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Abstract. In this paper we present a new one-way function with col-
lision resistance. The security of this function is based on the difficulty
of solving a norm form equation. We prove that this function is collision
resistant, so it can be used as a one-way hash function. We show that
this construction probably provides a family of one-way functions.

1. Introduction

The most basic notion for cryptographic applications is the one-way func-
tion. This is a function which is ”easy” to compute but ”hard” to invert.

The notion of the one-way function is of central importance in cryptogra-
phy. These functions are important building blocks for most of the protocols
and play a fundamental role in verifying passwords and creating digital sig-
natures. Their use is important for constructing a cryptographically secure
pseudo-random-sequence generator. There is an extensive literature on one-
way functions and their applications. We refer here only to two fundamental
books [17] and [22].

After all we have an important remark. Although one-way functions are
widely believed to exist, and there are several conjectured candidate one-
way functions which are widely used, we currently do not know how to prove
mathematically (without any assumption) that they actually exist. In the
rest of the paper we will say one-way function instead of candidate one-way
function, which is a widely accepted convention in the literature.
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The papers [24], [18], [5] and [14] show how to construct a one-way func-
tion. O. Goldreich, L. Levin and N. Nisan [8] make a one-to-one one-way
function based on the hardness of inverting RSA and the discrete log prob-
lem.

J. Buchmann and S. Paulus [3] use results from algebraic number theory
to construct a one-way function. It is based on the hardness of the discrete
logarithm problem with respect to the ideal class group of algebraic number
fields.

In this paper we present a new one-way function with collision resistance
and avalanche effect. The hardness of inverting this function is indicated by
the difficulty of solving a norm form equation. A norm form equation is a
special case of a decomposable form equation. We will construct a function
using a norm form; we will prove that this function is ”easy” to compute
and we will show facts indicating that it is ”hard” to invert. There is an
extensive literature on decomposable form equations and their applications.
For results and further references we refer to the books and survey papers
[2], [11], [12], [13], [23], [6] and [21].

2. The definition of one-way functions and their properties

In this paper we will use the modern notion of one-way functions based on
complexity theory which involves probabilistic algorithms instead of deter-
ministic ones. This setting was proposed first by Goldwasser and Micali [10].
The definition of a one-way function and a collection of one-way functions
below are from the book of Goldwasser and Bellare [9].

First we define the notion of negligible functions :

Definition 1. The function ν : N → R is called negligible, if for every
constant c ≥ 0 there exists an integer kc such that ν(k) < k−c for all k ≥ kc.

Now we present the definition of one-way functions :

Definition 2. The function f : {0, 1}∗ → {0, 1}∗ is called a one-way
function if:

(1) There exists a PPT algorithm1 that on input x outputs f(x).
(2) For every PPT algorithm A there is a negligible function νA such that

for sufficiently large k,

P

[
f(z) = y : x

R∈ {0, 1}k ; y = f(x); z = A(k, y)

]
≤ νA(k),

where the probability is taken over choices of x, and the coin tosses of A.

1Probabilistic polynomial time



A ONE-WAY FUNCTION BASED ON NORM FORM EQUATIONS 3

Let x
R∈ {0, 1}k denote that x is chosen randomly with uniform distribu-

tion from all possible binary words with length k.
The constant k is the security parameter which is identical with the bi-

nary length of the input of the cryptosystem and fixed at the time the
cryptosystem is setup.

The meaning of Definition 2 is that the probability of the following event
is negligable: One chooses x randomly with binary length k and computes
y = f(x). The algorithm A computes from input k and y the output z such
that f(z) = y.

This definition is less directly relevant to practice, but useful for theoret-
ical purposes. However, in cryptography we must typically envisage not a
single one-way function but a collection of them.

Definition 3. Let I be a set of indices and for i ∈ I let Di and Ri be finite
sets. A collection of one-way functions is a set

F = {fi : Di 7→ Ri}i∈I

satisfying the following conditions:
(1) There exists a PPT algorithm S1 which on input k outputs an i ∈ I

with maximum length k.
(2) There exists a PPT algorithm S2 which on input i ∈ I outputs x ∈ Di.
(3) There exists a PPT algorithm A1 which on input i ∈ I and x ∈ Di

outputs fi(x), i. e. A1(i, x) = fi(x).
(4) For every PPT algorithm A there exists a negligible function νA, such

that for all sufficiently large k

P

[
fi(z) = y : i

R∈ I, x
R∈ Di; y = fi(x); z = A(i, y)

]
≤ νA(k).

where the probability is taken over choices of i and x, and the coin tosses of
algorithm A.

The algorithm S1 chooses the index and the algorithm S2 chooses the in-
put x from the domain which corresponds to the index i. The algorithm A1

calculates the value fi(x), and the algorithm A tries to invert the function
fi.

Remark 1. One can show that the existence of a single one-way function is
equivalent to the existence of a collection of one-way functions. For a proof
see [9].

Important properties of one-way functions are the collision resistance and
the avalanche effect. Now we are presenting the definition of these notions.
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Definition 4. A one-way function f is collision resistant if there exists
a negligible function ν, such that

P [f(x1) = f(x2)] ≤ ν(k)

holds for any two distinct inputs x1 6= x2 and sufficiently large k, where the
probability is taken independently over all x1, x2 ∈ {0, 1}k.

Remark 2. In this definition (x1, x2) is considered as a uniformly dis-
tributed vector variable. There is another property of f to find x2 for fixed
input x1 or to find x2 for fixed output f(x1) such that f(x1) = f(x2). We
call these properties 2nd-preimage resistance and preimage resistance re-
spectively. For their definitions see [17].

Remark 3. Obviously the one-to-one functions are collision resistant.

The notion of avalanche effect is discussed first in connection with the
S-boxes of DES by Feistel, Notz and Smith [7]. Kam and Davida [15] called
this property completeness and defined it in the following way: a function is
complete if each output bit depends on all input bits. Webster and Tavares
[25] proposed the more stringent notion of avalanche effect:

Definition 5. (Strict avalanche criterion) A function f has strict avalanche
effect if whenever one input bit of f is changed, every output bit of f is
changing with probability 1

2
.

More simply, a function has strict avalanche effect if the change of one
input bit implies a change on the half of the output bits. We will measure
the change of bits via Hamming-distance. Its definition is the following:

Definition 6. (Hamming-distance) Let x = (ξ1, ..., ξn) and y = (η1, ..., ηn)
be the binary representations of the numbers x, y ∈ Z, respectively, where
ξi, ηi ∈ {0, 1}. The Hamming-distance of the numbers x and y is

%(x, y) =
n∑

i=1

ξi ⊕ ηi,

where ⊕ denotes the exclusive-or operator.

One-way hash functions play also a fundamental role in modern cryptog-
raphy.

Definition 7. The function f is a one-way hash function if f is a one-
way, collision resistant function and f maps an input x of arbitrary finite
bitlength to an output f(x) of fixed bitlength.

The widely used one-way hash functions (MD5, RIPE-MD, SHA) are
based on block ciphers. For results and further references we refer to the
books [17] and [22].
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3. The mappings NP and NP,s are one-way functions

Let P (X) ∈ Z[X] be a fixed monic polynomial of degree n ≥ 3 having no
multiple roots. Denote by α1, . . . , αn the roots of P and put

Li(X) :=
m∑

j=1

αj−1
i Xj for i = 1, . . . , n and m ≤ n.

Define the norm form corresponding to the polynomial P by

NP (X) :=
n∏

i=1

Li(X).

In fact, NP (X) is a generalization of the concept of norm form and is a
special decomposable form. Further, NP (X) is a homogeneous polynomial
of degree n, with integer coefficients.

Construction 1. Define the mapping NP : Zm → Z in the following way:

(1) NP : (x1, . . . , xm) 7→ NP (x1, . . . , xm).

Since NP (X) is a homogeneous polynomial with integer coefficients the
function value NP (x) will be a rational integer for every x ∈ Zm.

In the case when P is irreducible a detailed investigation of the complex-
ity of the computation of the value NP (x) using three different methods
can be found in [1]. In that paper we proved that the complexity of the de-
termination of NP (x) using matrix representation combined with modular

arithmetic is O(n7 + n6 logX + n2 log3/2X), where n denotes the degree of
P , X = max{|x1|, . . . , |xm|, 1} and the constant implied by the O notation
depends only on the maximum of the absolute values of the coefficients of
P .

This method can be applied in the same manner also in the case of re-
ducible P . Indeed, since αn

i can be represented as a linear combination of
1, αi, . . . , α

n−1
i we have

αk
i =

n−1∑
j=0

fkjα
j
i ; fkj ∈ Z,

which means that

Li(X)




1
αi
...

αn−1
i


 = (fkj(X))




1
αi
...

αn−1
i


 ,

where fkj(X) ∈ Z[X] are linear polynomials.
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From cryptographical point of view it would be more convenient to work
over finite domains. For s ∈ Z let Zs := Z/sZ.

Construction 2. Let s be an integer and define the mapping NP,s : Zm
s →

Zs in the following way:

(2) NP,s : (x1, ..., xm) 7→ NP (x1, . . . , xm) mod s.

where u mod s denotes the remainder by dividing u by s.

Remark 4. In Construction 2 the security parameter is the constant s.

The best way to compute the value NP,s(x1, ..., xm) is the method using
matrix representation described in Theorem 2 in [1], however the whole com-
putation can be done mod s. The following theorem shows the complexity
of the calculation of the value NP,s(x1, ..., xm).

Theorem 1. The complexity of the computation of NP,s(x), using the al-
gorithm described in Theorem 2 of [1] is O(n5 log2 s), where the constant in
O depends only on P (X).

Proof. The proof is nearly identical with the one of Theorem 3 of [1], we
just use that our operations are in Zs instead of Z. ¤

The fact that actually there is no known algorithm for determining all
solutions of general norm form equations, i.e. inverting NP,s is described by
the following condition:

Definition 8. Strong Modular Norm form Assumption(SMNA):
For every polynomial Q and every PPT algorithm A, and for all sufficiently
large positive integers s

P [A(s, b) = (x1, ..., xm) such that b = NP,s(x1, ..., xm)] <
1

Q(k)
,

where xi ∈ Zs and the probability is taken over all values xi and the coin
tosses of A.

We have the following theorem:

Theorem 2. Under SMNA the function NP,s is a one-way function.

Proof. We must show that the function NP,s satisfies the assumption of
Definition 2. Since by Theorem 1 there exists a deterministic algorithm,
which computes NP,s, assumption (1) of Definition 2 is satisfied.

The assumption (2) of Definition 2 is an immediate consequence of SMNA.
Thus our theorem is proved. ¤

Using the function NP,s we can create a collection of one-way functions
in the following way.
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Construction 3. Let P be a subset of all monic and squarefree polynomials
of degree n ≥ 4. Let m, s be integers with 3 ≤ m ≤ n and define

MNFF := {NP,s : Zm
s 7→ Zs, NP,s = NP mod s}P∈P .

Remark 5. In Construction 3 the security parameter is the constant s.

We have the following theorem.

Theorem 3. If for all P (X) ∈ P condition SMNA holds for NP,s then
MNFF is a collection of one-way functions.

Proof. We have to show that MNFF satisfies the assumption of Definition
3, provided that each function NP,s satisfies SMNA.

Obviously the domain and the codomain of each function NP,s is finite.
The algorithm S1 chooses randomly a polynomial P ∈ Z[X] of degree

n(≥ 4) having no multiple roots.
The algorithm S2 chooses the domain Zm

s corresponding to x.
Let the algorithm A1 be the deterministic algorithm described in chapter

4 of [1]. This algorithm computes the value NP,s(x) ∈ Z from x ∈ Zm
s . The

complexity of this algorithm is polynomial in the input value x by Theorem
1.

Since the complexity of algorithms S1,S2 and A1 are polynomial thus
assumptions (1), (2) and (3) of Definition 3 are satisfied.

Assumption (4) is an immediate consequence of SMNA. Thus Theorem
3 is proved. ¤

Unfortunately we are not able to present pairs P, s for which SMNA holds.
In the other direction we prove the following Proposition.

Proposition 1. Let s be a prime, P ∈ Z[X] and b ∈ Zs. Then there exists
a PPT algorithm which computes x = (x1, . . . , xm) ∈ Zm

s with NP,s(x) = b.

Proof. Let a = NP,s(1, 0, . . . , 0). Obviously a 6= 0. Choose c ∈ Zs such that

cnNP,s(1, 0, ..., 0) = NP,s(c, 0, ..., 0) = cna = b (mod s),

that is

(3) cn ≡ b

a
(mod s).

However, if s is prime, then equation (3) can be solved in probabilistic
polynomial time by Berlekamp’s factorization algorithm (see [4]). ¤

Thus in the sequel we suppose that s = pq, where p and q are large
rational primes. In this case the above method for breaking our one-way
function candidate does not work, since the solution of equation (3) is com-
putationally infeasible.
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4. The properties of the function NP and NP,s

In this section we investigate the probability of the collision for the func-
tion NP,s, i. e. we are interested in the probability

Pcoll = P [NP,s(x) = NP,s(y) : x, y ∈ Zs
m].

Our main result is the following theorem.

Theorem 4. Let P (X) ∈ Z[X] be a monic polynomial of degree at least 3
having no multiple roots. Let p and q be primes such that q > p > q/2 and
s := pq. Suppose that gcd(m,ϕ(s)) = 1. Let N(P, b, s) denote the number
of solutions of the congruence NP (x1, . . . , xm) ≡ b (mod s).

• If (b, s) = 1 we have

|N(P, b, s)− sm−1| < c1(P )sm−1− 1
4 ;

• othervise

N(P, b, s) < c2(P )sm−1.

Theorem 5. Let P (X) ∈ Z[X] be a monic polynomial of degree at least 3
having no multiple roots. Let p and q be primes such that q > p > q/2 and
s := pq. Suppose that gcd(m,ϕ(s)) = 1. Then the probability of collision
Pcoll for the function NP,s satisfies the inequality

Pcoll <
C

s
,

where the constant C depends only on the polynomial P .

To prove Theorem 4 we need two lemmas.

Lemma 1. Let P (X) ∈ C[X] be a polynomial, which has at least one simple
zero. Then the polynomial Zn − P (X) ∈ C[X,Z] is absolutely irreducible
for every n ≥ 2.

Proof of Lemma 1. This is a consequence of a theorem of Capelli (see e.g.
[20] p.662). ¤

Lemma 2. Let f(X) := f(X1, . . . , Xm) :=
n∏

i=1

(αi1X1 + · · · + αimXm) ∈
C[X1, . . . , Xm] be a form with the properties αij ∈ C for 1 ≤ i ≤ n, 1 ≤ j ≤
m, and

n∏
i=1

m∏
j=1

αij 6= 0. Suppose that there exist 1 ≤ j1 < j2 ≤ n such that

(4)
αij1

αij2

6∈
{

αkj1

αkj2

: 1 ≤ k ≤ n, k 6= i

}
.

Then the polynomial f(X)− a is irreducible for every 0 6= a ∈ C.
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Proof of Lemma 2. Suppose indirectly that f(X) − a is reducible. Put

f0(Xj1 , Xj2) =
n∏

i=1

(αij1Xj1 + αij2Xj2) ∈ C[Xj1 , Xj2 ].

It is easily seen that from the reducibility of f(X) − a follows the re-
ducibility of f0(Xj1 , Xj2)− a. Indeed, if there exists a non-trivial factoriza-
tion f(X) − a = g(X)h(X) of f(X) − a then using that the total degree
of f(X) − a is n and 0 < degXi

(f(X) − a) < n for every i = 1, . . . , m
it follows that 0 < degXi

g(X) < n and 0 < degXi
h(X) < n for every

i = 1, . . . , m. Thus every non-trivial factorization of f(X) − a induces a
non-trivial factorization of f0(Xj1 , Xj2)− a. Further,

f0(Xj1 , Xj2)− a =a0X
n
j1

+ a1X
n−1
j1

Xj2 + · · ·+ anXn
j2
− a =

= Xn
j2

(
a0

(
Xj1

Xj2

)n

+ a1

(
Xj1

Xj2

)n−1

+ · · ·+ an

)
− a.

Put P (Y ) := a0Y
n + a1Y

n−1 + · · · + an ∈ C[Y ] and Z := a1/nX−1
j2

. Then
f0(Xj1 , Xj2)−a is reducible over C, thus the polynomial P (Y )−Zn ∈ C[Y, Z]
is also reducible over C. However, from (4) it follows that P (Y ) has a
simple zero, and thus by Lemma 1 P (Y ) − Zn is irreducible, which is a
contradiction. ¤

Proof of Theorem 4. First suppose that gcd(b, s) = 1. Consider the equa-
tion NP (X1, ..., Xm) ≡ b (mod s) and put f := NP (X1, ..., Xm) − b. By
Lemma 2 the polynomial f is absolutely irreducible. Indeed, we can choose
i = 1, j1 = 2 and j2 = 1 and since now the condition required in Lemma
2 is α1 6∈ {α2, . . . , αn}, and since P has no multiple roots this condition is
fulfilled.

Now we can use a theorem of S. Lang and A. Weil [16]. By this theorem,
if the prime modulus p is sufficiently large the number of solutions N(f, p)
of the equation f ≡ 0 (mod p) satisfies the inequality

(5)
∣∣N(f, p)− pm−1

∣∣ < C(f)pm−1− 1
2 ,

where the constant C(f) depends only on the coefficients of the absolutely
irreducible polynomial f . Further, we note that the constant C(f) in our
case does not depend on the value of b. Indeed, since gcd(m, ϕ(s)) = 1 for
every 0 6= b ∈ Zs there exists a 0 6= a ∈ Zs such that am ≡ b (mod s), and
thus we have

NP (X1, ..., Xm)−b ≡ NP (X1, ..., Xm)−am ≡ am

(
NP

(
X1

a
, ...,

Xm

a

)
− 1

)
(mod s).

Thus the solutions of f ≡ 0 (mod s) can be derived from the solutions of
NP (Y1, ..., Ym) ≡ 1 (mod s) using the simple transformation (X1, ..., Xm) =
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a(Y1, ..., Ym), and the number of solutions of NP (Y1, ..., Ym) ≡ 1 (mod s)
clearly does not depend on b.

By (5) we have

(6) |N(P, b, p)− pm−1| < C1p
m−1− 1

2

and

(7) |N(P, b, q)− qm−1| < C1q
m−1− 1

2 .

By the Chinese remainder theorem (see [4]) the number of solutions of
the equation f ≡ 0 (mod s) is N(P, b, s) = N(P, b, p)N(P, b, q). Thus we
have

N(P,B, s) < (pq)m−1 + (pq)m−1

(
C1

p1/2
+

C1

q1/2

)
+ (pq)m−1 C2

1

(pq)1/2

<(pq)m−1 + (pq)m−1 C2

pq3/2
< sm−1 +

C3

sm−1−1/4
.

The inequality

N(P, b, s) > sm−1 − C4

sm−1−1/4

follows similarly.

Now suppose that gcd(b, s) 6= 1. If gcd(b, p) 6= 1 then NP (X1, . . . , Xm) ≡
0 (mod p), and since NP factorises into linear factors, all solutions of this
congruence are contained in the union of at most n linear subspaces of Zm

p

of dimension m− 1. Thus N(P, b, p) < npm−1. If gcd(b, s) = 1 then by (6)
we have N(P, b, p) < C5p

m−1. Similar reasoning is true for N(P, b, q). Thus
we have

(8) N(P, b, s) < c2(P )sm−1

for any b. This concludes the proof of Theorem 4. ¤

Proof of theorem 5. By (8) we have

Pcoll :=
N(P, b, s)

sm
<

C

s
.

¤

Corollary 1. If the module s is sufficiently large then the function NP,s is
collision resistant.

To test the avalanche effect of the function NP,s we used an implementa-
tion of these functions in the computer algebraic system MAPLE. Denote
by x a binary input value and by x′ another binary input value, which differs
in a single bit from x.
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These implementations calculated the following relative Hamming-distances

RHP,s :=
ρ(NP,s(x),NP,s(x

′))
l(s)

.

where l(.) denotes the binary length function and ρ(., .) is the Hamming-
distance described in Definition 6.

The tests were run 1000 times with randomly generated inputs with size
2160. The positions of the changed input bits in x′ were also randomly
generated.

Conjecture 1. The function NP,s satisfies the strict avalanche criterion
described in Definition 5.

5. Some applications

In the former sections we described some basic properties of norm form
functions associated to polynomials with integer coefficients. Here we con-
sider the same problem from a more practical point of view.

The functions NP,s is adaptable all the wonted cryptographically applica-
tion namely checking data integrity, entity authentication, digital signatures
and generation of pseudo random sequences. These functions can play an
important role on building of cryptographic protocols.

Pseudorandom functions can be constructed also based on the one-way
function NP,s.

The first question is how to choose P (X) such that the associated norm
form could be easily calculated. Let P (X) := Xn − 1. Denote ζ one of the
primitive n-th roots of unity and let

L(X) := X1 + ζX2 + · · ·+ ζn−1Xn.

As

ζjL(X) = Xn−j+1 + ζXn−j+2 + · · ·+ ζj−1Xn + ζjX1 + · · ·+ ζn−1Xn−j

holds for all 1 ≤ j ≤ n we obtain that NP (X) is the determinant of the
circular matrix 



X1 X2 . . . Xn

Xn X1 . . . Xn−1

. . . . . . . . . . . . . . . . . . .
X2 X3 . . . X1


 ,

which has particular simple form. P (X) has only simple roots, hence the
assumption of Theorem 4 is satisfied. Thus NP (X) is collision resistant.

We propose to apply NP,s(X) as a hash function. In the practice hash
functions map messages to 160 bit words. Hence s = pq should be about
of this size. Unfortunately, in our case this setting is not secure, because
160 bit integers can be easily factorized and by Proposition 1 one can find
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arguments, which cause collision. Enlarging however the set of possible
hash values to at least 21024, our function becomes collision resistant. Hence
s = pq should be about this size.

Choose the prime q of size 2512 and then the prime p such that q > p >
q/2. This is certainly possible by Tschebishev’s theorem. Moreover we have
to be aware of the condition gcd(m, (p − 1)(q − 1)) = 1. After choosing p
and q appropriately put s = pq.

Having a message M consider it as a binary word and split it into sub-
words x1, . . . , xk such that each xi, i = 1, . . . , k represents an integer in the
interval [1, s − 1]. Assume that k ≥ m, otherwise extend the sequence by
words representing 0. There are several possibilities to extend the function
NP,s(X) to the more general situation. We prefer the following:

h(x1, . . . , xm) := NP,s(x1, . . . , xm)

and we define recursively

h(x1, . . . , xm+t(m−1)) := NP,s(h(x1, . . . , xm+(t−1)(m−1)), xm+(t−1)(m−1)+1, . . . , xm+t(m−1)).

If k is not of the form m + t(m− 1) with some suitable t ∈ Z then we can
extend M with words representing 0 until k has the required form.

This function will keep collision free in all the steps of the iteration and
has avalanche effect (see Theorem 4. and Conjecture 1.). These properties
guarantee its security.
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[11] K. Győry, Résultats effectifs sur la représentation des entires par des formes
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