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Abstract: Over the last couple of years, in the context of the COVID-19 pandemic, many healthcare
issues have been exacerbated, highlighting the paramount need to provide both reliable and affordable
health services to remote locations by using the latest technologies such as video conferencing, data
management, the secure transfer of patient information, and efficient data analysis tools such as
machine learning algorithms. In the constant struggle to offer healthcare to everyone, many modern
technologies find applicability in eHealth, mHealth, telehealth or telemedicine. Through this paper,
we attempt to render an overview of what different technologies are used in certain healthcare
applications, ranging from remote patient monitoring in the field of cardio-oncology to analyzing
EEG signals through machine learning for the prediction of seizures, focusing on the role of artificial
intelligence in eHealth.

Keywords: eHealth; mHealth; telehealth; telemedicine; remote patient monitoring; Internet of Things;
brain–computer interface; artificial intelligence; machine learning; deep learning

1. Introduction

The COVID-19 pandemic has pushed healthcare systems to their limits, while high-
lighting the critical demand for reliable, efficient, and secure remote healthcare services that
can be provided even throughout lockdowns or other disease-spread control measures.

In this paper, we try to offer an overview of the plethora of technologies and different ap-
proaches used in the latest eHealth implementations. Many eHealth applications use embedded
systems and employ the use of artificial intelligence for the analysis of biomedical data.

With the continued improvement of different technologies, from authentication meth-
ods to artificial intelligence data analysis, many are adopted by emerging eHealth applica-
tions, IoT implementations and software frameworks. While most of these technologies
are not related to health, their combined advantages lead to a greater development pace in
multiple eHealth projects and bridge the gap between researchers.

Because eHealth is a broad term used to describe all applications that have appeared in
recent years, within this review, we will classify the discussed research into categories better
defined by subdomain terms such as mHealth, telehealth and telemedicine. MHealth stands
for mobile health and is better described as eHealth applications requiring mobile devices,
namely, smartphones, tablets or wearable devices. Telemedicine can be associated with any
clinical method that delivers care at a distance through technology. Telehealth is another
frequently used eHealth subdomain referring to everything telemedicine stands for, plus other
non-clinical services, such as promoting, preventing, training and educating practitioners.

The role of telehealth and some additional insights into the development of healthcare
during the COVID-19 pandemic, especially in association with artificial intelligence (AI),
are detailed in [1].
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The primary benefit of AI algorithms is that they are implemented in a way that mimics
certain aspects of human thinking, and they can handle various structured or unstructured
types of input data when aiming to solve a specific problem. There are multiple subsets of
AI, one of them being machine learning (ML). ML is a method used to train a model from
datasets without explicitly programming it. The model can then be used to replicate the
learnt behavior on new data. There are several approaches to ML, some of them being:

• Supervised learning: learning starts with a set of example inputs and their correct outputs.
• Unsupervised learning: only input data are provided and the algorithm groups or

clusters the data, giving it a structure.
• Semi-supervised learning: some of the data are missing training labels.
• Reinforcement learning: focused on learning through trial and error.

Deep learning (DL) is a subset of ML that employs multiple layers to extract features
from raw input data.

AI is one of the key technologies responsible for the evolution of eHealth, bringing
multiple advantages to the field of healthcare, such as the following:

• Improvements in diagnosis accuracy, e.g., detecting heart failure [2].
• Risk prediction, e.g., predicting antibiotic resistance through machine learning [3],

cardiovascular disease prediction from AI-based models [4], and using deep learning
to predict cardiac indices [5].

• Clinical applications, e.g., nutrition assessment [6].
• Healthcare process optimization, e.g., the complexity and the potential of integrating

AI into healthcare processes [7].
• Patient flow, e.g., enhancing patient flow for mental health [8,9].
• Precision medicine, e.g., detecting sleep apnea through deep learning [10].
• Automate detection, e.g., automated acute myocardial infarction detection using ECGs

from smartwatches [11].
• Improved quality of care, e.g., using AI to improve chronic disease care for type

2 diabetes mellitus patients [12].
• Reduced healthcare costs, e.g., predicting health and population well-being [13].
• Discovering adverse effects of medication, e.g., machine learning models discovering

adverse drug effects on the gut microbiome [14].

2. Overview of Healthcare Applications

The four main categories in which we can organize eHealth applications are: eHealth
(implementations that do not belong in any of the following subdomains), mHealth, tele-
health and telemedicine. Sometimes more narrow classifications can be made, such as:

• Remote patient monitoring (RPM)—refers to patient monitoring and the transmission
of medical data such as blood pressure, heart rate, heart rhythm, oxygen saturation,
glucose levels, weight, etc. Clinicians can often monitor this data in real time.

• Interactive patient care—offers live interactive communication between patients and
healthcare service providers via video, phone or other secure channels.

• Store and forward—consists of recording and transmitting multimedia data such as
image, sound or video.

Remote patient monitoring, interactive patient care and store and forward are all
included in the telemedicine category.

2.1. eHealth

During the COVID-19 pandemic, healthcare service provisioning became the primary
focus of many researchers experimenting with innovative technologies such as blockchain
and artificial intelligence [15].

An eHealth application [16] within the COUCH project (under the European Union’s
Horizon 2020 R&D program) was developed for and tested on older adults with some
health problems. The application used text-based dialogue to interact with the participants.
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This study attempted to assess how an agent-based eHealth platform would be used in a
real-world environment, and if it had any health effects on the participants.

An ever-evolving procedure that has seen major improvements regarding its research
accessibility in recent years is electroencephalography (EEG). While recording EEG data
has become cheaper and easier because of equipment availability and performance, it is
still challenging to record consistently and successfully analyze the acquired data.

Portable, low-power IoT devices such as the Texas Instruments MSP432 can be used in
conjunction with an efficient seizure-predicting algorithm with great results, even if the
number of EEG electrodes is reduced [17].

Because of the nature of the EEG-recorded data, many researchers opt to replace the
costly feature extraction methods with deep learning models that use recurrent neural net-
works (RNNs) such as long short-term memory (LSTM). In [18], using LSTM for sequence
classification, the proposed system is able to identify persons that have previously suffered
concussions by recording EEG data while the person is concentrating on a task.

In Table 1, we can observe the spectrum of different technologies used in eHealth
applications over the past couple of years.

Table 1. eHealth applications.

Authors Work Description Results Technologies Employed

[15] Decentralized, patient-centric
healthcare system framework

Interoperability between healthcare platform
stakeholders; patients own their data; challenges

include the volume of raw clinical data, privacy and
security.

Artificial intelligence,
blockchain

[16] Virtual coaching system for
older adults

Increasing elders’ engagement with a conversational
agent-based eHealth platform to provide modern

healthcare services to less tech-savvy patients; study
limitations include selection bias, lack of

personalized content and testing remotely because
of COVID-19 restrictions.

Functional demonstrator of
eHealth application COUCH

[17] Epileptic seizure prediction
embedded system using EEG

Good accuracy with reduced number of electrodes;
low power consumption; running on IoT devices;

measurements of energy consumption and execution
time for processing EEG data segments; EEG data

from ambulatory monitoring system with 16
electrodes, 400 Hz sampling rate in 10 min clips.

Texas Instruments MSP432
low-power device, EEG, IoT

[18]

System used to identify
persons that suffered

concussions through EEG
analysis

High accuracy of classifier (92.86%); data consisted
of 46 recordings with 63 channels, 4–6 min of EEG

data; data analysis was challenging.

Artificial intelligence/deep
learning model based on long
short-term memory (LSTM)

[19]
Feature extraction for motor

imagery brain–computer
interface

New method with good classification accuracy
evaluated on two datasets (used 22 EEG channels

from the 9 participants included in BCI competition
IV dataset 2a and 2b).

Brain–computer interface,
novel filters, EEG

[20] Stress monitoring system for
everyday use

Hierarchical edge-cloud obtains lower response time
by 77.89% and energy consumption by 78.56%;

models in the cloud; high computational effort and
missing data proved challenging.

Artificial intelligence, CNN,
IoT, Wearable IoT

[21]
IoT smart eHealth system

authentication that preserves
privacy

Improved transmission rate resulting in more active
users; verified by simulations with NS-3 tool.

Cryptosystem, MAC
verification

[22] Body area network-based
wearable fall detection system

Efficient system that can analyze substantial
amounts of data in real-time; data recorded from an

ECG sensor with 3 channels and 4 accelerometer
nodes.

Body area network (BAN),
acceleration, ECG sensors
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Table 1. Cont.

Authors Work Description Results Technologies Employed

[23]

A blockchain-based system
for detecting medical

document changes and
notifying patients

The system does not upload medical records but
notifies the patients if the documents have been

changed.

Blockchain, mobile app
development

[24]

Fuzzy-based trust
management for preventing
Sybil attacks on Internet of

Medical Things systems

Proposed model recognizes compromised Sybil
nodes and declares them malicious; Sybil attacks are

difficult to detect.

Internet of Medical Things
(IoMT), trust management

[25] Personal health assistant
using the Italian language

System with conversational agent that monitors
treatments and biological values and is able to

suggest doctors; the generated probability dataset
can be used for 217 diseases.

Artificial
intelligence/machine learning,

chatbot, Telegram-based

[26]
IoT-based eHealth

surveillance system designed
for pandemics

Using geographic routing algorithms to monitor
persons for health conditions, social distancing, and

mask-wearing status.

GPS, Node-RED, Influx,
Grafana

[27] A system for analyzing and
predicting diabetes mellitus

Tested prediction results on real hospital data
collected from 500 patients presenting risk factors of

developing diabetes mellitus.

Artificial
intelligence/machine learning,

K-nearest neighbor

[28] LI-Care system for health
monitoring

Cost-efficient monitoring system with GUI offering
powerful signal acquisition and processing; data
rates of the sensors used in this work are between

120 B/s and 10 KB/s.

LabView, IoT, National
Instruments myRIO-1900

By combining filter banks and Riemannian tangent space (FBRTS), a fusion method for
feature extraction in motor imagery brain–computer interfaces (MI-BCIs) is proposed in [19],
with good classification accuracy in both datasets it was tested in, and great applicability in
eHealth by interpreting EEG signals.

A wearable Internet of Things (WIoT) hybrid edge-cloud online stress-monitoring
solution [20] can achieve a much higher accuracy when offloading data to the cloud models
compared to the edge ones.

The importance of data confidentiality has led researchers to work on creating privacy-
preserving seamless authentication frameworks, optimizing authentication processes by
reducing the number of computations and offering users anonymity through dynamic identi-
ties in smart Internet of Things (IoT) implementations [21], attempting to enhance the security
of healthcare systems and to secure the transmission of data between intended parties.

A more specialized branch of IoT is HIoT (healthcare IoT), or IoMT (Internet of Medical
Things), where the objective is to build medical applications that can monitor a patient’s
health, prevent health issues, or predict disease.

2.2. mHealth

In many fields, predicting a health crisis has long been limited to the classic method of
collecting useful information from patients. These methods imply direct contact with the
patient for a significant amount of time, either in person or by video calls.

Newer and smarter technologies allow clinicians and researchers to collect data about
the patient’s everyday activities through noninvasive methods by continuously gathering
sensor data from devices such as smartphones, smartwatches and other personal gadgets.

By analyzing this information, the emergence of specific patterns can be observed and
then correlated to different health events.

One such use of passively collected data to determine biomarkers for mood states can
be seen in [29], where emotional state prediction models were tested for clinical outpatients
that had previously been diagnosed with mental disorders, owned smartphones with
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Android or iOS operating systems, and had them connected to Wi-Fi networks at least a
couple of times per week.

Cardiac monitoring wearable implementations can offer a wide range of applications,
often targeting similar types of biomedical data.

Standard electrocardiogram (ECG) measurements offer glimpses of electrical signals
over a short period of time and any arrhythmia that occurs outside that time interval is
overlooked. A solution to this problem is a continuous ECG monitoring system that is not
prone to overlook certain episodes.

There are multiple types of cardiac monitoring, as stated in [30], where different
aspects are discussed:

1. Advantages and disadvantages of wearable solutions for arrhythmia monitoring
(outpatient telemetry);

2. Wearables can also deliver therapy (electric shocks in life-threatening situations);
3. they can improve the quality of life (early discharge, less outpatient visits, reassurances);
4. Ultra-portable electrocardiogram patches (Zio Patch by iRhythm Technologies, San

Francisco, CA, USA) that can last up to 14 days without recharging and can, in some
scenarios, provide better diagnostic yield than Holter monitoring;

5. Sleep apnea screening can be undertaken with wrist-worn reflective photoplethys-
mography, which has a promising correlation to standard polysomnography;

6. Artificial intelligence algorithms can be used in conjunction with the data collected
from wearables, automatically detecting multiple conditions, without the need for
manual interpretation.

In [31], we are presented with an attempt to create a model with the exclusive purpose
of predicting psychotic relapses in conditions such as schizophrenia spectrum disorders.
The data required for this work were obtained from a system composed of an Android
application and a cloud-based platform. An encoder–decoder neural network was used to
provide anomaly detection based on the collected passive sensing data.

Similarly to the previous table, in Table 2 we are presented with mHealth implementa-
tions, their results and the technologies used.

Table 2. mHealth applications.

Authors Work Description Results Technologies Employed

[29]
Emotional state prediction
through machine learning

techniques

Personalized models; data collected through eB2
MindCare; 943 users selected; limitations of the

study include missing observations and
sporadically reported emotional states

information.

Artificial
intelligence/machine learning,

smartphones

[30] Cardiac monitoring system
based on smart wearables

Review of real-world use of arrhythmia and
other cardiovascular devices

Artificial intelligence, remote
patient monitoring, wearables,

ECG

[31]
Predicting psychotic relapse

in patients with schizophrenia
spectrum disorders (SSDs)

Better prediction of anomalies in patients with
SSDs; 20,137 days of data collected through

CrossCheck study; anticipated challenges during
deployment.

Artificial
intelligence/machine learning,

smartphones, Android
application CrossCheck

[32]

Signal quality assessment
algorithm to classify the signal

quality of ECG and
respiratory

Signal quality classification with good accuracy;
challenges: signal quality misjudgment, most
SQAs were not conducted by daily life use of

wearable devices, best methods are supervised
ML models.

Wearable device (SensEco)
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Table 2. Cont.

Authors Work Description Results Technologies Employed

[33]
Adoption of voice interface
technology for patients with

heart failure

Higher remote engagement between patients
and providers for better heart failure prevention;
data from 47 patients; challenges: engagement

and ease of use.

Technology based on
Amazon’s Alexa voice

assistant (Alexa+) with Echo
Dot devices; Avatar tablet

application (Avatar);

[34] Review on mobile health use
in atrial fibrillation

Expert claims ECG, PPG
(photoplethysmography) and MCG

(mechanocardiography) use in medicine can
reduce morbidity.

Wearables for PPG and ECG;
handheld devices for MCG,

PPG and ECG; remote
monitoring

[35] Boamente, a suicidal
prediction mobile application

Identifies suicidal ideations from texts
originating from a virtual keyboard; dataset built

using Twitter API and labeling tweets by
psychologists; dataset sharing restricted by

Twitter’s policy.

Artificial intelligence/deep
learning, neural language

processing, digital
phenotyping

2.3. Telehealth

Local eHealth systems can provide deep learning capabilities for processing biomedical
signals along with collecting the necessary raw data.

Remote patient monitoring systems and telemedicine implementations often face
difficulty remotely acquiring the necessary sensor data from the patient.

Screening patients in person offers the possibility of using advanced sensors and
specialized equipment. When this is unattainable, one solution is to extract new kinds of
data from the existing connection the system has with the patient to be able to identify
useful risk markers for conditions not yet recognized.

Telehealth implementations could screen patients for different conditions by recording
the video feed and analyzing it for potential markers.

One such implementation, a sensor-less deep learning image-processing frailty me-
ter [36] records 20 s elbow movement videos (flexion and extension) through the camera of
a tablet and then the frailty phenotype and frailty index are calculated, thus screening the
patient for physical frailty and having the means to triage patients with chronic obstructive
pulmonary disease (COPD).

Remote healthcare services for the treatment, management and remote monitoring of
Parkinson’s disease patients should be built, taking in consideration the fact that neurologi-
cal examinations carried out in the hospital can sometimes offer less information about the
patient’s symptoms than prolonged observations, because some impairments can occur at
specific times during the day, hence the need to use wearable devices that act as automated
systems [37].

IoT systems that allow in-home health monitoring have been adopted in recent years
thanks to their many advantages achieved by leveraging technologies such as dedicated
communication protocols (LoraWan, Sigfox, NB-IoT), the 3GPP standard, smarter medical
devices and sensors (blood pressure, pulse, glucose meter, temperature, blood oxygen
saturation, ECG, accelerometers, etc.), devices supporting wireless technologies (Zigbee,
Wi-Fi, Bluetooth, BLE, NFC, RFID, etc.) and cloud computing services for analyzing the
previously collected data [38].

Accessible development boards such as the Raspberry Pi make excellent testing devices
because of their low cost and versatility, translating to new possibilities for eHealth and
telehealth systems. There are numerous commercially available ways of connecting a great
number of sensors to the Raspberry Pi. To list the most useful features, these boards offer
configurable general-purpose input–output pins (GPIOs), audio and video connectors,
RJ-45 Ethernet or wireless connectivity and USB ports.

In our previous work with EEG signals [39,40], we used the same e-Health sensor
platform as in [41], where arrhythmia detection is possible through ML algorithms using
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a Raspberry Pi, an Arduino and the e-Health Sensor Platform v1.0. The e-Health sensor
platform allows an Arduino or the Raspberry Pi through an adaptor shield to collect
data from blood pressure monitors, pulse oximeters, galvanic skin response, airflow, and
temperature sensors.

Previously described works and others can be found in Table 3, where we can discover
telehealth applications, their purpose, and the technologies they employ.

Table 3. Telehealth applications.

Authors Work Description Results Technologies Employed

[36]
Application capable of

remotely screening patients
for physical frailty

Using a technology as accessible as a tablet
camera, this remote screening solution

extracts kinetic features and calculates a
frailty index; results were compared with

other solutions; dataset built from
11 patients.

Artificial intelligence/deep
learning, remote patient
monitoring, tablet video

recording, video processing

[37]
A review of Parkinson’s

disease management systems
at home

Remote management and automated
assessment of Parkinson’s disease

wearable systems

Wearables, accelerometers,
gyroscopes, mobile apps, web

technologies, SSL, SSH, VPN, TLS

[38] A review of IoT in-home
health monitoring systems

Presented works offer a wide view over IoT
implementations for in-home health

monitoring systems

IoT, ambient assisted living,
LoraWan, Sigfox, NB-IoT, 3GPP,

RESTAPI, ECG and other medical
sensors, Zigbee, Bluetooth, BLE,

NFC, RFID, etc.

[41]
Secured telehealth system for

IoT capable of biosignals
diagnosis

The system can handle multiple types of
sensors through an Arduino board; a
Raspberry Pi 3 model B+ is used for

processing the data; uses 4 Physiobank
databases: MIT-BIH Arrhythmia, MIT-BIH
Normal Sinus Rhythm, BIDMC Congestive

Heart Failure and MIT-BIH AF.

Artificial intelligence/machine
learning, C# app, EEG, Xbee

modules, e-Health sensor
platform, Raspberry Pi

[42] Mental health and substance
abuse telehealth

Researchers analyzed tweets and concluded
there were 4 times more tweets relating to
mental health and substance abuse during

the pandemic compared to before; data
cleaning was challenging because some
originated from organizations; selected

10,689 tweets.

Artificial intelligence / machine
learning, natural language

processing, social media, Twitter

[43]
Review relating to telehealth

in pediatric endocrine
disorders

Precision medicine; growth hormone
therapy; diabetes patient care.

Artificial intelligence, IoT,
specialized devices to deliver

injections that use a web platform

2.4. Telemedicine

The 2019 SARS-CoV-2 pandemic impacted most aspects of daily life, but the healthcare
sector especially was extremely affected. During this challenging period, the field of
telemedicine has seen a great expansion both in its use and in its functionalities.

Arguably, the most significant benefit of telehealth applications is the fact that patients
are not required to travel back and forth. If the consultation can be carried out remotely,
commuting to the clinic or hospital is at least impractical and possibly even pointless.

Especially during the pandemic, patient waiting times became significantly more
unpleasant due to mask wearing and social distancing policies, which meant that waiting
rooms could not be filled entirely and many patients had to wait outdoors, regardless of the
weather conditions. In situations where patients had to travel great distances even before
an initial consultation, the added strain on their bodies could have posed a health risk.
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In large regions such as Western Australia, teleophthalmology solutions were offered
to rural patients while different artificial intelligence approaches were experimented with
to identify age-related macular degeneration, diabetic retinopathy and glaucoma [44].

In a review that spanned over 3 years of PubMed articles related to teleophthalmology,
including the first 2 years of the COVID-19 pandemic, the importance of telemedicine was
assessed with regard to the reduction in manpower, limiting direct patient contact, more
efficient medical information storage, and real-time diagnosis [45].

Telemedicine applications have begun assisting ambulance crews because the emer-
gency services deploy rapid response teams consisting of nurses and volunteers, but not
doctors. By using a Raspberry Pi and a commercially available webcam, the wearable
solution of medical tele-tutoring REC-VISIO 118 can provide a stabilized video of the
situation, mainly for first aid interventions, that can be accessed through a web interface in
real-time through a 4G connection, leading to a faster pre-diagnosis for time-dependent
conditions such as heart attacks or strokes [46].

The need for artificial intelligence is emphasized in [47], pointing to the ever-expanding
volume of sensor data that must be interpreted in order to find any useful information,
while satisfying the common needs of the stakeholder groups responsible for the actual
development and implementation.

Considering that the second cause of death in patients that overcome cancer is cardio-
vascular disease, the COVID-19 pandemic has raised concerns regarding cardiovascular
toxicities and the way clinicians react to them, taking into account innovations during and
after the pandemic, as follows [48]:

1. Digital health technologies such as mobile health (mHealth) and wearables help
patients to monitor their own health and reduce the number of unneeded hospital
visits, detect abnormal heart rates (Apple Watch), and collect and analyze health data,
caring for patients while keeping them safe during the pandemic.

2. In the field of telemedicine, many freely accessible cloud-based solutions have become
compliant with laws that protect patient information, making cardio-oncology able to
benefit from telehealth.

3. Social media-assisted telehealth, through its various means of information propaga-
tion, has an important impact on prevention and innovation, especially in cardio-
oncology.

4. Artificial intelligence is without a doubt one of the foundation elements of many
eHealth implementations, be it mHealth, wearables, remote patient monitoring or
other applications. By connecting artificial intelligence algorithms with social media
platforms, these systems can not only predict some conditions, but even help locate or
get in contact with the patient.

Table 4 brings together relevant telemedicine applications, along with a description of
their results and the technologies they used to implement them.

Table 4. Telemedicine applications.

Authors Work Description Results Technologies Employed

[44]
Telemedicine solution for
eyecare in remote Western

Australia

Shorter patient waiting time for first consultation,
reduction in costs, availability in remote regions,

detecting multiple conditions remotely; faced
logistical and geographical challenges;

Artificial intelligence, video
conferencing, store and forward

methods

[45]
A review about the evolving

role of teleophthalmology in a
COVID-19 pandemic

Describes the use of teleophthalmology,
expanding [44].

Artificial intelligence, video
conferencing
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Table 4. Cont.

Authors Work Description Results Technologies Employed

[46]
A telemedicine system used to

offer emergency assistance
through a wearable helmet

The REC-VISIO 118 is used daily in the 118
Emergency Service of Pistoia on COVID-19

suspects; video data are transmitted via the 4G
network.

Artificial intelligence/machine
learning, WebRTC, webcam

video recording and
transmission, image

stabilization, IoT (system based
on Raspberry Pi 3), 4G

communication

[47]

A review discussing
cardiovascular problems

offering telemedicine
solutions

Various solutions are discussed, presenting
advantages, challenges and solutions for digital

health tools.

Artificial intelligence/machine
learning, various wearables

[48]
Review regarding

cardio-oncology patient care
during COVID-19

Presents possible ways of using big data, social
media and AI to provide care for cancer

survivors, because cardiovascular diseases are
the second cause of death among this group.

Artificial intelligence/machine
learning, social media, big data

[49] Review about rheumatology
challenges in telemedicine

Advantages and shortcomings of telemedicine in
rheumatology, some studies even showing that

telemedicine did not reduce the face-to-face
consultations.

Artificial intelligence/machine
learning, mobile applications,

wearables, remote patient
monitoring

[50] Telemedicine health analysis
system based on IoT

The researchers propose a cloud IoT architecture
to improve the connection between health IoT

and people, providing detailed analysis of
different layers; challenges associated with big

data management and processing.

Artificial intelligence, IoT,
quality of service framework,
quality of experience, cloud

[51]
Research the effect of

telemedicine on gestational
diabetic patients

A reminder system and telephone access were
used to improve healthcare efficiency, while

having little to no impact on the blood glucose
levels; difficulties with computer access and
low-income families; dataset of 80 patients

equally split in intervention and randomizing
dot control groups.

Short message service (SMS),
interactive voice response (IVR)

[52]
On-demand orchestration of

services for health emergency
predictions

The CURATE system supports scaling to better
respond to rising simultaneous prediction

requests received from the edge; work presents
benefits of continuous IoT health monitoring via

5G service orchestration two-tiered platform
(edge-cloud); system used time series data from
two ECG channels; training phase consists of 10

epochs of 200 steps;

Network Functions
Virtualization Management and

Orchestration (NFV MANO),
5G Public–Private Partnership

Infrastructure Association,
Cloud/Edge, Tensorflow/Keras

(Python)

3. Challenges of eHealth and AI Applications in Healthcare

As we can appreciate from the previously mentioned papers, AI is starting to play an
instrumental role in healthcare, no matter what branch we look at, but its integration in
healthcare is not as straightforward.

For electronic healthcare to successfully adopt solutions offered by AI, ML or DL, the
challenges that eHealth is currently facing must be overcome. Analyzing these challenges,
we explore the salient ones in the following subsections.

3.1. Adoption

To increase the adoption rate of AI in healthcare, we need to examine how AI is
perceived and what requirements need to be met, as in [53].
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AI adoption in the public healthcare system can be facilitated by applications such
as [54], where family health education is introduced to artificial intelligence, proposing an
AI-based family health education public service.

AI plays an important role in analyzing large amounts of data in precision medicine,
but in public health, with much smaller amounts of information per patient, its use is not as
justifiable. As the trends tend to merge precision medicine and public health into precision
public health [55], AI adoption is one of the best solutions to analyzing big data.

With [56], we are presented with a multiphase plan to speed up the adoption of
artificial intelligence in healthcare by:

1. Identifying the difficulties in utilizing the power of AI in care delivery;
2. Creating education plans for multiple interventions;
3. Determining curriculum issues;
4. Increasing awareness, introducing certificate-based interventions for healthcare providers

and for leaders, and providing coaching and innovation hubs;
5. Performing evaluation studies;
6. Encouraging sharing best practices and the creation of new knowledge.

3.2. Security and Privacy of Health Information

One major concern in utilizing any technology that transmits or manipulates healthcare
records is the security and privacy of such information. In [57], healthcare records are
protected from malicious-intent users through a combination of artificial intelligence-based
agents and smart contracts generated through the use of blockchain technology, making
sensitive health records distributed and immutable. The mixture of eHealth and blockchain
for the purpose of protecting health data seems to provide a well-acknowledged solution,
as we see in [23] and in combination with AI in [15].

Some attempts at securing healthcare environments use encryption and the cloud, in
addition to AI, for the management of the blood bank supply chain with reduced human
intervention [58].

3.3. Usability of AI in eHealth

Platforms such as the CARTIER-IA [59] can provide a solution to the ease-of-use issue
concerning non-specialized users by implementing design decisions focused on creating an
accessible interface to organize, preview or manipulate medical data or imagery and, most
importantly, to make use of AI algorithms regarding the available medical information
without needing specialized AI training.

3.4. Accessibility and Affordability

While artificial intelligence can provide revolutionary insights in ways human-based
data analysis cannot, for many low-income countries, the cost and availability of such
technologies can be a real obstacle. Studies such as [60] provide a counterargument,
showing the role and the level of efficiency machine learning algorithms can have in
predicting the mortality of children under five years old in low-to-middle income countries.

3.5. Ethical and Social

Artificial intelligence has raised many concerns, especially when human-based roles
are to be handed over to a machine capable of making decisions regarding the wellbeing
of human beings, where errors could potentially lead to death. Such concerns, as well as
accountability, bias, responsibility, trust, and the risks of the dehumanization of care, are
analyzed in studies such as [61,62].

4. Discussion

Artificial intelligence is present in numerous implementations that need to analyze
large amounts of data and, since sensors are more freely available, more eHealth applica-
tions are likely to be compelled to use AI algorithms.
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The rhythm of innovation in eHealth has reached new highs, which is to be expected if
we consider the coronavirus pandemic, but also the pace at which wearables, virtual reality,
augmented reality, and the technologies highlighted in this review are being developed,
leading to an evolved healthcare system.

From [63], we can extract hypothetical future perspectives on artificial intelligence and
eHealth, along with trends such as patient involvement for evaluating the quality of care
and satisfaction, offering care for patients with multiple morbidities, shifting to value-based
healthcare, and using precision medicine to treat patients individually.

As AI breaches new frontiers into different medical fields, it is prone to face divergent
perspectives about its usefulness. Various legal and ethical issues may arise, leading to new
challenges and concerns, such as AI and the future of psychiatry [64,65], whether or not AI
can replace tasks that mental health practitioners perform, and how ethical aspects have
received little attention.

While software-controlled machines become more prevalent, unsettling claims arise
about robots replacing doctors, highlighting the importance of artificial empathy develop-
ment [66].

To provide a better overview, we constructed Figure 1 from the classifications pre-
sented in this review, showing the existing and proposed applications of AI by category.
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Future research is welcomed and encouraged in fields such as prognosis and health
management (PHM) [67], digital pathology (DP) [68], disease diagnostics [69], regenerative
surgery [70], AI electrocardiogram [71], remote health monitoring (RHM) [72], and AI
documentation assistance for consultations in primary care [73].

From our perspective, there are many technologies that are on a convergent course with
healthcare, bringing additional benefits to each field they employ. We think the following
future directions complement what previously mentioned works have highlighted:

• Social networking tends to play an important role in our daily lives, even if we try to
minimize it as much as possible. Teenagers and young adults are highly interconnected
through this communication medium, meaning that they can more easily be influenced
by wrong advice received from persons pretending to be medical professionals. To
address this issue, we believe that some eHealth solutions should incorporate social
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components into their implementations, providing a trusted source of information.
From [74], we are presented with the connection of social media and vaccine hesitancy,
pointing out the importance of the presence of actual health experts in social media
discussions.

• Surveillance camera presence is continuously increasing in many homes, marketplaces,
public and industrial places. Still, a limited number of security cameras offer certain
human movement detection. We strongly believe that this perpetually alert watchdog
could safeguard our lives as well. COVID-19 has proven that cameras can be crucial
in detecting face masks [75], aiding both healthcare and law enforcement agencies.
One of the low-cost approaches to fall detection, according to the review in [76], is the
use of camera-based devices. A future direction we see developing at least in testing,
after taking into consideration privacy concerns and anonymizing the data, consists
of surveillance nodes sending information to processing servers where fall-detection
events could be confirmed and acted on to the extent of notifying healthcare services.
This method could provide solutions for public or workplace accidents, where the
only witness is the surveillance camera. The processing power could be provided by
the healthcare service or an organization, unrelated to the detection node’s sector.

• Cryptocurrency is present in most modern fintech mobile applications, offering various
benefits and capabilities that have yet to find applications in eHealth. In [77], a
dedicated cryptocurrency coin called Wholesome Coin is introduced with the hope of
making people healthier and reducing medical costs. With the development of WIoT,
many new ways of motivating users to live healthier lives are emerging.

• The gamification of health could be another direction that provides improved health
services with less traumatic experiences for children. The Xploro platform [78] has
reduced the procedural anxiety of children attending hospitals.

5. Conclusions

Our primary focus in this paper was to gather a diverse collection of works from the
past couple of years that provide the most realistic insights into what technologies are
being adopted in eHealth, regarding the use of artificial intelligence. Through this review,
by presenting the plethora of ways AI can be used in eHealth applications, we also try to
underline different healthcare sectors affected by the COVID-19 pandemic that can benefit
from integrating AI technologies into their systems to increase performance and handle
health crises more efficiently.
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