Egyptian Mathematical Society
Journal of the Egyptian Mathematical Society

Short Communication

Note on " $\mathcal{I} P$-separation axioms in ideal bitopological ordered spaces Π "

A. Kandil ${ }^{\text {a }}$, Amr Zakaria ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Helwan University, Egypt
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Education, Ain Shams University, Roxy Cairo 11341 Egypt

Received 15 March 2016; revised 10 April 2016; accepted 10 April 2016
Available online 17 October 2016

Keywords

Ideal;
Ideal bitopological ordered space;
$\mathcal{I} P$-regular ordered space; $\mathcal{I} P$-completely normal ordered space

Abstract In this note, we show that Examples 3.1, 3.3, 3.4, 3.5, 3.8, 3.9, 3.10 and 3.11 in [1] are incorrect, by giving remarks and comments on these examples. Finally, reasonable reasons to improve some of the incorrect examples have been mentioned.

2010 Mathematics Subject Classification: 54F05
© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Preliminaries

In this section, we recall some basic notions in ideal and ideal bitopological ordered spaces.

Definition 1.1 [2]. A nonempty collection \mathcal{I} of subsets of a set X is called an ideal on X, if it satisfies the following assertions:

1. $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$, (finite additivity),
2. $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$, (heredity).
[^0]Peer review under responsibility of Egyptian Mathematical Society.

Definition 1.2 [3]. Let (X, R) be a poset and \mathcal{I} be an ideal on X. A set $A \subseteq X$ is said to be:

1. \mathcal{I}-decreasing if $R a \cap A^{c} \in \mathcal{I} \forall a \in A$, where $R a=\{b: b R a\}$ and A^{c} is the complement of A,
2. \mathcal{I}-increasing if $a R \cap A^{c} \in \mathcal{I} \forall a \in A$, where $a R=\{b: a R b\}$.

Definition 1.3 [4]. A space $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is called an ideal bitopological ordered space if $\left(X, \tau_{1}, \tau_{2}, R\right)$ is a bitopological ordered space and \mathcal{I} is an ideal on X.

Definition 1.4 [4]. An ideal bitopological ordered space ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is said to be:

1. \mathcal{I}-lower $P T_{1}$ ($\mathcal{I} L P T_{1}$, for short) ordered space if for every a, $b \in X$ such that $a \bar{R} b$, there exists an \mathcal{I}-increasing τ_{i}-open set U such that $a \in U$ and $b \notin U, i=1$ or 2 .
2. \mathcal{I}-upper $P T_{1}$ ($\mathcal{I} U P T_{1}$, for short) ordered space if for every $a, b \in X$ such that $a \bar{R} b$, there exists an \mathcal{I}-decreasing τ_{i}-open set V such that $b \in V$ and $a \notin V, i=1$ or 2 .
3. $\mathcal{I P} T_{1}$-ordered space if it is $\mathcal{I} L P T_{1}$ and $\mathcal{I} U P T_{1}$ ordered space.

Definition 1.5 [1]. An ideal bitopological ordered space ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is said to be:

1. \mathcal{I}-lower pairwise regular ($\mathcal{I} L P R_{2}$, for short) ordered space if for every \mathcal{I}-decreasing τ_{i}-closed set F and for every $a \notin F$, there exist an \mathcal{I}-increasing τ_{i}-open set U and an \mathcal{I}-decreasing τ_{j}-open set V such that $a \in U, F-V \in \mathcal{I}$ and $U \cap V \in \mathcal{I}$.
2. \mathcal{I}-upper pairwise regular $\left(\mathcal{I} U P R_{2}\right.$, for short) ordered space if for every \mathcal{I}-increasing τ_{i}-closed set F and for every $a \notin F$, there exist an \mathcal{I}-decreasing τ_{i}-open set U and an \mathcal{I}-increasing τ_{j}-open set V such that $a \in U, F-V \in \mathcal{I}$ and $U \cap V \in \mathcal{I}$.
3. \mathcal{I}-pairwise regular $\left(\mathcal{I} P R_{2}\right.$, for short) ordered space if it is $\mathcal{I} L P R_{2}$ and $\mathcal{I} U P R_{2}$.

Definition 1.6 [1]. An ideal bitopological ordered space ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is called $\mathcal{I} P T_{3}$-ordered space if it is $\mathcal{I} P R_{2}$ and $\mathcal{I} P T_{1}$-ordered space.
Definition 1.7 [1]. Let $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ be an ideal bitopological ordered space and $A, B \subseteq X$. Then A and B are said to be $\mathcal{I} P$ separated sets if $A \cap \tau_{j}-c l(B) \in \mathcal{I}$ and $\tau_{i}-c l(A) \cap B \in \mathcal{I}$.
Definition 1.8 [1]. An ideal bitopological ordered space ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is said to be $\mathcal{I} P$-completely normal ordered space ($\mathcal{I} P R_{4}$-ordered space, for short) if for any two $\mathcal{I} P$ separated subsets A and B of X such that A is \mathcal{I}-increasing set and B is \mathcal{I}-decreasing set there exist an \mathcal{I}-increasing τ_{i}-open set U and \mathcal{I}-decreasing τ_{j}-open set V such that $A \subseteq U, B \subseteq V$ and $U \cap V \in \mathcal{I}$.

2. Main results

Kandil et al. [Example 3.1, 1] claimed that $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is $\mathcal{I} L P R_{2}$-ordered space, but this is erroneous by the following remark.

Remark 2.1. The family of all \mathcal{I}-decreasing τ_{1}-closed sets is $\{X$, $\{2\},\{2,3,4\}\}$, the collection of all \mathcal{I}-increasing τ_{1}-open sets is $\{X,\{4\},\{1,4\},\{1,3,4\}\}$ and X is the only \mathcal{I}-decreasing τ_{2}-open set. Hence $F=\{2,3,4\}$ is \mathcal{I}-decreasing τ_{1}-closed set not containing $1, U=X$ or $\{1,4\}$ or $\{1,3,4\}$ is the only \mathcal{I}-increasing τ_{1}-open set containing 1 and $V=X$ is the only \mathcal{I}-decreasing τ_{2}-open set such that $F-V=\emptyset \in \mathcal{I}$ but $U \cap V \notin \mathcal{I}$.

Kandil et al. [Example 3.3, 1] claimed that ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is $\mathcal{I} P R_{2}$-ordered space, but this is incorrect by the following remark.

Remark 2.2. The family of all \mathcal{I}-decreasing τ_{1}-closed sets is $\{X$, $\{3\},\{4\},\{3,4\}\}$, the collection of all \mathcal{I}-increasing τ_{1}-open sets is $\{X,\{1,2,3\}\}$ and $\{X,\{2,3\}\}$ is the family of all \mathcal{I}-decreasing τ_{2}-open sets. Hence $F=\{3,4\}$ is \mathcal{I}-decreasing τ_{1}-closed set not containing $1, U=X$ or $\{1,2,3\}$ is the only \mathcal{I}-increasing τ_{1-} open set containing 1 and $V=X$ or $\{2,3\}$ is the only \mathcal{I} decreasing τ_{2}-open set such that $F-V \in \mathcal{I}$ but $U \cap V \notin \mathcal{I}$. Hence $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is not $\mathcal{I} L P R_{2}$-ordered space. As a result, ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is not $\mathcal{I} P R_{2}$-ordered space.

Kandil et al. [Example 3.4, 1] asserted that ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is $\mathcal{I} P T_{3}$-ordered space, but this is incorrect by the following remark.

Remark 2.3. The family of all \mathcal{I}-decreasing τ_{1}-closed sets is $\{X$, $\{2\},\{3\},\{4\},\{1,2\},\{2,3\},\{2,4\},\{3,4\},\{1,2,4\},\{2,3,4\}\}$, the collection of all \mathcal{I}-increasing τ_{1}-open sets is $\{X,\{3\},\{1,3\}$,
$\{3,4\},\{1,2,3\},\{1,3,4\}\}$ and $\{X,\{2,3\}\}$ is the family of all \mathcal{I}-decreasing τ_{2}-open sets. Hence $F=\{2,3,4\}$ is \mathcal{I}-decreasing τ_{1}-closed set not containing $1, U=X$ or $\{1,3\}$ or $\{1,2,3\}$ or $\{1,3,4\}$ is the only \mathcal{I}-increasing τ_{1}-open set containing 1 and $V=X$ or $\{2,3\}$ is the only \mathcal{I}-decreasing τ_{2}-open set such that $F-V \in \mathcal{I}$, but $U \cap V \notin \mathcal{I}$. Hence $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is not $\mathcal{I} L P R_{2}$-ordered space. As a result, $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is not $\mathcal{I} P R_{2}$ ordered space. It follows that it is $\operatorname{not} \mathcal{I} P T_{3}$-ordered space.

Kandil et al. [Example 3.5, 1] asserted that ($X, \tau_{1}, \tau_{2}, R, \mathcal{I}$) is $\mathcal{I} P R_{2}$-ordered space, but this is incorrect by the following remark.

Remark 2.4. The family of all \mathcal{I}-decreasing τ_{1}-closed sets is $\{X,\{3\},\{4\},\{1,4\},\{3,4\},\{1,3,4\}\}$, the collection of all \mathcal{I} increasing τ_{1}-open sets is $\{X,\{2,3\},\{1,2,3\}\}$ and $\{X,\{2,3\}\}$ is the family of all \mathcal{I}-decreasing τ_{2}-open sets. Hence $F=\{1,3,4\}$ is \mathcal{I}-decreasing τ_{1}-closed set not containing $2, U=X$ or $\{2$, $3\}$ or $\{1,2,3\}$ is the only \mathcal{I}-increasing τ_{1}-open set containing 2 and $V=X$ or $\{2,3\}$ are the only \mathcal{I}-decreasing τ_{2}-open set such that $F-V \in \mathcal{I}$, but $U \cap V \notin \mathcal{I}$. Hence $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is not $\mathcal{I} L P R_{2}$-ordered space. Thus $\left(X, \tau_{1}, \tau_{2}, R, \mathcal{I}\right)$ is not $\mathcal{I} P R_{2}-$ ordered space.

Note 2.5. It may be noted that [Example 3.5, 1] is not $P R_{2}$.
The following remark introduces suggestion to find possible real examples.

Remark 2.6. It may be noted that we can find correct examples if [Definition 3.1, 1] satisfied for $i \neq j, i, j=1$ or 2 .

Kandil et al. [Example 3.8, 1] asserted that the collection $\mathcal{I}=$ $\{\emptyset,(1, \infty),(a, \infty),[a, \infty),(a, b),[a, b),(a, b],[a, b],\{c\}\}$, where $1<a<b, 1<c<\infty$ is ideal and build their example on this assertion, but this is wrong by the following remark.

Remark 2.7. If $1<a<b<c$ or $1<c<a<$ b, then $(a, b),[a, b),(a, b],[a, b],\{c\} \in \mathcal{I}$ but $(a, b) \cup$ $\{c\},[a, b) \cup\{c\},(a, b] \cup\{c\},[a, b] \cup\{c\} \notin \mathcal{I}$. As a consequence, $\left(\mathbb{R}, \tau_{l}, \tau_{\mathbb{U}}, R, \mathcal{I}\right)$ is not ideal bitopological ordered space and the example is invalid.

The following remark shows that the collection $\mathcal{I}=$ $\{\emptyset,(0, \infty),(a, \infty),[a, \infty),(a, b),[a, b),(a, b],[a, b],\{c\}\}$, where $0 \leq a<b, 0 \leq c<\infty$ presented in [Examples 3.9 and 3.10, 1] is not ideal.

Remark 2.8. If $0 \leq a<b<c$ or $0 \leq c<a<b$, then $(a, b),[a, b),(a, b],[a, b],\{c\} \in \mathcal{I}$ but $(a, b) \cup\{c\},[a, b) \cup\{c\}$, $(a, b] \cup\{c\},[a, b] \cup\{c\} \notin \mathcal{I}$. As a consequence, $\left(\mathbb{R}, \tau_{\mathbb{U}}, \tau_{l}, R, \mathcal{I}\right)$ and $\left(\mathbb{R}, \tau_{\mathbb{U}}, \tau_{\mathfrak{u}}, R, \mathcal{I}\right)$ are not ideal bitopological ordered spaces and the examples are invalid. Moreover, the authors asserted in [Example 3.10, 1] that $A=(1, \infty)$ and $B=(-\infty, 0)$ are two P-separated sets but this is totally wrong as $\tau_{\mathfrak{u}}-\operatorname{cl}(A)=\mathbb{R}$ and hence $\tau_{u}-c l(A) \cap B=(-\infty, 0) \neq \emptyset$.

Kandil et al. [Example 3.11, 1] claimed that the subsets $A=$ $\{2,3\}$ and $B=\{1\}$ are $\mathcal{I} P$-separated and construct their example on this assertion, but this is incorrect by the following remark.

Remark 2.9. $\tau_{2}-c l(A)=X$ and hence $\tau_{2}-c l(A) \cap B=\{1\} \notin$ \mathcal{I}. That is A and B are not $\mathcal{I} P$-separated sets. As a result, the example is invalid.

Remark 2.10. It may be noted that Example 3.11 in [1] is correct if the authors stated that [Definition 3.5, 1] satisfied for $i \neq j, i, j=1$ or 2 .

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this note.

References

[1] A. Kandil, O. Tantawy, S.A. El-Sheikh, M. Hosny, Ip-separation axioms in ideal bitopological ordered spaces π, J. Egypt. Math. Soc. 24 (2016) 279-285.
[2] D. Jankovic, T.R. Hamlet, New topologies from old via ideals, Amer. Math. Mon. 97 (1990) 295-310.
[3] S.A. El-Sheikh, M. Hosny, \mathcal{I}-increasing (decreasing) sets and $\mathcal{I} p^{*}$-separation axioms in bitopological ordered spaces, Pensee J. 76 (2014) 429-443.
[4] A. Kandil, O. Tantawy, S.A. El-Sheikh, M. Hosny, Ip-separation axioms in bitopological ordered spaces i, Sohag J. Math. 2 (2015) 11-15.

[^0]: * Corresponding author:

 E-mail addresses: amr_zakaria2008@yahoo.com, amr.zakaria@edu.asu.edu.eg (A. Zakaria).

