–n** (Table 8, entries 14–26). However, the reactions failed with sugar thiols (Table 8, entry 27).

	BzO BzO	OBz OBz OBz N ⁻ N ⁻ N ⁻ S ⁻ O	BzO Bzo base dry 1,4-dioxane	$ \begin{array}{rcrcr} & OBz \\ & OBz \\ & OBz \\ & Bz \\ &$	OBz OBz 10	
		9	reflux BzOJ	$\begin{array}{c} OBz \\ OBz \\ OBz \\ CHO \end{array} + \begin{array}{c} BzO \\ BzO \end{array} + \begin{array}{c} OBz \\ BzO \\ BzO \end{array}$		
Entry		R	RSH	Base	Yield	d (%)
Linu y		K	(equiv.)	(equiv.)	16	10
1	a	CH ₃ CH ₂ -	20	K ₃ PO ₄ (10)	51	_ ^a
2			20	LiOtBu (1.2)	53 ^b	3
3	b	CH ₃ CH ₂ CH ₂ -	20	K ₃ PO ₄ (10)	29	_ ^a
4	c	-H-	20	K ₃ PO ₄ (10)	17	$+^{a,d}$
5	d		20	K ₃ PO ₄ (10)	39	-
6			5	K ₃ PO ₄ (2)	22 ^c	11 ^{c,d}
7			20	LiOtBu (1.2)	27 ^{b,c}	36 ^c
8	e		20	K ₃ PO ₄ (10)	44	$+^{d}$
9		~	20	LiOtBu (1.2)	34 ^c	17 ^d
10	f	н₃соос∽∽∽	20	K ₃ PO ₄ (10)	23	+
11	g	HS	20	K ₃ PO ₄ (10)	37	$+^{a,d}$
12			0.5	K ₃ PO ₄ (2)	7	5 ^d
13			20	LiOtBu (1.2)	42 ^c	-
14	h		20	K ₃ PO ₄ (10)	70	+ ^{a,d}
15			5	K ₃ PO ₄ (2)	76	$+^{a,d}$
16	i	OCH3	20	K ₃ PO ₄ (10)	69	+
17			5	K ₃ PO ₄ (2)	64	$+^{a}$
18			2	K ₃ PO ₄ (2)	55	-
19			5	LiOtBu (1.2)	63 ^b	+
20	j	OH	20	K ₃ PO ₄ (10)	68	-
21			5	K ₃ PO ₄ (2)	64	
22	k	0 ₂ N-	5	K ₃ PO ₄ (6)	54	-

Table 8 Coupling of C-(β -D-glucopyranosyl)formaldehyde tosylhydrazone with thiols

23	l	H ₂ N-	20	K ₃ PO ₄ (10)	23	-
24	m		5	K ₃ PO ₄ (2)	65	-
25	n-I	S N	5	K ₃ PO ₄ (2)	70 ^e	-
26			2	K ₃ PO ₄ (2)	51 ^{b,e}	-
27		Aco CAc Aco CAc	20	K ₃ PO ₄ (10)	Comp reaction	


^a Compound **11** was detected in the mixture

^b Performed in a sealed tube, 110°C

° Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

^d Compound **12f** was detected in the mixture

^e Compound 16n-II was also isolated in a 10 % yield

The experiments were extended to C-(β -D-galactopyranosyl)formaldehyde tosylhydrazone 14, as well. Aliphatic sulfides 17a-e were isolated in low (17a,b,d) and moderate (17c,e) yields, while aromatic sulfides 17f-h were obtained in moderate (17h) and good (17f,g) yields (Table 9).

		Aco OAc H H S OAc N N S O	AcC RSH base dry 1,4-dioxane reflux	OAc	OAc	
		14	RSH	17 Base	18 Yield	l (%)
Entry		R	(equiv.)	(equiv.)	17	18
1	a	CH ₃ CH ₂ -	20	K ₃ PO ₄ (10)	16	25
2	b	CH ₃ CH ₂ CH ₂ -	20	K ₃ PO ₄ (10)	30	+
3	c	$\overline{}$	20	K ₃ PO ₄ (10)	51 ^a	+
4			5	K ₃ PO ₄ (2)	36	+
5	d		20	K ₃ PO ₄ (10)	27	-
6	e	н₃соос∽∽∽	20	K ₃ PO ₄ (10)	39	+
7			20	LiOtBu (1.2)	55 ^b	-
8	f		20	K ₃ PO ₄ (10)	62	+
9			5	K ₃ PO ₄ (2)	77	+
10	g	OCH3	20	K ₃ PO ₄ (10)	60	+
11	h	ОН	20	K ₃ PO ₄ (10)	51	-

Table 9 Coupling of C-(β -D-galactopyranosyl)formaldehyde tosylhydrazone with thiols

^a Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

^b Perfomed in a sealed tube, 110 °C

The acidity of the thiols and the yields of the transformations were in good correlations. Thiols with $pK_a > 9$ provided the coupled products in low to moderate yields (**16a–g**, **17a–e**, Table 10, entries 1–7), whereas the more acidic aromatic thiols $pK_s < 7$ yielded the coupled products in moderate and good yields (**16h–n**, **17f–h**, Table 10, entries 8–14).

yleius				
Entry	RSH	RSH (equiv.)	Yield (%)	p <i>K</i> a
		(number of compounds)	(number of compounds)	
1	∕∽−ѕн	20 (9)	39 (16d)	10.7
1		5 (14)	36 (17c)	10.7
2		20 (9)	51 (16a)	10.5
2	CH₃CH₂SH	20 (14)	16 (17a)	10.5
3	CH ₃ CH ₂ CH ₂ SH	20 (9)	29 (16b)	10.2
3		20 (14)	30 (17b)	10.2
4	→, SH	20 (9)	17 (16c)	10.0
5	нs	20 (9)	37 (16g)	9.9 and
5	п 5 * 5п	20 (3)	37 (10g)	10.5
<i>.</i>	SH	20 (9)	44 (16e)	0.4
6		20 (14)	27 (17d)	9.4
7	SH	20 (9)	23 (16f)	0.2
7	H ₃ COOC	20 (14)	39 (17e)	9.3
8	S N	5 (9)	70 (16n)	6.9
9	H ₂ N-SH	20 (9)	23 (16k)	6.9
10	SH	5 (9)	76 (16h)	
10		5 (14)	77 (17f)	6.6
11	OCH3	5 (9)	64 (16i)	C 1
11		20 (14)	60 (17g)	6.1
12	H ₃ CSH	5 (9)	65 (16l)	6.1
12	ОН	20 (9)	68 (16m)	60
13	 —>—SH	20 (14)	51 (17h)	6.0
14	O ₂ N-SH	5 (9)	54 (16j)	4.7

Table 10 Comparison of the acidity (pK_a) of the investigated thiols and its influence on the yields

3.5. Palladium-catalyzed coupling reactions – Formation of C-C bonds

3.5.1. Synthesis of substituted exo-glycals

The Pd-catalyzed couplings of tosylhydrazones **8b** and **14** with aryl halides were optimized in the Department of Chemistry, University of Rostock. Transformation of the *O*-permethylated tosylhydrazone **8b** gave the corresponding *exo*-galactals in good yields (Ph: 61 %, 4-CH₃Ph: 75 %). Compound **14** was reacted with aryl halides in the presence of Pd₂(dba)₃, CataCXium A and LiO*t*Bu in 1,4-dioxane, at 70 °C to give the corresponding aryl substituted *exo*-galactals **19a–c** in low (**19b,c**) and moderate (**19a**) yields (Table 11).

Table 11 Pd-catalyzed coupling of C-(β -D-galactopyranosyl)formaldehyde tosylhydrazone with aryl bromides

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							c
Entry	R	R-C ₆ H ₄ -Br	LiOtBu	Yield (%) ^a			
			(equiv.)	(equiv.)	19	19 : <i>E</i> : <i>Z</i>	18
1	a	Н	3	2.2	44	1:3	22
2	b	4-CH ₃ O	3	2.2	21	1:4	16
3	c	4-Cl	6	2.2	6	1:3	2

^a Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

The reactions were extended to D-*gluco* tosylhydrazone 9, and substituted *exo*-glucals **20a–g** were prepared in low (**20a,c–e,g**) and moderate (**20b,f**) yields (Table 12).

Table 12 Pd-catalyzed coupling of C -(β -D-glucopyranosyl)formaldehyde tosylhydrazone
with aryl bromides

	BZO BZO OBZ OBZ OBZ OBZ OBZ OBZ OBZ OBZ		R-C ₆ H ₄ -Br 2 mol% Pd ₂ (dba) ₃ 4 mol% CataCXium A LiOtBu dry 1,4-dioxane 70 °C Ar	BZO BZO OBZ 20	, AN +	BZO BZO OBZ 0BZ 10	-
Entry		R	R-C ₆ H ₄ -Br (equiv.)	LiOtBu (equiv.)	Yield (%)		
Liitiy		К			20	20 : <i>E</i> :Z	10
1	a	Н	3	2.2	24 ^a	1:2	36 ^a
2	b	4-CH ₃	6	2.2	41 ^a	1:2	19 ^a
3	c	4-CH ₃ O	3	2.2	11	1:2	27
4	d	4-F	6	2.2	32 ^a	1:2	16 ^a
5	e	4-NO ₂	6	1.5	33	1:2	24
6	f	4-CN	6	2.2	46	1:2	4
7	g	3-CN	6	1.5	20	1:2	+

^a Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

3.5.2. Synthesis of ω-(*C*-glycopyranosyl)styrenes

This type of coupling was optimized with tosylhydrazone **9** and benzyl bromide. The best conditions $(Pd_2(dba)_3 \text{ catalyst}, P(2-furil)_3 \text{ ligand}, \text{LiO}tBu \text{ base}, 1,4-dioxane, 70 °C)$ was applied in the following experiments (Table 13, entries 7–9).

	BzO BzO 9	CNNNSO	Pd catalyst Ligand LiOfBu dry solvent N ₂	Bzo	$\begin{array}{c} Bz \\ OBz \\ OBz \\ 21a \\ OBz \\ $	Bzo Bzo Šo	OBz OBz 10	₌ +	
E.	Pd	Ligand	BnBr	LiOtBu	dry	Т	Yi	Yield (%)	
E.	catalyst (mol%)	(mol%)	(equiv.)	(equiv.)	Solvent	(°C)	21a	10	22a
1	Pd(OAc) ₂ (5)	XPhos (20)	1	3	1,4-dioxane	70	3	15	4
2	Pd(OAc) ₂ (5)	P(2-furyl) ₃ (20)	1	3	1,4-dioxane	70	25	+	-
3	$Pd(OAc)_2$ (5)	CataCXium A (20)	1	3	1,4-dioxane	70	3	4	1
4	$Pd(OAc)_2$ (5)	DPPF (20)	1	3	1,4-dioxane	70	24	2	1
5	$Pd(OAc)_2$ (5)	DPPP (20)	1	3	1,4-dioxane	70	3	7	+
6	$Pd_2(dba)_3$ (2.5)	P(2-furyl) ₃ (20)	1	3	1,4-dioxane	101	4	-	-
7	$Pd_2(dba)_3$ (2.5)	P(2-furyl) ₃ (20)	1	3	toluene	80	32	2	3
8	$Pd_2(dba)_3$ (2.5)	P(2-furyl) ₃ (20)	3	1.5	1,4-dioxane	70	22	-	-
9	$Pd_2(dba)_3$ (2.5)	P(2-furyl) ₃ (20)	6	1.5	1,4-dioxane	70	48	11	-

Table 13 Optimization of the Pd-catalyzed coupling of C-(β -D-glucopyranosyl)formaldehyde tosylhydrazone with benzyl bromide

^a Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

Transformation of tosylhydrazone 9 with substituted benzyl bromides gave the corresponding styrenes 21a-k in low (21c,d,k) and moderate (21a,b,e-j) yields (Table 14).

	-OB	z 🔨	$B_{ZO} \xrightarrow{OB_Z}_{OB_Z} \xrightarrow{H} R + B_{ZO} \xrightarrow{OB_Z}_{OB_Z} + B_{ZO} + B_{ZO}$				
В	zo Bzo	OBZ O'S	<u>R-C₆H₄-CH₂-Br</u> 2,5 mol% Pd ₂ (dba) ₃ 20 mol% P(2-furyl) ₃ LiO <i>t</i> Bu dry 1,4-dioxane 70 °C Ar	21 BZO BZO 22	H Bz O ^{''} O	10	_
Entry		R	R-C ₆ H ₄ -CH ₂ -Br	LiOtBu	Yield (%)		
Entry		K	(equiv.)	(equiv.)	21	10	22
1	a	Н	6	1.5	48	11	-
2	b	4-CH ₃	6	1.5	40	6	11
3	c	3-CH₃	6	1.5	17 ^a	26 ^a	-
4	d	3-CH₃O	6	1.5	10	-	31
5	e	4-Cl	6	1.5	40	5	14
6	f	3-Cl	6	1.5	42	6	-
7	g	4-Br	6	1.5	54	4	-
8	h	4-Br	6	1.5	41 ^a	11 ^a	5
9	i	2-Br	6	1.5	36 ^a	20^{a}	2
10	j	4-NO2	6	1.5	39 ^{a, b}	+	16 ^a
11	k	4-CN	6	1.5	27	16 ^a	17 ^a

Table 14 Pd-catalyzed coupling of C-(β -D-glucotopyranosyl)formaldehyde tosylhydrazone with benzyl bromides

^a Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

^b E:Z = 1:1

The experiments were extended to the D-*galacto* tosylhydrazone 14. Coupling reactions provided the ω -*C*-galactosyl styrenes 23a–e in moderate (23c,e) and good (23a,b,d) yields (Table 15).

	AcO AcO	$ \begin{array}{c} Ac \\ B \\ C \\ OAc \\ O'S \\ $		AcO OAc AcO OAc 23 AcO OAc AcO OAc AcO OAc AcO OAc		Aco OAc CO OAc OAc 18	÷
Entry	R		R-C ₆ H ₄ -CH ₂ -Br (equiv.)	LiOtBu	Yield (%)		
Linu y				(equiv.)	23	18	24
1	a	Н	6	1.5	59	5	-
2	b	4-CH ₃	3	2.2	55 ^a	7 ^a	-
3	c	3-CH₃	6	1.5	25	3	7
4	d	3-CI	6	1.5	59	3	-
5	e	4-Br	6	1.5	31	1	9

Table 15 Pd-catalyzed coupling of C-(β -D-galactopyranosyl)formaldehyde tosylhydrazone with benzyl bromides

^a Yields were calculated on the basis of the ¹H NMR spectra of the worked-up reaction mixtures

4. Possible application of the resultes

This work is a basic research in carbohydrate chemistry whereby the applicability of anhydro-aldose tosylhydrazones in coupling reactions was explored. In comparison to the existing synthetic pathways, the methods elaborated represent new, alternative and simpler ways to form β -D-glycopyranosylmethyl ethers, esters and sulfides, substituted *exo*-glycals and ω -(*C*-glycosyl)styrenes, thereby opening a new possibility to get such kinds of glycomimetics.

Conferences

Lectures and posters related to the theses:

Lectures:

- <u>T. Kaszás</u>, M. Tóth, L. Somsák: Some new reactions of anhydro-aldose tosylhydrazones Annual meeting of the Working Committee for Carbohydrates, Nucleic Acids and Antibiotics of the Hungarian Academy of Sciences, Mátraháza, May 27-29, 2015, lecture
- <u>Kaszás T.</u>, Tóth M., Somsák L.: *C-(β-D-glikopiranozil)metil-szulfidok előállítása: anhidro-aldóz tozilhidrazonok kapcsolási reakciói alifás és aromás tiolokkal* MKE 2. Nemzeti Konferencia, Hajdúszoboszló, **2015.** augusztus 31.-szeptember 2., Sz-O-9, Program és előadás összefoglalók p. 62., előadás
- <u>Kaszás T.</u>, Tóth M., Somsák L.: *C-(β-D-Glikopiranozil)metilén-karbének beékelődése tiolokba* DOSZ-MKE Innováció a természettudományban – Doktorandusz Konferencia, Szeged, **2015.** szeptember 26., Absztrakt eBook p. 16., előadás
- <u>T. Kaszás</u>, A. Ivanov, M Tóth, P. Ehlers, P. Langer, L. Somsák: Studies into Pd-catalyzed cross couplings of anhydro-aldose tosylhydrazones Annual meeting of the Working Committee for Carbohydrates, Nucleic Acids and Antibiotics of the Hungarian Academy of Sciences, Mátraháza, May 25-27, 2016, lecture
- <u>T. Kaszás</u>, A. Ivanov, M Tóth, P. Ehlers, P. Langer, L. Somsák: *Pd-catalysed cross couplings of anhydro-aldose tosylhydrazones with aryl and benzyl bromides* 19th European Carbohydrate Symposium, Barcelona, Spain, July 2-6, **2017**, OL-43, Scientific Progam & Abstract Book p.161, lecture

Posters:

- <u>T. Kaszás</u>, M. Tóth, L. Somsák: Synthesis of C-(β-D-glycopyranosyl)methyl-sulfides: metal-free coupling of anhydroaldose tosylhadryzones with aliphatic and aromatic thiols 18th European Carbohydrate Symposium, Moscow, Russia, August 2-6, **2015**, P-009, Progam & Abstracts book p. 50, poster
- M. Tóth, <u>T. Kaszás</u>, L. Somsák: *Coupling of anhydro-aldose tosylhydrazones with thiols: a new route for the synthesis of C-(β-D-glycopyranosyl)methyl-sulfides* Debrecen Colloquium on Carbohydrates, András Lipták Memorial Conference, Debrecen, November 6-8, **2015**, P-30, Program and Abstract book p. 75, poster

 <u>Kaszás T.</u>, Ivanov A., Tóth M., Ehlers P., Langer P., Somsák L.: *Anhidro-aldóz tozilhidrazonok Pd-katalizált keresztkapcsolási reakciói aril- és benzil- bromidokkal* MKE Vegyészkonferencia 2017, Hajdúszoboszló, **2017.** június 19-21. P-19, Program és előadás összefoglalók p. 59., poszter

Other lectures and posters:

Lectures:

- <u>Kaszás T</u>., Tóth M., Somsák L. *Aldehid-4-(2,3,4,6-tetra-O-acetil-β-D-glükopiranozil)-szemikarbazon származékok szintézise* Országos Tudományos Diákköri Konferencia, Pécs, **2011.** április 27-29. ORGC-9, Program és előadáskivonatok p. 252., előadás
- M. Tóth, B. Szőcs, <u>T. Kaszás</u>, E. K. Szabó, T. Docsa, P. Gergely, L. Somsák Synthesis of C-(β-D-glucopyranosyl) heterocycles and 4-(β-D-glucopyranosyl) semicarbazones: potent glycogen phosphorylase inhibitors 4th German-Hungarian Workshop, Debrecen, June 14-16, **2011**, OP-7, lecture
- Szőcs B., <u>Kaszás T</u>., Szabó E. K., Tóth M., Somsák L. *Glükózhoz kapcsolt acilhidrazon származékok heterociklizációja* MTA Szénhidrát, Nukleinsav és Antibiotikum Munkabizottság előadóülése, Debrecen, 2012. május 31.-június 1., előadás
- <u>Kaszás T</u>., Madarász J., Pokol Gy.: Szilárd ZnO-prekurzor minták analitikai (XRD-, FTIR-) jellemzése és termikus bontásuk fejlődőgáz-analitikai (TG/DTA-MS és TG-FTIR) vizsgálata BME Tudományos Diákköri Konferencia, Budapest, 2012. november 14., előadás

Posters:

- B. Szőcs, <u>T. Kaszás</u>, M. Tóth, T. Docsa, P. Gergely, L. Somsák: *C-(β-D-Glucopyranosyl) heterocycles and 4-(β-D-glucopyranosyl) semicarbazones as glycogen phosphorylase inhibitors* 16th European Carbohydrate Symposium, Sorrento, Italy, July 3-7, **2011**, PO 327, Ebook p. 541, poster
- B. Szőcs, <u>T. Kaszás</u>, E. K. Szabó, M. Tóth, T. Docsa, P. Gergely, L. Somsák: Synthesis of C-(β-D-glucopyranosyl) heterocycles and 4-β-D-glucopyranosyl) semicarbazones: New Glucose derivatives as glycogen phosphorylase inhibitors 4th European Conference on Chemistry for Life Sciences, Budapest, August 31-September 3, **2011**, P112, poster
- B. Szőcs, M. Vágvölgyiné Tóth, <u>T. Kaszás</u>, T. Docsa, P. Gergely, L. Somsák: Synthesis of 3-(β-D-glucopyranosyl)-1,3,4-oxa- and thiadiazoles and 3-(β-Dglucopyranosylamino)-1,3,4-oxadiazoles for inhibition of glycogen phosphorylase 26th International Carbohydrate Symposium, Madrid, Spain, July 22-27, **2012**, P399, poster

Registry number: Subject: DEENK/249/2018.PL PhD Publikációs Lista

Candidate: Tímea Kaszás Neptun ID: UW2FEN Doctoral School: Doctoral School of Chemistry MTMT ID: 10054446

List of publications related to the dissertation

Foreign language scientific articles in international journals (3)

 Kaszás, T., Ivanov, A., Tóth, M., Ehlers, P., Langer, P., Somsák, L.: Pd-catalyzed coupling reactions of anhydro-aldose tosylhydrazones with aryl bromides to produce substituted exoglycals. *Carbohydr. Res. Epub*, 1-9, 2018. ISSN: 0008-6215. DOI: http://dx.doi.org/10.1016/j.carres.2018.02.010

IF: 2.096 (2016)

- Kaszás, T., Tóth, M., Somsák, L.: A new synthesis of C-beta-D-glycopyranosylmethyl sulfides by metal-free coupling of anhydro-aldose tosylhydrazones with thiols. *New J. Chem.* 41 (22), 13871-13880, 2017. ISSN: 1144-0546. DOI: http://dx.doi.org/10.1039/C7NJ03069J IF: 3.269 (2016)
- 3. Kaszás, T., Tóth, M., Kun, S., Somsák, L.: Coupling of anhydro-aldose tosylhydrazones with hydroxy compounds and carboxylic acids: a new route for the synthesis of C-b-Dglycopyranosylmethyl ethers and esters. *RSC Adv. 7*, 10454-10462, 2017. EISSN: 2046-2069. DOI: http://dx.doi.org/10.1039/c6ra27282g
 IF: 3.108 (2016)

List of other publications

Foreign language scientific articles in international journals (2)

- 4. Tóth, M., Szőcs, B., Kaszás, T., Docsa, T., Gergely, P., Somsák, L.: Synthesis of 2-(β-D-glucopyranosylamino)-5-substituted-1,3,4-oxadiazoles for inhibition of glycogen phosphorylase. *Carbohydr. Res. 381C*, 196-204, 2013. ISSN: 0008-6215.
 DOI: http://dx.doi.org/10.1016/j.carres.2013.04.025
 IF: 1.966
- Mihaiu, S., Madarász, J., Pokol, G., Szilágyi, I. M., Kaszás, T., Mocioiu, O. C., Atkinson, I., Toader, A., Munteanu, C., Marinescu, V. E., Zaharescu, M.: Thermal behavior of ZnO precursor powders obtained from aqueous solutions. *Rev. Roum. Chim. 58* (4-5), 335-345, 2013. ISSN: 0035-3930. IF: 0.393

Total IF of journals (all publications): 10,832 Total IF of journals (publications related to the dissertation): 8,473

The Candidate's publication data submitted to the iDEa Tudóstér have been validated by DEENK on the basis of Web of Science, Scopus and Journal Citation Report (Impact Factor) databases.

12 June, 2018

