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Abstract. As it is well-known a Minkowski space is a finite dimen-
sional real vector space equipped with a Minkowski functional F . By
the help of its second order partial derivatives we can introduce a Rie-
mannian metric on the vector space and the indicatrix hypersurface
S := F−1(1) can be can be investigated as a Riemannian submanifold
in the usual sense. If the Minkowski functional is quadratic then we
have an Euclidean space and the indicatrix has constant 1 curvature. In
his classical paper [1] F. Brickell proved that the converse is also true
provided that the indicatrix is symmetric with respect to the origin. M.
Ji and Z. Shen investigated the (sectional) curvature of Randers indica-
trices and it always turned out greater than zero and less or equal than
1; see [3]. In this note we give a general lower and upper bound for the
curvature in terms of the norm of the Cartan tensor.

1. Preliminaries

1.1. Minkowski functionals. Let V be an n-dimensional (n ≥ 2) real
vector space. The elements of V will be interpreted both as points p, q, ...
and vectors v, w, ... as usual. A Minkowski functional on V is a function
F : V → R with the following properties:

(F0) ∀p ∈ V \ {0} : F (p) > 0 and F (0) = 0.
(F1) F is positive homogeneous of degree 1, i.e. ∀t ∈ R+ : F (tp) = tF (p).
(F2) F is continuous on V and smooth over the set V \ {0}.
(F3) ∀p ∈ V \ {0} :

gp := E′′(p) : V × V → R

is an inner product on V , where E := 1
2F 2 is the energy function.

By the homogeneity condition (F1) we have

(1) gp(p, v) = E′(p)(v) and gp(p, p) = 2E(p).

1.2. Cartan tensors. Let (V, F ) be a Minkowski space and consider the
mappings

(2) C[(p) := E′′′(p) : V × V × V → R and Cp : V × V → V

defined by the formula

(3) gp(Cp(v, w), z) = C[(p)(v, w, z).

The mapping C is called the first Cartan tensor while its lowered tensor
is the second Cartan tensor. They are totally symmetric and, of course,
multilinear. This means that the mapping

Cp(v, ·) : V → V, Cp(v, ·)(w) := Cp(v, w)
1
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is a self-adjoint linear operator with respect to the inner product gp. Using
the homogeneity condition (F1) again it follows that

(4) Cp(p, ·) = 0.

We set

(5) ‖C‖p := max
v∈Sp

C[(v, v, v),

where Sp := {v ∈ V |gp(v, v) = 1}. Consider now the indicatrix hypersurface
S := F−1(1) of the Minkowski space and let us form the norm of the lowered
Cartan tensor as follows

(6) ‖C‖ := max
p∈S

‖C‖p.

It is well-known that the vanishing of the first or, in an equivalent way,
the second Cartan tensor implies the Minkowski space to be Euclidean.

Remark 1. In what follows we shall suppose that dim V ≥ 3 without any
further comment.

1.3. Riemannian quantities. According to the regularity property (F3),
any Minkowski space can be considered as a Riemannian manifold in the
usual sense. After identifying the tangent spaces with V , consider the fol-
lowing special vector fields:

X : V → V, p −→ Xp := x,

Y : V → V, p −→ Yp := y,

C : V → V, p −→ Cp := p,

where x, y inV are arbitrarily fixed vectors and C is the so-called Liou-
ville vector field. It can be easily seen that the Lévi-Civita connection ∇
associated with g acts as follows:

(7) ∇XpY = Cp(x, y)

and, consequently, the curvature tensor has the following simple form:

(8) Rp(x, y)z = Cp(Cp(x, z), y)− Cp(x, Cp(y, z)).

According to the property (4) both the first and the second Cartan tensor
vanishes along the Liouville vector field and thus, for any tangent vector
Xp ∈ V :

(9) ∇XpC = Xp.

On the other hand, by the equation (1), the Liouville vector field is just a
normal unit vector field of the indicatrix hypersurface S. This means that
S is a totally umbilical hypersurface with respect to the Riemannian metric
g. More precisely, for any point p ∈ S the shape operator ηp acts as follows:

(10) ηp : TpS → TpS, Xp −→ ηp(Xp) := −∇XpC = −Xp
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and, consequently, the sectional curvature κp(x, y) can be calculated by the
following formula:

(11)

κp(x, y) = gp(Rp(x, y)y, x) + det
(

gp(ηp(x), x) gp(ηp(x), y)
gp(ηp(y), x) gp(ηp(y), y)

)
=

= gp(Rp(x, y)y, x) + 1 =
(8)
= gp(Cp(x, y), Cp(x, y))− gp(Cp(x, x), Cp(y, y)) + 1,

where x, y ∈ TpS are orthonormal tangent vectors. In this note we are going
to prove the following main result:

Suppose that dim V = 3; then for any p ∈ S the curvature κp of the
indicatrix surface satisfies the following relations:

(12) 1−
‖C‖2

p

4
≤ κp ≤ 1− 2‖C‖2

p

and, consequently,

(13) 1− ‖C‖2

4
≤ κ ≤ 1− 2‖C‖2.

2. The proof of the main theorem

Lemma 1. Let us choose a vector x0 ∈ Sp such that

‖C‖p = C[(p)(x0, x0, x0).

If the vector y0 ∈ Sp is orthogonal to x0, i.e. gp(x0, y0) = 0, then

(14) gp(Cp(x0, x0), y0) = 0

and the following estimation holds:

(15) −‖C‖p ≤ gp(Cp(x0, y0), y0) ≤
1
2
‖C‖p.

Proof. Let us form the function
f(t) := gp(Cp(cos tx0 + sin ty0, cos tx0 + sin ty0), cos tx0 + sin ty0) =

= cos3 tgp(Cp(x0, x0), x0) + 3 cos2 t sin tgp(Cp(x0, x0), y0)+

+ 3 cos t sin2 tgp(Cp(x0, y0), y0) + sin3 tgp(Cp(y0, y0), y0).

Since f attains its maximum at the point t = 0, we have that f ′(0) = 0 and,
of course, f ′′(0) ≤ 0. On the other hand

f ′(0) = 3gp(Cp(x0, x0), x0),

f ′′(0) = −3
(

gp(Cp(x0, x0), x0)− 2gp(Cp(x0, y0), y0)
)

which means that (14) and the upper bound of the estimation (15) are
valid. According to the equation (14) the expression of the function f can
be reduced to the following simple form:

f(t) = cos3 tgp(Cp(x0, x0), x0) + 3 cos t sin2 tgp(Cp(x0, y0), y0)+

+ sin3 tgp(Cp(y0, y0), y0).

Consider now the auxiliary function

(16) h : (0,
π

2
) → R, t −→ h(t) := f(t) + f(−t).
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It is clear from the definition that for any t ∈ R : f(t) ≥ −‖C‖p and,
consequently,

(17) h(t) ≥ −2‖C‖p ⇒ gp(Cp(x0, x0), y0) ≥ − 1 + cos3 t

3 cos t sin t
‖C‖p.

Since the function

t −→ 1 + cos3 t

3 cos t sin t
(0 ≤ t ≤ π

2
)

attains its global minimum at the point t = π
3 , we have the lower bound of

the estimation (15). �

Lemma 2. Keeping the conditions of Lemma 1 we have that

(18) Cp(x0, x0) = ‖C‖px0,

i.e. x0 is the eigenvector of the mapping Cp(x0, ·) and the corresponding
eigenvalue is just the norm of the lowered Cartan tensor at the point p.

Proof. Without loss of generality we may suppose that x0 is tangential to
the indicatrix hypersurface , i.e. gp(p, x0) = 0. Indeed, in case of ‖C‖p = 0
it is trivial. According to the property (4), if ‖C‖p > 0, then, of course, x0

must be tangential to the indicatrix surface. In order to see this observation
let us form the tangential component

x>0 := x0 −
1

F 2(p)
gp(p, x0) ⇒ gp(x>0 , x>0 ) = 1− 1

F 2(p)
g2
p(p, x0).

Then, as an easy calculation shows,

‖C‖p = C[(p)(x0, x0, x0)
(4)
= C[(p)(x>0 , x>0 , x>0 ) ≤

(
1− 1

F 2(p)
g2
p(p, x0)

) 3
2 ‖C‖p,

which is obviously a contradiction unless gp(p, x0) = 0, as was to be observed.
Let now x0, y0, ...,

1
F (p)p be an orthonormal basis at the point p. Then

Cp(x0, x0) = gp(Cp(x0, x0), x0)x0 + gp(Cp(x0, x0), y0)y0 + ...

... +
1

F 2(p)
gp(Cp(x0, x0), p)p = gp(Cp(x0, x0), x0)x0

using Lemma 1 and (4). �

Theorem 1. Suppose that dim V = 3; then for any p ∈ S the curvature κp

of the indicatrix surface satisfies the following relations:

(19) 1−
‖C‖2

p

4
≤ κp ≤ 1− 2‖C‖2

p

and, consequently,

(20) 1− ‖C‖2

4
≤ κ ≤ 1− 2‖C‖2.

Proof. Consider a vector x0 ∈ Sp such that

‖C‖p = C[(p)(x0, x0, x0);

then, as we have seen, x0 is an eigenvector of the mapping Cp(x0, qcdot).
Since it is a self-adjoint operator, there exists a gp-orthonormal system
(x0, y0, p) of eigenvectors, where x0 and y0 are tangential to the indica-
trix surface ( p is, of course, a normal vector ) at the point p. The system
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(‖C‖p, λp, 0) of scalars is the full spectrum; see Lemma 2 and (4). According
to the formula (11) it follows that

(21) κp = λ2
p − λp‖C‖p + 1,

where, by Lemma 1, the eigenvalue λp = gp(Cp(x0, y0), y0) satisfies the rela-
tions

(22) −‖C‖p ≤ λp ≤
1
2
‖C‖p.

Evaluating the function f(t) := t2 − t‖C‖p + 1 at the endpoints, we have
(19) immediately. �

3. Some remarks on the curvature of the indicatrix
hypersurface

3.1. The contracted Cartan tensor. Consider the contracted Cartan
tensor

(23) C̃p(x) := trace Cp(x, ·)

and let us define a vector field θ : V → V in the following way:

(24) gp(θp, x) = ˜Cp(x).

It is well-known that θ is just the gradient of the function

(25) f := ln
√

det gij ,

where gij(p) := gp(ei, ej) and (e1, ..., en) is a basis of V . Since f is homoge-
neous of degree zero it attains both a global minimum and maximum on V.
This means that there exists at least two different points p and q such that
θp = 0 and, consequently,

(26) 0 = C̃p(x0) = gp(Cp(x0, x0), x0) + gp(Cp(x0, y0), y0) ⇒ λp = −‖C‖p

under the condition dim V = 3. Then, of course,

(27) κp = 1 + 2‖C‖2
p.

3.2. The area of the indicatrix surface. Using the Gauss-Bonnet theo-
rem it follows that

(28) 1− ‖C‖2

4
≤ 4π

A(S)
≤ 1 + 2‖C‖2,

where A(S) is the area of the indicatrix surface with respect to the induced
Riemannian metric.

Remark 2. If the Minkowski functional is reversible, i.e. F (v) = F (−v)
then, by the Santaló’s inequality, A(S) ≤ 4π; see e.g. [2] and [4]. This
means that the relation on the left hand side is trivial provided that the
indicatrix surface is symmetric with respect to the origin.
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3.3. Asanov-type energy functions. Consider the three-dimensional co-
ordinate space R3 equipped with the canonical inner product. The elements
of the space will be interpreted in the form

p = q + t
∂

∂t
,

where q ∈ R2 and t ∈ R. We set

B(p) := ‖q‖2 +
K

2
|t| ‖q‖+ t2,

where −4 < K < 4. In his paper [1] G. S. Asanov proved that the lowered
Cartan tensor associated with the energy function

E(p) :=
1
2
B(p) exp

2K√
16−K2

(
arctan

√
16−K2 |t|

K|t|+ 4‖q‖
− arctan

√
16−K2

K

)
has the following form:

(29)
C[(p)(x, y, z) =

1
3
(
C̃p(x)hp(y, z) + C̃p(y)hp(x, z) + C̃p(z)hp(x, y)

)
−

− 4E(p)
K2

(
2
3

)3

C̃p(x)C̃p(y)C̃p(z),

where
hp := gp − dpF ⊗ dpF

is the so-called angular metric tensor. In a standard terminology, the
Minkowski space (R3, E) is semi-C-reducible; for the details see [1] and [2].
Under the conditions of Lemma 1

0 = C[(p)(x0, x0, y0)
(29)
=

1
3
C̃p(y0)−

2
K2

(
2
3

)3

C̃p
2
(x0)C̃p(y0)

provided that p ∈ S, i.e. E(p) = 1
2 . If C̃p(y0) = 0, then

λp = C[(p)(x0, y0, y0)
(29)
=

1
3
C̃p(x0)

(26)
=

1
3
(
‖C‖p + λp

)
⇒ λp =

1
2
‖C‖p

which is just the upper bound for the eigenvalue λp. On the other hand, if

0 =
1
3
− 2

K2

(
2
3

)3

C̃p
2
(x0),

then we have again that

‖C‖p = C[(p)(x0, x0, x0)
(29)
=

2
3
C̃p(x0)

(26)
=

2
3
(
‖C‖p + λp

)
⇒ λp =

1
2
‖C‖p

and the lower bound 1− ‖C‖2p
4 is just equal to the curvature at the point p.

Remark 3. Note that the Asanov-type energy functions are singular along
the equatorial section defined by the equation t = 0:...At the points of the
equatorial section, the generatrix of the indicatrix has a corner whose angle
is β∗ = 180o − arctan K

2 ...this angle may be regarded as ”the parameter of
non-Riemannianity”...(cf. Theorem 7; [1]).
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Proposition 1. Suppose that (V,E) is a three-dimensional C-reducible
Minkowski space; then for any point p ∈ S

(30) κp = 1− 2
9
‖C‖2

p.

Proof. Since the space is C-reducible, the lowered Cartan tensor has the
following form:

(31) C[(p)(x, y, z) =
1
4
(
C̃p(x)hp(y, z) + C̃p(y)hp(x, z) + C̃p(z)hp(x, y)

)
.

Using Lemma 1 again, this means that

0 = C[(p)(x0, x0, y0)
(31)
=

1
4
C̃p(y0) ⇒ 0 = C̃p(y0).

On the other hand

λp = C[(p)(x0, y0, y0)
(31)
=

1
4
C̃p(x0)

(26)
=

1
4
(
‖C‖p + λp

)
⇒ λp =

1
3
‖C‖p

and we have (30) by the help of the relation (21). �
Finally we are going to reproduce Ji and Shen’s result about the curvature

of Randers-type indicatrices in case of dimension 3; for the details see [5].

Corollary 1. Suppose that (V,E) is a three-dimensional Minkowski space
with a Randers-type energy function; then for any point p ∈ S

(32) 0 < κp ≤ 1.

Proof. As it is well-known, the norm of the lowered Cartan tensor asso-
ciated with a Randers-type energy function satisfies the relation

(33) ‖C‖p <
3√
2
;

moreover, it is a C-reducible space and, by Proposition 1 we have the esti-
mation 0 < κp ≤ 1 immediately. �
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[6] R. Schneider, Über die Finslerräume mit Sijkl = 0, Arch. Math., Vol. XIX, 1968,
656-658.

Institute of Mathematics and Informatics, University of Debrecen, H-4010
Debrecen, P.O.Box 12, Hungary

E-mail address: csvincze@math.klte.hu


