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budai.istvan@eng.unideb.hu
5 Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Körút 98,

4032 Debrecen, Hungary; nemeth.jozsef@med.unideb.hu
* Correspondence: ujhelyi.zoltan@pharm.unideb.hu; Tel.: +36-52-512-900 (ext. 54041)

Abstract: The rapid progress in biotechnology over the past few decades has accelerated the large-
scale production of therapeutic peptides and proteins, making them available in medical practice.
However, injections are the most common method of administration; these procedures might lead to
inconvenience. Non-invasive medications, such as oral administration of bio-compounds, can reduce
or eliminate pain and increase safety. The aim of this project was to develop and characterize novel
melanin concentrating hormone (MCH) formulations for oral administration. As a drug delivery
system, penetration enhancer combined alginate beads were formulated and characterized. The
combination of alginate carriers with amphiphilic surfactants has not been described yet. Due to
biosafety having high priority in the case of novel pharmaceutical formulations, the biocompatibility
of selected auxiliary materials and their combinations was evaluated using different in vitro methods.
Excipients were selected according to the performed toxicity measurements. Besides the cell viability
tests, physical properties and complex bioavailability assessments were performed as well. Our
results suggest that alginate beads are able to protect melanin concentrating hormones. It has been
also demonstrated that penetration enhancer combined alginate beads might play a key role in
bioavailability improvement. These formulations were found to be promising tools for oral peptide
delivery. Applied excipients and the performed delivery systems are safe and highly tolerable; thus,
they can improve patients’ experience and promote adherence.

Keywords: peptide carriers; bioavailability; alginate beads; penetration enhancers; biocompatibility
investigation; MTT test; Caco-2 cells

1. Introduction

Endogenous peptides and proteins are the building blocks of life, as they play an
important role in the regulation of different life processes by forming a multitude of
hormones, enzymes and antibodies [1]. The rapid progress in biotechnology over the past
few decades has accelerated the large-scale production of therapeutic peptides and proteins,
making them available in medical practice [2,3]. Despite inoculated peptides having
saved millions of lives, the importance of alternative routes of peptide administration
is not questionable [3]. The development of oral protein delivery systems has been a
constant challenge to pharmaceutical technology, as it requires overcoming several obstacles
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resulting from peptides’ unfavorable properties [4]. Frequent peptide degradation in the GI
tract, low epithelial permeability and amphiphilicity all block the way to the success of oral
pharmaceutical formulations [5]. Despite the low patient compliance due to many factors
such as needle phobia, at this point, injections are still the standard procedure of protein
and peptide administration due to their poor oral bioavailability [6]. Despite the fact that
recently many peptides, such as semaglutide, octreotide, and salmon calcitonin, have been
tested for oral administration in phase III trials, only semaglutide have completed a trial
successfully [7]. An oral GLP-1 receptor agonist semaglutide (Rybelsus®) was approved by
the FDA in 2019, representing the first orally available medicine in the treatment of type
2 diabetes [8].

The encapsulation of peptides into finely divided bioadhesive polymer carrier systems
is a preferable and widespread method to improve oral bioavailability of peptide drugs
due to their beneficial properties [9,10]. Natural polymers are biosafe and highly inert
carrier matrices as they not only protect the drug from gastrointestinal degradation but also
improve absorption [11–13]. Moreover, polymeric small particles improve the effectiveness
of proteins by providing controlled drug release [14,15]. Alginate particles showed poten-
tial results as carriers designed for oral administration of proteins and peptides [16–20].
Alginate is a biocompatible and biodegradable natural polysaccharide having excellent
biocompatibility and mucoadhesive biodegradability. In the presence of divalent cations,
such as calcium, alginate forms insoluble ionic cross-linked complexes while incorporating
the drug [18,21–23]. Adding different permeation enhancers to the delivery system can
be also an applicable strategy as they may facilitate and even enhance oral absorption.
Many studies proved that lipid-based surface active agents are vital tools for the oral
delivery of peptides due to the observation that they are able to modulate transcellular and
paracellular pathways [2,24–26]. It has been demonstrated that using lipid excipients in
these formulations is advantageous due to their multiplicity, safety and adaptability [27].
The combination of these promising tools had not been investigated particularly.

The aim of this research was to develop innovative solid oral delivery systems for
peptide delivery with improved oral bioavailability. As a model peptide, a well-defined
molecule was selected. Melanin concentrating hormone (MCH) plays a crucial role in
the regulation of nutrition behavior, energy homeostasis and food intake in all living
beings [28–31]. Moreover, the importance of MCH had been demonstrated not only in
central nervous system regulation but also in the periphery [32–34]. In our previous
studies we performed several experiments with this natural cyclic nonadecapeptide. These
experiments ensure valuable assessment of our results by the developed radioanalytical
(RIA) method [35]. Peptide-loaded calcium cross-linked alginate beads were formulated by
a controlled gelification method in order to protect the model peptide [36]. Characterization
of drug release from the beads was performed by an in vitro dissolution test. Since there
are no available data regarding the enzymatic stability and intestinal permeability of MCH,
we also evaluated enzymatic degradation and permeability of the peptide and peptide-
loaded microbeads as well. Moreover, we implemented our formulation study objectives
by lipid-based permeation enhancers application. Several permeation enhancers were
selected and incorporated into the beads in order to increase intestinal absorption. The
role of these compounds has already been tested and described [37,38]. Compositions were
examined and selected according their physical properties and stability. Since safety is an
indispensable aspect of pharmaceutical formulations, biological properties of the excipients
and blends was also evaluated. To determine the interaction between the formulated dosage
forms and in vitro human tissue, a Caco-2 immortalized cell line was deployed. The Caco-2
adenocarcinoma cell line is a reliable in vitro model of human intestinal processes [39]. The
biocompatibility of these compounds has been investigated by cell viability assays. To
complete the assessment, its physical characteristics, such as morphology, size distribution
and swelling behavior, were also determined in each case.
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2. Materials and Methods
2.1. Materials

Melanin concentrating hormone was synthetized by Gábor Tóth (Department of Med-
ical Chemistry, Faculty of Medicine, University of Szeged). Low viscosity grade sodium
alginate was obtained from BÜCHI Labortechnik AG (Flawil, Switzerland). Calcium chlo-
ride dihydrate was purchased from VWR International (Debrecen, Hungary). Labrasol
(Caprylocaproyl Prolyoxyl-8-glycerides) and Transcutol HP (Diethylene glycol monoethyl
ether), were obtained from Gattefossé (Saint-Priest, France). Pepsin from porcine gastric
mucosa (≥400 unit/mg protein) and pancreatin from porcine pancreas (≥3xUSP specifica-
tions) were purchased from Sigma-Aldrich (St. Louis, MI, USA). The human adenocarci-
noma cancer cell line (Caco-2) originated from the European Collection of Cell Cultures
(ECACC, Public Health England, Salisbury, UK). MTT reagent 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide, and buffer solutions such as Hank’s Balanced Salt
Solution (HBSS) and phosphate buffered saline (PBS), were purchased from Sigma-Aldrich
(St. Louis, MI, USA). Cell maintenance solutions, such as Dulbecco’s Modified Eagle’s
Medium (DMEM), heat-inactivated fetal bovine serum (FBS), L-glutamine, a non-essential
amino acids solution, and a penicillin-streptomycin solution, were ordered from Sigma-
Aldrich (St. Louis, MI, USA). TrypLE™ Express Enzyme (no phenol red) was bought from
Thermo Fisher Scientific (Waltham, MA, USA). Ninety six-well cell plates, twenty four-well
cell plates and culturing flasks were obtained from VWR International (Debrecen, Hun-
gary). ThinCert™ 24-well cell culture inserts were supplied by Greiner Bio-One Hungary
Kft. (Mosonmagyaróvár, Hungary).

2.2. Methods
2.2.1. Preparation of Sodium-Alginate and CaCl2 Solutions

A total of 1.50% (w/v%) polymer solution was prepared by dissolution of 3.30 g of
low viscosity grade sodium-alginate in 200 mL distilled water. The solution was mixed
for 180 min at room temperature (25 ◦C) under vigorous stirring (300 rpm) to obtain a
homogeneous solution. For the CaCl2 solution (100 mM), 14.70 g calcium chloride dihydrate
was dissolved in 1000 mL deionized water.

2.2.2. Preparation of Peptide-Loaded Alginate Beads

The MCH-loaded alginate microbeads were prepared by a controlled polymerization
method using a Büchi Encapsulator B-395 Pro apparatus. The peptide was finely distributed
in 40 mL of 1.50% sodium-alginate solution combined with the 0.01 v/v% of penetration
enhancers (Labrasol, Transcutol HP). Mixtures were loaded into a 40 mL BD LuerLock
type syringe. The polymer–pharmacon mixture was forced into the pulsation chamber
by a syringe pump at speed 5.00 mL/min. The solution was passed through an electrical
field between the nozzle (80 µm, 200 µm, 1000 µm). A 1000 V set electrode separated the
alginate solution into equal size droplets by 1800 Hz frequency. The alginate beads were
left to harden for 15 min in calcium-chloride solution. The finely divided particles were
washed with hardening solution and filtered on a 0.4 µm pore size membrane by a vacuum
pump and freeze dried for 24 h at −110 ◦C [36].

2.2.3. Encapsulation Efficiency

To determine the encapsulated drug content in the beads, a 1 mL sample was measured
from 100 mM of the calcium-chloride hardening solution right after formulation. Drug
concentration was determined by radioimmunoassay (RIA) [35]. Encapsulation efficiency
(EE) was calculated by the following equation:

EE =

(
TQ − HQ

TQ

)
× 100 (1)
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where HQ is the drug quantity present in the hardening solution, and TQ is the theoretical
drug content in the beads [21]. In each case experiments were performed in triplicate.

2.2.4. Study of Swelling Behavior

The swelling behavior of the alginate spheres was determined gravimetrically. A total
of 85 mg dry beads were weighed and soaked in 100 mL distilled water at room temperature.
The beads were removed after 1 h, and the excess wetness was eliminated with vacuum
filtration. The equilibrium water uptake was calculated using the following equation:

EWU =

(
Ws − Wd

Ws

)
× 100 (2)

where Ws is the weight of swollen beads and Wd is the initial weight of the dry beads [40].

2.2.5. Scanning Electron Microscopy

Electron microscopic analysis of the shape, size and surface area of the particles was
performed using a Hitachi Tabletop microscope (TM3030 Plus) (Hitachi High-Technologies
Corporation, Tokyo, Japan). Samples were attached to a plate covered with double-sided
adhesive tape. An accelerating voltage of 5 kV was used during micrography.

2.2.6. Particle Size Distribution

Particle size distribution of the beads formulated with a 200 µm nozzle was performed
with a HoribaPartica LA-950V2 (Horiba, Ltd., Kyoto, Japan) laser diffraction particle size
analyzer, operated in wet mode with distilled water (1000× dilution), performing at least
three parallel measurements on each sample.

2.2.7. In Vitro Dissolution

The rotating paddle method by Erweka DT 800 apparatus (Erweka GmbH, Langen,
Germany) was applied to characterize drug release from the particles. In vitro dissolution
was evaluated as 400 mg of the formulated dry beads were placed in 100 mL buffer
phosphate solution (pH = 6.80) at 37 ◦C. A total of 1000 µL of the dissolution media
was collected at determined time intervals (0., 5., 15., 30., 60., 90., 120. min). The drug
concentration in each sample was analyzed by radioimmunoassay [35].

2.2.8. Enzymatic Stability

Enzymatic degradation in the presence of proetolytic enzymes pepsin and pancreatin
was investigated [41]. Peptide-loaded particles were added to 100 mL of artificial gastric
fluid (simulated gastric fluid—SGF) with pepsin, or artificial intestinal fluid (simulated
intestinal fluid—SIF) with pancreatin and incubated at 37 ◦C under moderate stirring at
100 rpm. SGF and SIF were prepared as per European Pharmacopoeia specifications. A
total of 1000 µL samples were collected at determined time intervals for 120 min, and an
equal volume of ice-cold reagent was added to stop the enzymatic reaction (0.10 M NaOH
for SGF and 0.10 M HCl for SIF). Samples were analyzed by radioimmunoassay [35].

2.2.9. Cell Culturing

A Caco-2 immortalized human adenocarcinoma cell line was purchased from The
European Collection of Cell Cultures (ECACC). Cells were seeded and maintained in plastic
cell culture flasks in Dulbecco’s Modified Eagel’s medium (DMEM Sigma-Aldrich Ltd.,
Budapest, Hungary). Cell culturing media was supplemented with 2 mM L-glutamine,
100 mg/L gentamycin (Sigma-Aldrich Ltd., Budapest, Hungary) and 10% heat inactivated
fetal bovine serum (FBS) (Sigma-Aldrich Ltd., Budapest, Hungary). Cells were stored in
incubators at 37 ◦C in a 5% CO2 atmosphere. The colon epithelial Caco-2 cell line forms a
single cell layer with well-defined tight junctions.
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2.2.10. Cell Viability Assay

Caco-2 cell viability was evaluated using the MTT method. Cells were harvested
and seeded at a density of 104 cells/well on flat-bottom 96-well tissue culture plates.
Cells were allowed to grow for 7 days under the abovementioned conditions. For the
viability measurements, the DMEM was removed. Cells were incubated with the applied
penetration enhancer (Labrasol, Transcutol HP; Gattefossé, Saint-Priest, France) solutions,
all other components and blends for 30 min. Samples were removed and cells were washed
with buffer solution. Mitochondrial activity of the cells was determined after 3 h incubation
with MTT at the concentration of 0.50 mg/mL. Dark blue formazan crystals were dissolved
in acidic isopropanol (isopropanol:1.00 N hydrochloric acid = 25:1). The absorbance of
dissolved formazan crystals correlates with the ratio of the living cells. Absorbance was
measured with a FLUOstar OPTIMA Micro-plate Reader (BMG LABTECH, Offenburg,
Germany) at 570 nm against a 690 nm reference. Cell viability was demonstrated as the
percentage of the untreated control.

2.2.11. Permeability Test

A human colon adenocarcinoma cell line was used as the model of human intestinal
absorption of MCH. Caco-2 cells were seeded on 12-well ThinCert™ transwell polyester
inserts (pore size: 0.40 µm; Greiner Bio-One International, Mosonmagyaróvár, Hungary) at
a density of 2 × 105 cells/cm2 and grown for 21–28 days. Transepithelial electrical resistance
(TEER) was measured every 2 days. Measurements were begun when TEER values of
the inserts reached 1000 Ω×cm2 value. The culture medium in the apical and basolateral
compartments was replaced with HBSS and the monolayers were pre-incubated for 30 min
at 37 ◦C. After that, the experimental solution was pipetted to the apical chambers. In
transport experiments, we have studied the permeability of different types of samples;
one containing only peptide, another with the same amount of MCH containing 0.01%
Labrasol and/or 0.01% Transcutol HP as a penetration enhancer. A total of 300 mg of the
samples were dissolved in 60 mL of PBS buffer for 60 min. As a negative control HBBS was
examined. The permeated amount of MCH was determined after 60 min. These samples
were collected from the basolateral compartment and replaced with fresh HBSS. Samples
were analyzed by radioimmunoassay. To complete the investigation, membrane function
was monitored by transepithelial electrical resistance measurements.

2.2.12. Transepithelial Electrical Resistance Measurements

Transepithelial electrical resistance was measured with Millipore Millicell-ERS 00001
equipment (Merck, Waltham, MA, USA). During the transmembrane experiments, TEER
values were determined every 15 min. As a follow-up, measurements were continued in
the following 24 h to investigate the recovery.

2.2.13. Statistical Analysis

Data were handled and analyzed using Microsoft Excel 2013 and SigmaStat 4.0
(version 3.1; SPSS, Chicago, IL, USA, 2015), and herein presented as means ± SD. Compar-
isons of results of the in vitro dissolution test, enzymatic stability assessment, permeability
test and MTT cell viability assays were performed with one-way ANOVA and repeated-
measures ANOVA followed by Tukey or Dunnett post testing. Difference of means was
regarded as significant in the case of p < 0.05. All experiments were carried out in quintu-
plicates and repeated at least five times.

3. Results
3.1. Formulated MCH Beads

MCH encapsulated in different alginate formulations. Selected compositions described
at Table 1.



Pharmaceutics 2022, 14, 9 6 of 15

Table 1. Composition of the selected blends.

Selected Blends Sodium-Alginate Solution Labrasol Transcutol HP

MCH beads 40 mL - -
MCH beads + 0.01% (v/v%) Labrasol 40 mL 0.01% (v/v%) -

MCH beads + 0.01% (v/v%) Transcutol HP 40 mL - 0.01% (v/v%)
MCH beads + 0.01% (v/v%) Labrasol and

0.01% (v/v%) Transcutol HP 40 mL 0.01% (v/v%) 0.01% (v/v%)

3.2. Encapsulation Efficiency

Encapsulation efficiency measurements resulted in at least 56%. The lowest EE was cal-
culated in the case of simple MCH beads. Labrasol and Transcutol HP supplemented beads
showed the highest EE although no significant differences had been evaluated between the
closing ability of the compositions. Results of encapsulation efficiency measurements are
presented in Figure 1.
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Figure 1. Results of encapsulation efficiency measurements regarding the different formulations
containing MCH. Although there is no major difference in encapsulation efficiency between the
formulations, beads containing both Labrasol and Transcutol HP as penetration enhancers showed
the highest EE value. Each data point represents the mean ± SD, n = 3.

3.3. Study of Swelling Behavior

Bead swelling behavior investigation results are presented in Figure 2. It is shown
that the value of equilibrium water uptake depends on the particle size of beads, as the
smaller is the diameter and thus the larger is the specific surface area, the higher is the
water uptake capacity. These data might be useful during the formulation since swelling
behavior influences the applicability.

3.4. Scanning Electron Microscopy

Scanning electron microscopy images of the dry MCH-loaded alginate beads are
shown in Figure 3. The surface morphology of the represented microspheres showed
spherical shaped beads having some squashes on the surface, probably due to the drying
process. The SEM observation also demonstrated that the diameter of microbeads is
consistent with the results of particle size distribution.
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Figure 2. Bead swelling behavior according to the nozzle size applied for the formulation. Equilibrium
water uptake is highly affected by particle size. Each data point represents the mean ± SD, n = 5.
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3.5. Particle Size Distribution

Microbeads were analyzed by a HoribaPartica LA-950V2 laser diffraction particle size
analyzer. The results of particle size distribution are reported in Table 2 with the relative
standard deviation value. According to the volume moment mean values (Figure 4), the
particle size of the formulated microbeads is close to the theoretical 200 µm.
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Table 2. Results of laser diffraction particle size distribution.

Sample d(0.1) µm d(0.9) µm d(4.3) µm

MCH beads 144.03 ± 7.37 193.32 ± 8.25 209.65 ± 28
MCH beads + 0.01% (v/v%) Labrasol 146.09 ± 6.21 198.42 ± 3.63 208.23 ± 1.56

MCH beads + 0.01% (v/v%) Transcutol HP 141.52 ± 3.97 205.26 ± 2.83 220.30 ± 3.85
MCH beads + 0.01% (v/v%) Labrasol and

0.01% (v/v%) Transcutol HP 146.71 ± 7.02 199.47 ± 4.23 211.10 ± 1.19
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3.6. In Vitro Dissolution

In vitro peptide release experiment was conducted in buffer phosphate solution
(pH = 6.80). Samples were tested by RIA. Figure 5 represents the drug concentration
released from alginate beads by time. Dissolution profiles were determined by plotting
the experimental data. According to the data presented, a biphasic release pattern can be
observed. MCH was released in a prolonged manner, since in the first 60 min no significant
release could be measured. After one hour, an initial burst release started, where 68.30%
of the incorporated MCH was released from the beads. The release ratio of MCH after
120 min was significantly low.

3.7. Enzymatic Stability

It had been shown that only 3.00 ± 0.50% and 8.00 ± 0.50% active MCH could be
measured after 30 min incubation in SGF and SIF, respectively, form the free (not formulated)
MCH samples. Peptide was completely degraded after 1 h incubation in SGF, while only
1.00 ± 0.50% MCH recovery occurred after 2 h incubation with SIF. Our measurement
demonstrated that bead formulations are able to protect the model peptide. In case of each
formulation at least 70% of MCH was protected from SGF and SIF degradation. Figure 6
represents the results of the study.
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Figure 5. In vitro dissolution profile of MCH from sodium-alginate beads in phosphate buffer
solution (pH = 6.80). Significant peptide release started after 60 min and reached a plateau after
120 min. Each data point represents the mean ± SD, n = 3.

3.8. MTT Viability Assay

According to the performed cell viability measurements it was demonstrated that all
of the selected excipients are safe in the applied concentration. Although concentration-
dependent toxicity can be observed, sodium-alginate and calcium-chloride dihydrate did
not show relevant toxicity, not even at higher concentrations. Figure 7 demonstrates that
penetration enhancers showed obvious toxicity at higher concentrations; thus, IC50 values
were evaluated. IC50 values of the excipients were determined as Labrasol 0.41 (v/v%),
Transcutol HP 0.37 (v/v%) and 1:1 ratio blended Labrasol:Transcutol HP composition 0.35
(v/v%) in our experiments. According to Figure 8, the formulated drug delivery systems
with 0.01 (v/v%) of penetration enhancer content did not resulted in disadvantageous
changes to the monolayer.
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Figure 6. Enzymatic stability of melanin concentrating hormone (MCH) encapsulated in sodium-
alginate beads with free (not formulated) MCH as a control: (a) in SGF medium; (b) in SIF medium.
Each data point represents the mean ± SD, n = 3.
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Figure 7. Results of in vitro cytotoxicity measurement of the applied excipients and bead components
for the formulation of sodium-alginate beads containing MCH. Bead forming sodium-alginate and
calcium chloride dehydrate did not show substantial toxicity, while penetration enhancer excipients
(Labrasol, Transcutol HP) seemed to be toxic at higher concentration. Triton-X was used as a positive
control; the phosphate-buffered solution (PBS)-treated group was the negative control. Each data
point represents the mean ± SD, n = 10.

3.9. Permeability Test

Before the permeability test, Caco-2 monolayers on the inserts showed high (600 Ω×cm2)
TEER values, indicating tight barrier properties. Differences in the penetrated drug concen-
tration is represented in Figure 9. The permeability of MCH encapsulated in alginate beads
was significantly higher than that for MCH solution. An increased MCH permeability
was measured in the presence of the penetration enhancer, suggesting the opening of a
paracellular pathway.
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Figure 8. Results of a 6 h treatment of Caco-2 intestinal epithelial cells with MCH beads, MCH beads
containing 0.01% (v/v%) Labrasol, MCH beads containing 0.01% (v/v%) Transcutol HP, and MCH
beads containing 0.01% (v/v%) Labrasol and 0.01% (v/v%) Transcutol HP.
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Figure 9. Evaluation of permeability of MCH across Caco-2 epithelial cell layers treated with the
different formulations for 1 h. Increased peptide permeability was observed when penetration
enhancers were added to the compositions. Each data point represents the mean ± SD, n = 10.

3.10. Transepithelial Electrical Resistance Measurements

The membrane integrity of adenocarcinoma cells was measured using TEER measure-
ments. After 30 min, compositions caused a significant decrease of transepithelial electrical
resistance. The follow-up measurements demonstrated that TEER values increased in fresh
DMEM after 60 min. TEER values of MCH beads-treated monolayers increased imme-
diately after the treatment. Moreover, transepithelial electric resistance values increased
above 90% of the baseline at the end of experiment. Results of TEER measurements are
presented in Figure 10.
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Figure 10. Transepithelial electrical resistance of Caco-2 intestinal epithelial cells: (a) regarding the
whole experiment; (b) focusing on the first 100 min. Each data point represents the mean ± SD, n = 5.

4. Discussion

The encapsulation of peptides into bioadhesive polymer carrier systems is a preferable
and widespread way to improve the oral bioavailability of peptide drugs due to their
beneficial properties [42]. The objective of the development was to construct suitable
carrier systems according to the abovementioned aspects. As model Melanin concentrat-
ing hormone (MCH) peptide was selected. MCH-loaded alginate beads were prepared
using a controlled polymerization method with a Büchi Encapsulator B-395 Pro appara-
tus. Our measurements stated that the value of the equilibrium water uptake depends
on the particle size of beads. Due to the applicability, a 200 µm diameter was found to
be ideal. Performed SEM and DLS measurements [43] confirmed that the morphology is
appropriate due to the expectations and the particle size of the formulated microbeads
being close to the theoretical 200 µm. Performed measurements demonstrated that the
applied alginate-bead formulation method resulted in at least 56% encapsulation efficiency
of MCH. Blended penetration enhancers did not affect the closing ability. We can state
that our formulations are stable environments to encapsulate peptide drugs. Moreover,
these compositions could successfully shelter the peptide from the harsh environment of
the simulated conditions of the gastrointestinal tract according to our enzyme resistance
tests. Peptide release tests demonstrated that during the first hour, 68.30% of incorpo-
rated MCH was disengaged. Due to biosafety having a high priority in the case of novel
pharmaceutical formulations, the toxicity of the selected excipients and compositions was
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evaluated by various in vitro methods [44]. Our results confirmed that the formulated
compositions are safe due to the fact that the compositions did not cause disadvantageous
changes to the Caco-2 layers. Moreover, during our transmembrane permeability tests, it
was demonstrated that the permeation of alginate-encapsulated MCH was significantly
higher than native MCH solution. Moreover, an increased MCH permeability was mea-
sured in the presence of a penetration enhancer, suggesting the opening of paracellular
pathway [45]. This phenomenon was confirmed by our previous immunohistochemistry
results as well [46]. To exclude the possibility of membrane damage in the background of
this result, transepithelial electrical resistance follow-up measurements were performed.
These results indicate that the barrier properties of the monolayers completely recovered
within 12 h after penetration enhancer treatment. Our transepithelial electrical resistance
measurements proved that the permeation enhancement effect of Labrasol and Transcutol
HP did not lead to an irreversible disruption of the Caco-2 monolayers. These results
suggest that the alginate beads are promising tools to protect peptide derivatives against
GI degradation. Punctiliously selected excipients are able to ensure the biosafety and the
appropriate physical properties. Prudent selection of penetration enhancers might lead to
improved absorption by reversible alteration of barrier functions. These formulations can
be vital tools for novel peptide delivery systems with excellent pharmaceutical properties.
Moreover, they are able to improve patient’s adherence and experience.

5. Conclusions

In our present study, we designed innovative solid oral delivery systems for peptide
delivery with improved oral bioavailability. According to the results, we managed to
show that alginate beads are able to protect melanin concentrating hormones during the
formulation. Moreover, the peptide was protected against gastric and intestinal enzymatic
degradation as well. The combination of alginate carriers with amphiphilic surfactants
has not been described yet. Our results demonstrated that these penetration enhancers
might play a key role in bioavailability improvement. This result might ensure useful data
for further formulation as well. The aims of our following experiments are to improve
the encapsulation efficiency by excluding or changing those formulation steps that lead to
MCH loss. Furthermore, possible methods of particle size reduction and other penetration
enhancer combinations will be tested to improve efficiency.
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