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Abstract

The families of simplest cubic, simplest quartic and simplest sextic fields and the related
Thue equations are well known, see [18], [17]. The family of simplest cubic Thue equations
was already studied in the relative case, over imaginary quadratic fields. In the present
paper we give a similar extension of simplest quartic and simplest sextic Thue equations
over imaginary quadratic fields. We explicitly give the solutions of these infinite parametric
families of Thue equations over arbitrary imaginary quadratic fields.

∗Research supported in part by K115479 from the Hungarian National Foundation for Scientific Research
and by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the
European Social Fund.
†Research supported in part by the Croatian Science Foundation under the project no. 6422.
‡Research supported by the ÚNKP-17-3 new national excellence program of the ministry of human capacities.



1 Introduction

Let t be an integer parameter. The infinite parametric families of number fields generated by
the roots of the polynomials

f
(3)
t (x) = x3 − (t− 1)x2 − (t+ 2)x− 1, (t ∈ Z),
f
(4)
t (x) = x4 − tx3 − 6x2 + tx+ 1, (t ∈ Z \ {−3, 0, 3}),
f
(6)
t (x) = x6 − 2tx5 − (5t+ 15)x4 − 20x3 + 5tx2 + (2t+ 6)x+ 1, (t ∈ Z \ {−8,−3, 0, 5}),

are called simplest cubic, simplest quartic and simplest sextic fields, respectively. They
are extensively studied in algebraic number theory, starting with D.Shanks [20], in the cubic
case. It was shown by G.Lettl, A.Pethő and P.Voutier [18] that these are all parametric families
of number fields which are totally real cyclic with Galois group generated by a mapping of type
x 7→ ax+b

cx+d
with a, b, c, d ∈ Z.

Let F (x, y) ∈ Z[x, y] be an irreducible binary form of degree ≥ 3 and let 0 6= k ∈ Z. There
is an extensive literature of Thue equations of type

F (x, y) = k in x, y ∈ Z.

In 1909 A.Thue [22] proved that these equations admit only finitely many solutions. In 1967
A.Baker [1] gave effective upper bounds for the solutions. Later on authors constructed nu-
merical methods to reduce the bounds and to explicitly calculate the solutions, see [5] for a
summary.

In 1990 E.Thomas [21] considered an infinite parametric family of Thue equations,
corresponding to the simplest cubic fields. For t ∈ Z, let

F
(3)
t (x, y) = x3 − (t− 1)x2y − (t+ 2)xy2 − y3

and consider
F

(3)
t (x, y) = ±1 in x, y ∈ Z.

E.Thomas described the solutions for large enough parameters t, later on the solutions were
found for all parameters by M.Mignotte [19]. This was the first infinite parametric family of
Thue equations that was completely solved. Instead of single equations the solutions were given
for infinitely many equations, for all values of the parameter t. These equations are also called
the infinite parametric family of the simplest cubic Thue equations.

A couple of other infinite parametric families of Thue equations were completely solved, see
[9], [5], among others the parametric family of simplest quartic Thue equations [16], [4] and the
parametric family of simplest sextic Thue equations [17], [12].

Let M be an algebraic number field with ring of integers ZM . Let F (x, y) ∈ ZM [x, y] be
an irreducible binary form of degree n ≥ 3 and let 0 6= µ ∈ ZM . As a generalization of Thue
equations consider relative Thue equations of type

F (x, y) = µ in x, y ∈ ZM .
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Using Baker’s method S.V.Kotov and V.G.Sprindzuk [15] gave the first effective upper bounds
for the solutions of relative Thue equations. Their theorem was extended by several authors.
Applying Baker’s method, reduction and enumeration algorithms I.Gaál and M.Pohst [7] (see
also [5]) gave an efficient algorithm for solving relative Thue equations.

Authors considered infinite parametric families of Thue equations in the relative case, as
well. Up to now all these families were considered over imaginary quadratic fields. The first
of them was the family of simplest cubic Thue equations, [10], [11], [8], [14]. Later on other
families of relative Thue equations were also studied, see e.g. [23], [24], [13].

Let t be an integer parameter, let m ≥ 1 be a square-free positive integer, and set M =

Q(i
√
m) with ring of integers ZM . In the present paper we consider simplest quartic and

simplest sextic Thue equations in the relative case, over M . Let

F
(4)
t (x, y) = x4 − tx3y − 6x2y2 + txy3 + y4

and let

F
(6)
t (x, y) = x6 − 2tx5y − (5t+ 15)x4y2 − 20x3y3 + 5tx2y4 + (2t+ 6)xy5 + y6.

We give all solutions of the infinite parametric families of simplest quartic and simplest
sextic relative Thue equations. More precisely we give all solutions of the simplest quartic
relative Thue inequalities

|F (4)
t (x, y)| ≤ 1 in x, y ∈ ZM

and of the simplest sextic relative Thue inequalities

|F (6)
t (x, y)| ≤ 1 in x, y ∈ ZM .

2 Results

We formulate now our main results. In both Theorems we exclude the parameters t ∈ Z for
which the binary form involved is reducible over Z. It is easily seen that over ZM these form
are reducible exactly for the same parameters t ∈ Z.

Theorem 1 Let t ∈ Z with t 6= −3, 0, 3. All solutions of

|F (4)
t (x, y)| ≤ 1 in x, y ∈ ZM (1)

are up to sign given by the following:
for any m and any t: (x, y) = (0, 0), (0, 1), (1, 0),
for any m and any t = 1: (x, y) = (1, 2), (2,−1),
for any m and any t = −1: (x, y) = (2, 1), (−1, 2),
for any m and any t = 4: (x, y) = (2, 3), (3,−2),
for any m and any t = −4: (x, y) = (3, 2), (−2, 3),
for m = 1 and any t: (x, y) = (0, i), (i, 0),
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for m = 3 and any t: (x, y) = (ω, 0), (0, ω), (1− ω, 0), (0, 1− ω),
for m = 1 and t = 1: (x, y) = (i, 2i), (2i,−i),
for m = 1 and t = −1: (x, y) = (2i, i), (−i, 2i),
for m = 1 and t = 4: (x, y) = (2i, 3i), (3i,−2i),
for m = 1 and t = −4: (x, y) = (3i, 2i), (−2i, 3i),
for m = 3 and t = 1: (x, y) = (2ω − 2,−ω + 1), (ω − 1, 2ω − 2), (−2ω, ω), (ω, 2ω),
for m = 3 and t = −1: (x, y) = (−ω + 1, 2ω − 2), (2ω − 2, ω − 1), (ω,−2ω), (2ω, ω),
for m = 3 and t = 4: (x, y) = (3ω − 3,−2ω + 2), (2ω − 2, 3ω − 3), (2ω, 3ω), (3ω,−2ω),
for m = 3 and t = −4: (x, y) = (−2ω + 2, 3ω − 3), (3ω − 3, 2ω − 2), (3ω, 2ω), (−2ω, 3ω),
where ω = (1 + i

√
3)/2.

Theorem 2 Let t ∈ Z, t 6= −8,−3, 0, 5. All solutions of

|F (6)
t (x, y)| ≤ 1 in x, y ∈ ZM (2)

are up to sign given by the following:
for any m and any t: (x, y) = (0, 0), (0, 1), (1, 0), (1,−1),
for m = 1 and any t: (x, y) = (0, i), (i, 0), (i,−i),
for m = 3 and any t: (x, y) = (ω, 0), (0, ω), (ω,−ω), (1− ω, 0), (0, ω − 1), (ω − 1,−ω + 1).

3 An auxiliary result

Let F (x, y) be a binary form of degree n ≥ 3 with rational integer coefficients. Assume that
f(x) = F (x, 1) has leading coefficient 1 and distinct real roots α1, . . . , αn. Let 0 < ε < 1, 0 <

η < 1, and K ≥ 1. Set

A = min
i 6=j
|αi − αj|, B = min

i

∏
j 6=i

|αj − αi|,

C = max

(
K

(1− ε)n−1B
, 1

)
, C1 = max

(
K1/n

εA
, (2C)1/(n−2)

)
, C2 = max

(
K1/n

εA
, C1/(n−2)

)
,

D =

(
K

η(1− ε)n−1AB

)1/n

, E =
(1 + η)n−1K

(1− ε)n−1
.

Let m ≥ 1 be a square-free positive integer, and set M = Q(i
√
m).

If m ≡ 3 (mod 4), then x, y ∈ ZM can be written as

x = x1 + x2
1 + i

√
m

2
=

(2x1 + x2) + x2i
√
m

2
, y = y1 + y2

1 + i
√
m

2
=

(2y1 + y2) + y2i
√
m

2
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with x1, x2, y1, y2 ∈ Z.
If m ≡ 1, 2 (mod 4), then x, y ∈ ZM can be written as

x = x1 + x2i
√
m, y = y1 + y2i

√
m

with x1, x2, y1, y2 ∈ Z.
Consider the relative Thue inequality

|F (x, y)| ≤ K in x, y ∈ ZM . (3)

We shall use the result of [6]:

Lemma 3 Let (x, y) ∈ Z2
M be solutions of (3). Assume that

|y| > C1 if m ≡ 3 (mod 4),

|y| > C2 if m ≡ 1, 2 (mod 4).

Then
x2y1 = x1y2.

I. Let m ≡ 3 (mod 4).

IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (x2, y2)| ≤
2nK

(
√
m)n

.

IA2. If |2y1 + y2| ≥ 2D, then |F (2x1 + x2, 2y1 + y2)| ≤ 2nE.

IB1. If y2 = 0, then x2 = 0 and |F (x1, y1)| ≤ K.

IB2. If |y2| ≥
2√
m
D, then |F (x2, y2)| ≤

2n

(
√
m)n

E.

II. Let m ≡ 1, 2 (mod 4).

IIA1. If y1 = 0, then x1 = 0 and |F (x2, y2)| ≤
K

(
√
m)n

.

IIA2. If |y1| ≥ D, then |F (x1, y1)| ≤ E.

IIB1. If y2 = 0, then x2 = 0 and |F (x1, y1)| ≤ K.

IIB2. If |y2| ≥
D√
m
, then |F (x2, y2)| ≤

E

(
√
m)n

.

4 Simplest quartic Thue equations over imaginary quadratic
fields

In this section we turn to the proof of Theorem 1. In our proof we shall use Lemma 3 and the
corresponding results in the absolute case.

For right hand sides ±1 J.Chen and P.Voutier [4] gave all solutions of simplest quartic Thue
equations.
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Lemma 4 Let t ∈ Z with t ≥ 1, t 6= 3. All solutions of

F
(4)
t (x, y) = ±1 in x, y ∈ Z

are given by (x, y) = (±1, 0), (0,±1).
Further, for t = 1 we have (x, y) = (1, 2), (−1,−2), (2,−1), (−2, 1)
and for t = 4 we have (x, y) = (2, 3), (−2,−3), (3,−2), (−3, 2).

For larger right hand sides we can use the statement of G.Lettl, A.Pethő and P.Voutier [18].

Lemma 5 Let t ∈ Z, t ≥ 58 and consider the primitive solutions (i.e. solutions with (x, y) = 1)
of

|F (4)
t (x, y)| ≤ 6t+ 7 in x, y ∈ Z. (4)

If (x, y) is a solution of (4), then every pair in the orbit

{(x, y), (y,−x), (−x,−y), (−y, x)}

is also a solution. Every orbit has a solution with y > 0, −y ≤ x ≤ y. If an orbit contains
a primitive solution, then all solutions in this orbit are primitive. All solutions of the above
inequality with y > 0,−y ≤ x ≤ y are (0, 1), (±1, 1), (±1, 2).

Remark 1. Since
F

(4)
t (x, y) = F

(4)
−t (y, x),

it is enough to solve the inequality (1) only for t > 0. Also, we have

F
(4)
t (x, y) = F

(4)
t (−x,−y) = F

(4)
t (y,−x) = F

(4)
t (−y, x).

Therefore, if (x, y) ∈ Z2
M is solution, then (y,−x), (−y, x), (−x,−y) are solutions, too.

4.1 Proof of Theorem 1 for m 6= 1,3

We use the notation of Lemma 3. Using the estimates of [18] for the roots of the polynomial
F

(4)
t (x, 1) we obtain A > 0.9833 and B > 58.1 for t ≥ 58. Calculating the roots for 0 < t < 58

we obtain A > 0.8284, B > 4.6114 for any t > 0, t 6= 3. Set

ε = 0.1924, η = 0.169.

For t > 0, t 6= 3 and a square-free m with m 6= 1, 3 our Lemma 3 implies:

Corollary 6 Let (x, y) ∈ Z2
M be solutions of (1). Assume that

|y| > 6.2741.

Then
x2y1 = x1y2.

6



I. Let m ≡ 3 (mod 4).

IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (4)
t (x2, y2)| ≤ 0.326.

IA2. If |2y1 + y2| ≥ 2.618, then |F (4)
t (2x1 + x2, 2y1 + y2)| ≤ 48.526.

IB1. If y2 = 0, then x2 = 0 and |F (4)
t (x1, y1)| ≤ 1.

IB2. If |y2| ≥ 0.989, then |F (4)
t (x2, y2)| ≤ 0.990.

II. Let m ≡ 1, 2 (mod 4).

IIA1. If y1 = 0, then x1 = 0 and |F (4)
t (x2, y2)| ≤ 0.25.

IIA2. If |y1| ≥ 1.309, then |F (4)
t (x1, y1)| ≤ 3.032.

IIB1. If y2 = 0, then x2 = 0 and |F (4)
t (x1, y1)| ≤ 1.

IIB2. If |y2| ≥ 0.925, then |F (4)
t (x2, y2)| ≤ 0.7582.

Case I. m ≡ 3 (mod 4)

a) Assume that |y| > 6.2741. By Corollary 6 we have
If y2 = 0, then by IB1 we have x2 = 0 and using Lemma 4 |F (4)

t (x1, y1)| ≤ 1 implies |x1|, |y1| ≤ 3.
This contradicts to |y| > 6.2741.

If y2 6= 0, then IB2 implies |F (4)
t (x2, y2)| ≤ 0.990, whence y2 = 0, a contradiction.

Therefore |y| > 6.2741 is not possible.
b) Consider now |y| ≤ 6.2741. By Remark 1 if (x, y) is a solution then so also is (y,−x).

As above we obtain that |x| > 6.2741 is not possible, hence |x| ≤ 6.2741.
We enumerate all x, y with |x| ≤ 6.2741 and |y| ≤ 6.2741 and we obtain the solutions

(x, y) = (0, 0), (0,±1), (±1, 0).

Additionally we have up to sign
for t = 1: (x, y) = (1, 2), (2,−1) and
for t = 4: (x, y) = (2, 3), (3,−2).

Case II. m ≡ 1, 2 (mod 4)

Similar to Case I, we obtain the same solutions.

According to Remark 1 we proved Theorem 1 for all t with t 6= −3, 0− 3 and for m 6= 1, 3.

4.2 Proof of Theorem 1 for m = 1

Set
ε = 0.1792, η = 0.0308.

For t > 0, t 6= 3 and m = 1 Lemma 3 implies:

7



Corollary 7 Let (x, y) ∈ Z2
M be a solution of (1). Assume

|y| > 6.736.

Then
x2y1 = x1y2.

Further,

IIA1. if y1 = 0, then x1 = 0 and |F (4)
t (x2, y2)| ≤ 1,

IIA2. if |y1| ≥ 1.98, then |F (4)
t (x1, y1)| ≤ 1.981,

IIB1. if y2 = 0, then x2 = 0 and |F (4)
t (x1, y1)| ≤ 1,

IIB2. if |y2| ≥ 1.98, then |F (4)
t (x2, y2)| ≤ 1.981.

a) Assume |y| > 6.736. By the above Corollary we deduce:
If y1 = 0, then by IIA1 we have |F (4)

t (x2, y2)| ≤ 1, whence by Lemma 4 |y2| ≤ 3, contradicting
|y| > 6.736.

If |y1| > 3, then by IIA2 we have |F (4)
t (x1, y1)| ≤ 1, whence by Lemma 4 |y1| ≤ 3, a

contradiction.
Therefore only |y1| = 1, 2, 3 is possible.
Using IIB1 and IIB2 we similarly obtain that only |y2| = 1, 2, 3 is possible. But |y1| = 1, 2, 3,

|y2| = 1, 2, 3 contradicts |y| > 6.736.
b) Hence only |y| ≤ 6.736 is possible. If (x, y) is a solution, then so also is (y,−x) therefore

we must also have |x| ≤ 6.736. Enumerating the set (x, y) ∈ Z2
M with |x|, |y| ≤ 6.736 we obtain

(x, y) = (0, 0), (0,±1), (±1, 0), (0,±i), (±i, 0).

Additionally we have up to sign
for t = 1 (x, y) = (1, 2), (i, 2i), (2,−1), (2i,−i) and
for t = 4 (x, y) = (2, 3), (2i, 3i), (3,−2), (3i,−2i).

According to Remark 1 we have proved Theorem 1 for all t with t 6= −3, 0, 3 and for m = 1.

4.3 Proof of Theorem 1 for m = 3

First we assume t ≥ 58. Then A > 0.9833, and B > 58.1. Set

ε = 0.6273, η = 0.0361.

Corollary 8 Let (x, y)eZ2
M be solutions of (1) and let m = 3. Assume t ≥ 58 and

|y| > 1.621.
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Then
x2y1 = x1y2.

Further

IA1. if 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (4)
t (x2, y2)| ≤ 1.778,

IA2. if |2y1 + y2| ≥ 3.497, then |F (4)
t (2x1 + x2, 2y1 + y2)| ≤ 343.753,

IB1. if y2 = 0, then x2 = 0 and |F (4)
t (x1, y1)| ≤ 1,

IB2. if |y2| ≥ 2.019, then |F (4)
t (x2, y2)| ≤ 38.195.

a)Assume |y| > 1.621. Then by the above Corollary:
If 2y1 + y2 = 0, then by IA1 2x1 + x2 = 0 and |F (4)

t (x2, y2)| ≤ 1.778. By Lemma 4 this later
inequality implies (x2, y2) = (0, 0), (0,±1), (±1, 0). However for (x2, y2) = (0,±1), (±1, 0) one
of the the equations 2y1 + y2 = 0 and 2x1 + x2 = 0 have no integer solutions in y1, resp. x1. If
(x2, y2) = (0, 0) then 2y1 + y2 = 0 implies y1 = 0, but (y1, y2) = (0, 0) contradicts |y| > 1.621.

If |2y1 + y2| > 3.497, then IA2 implies |F (4)
t (2x1 + x2, 2y1 + y2)| ≤ 343.753. Using Lemma

5 we can easily list all primitive and non-primitive solutions of this inequality and we always
have |2y1 + y2| ≤ 4.

Therefore only |2y1 + y2| = 1, 2, 3, 4 is possible.
Using IB1 and IB2 we similarly obtain that only |y2| = 1, 2 is possible. The equations

|2y1 + y2| = 1, 2, 3, 4, |y2| = 1, 2 leave only a few possible values for (y1, y2).
b) If |x| > 1.621, then we similarly obtain |2x1 + x2| = 1, 2, 3, 4, |x2| = 1, 2, since if (x, y) is

a solution, then so also is (y,−x).
c1) If |x| > 1.621 and |y| > 1.621 then we test the finite set |2x1+x2| = 1, 2, 3, 4, |x2| = 1, 2,

|2y1 + y2| = 1, 2, 3, |y2| = 1, 2.
c2) If |x| > 1.621 and |y| ≤ 1.621 then we test the finite set |2x1+x2| = 1, 2, 3, 4, |x2| = 1, 2,

|y| ≤ 1.621.
c3) If |x| ≤ 1.621 and |y| > 1.621 then we test the finite set |x| ≤ 1.621, |2y1+y2| = 1, 2, 3, 4,

|y2| = 1, 2.
c4) Finally, if |x| ≤ 1.621 and |y| ≤ 1.621 then we test this finite set.

All together up to sign we get the following solutions for arbitrary t ≥ 58:
(x, y) = (0, 0), (1, 0), (0, 1), (ω, 0), (0, ω), (1− ω, 0), (0, 1− ω).

Let now 0 < t < 58. Considering the roots of the polynomial F (4)
t (x, 1) = 0 for these

parameters we obtain A > 0.8284, B > 4.6114. Set

ε = 0.0348, η = 0.0005.

Corollary 9 Let m = 3 and 0 < t < 58. Let (x, y) ∈ Z2
M be a solution of (1) and assume

|y| > 34.688.
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Then
x2y1 = x1y2.

Further

IA1. if 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (4)
t (x2, y2)| ≤ 1.778,

IA2. if |2y1 + y2| ≥ 9.824, then |F (4)
t (2x1 + x2, 2y1 + y2)| ≤ 17.825,

IB1. if y2 = 0, then x2 = 0 and|F (4)
t (x1, y1)| ≤ 1,

IB2. if |y2| ≥ 5.672, then |F (4)
t (x2, y2)| ≤ 1.981.

a) Assume |y| > 34.688. Then by the above Corollary we have:
If y2 = 0, then by IB1 |F (4)

t (x1, y1)| ≤ 1. By Lemma 4 we know the possible solutions y1.
These, together with y2 = 0 contradict |y| > 34.688.

If |y2| ≥ 5.672, then by IB2 |F (4)
t (x2, y2)| ≤ 1, whence by Lemma 4 |y2| ≤ 3, a contradiction.

Therefore only |y2| = 1, 2, 3, 4, 5 is possible.
If 2y1+ y2 = 0, then by IA1 we have 2x1+x2 = 0 and |F (4)

t (x2, y2)| ≤ 1. From Lemma 4 we
get the possible values of y2 and we calculate y1 from 2y1 + y2 = 0. These are in contradiction
with |y| > 34.688.

If |2y1 + y2| ≥ 9.824 then by IA2 we have |F (4)
t (2x1 + x2, 2y1 + y2)| ≤ 17. Using Magma

[2] we solve the equation F (4)
t (2x1 + x2, 2y1 + y2) = d for all t ≤ 58 and |d| ≤ 17 and list the

solutions. All these solutions contradict |2y1 + y2| > 9.824.
Therefore only |2y1 + y2| = 1, . . . , 9 is possible.
In the set |y2| = 1, 2, 3, 4, 5, |2y1 + y2| = 1, . . . , 9 all y = y1 + ωy2 have absolute values less

than 34.688 which is in contradiction with |y| > 34.688.
b) Therefore only |y| ≤ 34.688 is possible. If (x, y) is a solution, then so also is (y,−x) therefore
we similarly obtain |x| ≤ 34.688. Enumerating all x, y with these properties we obtain up to
sign the following solutions:
for arbitrary t: (1, 0), (0, 1), (ω, 0), (0, ω), (1− ω, 0), (0, 1− ω),
for t = 1: (1, 2), (2,−1), (2ω − 2,−ω + 1), (ω − 1, 2ω − 2), (−2ω, ω), (ω, 2ω),
for t = 4: (2, 3), (3,−2), (3ω − 3,−2ω + 2), (2ω − 2, 3ω − 3), (2ω, 3ω), (3ω,−2ω).

According to Remark 1 we have proved Theorem 1 for all t with t 6= −3, 0, 3 and m = 3.

5 Simplest sextic Thue equations over imaginary quadratic
fields

In this section we turn to the proof of Theorem 2. In our proof we shall use Lemma 3 and the
corresponding results in the absolute case.

G.Lettl, A.Pethő, and P.Voutier [17] and A.Hoshi [12] gave all solutions in rational integers
of the equation F (6)

t (x, y) = ±1 for all parameters.
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Lemma 10 Let t ∈ Z, t 6= −8,−3, 0, 5. All solutions of

F
(6)
t (x, y) = ±1 in x, y ∈ Z

are given by
(x, y) = (±1, 0), (0,±1), (1,−1), (−1, 1).

For larger right hand sides we shall use the statement of G.Lettl, A.Pethő and P.Voutier
[18].

Lemma 11 Let t ∈ Z, t ≥ 89 and consider the primitive solutions of

|F (6)
t (x, y)| ≤ 120t+ 323 in x, y ∈ Z. (5)

If (x, y) is a solution of the above inequality, then every pair in the orbit

{(x, y), (−y, x+ y), (−x− y, x), (−x,−y), (y,−x− y), (x+ y,−x)}

is also a solution. Every orbit has a solution with y > 0, −y/2 < x ≤ y. If an orbit contains
one primitive solution, then all solutions in this orbit are primitive. All solutions of the above
inequality with y > 0,−y/2 < x ≤ y are (0, 1), (1, 1), (1, 2), (−1, 3).

Remark 2. Since
F

(6)
t (x, y) = F

(6)
−t−3(y, x),

it is enough to solve the inequality (2) only for t ≥ −1, t 6= 0, 5. Also, we have

F
(6)
t (x, y) = F

(6)
t (−y, x+y) = F

(6)
t (−x−y, x) = F

(6)
t (−x,−y) = F

(6)
t (y,−x−y) = F

(6)
t (x+y,−x).

Therefore, if (x, y) ∈ Z2
M is solution then, (−y, x + y), (−x − y, x), (−x,−y), (y,−x − y), (x +

y,−x) are solutions, as well.

5.1 Proof of Thereom 2 for m 6= 1, 3

Using the estimates of [18] for t ≥ 89, we obtain A > 0.4986 and B > 101.83. Calculating the
roots of F (6)

t (x, 1) for −1 ≤ t < 89, t 6= 0, 5 finally we get A > 0.4646, B > 3.3121. Set

ε = 0.12, η = 0.23.

Our Lemma 3 implies for m 6= 1, 3:

Corollary 12 Let t ≥ −1, t 6= 0, 5 and let (x, y) ∈ Z2
M be solutions of (2). Assume that

|y| > 17.937.

Then
x2y1 = x1y2.

11



I. Let m ≡ 3 (mod 4).

IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (6)
t (x2, y2)| ≤ 0.1866.

IA2. If |2y1 + y2| ≥ 2.6453, then |F (6)
t (2x1 + x2, 2y1 + y2)| ≤ 341.42.

IB1. If y2 = 0, then x2 = 0 and|F (6)
t (x1, y1)| ≤ 1.

IB2. If |y2| ≥ 0.99983, then |F (6)
t (x2, y2)| ≤ 0.9954.

II. Let m ≡ 1, 2 (mod 4).

IIA1. If y1 = 0, then x1 = 0 and |F (6)
t (x2, y2)| ≤ 0.125.

IIA2. If |y1| ≥ 1.3227, then |F (6)
t (x1, y1)| ≤ 5.3347.

IIB1. If y2 = 0, then x2 = 0 and |F (6)
t (x1, y1)| ≤ 1.

IIB2. If |y2| ≥ 0.93526, then |F (6)
t (x2, y2)| ≤ 0.66684.

Case I. m ≡ 3 (mod 4)

a) Assume that |y| > 17.937. Then by Corollary 12 we have:
If y2 = 0, then by IB1 we have |F (6)

t (x1, y1)| ≤ 1. By Lemma 10 the possible values of y1 and
y2 = 0 contradict |y| > 17.937.
If |y2| ≥ 1 then by IB2 we have |F (6)

t (x2, y2)| = 0, whence y2 = 0, a contradiction.
b) Therefore only |y| ≤ 17.937 is possible. If (x, y) is a solution, then by Lemma 11 (−x− y, x)
is also a solution. Hence we also must have |x| ≤ 17.937.
Case II. m ≡ 1, 2 (mod 4)

We similarly obtain that only |x| ≤ 17.9365, |y| ≤ 17.9365 is possible.

In both cases we enumerate all possible solutions with |x| ≤ 17.9365 and |y| ≤ 17.9365 and
finally up to sign obtain

(x, y) = (0, 0), (0, 1), (1, 0), (1,−1)

According to Remark 2 these are solutions for m 6= 1, 3 for all t with t 6= −8,−3, 0, 5.

5.2 Proof of Thereom 2 for m = 1

We set
ε = 0.11, η = 0.02.

For t > −1, t 6= 0, 5 and m = 1 Lemma 3 implies:

Corollary 13 Let (x, y) ∈ Z2
M be a solution (2). Assume

|y| > 19.5671.

Then
x2y1 = x1y2.

12



Further,

IIA1. if y1 = 0, then x1 = 0 and |F (6)
t (x2, y2)| ≤ 1,

IIA2. if |y1| ≥ 1.9685, then |F (6)
t (x1, y1)| ≤ 1.9772,

IIB1. if y2 = 0, then x2 = 0 and |F (6)
t (x1, y1)| ≤ 1,

IIB2. if |y2| ≥ 1.9865, then |F (6)
t (x2, y2)| ≤ 1.9772.

a) Assume |y| > 19.5671.

If y2 = 0, then by IIB1 of the above Corollary we have |F (6)
t (x1, y1)| ≤ 1. By Lemma 10 the

possible values of y1 and y2 = 0 contradict |y| > 19.5671.

If |y2| ≥ 2, then by IIB2 |F (6)
t (x2, y2)| ≤ 1 which implies by Lemma 10 |y2| ≤ 1, a contra-

diction.
Therefore only |y2| = 1 is possible.
IIA1 and IIA2 similarly implies that only |y1| = 1 is possible. But |y1| = 1, |y2| = 1

contradict |y| > 19.5671.
b) Therefore only |y| ≤ 19.5671 is possible. If (x, y) is a solution, then by Lemma 11 so also

is (−x − y, x), hence we also have |x| ≤ 19.5671. Enumerating all possible values of x, y with
|x| ≤ 19.5671, |y| ≤ 19.5671 up to sign we get the solutions

(x, y) = (0, 0), (0, 1), (1, 0), (1,−1), (0, i), (i, 0), (i,−i).

According to Remark 2 these are all solutions for m = 1 and all t with t 6= −8,−3, 0, 5.

5.3 Proof of Theorem 2 for m = 3

Assume t ≥ 89. Then we have A > 0.4986 and B > 101.83. Set

ε = 0.41, η = 0.02 .

Corollary 14 Let (x, y) ∈ Z2
M be a solution of (2). Assume that

|y| > 4.8917.

Then
x2y1 = x1y2.

Further,

IA1. if 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (6)
t (x2, y2)| ≤ 2.3703,

IA2. if |2y1 + y2| ≥ 3.0965, then |F (6)
t (2x1 + x2, 2y1 + y2)| ≤ 988.372,

IB1. if y2 = 0, then x2 = 0 and|F (6)
t (x1, y1)| ≤ 1,

IB2. if |y2| ≥ 1.7877, then |F (6)
t (x2, y2)| ≤ 36.606.
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a) Assume |y| > 4.8917.
If 2y1 + y2 = 0, then by IA1 2x1 + x2 = 0 and |F (6)

t (x2, y2)| ≤ 2. By Lemma 11 we have the
solutions of this inequality. Only x = 0, y = 0 is possible, contradicting |y| > 4.8917.
If |2y1 + y2| ≥ 4 then by IA2 |F (6)

t (2x1 + x2, 2y1 + y2)| ≤ 988.372. Considering the possible
primitive and non-primitive solutions of this inequality, Lemma 11 implies |2y1 + y2| ≤ 3.
Therefore only |2y1 + y2| = 1, 2, 3 is possible.
If y2 = 0, then by IB1 x2 = 0. The possible values of x1, y1 we obtain from |F (6)

t (x1, y1)| ≤ 1

by Lemma 10. These contradict |y| > 4.8917.
If |y2| ≥ 2, then by IB2 |F (6)

t (x2, y2)| ≤ 36. Using Lemma 11 we consider the primitive and
non-primitive solutions of this inequality and we obtain |y2| ≤ 2.
Therefore only |y2| = 1, 2 is possible.

b) If |x| > 4.8917 then we similarly obtain |2x1 + x2| = 1, 2, 3, |x2| = 1, 2, since if (x, y) is a
solution, then by Remark 2 so also is (−x− y, x).

c1) If |x| > 4.8917, |y| > 4.8917 then we test the finite set |2x1 + x2| = 1, 2, 3, |x2| = 1, 2,
|2y1 + y2| = 1, 2, 3, |y2| = 1, 2.

c2) If |x| > 4.8917, |y| ≤ 4.8917 then we test the finite set |2x1 + x2| = 1, 2, 3, |x2| = 1, 2,
|y| ≤ 4.8917.

c3) If |x| ≤ 4.8917, |y| > 4.8917 then we test the finite set |x| ≤ 4.8917, |2y1 + y2| = 1, 2, 3,
|y2| = 1, 2.

c4) If |x| ≤ 4.8917, |y| ≤ 4.8917 then we test this finite set.

Finally, for t ≥ 89, m = 3, all solutions of |F (6)
t (x, y)| ≤ 1 up to sign are

(x, y) = (0, 0), (1, 0), (0, 1), (1,−1), (ω, 0), (0, ω), (ω,−ω), (1− ω, 0), (0, ω − 1), (ω − 1,−ω + 1).

According to Remark 2 these are valid for all values of t, for t ≤ −92, as well.

Assume now −1 ≤ t < 89. Then we have A > 0.4646 and B > 3.3121. Set

ε = 0.1124, η = 0.0195 .

Corollary 15 Assume that
|y| > 19.149 .

Then
x2y1 = x1y2.

Further,

IA1. if 2y1 + y2 = 0, then 2x1 + x2 = 0 and |F (6)
t (x2, y2)| ≤ 2.371,

IA2. if |2y1 + y2| ≥ 3.962, then |F (6)
t (2x1 + x2, 2y1 + y2)| ≤ 127.946,

IB1. if y2 = 0, then x2 = 0 and |F (6)
t (x1, y1)| ≤ 1,

IB2. if |y2| ≥ 2.287, then |F (6)
t (x2, y2)| ≤ 4.739.
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a) Assume |y| > 19.149.
If y2 = 0, then by IB1 |F6(x1, y1)| ≤ 1. We consider its solutions by Lemma 10 and find

that the possible y1, y2 are in contradiction with |y| > 19.149.
If |y2| ≥ 3, then by IB2 |F6(x2, y2)| ≤ 4. Using Magma [2] we solve F (6)

t (x2, y2) = d for
−1 ≤ t < 89 and |d| ≤ 4 and find that only y2 = 0,±1 are possible, contradicting |y2| ≥ 3.

Hence only |y2| = 1, 2 is possible.
b) If |x| > 19.149 then similarly we obtain |x2| = 1, 2, since if (x, y) is a solution then so

also is (−x− y, x).
c1) If |x| > 19.149 and |y| > 19.149, then we have |x2| = 1, 2 and |y2| = 1, 2. For any

possible pair x2, y2 we parametrize x1, y1 with a single parameter, say z, using x2y1 = x1y2 (e.g.
if x2 = 1, y2 = 2, then x1 = z, y1 = 2z). For −1 ≤ t < 89 and for the possible right hand sides
we substitute x1, x2, y1, y2 into our original equation (2) to determine the parameter z. We do
not obtain any solutions this way.

c2) If |x| ≤ 19.149 and |y| > 19.149, then |y2| = 1, 2 and we can enumerate all possible
x1, x2. For all −1 ≤ t < 89 we determine y1 from our original inequality (2) using x1, x2 and
|y2| = 1, 2. We do not find any solutions.

c3) If |x| > 19.149 and |y| ≤ 19.149, then we proceed similarly.
c4) If |x| ≤ 19.149 and |y| ≤ 19.149, then we test this finite set.

Finally, for −1 ≤ t < 89, m = 3, all solutions of |F (6)
t (x, y)| ≤ 1 up to sign are

(x, y) = (0, 0), (1, 0), (0, 1), (1,−1), (ω, 0), (0, ω), (ω,−ω), (1 − ω, 0), (0, ω − 1), (ω − 1,−ω + 1).

These are valid for all values of t, for −92 < t ≤ −2, as well. Therefore we have proved Theorem
2 for m = 3.

6 Computational aspects

All auxiliary calculations were made by using Maple [3]. Testing a great number of possible
solutions took a few hours.

The resolution of Thue equations was performed by using Magma [2]. In the quartic case
we solved F

(4)
t (2x1 + x2, 2y1 + y2) = d for all t ≤ 58 and |d| ≤ 17. This took a few minutes.

In the sextic case we solved F (6)
t (x2, y2) = d for −1 ≤ t < 89 and |d| ≤ 4. This took about 30

minutes.
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