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Abstract In this note, we show that Examples 3.1, 3.3, 3.4, 3.5, 3.8, 3.9, 3.10 and 3.11 in [1] are 
incorrect, by giving remarks and comments on these examples. Finally, reasonable reasons to improve 
some of the incorrect examples have been mentioned. 
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1. Preliminaries 

In this section, we recall some basic notions in ideal and ideal
bitopological ordered spaces. 

Definition 1.1 [2] . A nonempty collection I of subsets of a set X
is called an ideal on X , if it satisfies the following assertions: 

1. A ∈ I and B ∈ I ⇒ A ∪ B ∈ I, (finite additivity), 
2. A ∈ I and B ⊆ A ⇒ B ∈ I, (heredity). 
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Definition 1.2 [3] . Let ( X , R ) be a poset and I be an ideal on X .
A set A ⊆ X is said to be: 

1. I-decreasing if Ra ∩ A 

c ∈ I ∀ a ∈ A, where Ra = { b : bRa }
and A 

c is the complement of A , 
2. I-increasing if aR ∩ A 

c ∈ I ∀ a ∈ A, where aR = { b : aRb} . 
Definition 1.3 [4] . A space (X , τ1 , τ2 , R, I ) is called an ideal
bitopological ordered space if ( X , τ 1 , τ 2 , R ) is a bitopological
ordered space and I is an ideal on X . 

Definition 1.4 [4] . An ideal bitopological ordered space
(X , τ1 , τ2 , R, I ) is said to be: 

1. I -lower PT 1 ( I LPT 1 , for short) ordered space if for every a ,
b ∈ X such that a R b, there exists an I-increasing τ i -open set
U such that a ∈ U and b 	∈ U, i = 1 or 2. 

2. I -upper PT 1 ( I U PT 1 , for short) ordered space if for every
a , b ∈ X such that a R b, there exists an I-decreasing τ i -open
set V such that b ∈ V and a 	∈ V, i = 1 or 2. 
3. IPT 1 -ordered space if it is ILPT 1 and IU PT 1 ordered space. 
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efinition 1.5 [1] . An ideal bitopological ordered space 
X , τ1 , τ2 , R, I ) is said to be: 

1. I-lower pairwise regular ( ILPR 2 , for short) ordered space 
if for every I-decreasing τ i -closed set F and for every a 	∈ F ,
there exist an I-increasing τ i -open set U and an I-decreasing 
τ j -open set V such that a ∈ U , F − V ∈ I and U ∩ V ∈ I. 

2. I-upper pairwise regular ( IU PR 2 , for short) ordered space 
if for every I-increasing τ i -closed set F and for every a 	∈ F ,
there exist an I-decreasing τ i -open set U and an I-increasing 
τ j -open set V such that a ∈ U , F − V ∈ I and U ∩ V ∈ I. 

3. I -pairwise regular ( I PR 2 , for short) ordered space if it is
ILPR 2 and IU PR 2 . 

efinition 1.6 [1] . An ideal bitopological ordered space 
X , τ1 , τ2 , R, I ) is called IPT 3 -ordered space if it is IPR 2 and
PT 1 -ordered space. 

efinition 1.7 [1] . Let (X , τ1 , τ2 , R, I ) be an ideal bitopological
rdered space and A , B ⊆X . Then A and B are said to be IP-
eparated sets if A ∩ τ j − cl (B) ∈ I and τi − cl (A ) ∩ B ∈ I. 

efinition 1.8 [1] . An ideal bitopological ordered space 
X , τ1 , τ2 , R, I ) is said to be IP-completely normal ordered
pace ( IPR 4 -ordered space, for short) if for any two IP-
eparated subsets A and B of X such that A is I-increasing set
nd B is I-decreasing set there exist an I-increasing τ i -open set 
 and I-decreasing τ j -open set V such that A ⊆U , B ⊆V and
 ∩ V ∈ I. 

. Main results 

andil et al. [Example 3.1, 1] claimed that (X , τ1 , τ2 , R, I ) is
LPR 2 -ordered space, but this is erroneous by the following re- 
ark. 

emark 2.1. The family of all I-decreasing τ 1 -closed sets is { X ,
2}, {2, 3, 4}}, the collection of all I-increasing τ 1 -open sets is
 X , {4}, {1, 4}, {1, 3, 4}} and X is the only I-decreasing τ 2 -open
et. Hence F = { 2 , 3 , 4 } is I-decreasing τ 1 -closed set not con-
aining 1, U = X or {1, 4} or {1, 3, 4} is the only I-increasing
1 -open set containing 1 and V = X is the only I-decreasing
2 -open set such that F − V = ∅ ∈ I but U ∩ V 	∈ I. 

Kandil et al. [Example 3.3, 1] claimed that (X , τ1 , τ2 , R, I )

s IPR 2 -ordered space, but this is incorrect by the following re-
ark. 

emark 2.2. The family of all I-decreasing τ 1 -closed sets is { X ,
3}, {4}, {3, 4}}, the collection of all I-increasing τ 1 -open sets 
s { X , {1, 2, 3}} and { X , {2, 3}} is the family of all I-decreasing
2 -open sets. Hence F = { 3 , 4 } is I-decreasing τ 1 -closed set not
ontaining 1, U = X or {1, 2, 3} is the only I-increasing τ 1 -
pen set containing 1 and V = X or {2, 3} is the only I-
ecreasing τ 2 -open set such that F − V ∈ I but U ∩ V 	∈ I.
ence (X , τ1 , τ2 , R, I ) is not ILPR 2 -ordered space. As a result,

X , τ1 , τ2 , R, I ) is not IPR 2 -ordered space. 

Kandil et al. [Example 3.4, 1] asserted that (X , τ1 , τ2 , R, I )

s IPT 3 -ordered space, but this is incorrect by the following re-
ark. 

emark 2.3. The family of all I-decreasing τ 1 -closed sets is { X ,
2}, {3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 4}, {2, 3, 4}},
he collection of all I-increasing τ 1 -open sets is { X , {3}, {1, 3},
3, 4}, {1, 2, 3}, {1, 3, 4}} and { X , {2, 3}} is the family of all
-decreasing τ 2 -open sets. Hence F = { 2 , 3 , 4 } is I-decreasing
1 -closed set not containing 1, U = X or {1, 3} or {1, 2, 3}
r {1, 3, 4} is the only I-increasing τ 1 -open set containing 1
nd V = X or {2, 3} is the only I-decreasing τ 2 -open set such
hat F − V ∈ I, but U ∩ V 	∈ I. Hence (X , τ1 , τ2 , R, I ) is not
LPR 2 -ordered space. As a result, (X , τ1 , τ2 , R, I ) is not IPR 2 -
rdered space. It follows that it is not IPT 3 -ordered space. 

Kandil et al. [Example 3.5, 1] asserted that (X , τ1 , τ2 , R, I )

s IPR 2 -ordered space, but this is incorrect by the following re-
ark. 

emark 2.4. The family of all I-decreasing τ 1 -closed sets is 
 X , {3}, {4}, {1, 4}, {3, 4}, {1, 3, 4}}, the collection of all I-
ncreasing τ 1 -open sets is { X , {2, 3}, {1, 2, 3}} and { X , {2, 3}} is
he family of all I-decreasing τ 2 -open sets. Hence F = { 1 , 3 , 4 }
s I-decreasing τ 1 -closed set not containing 2, U = X or {2,
} or {1, 2, 3} is the only I-increasing τ 1 -open set containing
 and V = X or {2, 3} are the only I-decreasing τ 2 -open set
uch that F − V ∈ I, but U ∩ V 	∈ I. Hence (X , τ1 , τ2 , R, I ) is
ot ILPR 2 -ordered space. Thus (X , τ1 , τ2 , R, I ) is not IPR 2 -
rdered space. 

ote 2.5. It may be noted that [Example 3.5, 1] is not PR 2 . 

The following remark introduces suggestion to find possible 
eal examples. 

emark 2.6. It may be noted that we can find correct examples
f [Definition 3.1, 1] satisfied for i 	 = j, i, j = 1 or 2. 

Kandil et al. [Example 3.8, 1] asserted that the collection I =
∅ , (1 , ∞ ) , (a, ∞ ) , [ a, ∞ ) , (a, b) , [ a , b ), ( a , b ], [ a , b ], { c }}, where
 < a < b , 1 < c < ∞ is ideal and build their example on this
ssertion, but this is wrong by the following remark. 

emark 2.7. If 1 < a < b < c or 1 < c < a <

 , then (a, b) , [ a, b) , (a, b] , [ a, b] , { c } ∈ I but (a, b) ∪
 c } , [ a, b) ∪ { c } , (a, b] ∪ { c } , [ a, b] ∪ { c } 	∈ I. As a consequence,
R , τl , τU , R, I ) is not ideal bitopological ordered space and the
xample is invalid. 

The following remark shows that the collection I = 

∅ , (0 , ∞ ) , (a, ∞ ) , [ a, ∞ ) , (a, b) , [ a, b) , (a, b] , [ a, b] , { c }} , where
 ≤ a < b , 0 ≤ c < ∞ presented in [Examples 3.9 and 3.10,
] is not ideal. 

emark 2.8. If 0 ≤ a < b < c or 0 ≤ c < a < b , then
a, b) , [ a, b) , (a, b] , [ a, b] , { c } ∈ I but (a, b) ∪ { c } , [ a, b) ∪ { c } ,
a, b] ∪ { c } , [ a, b] ∪ { c } 	∈ I. As a consequence, (R , τU , τl , R, I )

nd (R , τU , τu , R, I ) are not ideal bitopological ordered spaces
nd the examples are invalid. Moreover, the authors asserted 

n [Example 3.10, 1] that A = (1 , ∞ ) and B = (−∞ , 0) are two
 -separated sets but this is totally wrong as τu − cl (A ) = R and
ence τu − cl (A ) ∩ B = (−∞ , 0) 	 = ∅ . 

Kandil et al. [Example 3.11, 1] claimed that the subsets A =
 2 , 3 } and B = { 1 } are IP-separated and construct their example
n this assertion, but this is incorrect by the following remark. 

emark 2.9. τ2 − cl (A ) = X and hence τ2 − cl (A ) ∩ B = { 1 } 	∈
. That is A and B are not IP-separated sets. As a result, the
xample is invalid. 
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Remark 2.10. It may be noted that Example 3.11 in [1] is cor-
rect if the authors stated that [Definition 3.5, 1] satisfied for
i 	 = j, i, j = 1 or 2. 
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