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témavezető
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Chapter 1

Introduction

The density functional theory begins with articles of Thomas and Fermi [1]-[3] in
the 1920s, but it became a complete and accurate theory only with the publications
of Kohn, Hohenberg and Sham [4, 5] in the early 1960s. The density functional
theory is a remarkable theory because it allows a great simplification by using the 3-
variable electron density instead of the N -electron wave function Ψ(x1,x2, . . . ,xN)
in the Schrödinger equation.

What Thomas and Fermi realized was that statistical considerations can be used
to approximate the distribution of electrons in an atom. The assumptions stated
by Thomas [1] are that: ”Electrons are distributed uniformly in the six-dimensional
phase space for the motion of an electron at the rate of two for each h3 of volume,”
and that there is an effective potential field that ”is itself determined by the nuclear
charge and this distribution of electrons.” The Thomas-Fermi formula for electron
density can be derived from these assumptions.

For an N -electron system, the external potential v(r) completely gives the
Hamiltonian; thus N and v(r) determine all properties for the ground states. In
place of N and v(r), the first Hohenberg-Kohn theorem [4] makes possible that
one uses the electron density %(r) as basic variable. It states: The external poten-
tial v(r) is determined, within a trivial additive constant, by the electron density
%(r). Since %(r) determines the number of electrons N , it follows that %(r) also
determines the ground-state function Ψ and all other electronic properties of the
system. Note that v(r) is not restricted to Coulomb potentials.

The second Hohenberg-Kohn theorem [4] provides the energy variational prin-
ciple. It reads: For a trial density %̃(r), such that %̃(r) ≥ 0 and

∫
%̃(r)dr = N ,

E0 ≤ Ev[%̃] (1.1)

where Ev[%̃] is the energy functional of the ground state at a given external potential
v(r).

The theorem offers, however, neither algorithm nor any guide to the explicit
construction of the functional in question. For this purpose one still has this prob-
lem in the many-particle systems. The energy functionals that are avaible to date
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for Coulomb systems are essentially obtained from two, not unrelated, lines of ar-
gumentation. The first relies on the theory of the homogeneous electron gas as a
starting point and exploits the linear response of this systems to inhomogenities.
The second, more restricted in scope and extension of the simple density functional
models, is based on semiclassical expansions.

One can state, that all the approximated ground state energy functionals avail-
able lead to more or less accurate but not exact results, if one determines the
ground state density and energy based on the variational principle

δ

δ%(r)

(
Ev[%]− µ

∫
%(r)d3r

)
= 0 (1.2)

expressed in the exact basic theorem. The major reason for these deficiencies is an
inappropriate representation of the kinetic energy contribution T [%].

Although one may be willing to accept the deficienses for many problems of
practical interest, this situation cannot be considered satisfactory. Thomas-Fermi
and related models constitute a direct approach, whereby one constructs explicit
forms for T [%] and Vee[%]. This allows a nice simplicity - the equations involve
electron density alone. However, there are difficulties in going beyond this crude
level of approximation.

The exact Kohn-Sham theorem [5] is more complicated, which invented an inge-
nious indirect approach to the kinetic energy functional T [%], the Kohn-Sham (KS)
method. With this method the density functional theory became a practical tool for
rigorous calculations introducing a new quantity the exchange-correlation poten-
tial. Using the approach introduced by Kohn and Sham [5] is one able to calculate
the ground state properties of many-particle Coulomb systems. The accuracy of
the KS calculations can be compared with the results of configuration interaction
calculations and/or experiment. The eigenfunctions of Kohn-Sham equations, the
KS-orbitals, result in the correct single particle density of the interacting system.
The Kohn-Sham scheme makes the density functional theory even more effective by
introducing the exchange-correlation potential vxc, which is a one-body potential
that in principle includes all many-body effects present in the interacting system.
Within the density functional theory, the exchange-correlation potential is defined
as the functional derivative of the exchange-correlation functional. According to
the theory, this exchange-correlation functional is universal, i.e. it is the same for
all systems in which the particles interact via the Coulomb potential (such an atom,
a molecule, or a solid).

Unfortunately, the density functional theory does not give clues on how to
construct this universal functional. At the very best, there are some sumrules
for the exact exchange-correlation functional and potential. Therefore, in practice,
approximate functionals are used which include the exchange and correlation effects
in the many-body system to some extent. Very often these functionals are derived
on semi-empirical grounds, e.g. starting from the expansion of the total energy per
particle for the homogeneous electron gas. It turned out that simple local density
approximations (LDA) [6]-[10] are surprisingly good for periodic solids. However,

2



LDA cannot provide the precision that is needed in surface chemistry, quantum
chemistry, computation biology, etc.

We may identify three generations of density functional schemes which may
be classified according to the level of approximations used for the universal func-
tionals TS [%] and Exc[%]. In what we call the first generation of density functional
theory, explicite density-dependent functionals are used to approximate both TS [%]
and Exc[%]. The simplest approximation of this kind is the Thomas-Fermi model,
where Exc[%] is neglected completely and TS [%] is approximated. For functionals
of this type, the Hohenberg-Kohn variational principle (1.2) can be used directly,
leading to equations of Thomas-Fermi type. As these equations contain only one
basic variable, namely the electron density %(r) of the system, they are readily
solved numerically. The results obtained in this way, however, are generally of only
moderate accuracy in TS [%], yielding unacceptable large errors in E0.

The second generation of density functional theory employs the exact functional
for the non-interacting kinetic energy and an approximate density functional for
the exchange-correlation energy. This leads to the Kohn-Sham version of density
functional theory. In practice, the Hohenberg-Kohn equations have to be solved
self-consistently employing approximation but explicit density-dependent function-
als for Exc[%]. The functional for the non-interacting kinetic energy depends on one-
electron orbitals. The resulting scheme is still easy to solve numerically and gives
- especially for sophisticated density-gradient-dependent approximations (GGAs)
[11, 12] of Exc[%] - excellent results for a wide range of atomic, molecular and
solid-state systems.

Finally, in the third generation of density functional theory, one employs in ad-
dition to the exact expression for TS , also the exact expression for the exchange
energy. Only the correlation part of Exc[%] needs to be approximated in this ap-
proach. In contrast to the conventional second-generation Kohn-Sham scheme, the
third generation allows for the treatment of explicitly orbital-dependent function-
als for Ex next to the non-interacting kinetic energy TS , giving more flexibility in
the construction of such approximations. The central equation in the third gener-
ation of density functional theory is still the Kohn-Sham equations. The difference
between the second and third generation lies in the level of approximation to the
exchange-correlation energy.

The motivation of this work is to give additional conditions to the right ap-
proximated functionals. Although the electron density is the basic variable of the
density functional theory, rigorous information on its structural properties is scarce.
Probably, the most useful relations are the cusp relations [13, 14]. From one of the
generalizations of Kato’s theorem follows that

∂%̄(r)
∂r

∣∣∣∣
r=Rα

= −2Zα %(r)|r=Rα
, (1.3)

where %̄ is the spherical average of % and the partial derivatives are taken at nuclei
Rα, with atomic number Zα. The integral of the density gives us the number of
electrons. The cusps of the density %(r) tell us where the nuclei are and what
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the atomic numbers Zα are. Thus we can readily obtain the Hamiltonian Ĥ of the
system, which includes in principle all information on the system. It is important to
emphasize that this state is valid only for systems with Coulomb potential. Kato’s
theorem holds for excited states, too. Based on the concept of adiabatic connection
between interacting and non-interacting systems and Kato’s theorem a theory for
a single excited state has recently been presented [15]. Higher-order cusp relations
[16]-[18] have also been derived.

We have also to notice that Kato’s theorem holds true of energy densities as
well, which enables us to examine the behaviour of energy density functionals at
the place of the nucleus. I derived cusp-conditions for kinetic energy densities
(Chapter 3). In Chapter 4 I established a relation between kinetic and exchange
energy in the frame of Hartree-Fock theory. Then I derived exact energy expression
in the strong interaction limit of density functional theory using the adiabatic
connection technique (Chapter 5). The adiabatic connection [19]-[23] provides the
link between the real interacting and the fictitious non-interacting system. It has
recently been shown [24]-[27], that adiabatic connection has an important role in
studying strongly interacting systems within the density functional theory. Further
the subspace density of the first excited state for two harmonically interacting
electrons with isotropic harmonic confinement is given (Chapter 6). Finally a
short summary of the thesis (Chapter 7) is presented.

Density functional theory is applied in a variety of molecular modelling prob-
lems. An example is situated in the field of biotechnology such as study of proteins
which are essential for the regulation of processes (e.g. bacteriorhodopsin) and
the description of damage and repair mechanisms in DNA sequences. As another
example, one can mention the pharmacology, where new medicines are designed
by means of computer simulation instead of by actually producing the prototype
molecules.
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Chapter 2

Theoretical background of
the ground and excited state
in density functional theory

In this chapter a short description is given about the theory of Hohenberg-Kohn [4]
and Kohn-Sham [5]. The v- and N -representability problems are discussed with the
method of Levy-Lieb constrained search [28]-[30]. Basic concept of Kato’s theorem
[13] is also given, which was originally formulated for the wave functions of systems
with Coulomb external potential. Finally the excited states are briefly reviewed
[19, 31, 32]. Atomic units are used in this work.

2.1 The Hohenberg-Kohn theory

Based on the variational principle the ground state wave function Ψexact and the
ground state energy Eexact of an N -electron system can be derived

Eexact = min
Ψ
〈Ψ|Ĥ|Ψ〉, (2.1)

where Ĥ is the Hamiltonian of the system
Ĥ = T̂ + V̂ee + V̂ , (2.2)

T̂ is the kinetic energy operator

T̂ =
N∑

i=1

(
−1

2
∇2

i

)
(2.3)

and
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V̂ee =
N∑

i<j

1
|ri − rj | (2.4)

is the electron-electron interacting energy operator and

V̂ =
N∑

i=1

v(ri) (2.5)

is the electron-nucleus interacting energy operator, in which

v(ri) =
∑
α

Zα

|ri −Rα| (2.6)

is the external potential. The definition of the electron density %(r) generated by
the N -electron wave function Ψ is the following

%(r1) = N

∫
|Ψ(x1,x2 . . .xN)|2 ds1dx2 . . . dxN , (2.7)

where x stands for both the spatial and spin coordinates x = (r, s). At given
external potential v(r) the Hamiltonian Ĥ is determined, which means if one knows
the electron number N and external potential v(r) of the system then all properties
for the ground state can be derived.

2.1.1 The ground-state electron density

The %(r) is the basic variable in the density functional theory instead of N and
v(r). So the Hamiltonian Ĥ and all the ground-state properties are functionals of
the electron density %(r). Integration of the electron density %(r) for the whole
space gives the electron number N of the system

∫
%exact(r)dr = N , (2.8)

therefore N is the functional of the exact ground-state electron density %exact(r).
The Hohenberg-Kohn theorem provides the connection between the external po-
tential v(r) and electron density %exact(r). It states, that within a trivial additive
constant the external potential v(r) is implicitly determined by the ground-state
density %exact(r). The validity of Hohenberg-Kohn theorem is not restricted to
Coulomb potential. The proof of this theorem is made by using the minimum en-
ergy principle for the non-degenerate ground-state energy. Let us suppose there
are two different external potentials v(r) and v′(r) deriving the same ground-state
electron density %exact(r). Then we have two different Hamiltonians Ĥ and Ĥ ′,
to which the following ground-state wave functions belong Ψ and Ψ′. Then the
minimum principle for the ground-state energies E and E′ gives
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E < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉
= E′ +

∫
%exact(r)[v(r)− v′(r)]dr, (2.9)

and
E′ < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉

= E +
∫

%exact(r)[v′(r)− v(r)]dr. (2.10)

Adding Eq.(2.9) and Eq.(2.10) we get the contradiction

E + E′ < E′ + E, (2.11)

consequently the external potentials are not differing by more than a constant C

v′(r) = v(r) + C. (2.12)

We arrived at that the Hamiltonian Ĥ is the functional of the ground-state
electron density, so all the ground state properties can be derived knowing the
ground-state electron density.

2.1.2 The ground-state energy

One has to find the true ground-state energy. The second Hohenberg-Kohn theorem
provides this via energy variational principle. For an arbitrary density %(r), which
fulfills the requirements %(r) ≥ 0 and

∫
%(r)dr = N , gives

Eexact ≡ Ev[%exact] ≤ Ev[%] . (2.13)

Using the Rayleigh-Ritz variational principle it can be shown that the functional
Ev[%] has the minimum value, which is the exact ground-state energy, when % is
precisely the exact ground-state density %exact.

For a given external potential v(r) the total energy functional can be written
as

Ev[%] = F [%] +
∫

%(r)v(r)dr, (2.14)

where
F [%] = T [%] + Vee[%] . (2.15)

The Hohenberg-Kohn functional F [%] is the sum of the kinetic energy and electron-
electron repulsion energy.
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2.1.3 Levy-Lieb constrained-search method

The Hohenberg-Kohn functional is defined for v-representable densities. The v-
representability for electron density means that for a given electron number N and
external potential v(r) there exists such electron density %(r) that this electron den-
sity derives the exact ground-state wave functions Ψ[%] and ground-state energy
E[%] of the Ĥ Hamiltonian. From the exact ground-state wave functions we get the
known electron density. Then two questions arise. The first, if there is an appropri-
ate non-negative %(r) electron density - which is normalized for N , so

∫
%(r)dr = N

- then one finds such an external potential to this density, that the given density
will be the exact ground-state density or not. In other words, are all the suitable
non-negative, normalized functions v-representable densities? The second question
is, if not all the non-negative N -normalized functions are v-representable, then the
domain of the Hohenberg-Kohn functional F [%] can be extended to these densities.
These questions lead us to the so-called v-representability problem. The answer to
the first one is that not all the appropriate non-negative, N -normalized functions
are v-representable. However the domain of the Hohenberg-Kohn functional F [%]
can be extended to these functions via Levy-Lieb constrained-search method. In
the constrained-search formula for F [%exact], which is the following expression

F [%exact] = min
Ψ→%exact

〈Ψ|T̂ + V̂ee|Ψ〉 , (2.16)

is superfluous to require that %exact should be a v-representable ground-state den-
sity, so long as it is given by an antisymmetric wave function. This allows one to ex-
tend the domain of the Hohenberg-Kohn functional F [%exact] from v-representable
densities to N -representable densities. N -representable density means that there
exists such an antisymmetric wave function which yields the given density. Then
we can define the Hohenberg-Kohn functional F [%exact] for any N -representable
density as

F [%] = min
Ψ→%

〈Ψ|T̂ + V̂ee|Ψ〉 . (2.17)

The Hohenberg-Kohn functional F [%exact] searches all Ψ that yields the given
density and then the minimum of the functional itself is derived. It can be seen
from Eqs (2.16) and (2.17) that

F [%exact] = min
%

F [%] . (2.18)

Using the constrained-search formula the minimization of the ground-state en-
ergy can be done in two steps
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Eexact = min
%

{
min
Ψ→%

[
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
v(r)%(r)dr

]}

= min
%

{
F [%] +

∫
v(r)%(r)dr

}

= min
%

E[%]. (2.19)

The first minimization in the brackets is constrained to those wave functions which
yield the given ground-state density % and finally, the second minimization is for
all ground-state densities. Hence the Levy-Lieb constrained-search method, the
variation is over all N -representable densities, which resolves the v-representability
problem in the original Hohenberg-Kohn approach.

2.1.4 Euler-equation

With the additional condition of the given particle number of the system the vari-
ational principle includes the µ Lagrange multipliers

δ

δ%(r)

(
Ev[%]− µ

∫
%(r)dr

)
= 0 (2.20)

and gives the Euler equation
δEv[%]
δ%(r)

= µ . (2.21)

The µ Lagrange multipliers turned out to be the chemical potential of the sys-
tem. If the Hohenberg-Kohn functional F [%] were known, then the exact equation
Eq. (2.21) with the N particle number of the system could be used to derive the
exact ground-state density and energy.

2.2 The Kohn-Sham theory

The ground-state energy of a many-electron system can be obtained as the mini-
mum of the energy functional Ev[%] in Eq. (2.14). The exact ground-state density,
which minimizes the energy functional, satisfies the Euler-equation Eq.(2.21). The
lack of knowledge of the kinetic energy T [%] and the non-classical part of electron-
electron interaction Vee[%] as the functionals of electron density requires use of
approximations. Making drastic assumptions, for example, as it is in the Thomas-
Fermi model, we get nice simplicity but it becomes less accurate. Kohn and Sham
applied an indirect approach to the kinetic energy functional T [%] introducing a
new quantity, the exchange-correlation energy Exc, with which they developed a
practical tool for rigorous calculations in density functional theory.
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2.2.1 The Kohn-Sham equations

The exact expression for the ground-state kinetic energy of any interacting system
is

T =
∞∑

i=1

λi〈ξi| − 1
2
∇2|ξi〉 (2.22)

where ξi are natural spin orbitals and λi are occupation numbers. The kinetic
energy T is the functional of the electron density %

%(r) =
∞∑

i=1

λi

∑
s

|ξi(r, s)|2. (2.23)

Kohn and Sham invented to handle the kinetic energy and the electron density
belonging to a non-interacting N -electron system

Ts[%] =
N∑

i=1

〈ϕi| − 1
2
∇2

i |ϕi〉 (2.24)

and

%(r) =
N∑

i=1

∑
s

|ϕi(r, s)|2 . (2.25)

As we discussed earlier, any non-negative, continuous and normalized density %
is N -representable and it can be given as in Eq. (2.25). Because of the definition of
the kinetic energy functional Ts[%] we need electron orbitals. So how one could have
a unique decomposition of electron density % of an interacting system in terms of
orbitals to get the kinetic energy functional Ts[%]. Idea of Kohn and Sham was to
associate to the N -electron interacting system a non-interacting reference system
for which the ground-state electron density is exactly %. The Hamiltonian and its
exact ground-state function of this reference system are the following

Ĥs =
N∑

i=1

(−1
2
∇2

i ) +
N∑

i=1

vs(ri) (2.26)

Ψs =
1√
N !

det[ϕ1ϕ2 · · ·ϕN ] , (2.27)

where the ϕi are the lowest N eigenstates of the one-electron Hamiltonian ĥs

ĥsϕi = [−1
2
∇2

i + vs(r)]ϕi = εiϕi (2.28)

and the kinetic energy functional is
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Ts[%] = 〈Ψs|
N∑

i=1

(
−1

2
∇2

i

)
|Ψs〉

=
N∑

i=1

〈ϕi| − 1
2
∇2

i |ϕi〉 . (2.29)

The defined kinetic energy Ts[%] does not equal the exact kinetic energy func-
tional T [%]. The clever idea of Kohn and Sham was building the Hamiltonian of
the interacting system in such a way that the Ts[%] becomes the kinetic energy
component of this new Hamiltonian. The difference T [%]− Ts[%] is included in the
exchange-correlation energy. Then the Hohenberg-Kohn functional can be rewrit-
ten in the following way defining a new quantity, the so-called exchange-correlation
energy Exc[%]

F [%] = Ts[%] + J [%] + Exc[%] (2.30)
where

Exc[%] = T [%]− Ts[%] + Vee[%]− J [%] (2.31)
and the potentials are

Vee =
∫ ∫

1
|r− r′|%2(r, r′)drdr′ (2.32)

and

J =
1
2

∫ ∫
%(r)%(r′)
|r− r′| drdr′. (2.33)

where %2(r, r′) is the pair density-matrix defined by

%2(r, r′) =
N(N − 1)

2

∫
· · ·

∫
Ψ∗sΨs ds1ds2dx3 · · · dxN . (2.34)

Then the electron density can be derived from the pair density %(r, r′) in the
following way

%(r) =
2

N − 1

∫
%(r, r′)dr′ . (2.35)

The exchange-correlation energy Exc[%] includes the difference between the inter-
acting and non-interacting kinetic energy plus the non-classical term of the electron-
electron interaction. Finally the Hamiltonian can be constructed with the appro-
priate external potential, which is the Kohn-Sham effective potential defined by

veff (r) = v(r) +
δJ [%]
δ%(r)

+
δExc[%]
δ%(r)

= v(r) +
∫

%(r′)
|r− r′|dr

′ + vxc(r) (2.36)

and
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vxc(r) :=
δExc[%]
δ%(r)

. (2.37)

With the constrain for the electron number of the system

N =
∫

%(r)dr (2.38)

and setting

%(r) =
N∑

i=1

∑
s

|ϕi(r, s)|2 (2.39)

the one-electron equations are

εiϕi = [−1
2
∇2

i + veff (r)]ϕi . (2.40)

The Eqs(2.36), (2.37), (2.39) and (2.40) are the Kohn-Sham equations. The ef-
fective potential veff depends on %(r) via exchange-correlation potential Eq.(2.37);
hence Eqs (2.36), (2.40) and (2.39) must be solved self-consistently. This technique
requires an initial guessed electron density %(r), with which one constructs the ef-
fective potential veff (r) through Eq.(2.36). Then finds a new %(r) from Eqs (2.40)
and (2.39).

2.3 Kato’s theorem

Exact relations can be used either to discover analytical properties of a functional
or to estimate the error of an approximation for an exact but unknown functional.
For the latter, one of the most useful relations in density functional theory is the
Kato’s theorem for electron density. The original theorem was derived by Kato [13]
for the wave functions for an N -electron system with Coulomb external potential

∂Ψ̄(r)
∂r

∣∣∣∣
r=Rα

= −Zα Ψ(r)|r=Rα
. (2.41)

where the partial derivatives are taken at the nucleus α at its coordinate Rα. The
symbol bar over the eigenfunction Ψ denotes the spherical average of Ψ at constant
r around the nucleus α.

It is well known that there exist cups relations for the electron density [13, 14,
16, 18],[33]-[35]. From Kato’s theorem follows [13] that

∂%̄(r)
∂r

∣∣∣∣
r=Rα

= −2Zα %(r)|r=Rα
, (2.42)

where
%(r) =

∫
|Ψ(x1, . . . ,xN )|2 dsdx2 . . . dxN , (2.43)

12



where x : r, s stands for both spatial and spin coordinates, %̄ is the spherical average
of % and the partial derivatives are taken at nuclei Rα, with atomic number Zα.
The integral of the density gives us the number of electrons: N =

∫
%(r) dr and the

cusps of the density %(r) tell us where the nuclei are and what the atomic numbers
Zα are. Thus we can readily obtain the Hamiltonian Ĥ of the system, which
includes in principle all information on the system. It is important to emphasize
that this condition is valid for systems with Coulomb potential, only. Considerable
recent attention has been devoted to the Kato-Steiner cusp condition [36, 37].

Kato’s theorem holds for excited states, too. Based on the concept of adiabatic
connection between interacting and non-interacting systems and Kato’s theorem a
theory for a single excited state has recently been presented [15].

There is a special case when the system has no s-electrons. The simplest ex-
ample is the 2p orbital of the excited hydrogen atom. Although in this case Kato’s
theorem remains valid, it does not give us the atomic number Zα, because the
derivative of the sperical average of the wave function is zero and the value of the
wave function is also zero at the nucleus. The cusp relations for this systems has
already been generalized [38]. After spherically integrating the electron density
%(r):

%̄ =
∑

nl′m′
λnR2

nl′m′ , (2.44)

where Rnl′m′ are the spherical harmonics and introducing the quantity

ηl(r) :=
%̄(r)
r2l

, (2.45)

where l is the smallest integer for which ηl is not zero at r = 0:

∂ηl(r)
∂r

∣∣∣∣
r=Rα

= −2
Zα

l + 1
ηl(r)|r=Rα

. (2.46)

In the following chapter I derived cusp relations for the non-interacting kinetic
energy densities.

2.4 Excited states

The ground-state density can be used as the basic variable in density functional
theory. The schemes developed by Hohenberg, Kohn and Sham are restricted
to ground states. It is of interest to generalize these schemes for excited states.
The first rigorous generalization for excited states was given by Theophilou [32].
For degenerate case, the theory of ensembles of excited states was proposed by
Gross et al. [39]. The backdraw of this ensemble theory is that the treatment
of highly excited states becomes quite complicated. Therefore there is growing
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interest in theories for a single excited states [15], [40]-[42]. These theories can be
variational and nonvariational as well. An outline of them is given below. There is
an alternative theory that is the time-dependent density functional theory [43]-[45],
in which transition energies are obtained from the poles of dynamic linear response
properties. A nonvariational theory based on Kato’s theorem [15, 40] for a single
excited state is also rewieved.

2.4.1 Variational theory for a degenerate single excited state

Let us define the N -electron Hamiltonian Ĥ in the form

Ĥv = T̂ + V̂ee +
N∑

k=1

v(rk) , (2.47)

and the solutions of the Schrödinger equation are

Ĥ|Ψi
γ〉 = Ei|Ψi

γ〉 (γ = 1, 2, . . . , gi) , (2.48)

where T̂ , V̂ee and v are the kinetic energy operator, the electron-electron repulsion
operator and the external operator, respectively. The gi is the degeneracy. Only
one index i is used to denote the symmetry both in spin and ordinary space. The
subspace Si is used instead of one wave function to describe an individual excited
state. The subspace Si is spanned by a set of wave functions Ψi

γ . Then the density
matrix D̂i in subspace Si can be defined as

D̂i =
gi∑

γ=1

ηi
γ |Ψi

γ〉〈Ψi
γ | , (2.49)

with the conditions

1 =
gi∑

γ=1

ηi
γ (2.50)

and
ηi

γ ≥ 0 . (2.51)

The symbol ηi
γ denotes the weighting factors. Any set of weighting factors ηi

γ can
be used in principle. The only requirement is to satisfy the Eqs (2.50) and (2.51).
The subspace density is given

ni = N

gi∑
γ=1

ηi
γ

∫
|Ψi

γ |2ds1dx2 . . . dxN , (2.52)

where x includes the space- and spin-coordinate. The superscript i refers to the
wave functions Ψi

γ belonging to the subspace Si, from which the subspace density
matrix D̂i and the subspace density ni are constructed. If the weighting factors ηi

γ

14



are all equal then the subspace density transforms according to the first row of the
character table.

If one uses the matrix representation of the transformation then, by defini-
tion, the sum of diagonal elements of the matrix is the character. The character
table gives the characters of all symmetry transformations of a given system in
the irreducible representation. The irreducible representation is the simplest ma-
trix representation of a transformation. In general, the character table gives the
transformation properties of x, y and z-axis.

For example, if the weighting factors are all equal and the system has spher-
ical symmetry, as it is for atoms, then the subspace density will be spherically
symmetric, which is the symmetry property of the external potential, as well.

Define the universal functional in the following way

F [ni, n0] = min
S→ni

gi∑
γ=1

ηγ〈Ψγ |T̂ + V̂ee|Ψγ〉 , (2.53)

and with the density matrix it is written as
F [ni, n0] = min

S→ni

tr{D̂(T̂ + V̂ee)} . (2.54)

The n0 is a ground-subspace density and ni is a trial excited state density, which we
discuss now. As it can be seen from Eqs(2.53) and (2.54), the universal functionals
are bifunctionals in the sense that they are functionals of both the ground and
the ith excited state densities. All the subspaces Si−1 corresponding to the first
i−1 excited states of the Hamiltonian Ĥv = T̂ + V̂ee +

∑N
k=1 v(rk) are supposed to

be orthogonal to the subspace Si. It should be emphasized that the ground-state
density of subspaces Si−1 is the fixed density n0. Thus the total energy of the ith
excited state Ei can be given as

Ei = min
Si

gi∑
γ=1

ηγ〈Ψi
γ |Ĥv|Ψi

γ〉 (2.55)

= min
ni

{
min

Si→ni

gi∑
γ=1

ηγ〈Ψi
γ |Ĥv|Ψi

γ〉
}

(2.56)

= min
ni

{
F [ni, n0] +

∫
ni(r)v(r)dr

}
, (2.57)

and in density matrix formalism it will be

Ei = min
Si

{
tr

{
D̂iĤv

}}
= min

ni

{
min

Si→ni

tr
{

D̂iĤv

}}
. (2.58)

We wish to approximate the bifunctional F [ni, n0], so let us construct the Hamil-
tonian

Ĥi,α = T̂ + αV̂ee +
N∑

k=1

vi
α(rk) , (2.59)
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where the potential vi
α(rk; [ni, n0]) is defined in a way that the subspace density

ni remains independent of the adiabatic coupling constant α and therefore the
ground state density of the Hamiltonian Ĥi,α becomes closest to the exact ground
state density n0 in a least square sense. When the value of the adiabatic coupling
constant equals to zero, α = 0, we get to the noninteracting system.

The noninteracting Kohn-Sham Hamiltonian is defined in the following way

Ĥi
w = Ĥi,α=0 = T̂ +

N∑

j=1

wi([ni, n0]; rj) . (2.60)

The noninteracting Hamiltonian Ĥi
w and the wi([ni, n0]; rj) Kohn-Sham-like po-

tential both depend on i, which means they are not the same for different excited
states. The Kohn-Sham-like equations have the form

Ĥi,0|Ψi,0
γ 〉 = Ei,0|Ψi,0

γ 〉 (γ = 1, 2, . . . , gi) , (2.61)

where the noninteracting density matrix D̂i
s can be expressed by the wave functions

Ψi,0
γ as

D̂i
s =

gi∑
γ=1

ηγ |Ψi,0
γ 〉〈Ψi,0

γ |, (2.62)

and the noninteractig kinetic energy becomes
Ts[ni, n0] = tr

{
D̂i

sT̂
}

(2.63)

and variationally it is
Ts[ni, n0] = min

Si→ni

tr
{

D̂iT̂
}

= tr
{

D̂i
s[ni, n0]T̂

}
, (2.64)

where each subspace Si is orthogonal to all subspaces Sm−1 belonging to the first
m − 1 excited states of the Kohn-Sham Hamiltonian Ĥi

w. The subspace density
of the mth excited state of the Hamiltonian Ĥi

w will be ni. The noninteracting
excited-state density matrix D̂i

s[ni, n0] of the Hamiltonian Ĥi
w is precisely that one

whose subspace density is exactly ni. The minimum principle for noninteracting
kinetic energy gives

Ts[ni, n0] +
∫

ni(r)wi([ni, n0]; r)dr (2.65)

= min
n

{
Ts[n, n0] +

∫
n(r)wi([n, n0]; r)dr

}
, (2.66)

and we get to the Euler equation

µi = wi([ni, n0]; r) +
δTs[ni, n0]

δn

∣∣∣∣
n=ni

, (2.67)

where µi are the Lagrange parameters. The Kohn-Sham potential has the form
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wi(r) = v(r) +
δG[ni, n0]

δn

∣∣∣∣
n=ni

, (2.68)

where the functional G[ni, n0] is defined by the partition of the Hohenberg-Kohn-
like functional given below

F [ni, n0] = Ts[ni, n0] + G[ni, n0] (2.69)

and furthermore
G[ni, n0] = J [ni] + Ex[ni, n0] + Ec[ni, n0] , (2.70)

can be divided into more parts where J [ni], Ex[ni, n0] and Ec[ni, n0] are the
Coulomb, exchange and correlation parts of the functional G[ni, n0]. It is con-
venient to give the correlation energy as the difference between the interacting and
noninteracting electron-electron repulsion energy. In other words,

Ec[ni, n0] = tr
{

D̂iV̂ee

}
− tr

{
D̂i

sV̂ee

}
. (2.71)

Finally, the Kohn-Sham potential can be given as

wi(r) = v(r) + vi
J(r) + vi

xc(r) , (2.72)

where v(r), vi
J(r) and vi

xc(r) are the external, Coulomb and exchange-correlation
potentials, respectively.

2.4.2 Variational theory for a non degenerate single excited
state

A similar theory for non degenerate excited states can be derived immediately using
the expressions given above. Only difference is that because of non degeneracy use
of electron density is sufficient instead of density matrices.

2.4.3 Nonvariational theory for a single excited state

As it is already described in the previous subsection, the Kato’s theorem gives a
relation for the behaviour of the electron density at the nuclei. From Eq.(2.42)
it follows that the electron density determines the Hamiltonian for a system with
Coulomb external potential. The cusps of the electron density give the atomic
numbers Zα and the positions of the nuclei Rα. The integral of the electron density
equals to the number of electrons N .

Kato’s theorem is valid for excited states, too. Thus, if the density ni of the
ith excited state is given then the Hamiltonian Ĥ is also in principle known and
its eigen equation
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ĤΨk = EkΨk (k = 0, 1, . . . , i, . . . ) (2.73)
can be solved, where

Ĥ = T̂ + V̂ + V̂ee (2.74)
and in the Hamiltonian the operators are

T̂ =
N∑

j=1

(
−1

2
∇2

j

)
, (2.75)

V̂ee =
N−1∑

k=1

N∑

j=k+1

1
|rk − rj | , (2.76)

and

V̂ =
N∑

k=1

M∑

J=1

− ZJ

|rk −RJ | (2.77)

the kinetic energy, the electron-electron energy and the electron-nucleon operators.
To give a nonvariational description of excited states, the adiabatic-connection

technique will be used in this subsection. Let us suppose the existence of a contin-
uous path between the interacting and noninteracting system. We keep fixed the
electron density ni of the ith excited state along the path

Ĥα
i Ψα

k = Eα
k Ψα

k , (2.78)
where

Ĥα
i = T̂ + αV̂ee + V̂ α

i . (2.79)

The fully interacting system is denoted by α = 1 while the noninteracting case is
given when the coupling constant is zero, α = 0

Ĥ0
i Ψ0

k = E0
kΨ0

k . (2.80)

For the fully interacting case, α = 1, the Hamiltonian Ĥ1
i is independent of the

excited state i. For any other value of the coupling constant α the Hamiltonian
depends on the excited state i. Therefore, the noninteracting Hamiltonian Ĥ0

i will
differ for different excited states. When the system is not degenerated then the
electronic state Ψ0

k is given by a single Slater-determinant and the Kohn-Sham
equations have the form

εi
ju

i
j(r) =

[
−1

2
∇2 + vi

s(r)
]

ui
j(r) , (2.81)

and the Kohn-Sham potential is
vi

s = v + vi
J + vi

xc (2.82)

the sum of the external, the classic Coulomb and the exchange-correlation poten-
tials.
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Chapter 3

Cusp conditions for kinetic
energy densities

Though the density functional theory [4],[46]-[48] has become a powerful tool for
electronic structure calculations of atoms molecules and solids, the kinetic energy
functional is still unkown and even accurate approximations are unavaible. An
excellent review of the different approximations has been recently published by Lu-
dena and Karasiev [49]. Contrary to the kinetic energy, the kinetic energy density
is not uniquely defined. Still this quantity is applied frequently. So the knowledge
on the exact behaviour of the kinetic energy density might be important in sev-
eral applications. In this chapter we focus on the cusp relations that the kinetic
energy density should satisfy, which can be useful in constructing new accurate
approximations.

3.1 Cusp relations for the non-interacting kinetic
energy densities

There are two natural definitions for non-interacting kinetic energy density:

t1 =
1
2

N∑

i=1

λi (∇ui)
2
, (3.1)

t2 = −1
2

N∑

i=1

λiui∇2ui, (3.2)

where ui are the eigenfunctions of the Kohn-Sham equations:

[
−1

2
∇2 + vKS(r)

]
ui = εiui. (3.3)
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Then the electron density is

% =
N∑

i=1

λi|ui|2. (3.4)

The occupation numbers λi can be 0 or 1. While both forms, t2 and t1, integrate
to the correct total kinetic energy (for finite systems), they differ locally and are
related to each other via the expression

t2 = t1 − 1
4
∇2%. (3.5)

t1 resembles in many respects a classical kinetic energy density. On the other hand,
t2 shows positive as well as negative values and becomes infinite at the positions
of nuclei.

The Kohn-Sham potential can be written in the form:

vKS = −Zα

r
+ W, (3.6)

where

W = vJ + vxc −
Nα∑

β 6=α

Zβ

|r−Rβ | . (3.7)

vJ and vxc are the Coulomb and exchange-correlation potentials, respectively. As
I am interested in the cusp relations at the αth nucleus, I expand the orbitals ui

and the potential W around the nucleus α:

ui =
∑

lm

anlmRnlm(r)Ylm(ϑ, ϕ), (3.8)

W = A +
∑

lm

wlm(r)Ylm(ϑ, ϕ), (3.9)

A is a constant, the sum of the Coulomb and exchange-correlation potentials
taken at the nucleus α, and Ylm are the spherical harmonics. The expansions of
radial functions and the potential have the form:

Rnlm(r) = cnlmrl + dnlmrl+1 + enlmrl+2 + · · · (3.10)

and
wlm(r) = Blmr + Clmr2 + · · · (3.11)

Let us define χ(r) as
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χnlm(r) =
Rnlm(r)

rl
, (3.12)

where l is the smallest integer for which χ(r) is not zero at r = 0.
Let us study first the kinetic energy density t2 (Eq. 3.2) and take the spherical

average

t̄2 = −1
2

∑

nl′m′
λnRnl′m′

[
1
r

∂2

∂r2
(rRnl′m′)− l′(l′ + 1)

r2
Rnl′m′

]
. (3.13)

Using Eq.(3.12) I obtain

t̄2 = −1
2

∑

nl′m′
λnχnl′m′

[
r2l′χ′′nl′m′ + 2(l′ + 1)r2l′−1χ′nl′m′

]
, (3.14)

where χ′ denotes the partial derivative of χ with respect to r. Introducing the
definition

τ2, l :=
t̄2

r2l−1
. (3.15)

and taking the limit r → 0 I am led to:

τ2, l(0) = −(l + 1)
∑
nm

λnχnlm(0)χ′nlm(0). (3.16)

Using the cusp-condition [38] χ′nlm(0) = − Zα

l+1χnlm(0) at the αth nucleus, I
arrive at the cusp relation

τ2, l(0) = Zαηl(0), (3.17)
where

ηl(0) =
∑
nm

λn |χnlm(0)|2 . (3.18)

The first derivative of τ2, l at the nucleus α is:

τ ′2, l(0) =
∑
nm

λn |χnlm(0)|2
[
εn −A− 2Z2

α

l + 1

]
. (3.19)

Thus, the kinetic energy cusp relation has the form
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τ ′2, l(0)
τ2, l(0)

= − A

Zα
− 2Zα

l + 1
+

1
Zαηl(0)

∑
nm

λn |χnlm(0)|2 εn. (3.20)

Before turning to the kinetic energy density t1 (Eq.3.1) the cusp relation for the
Laplacian of % has to be determined. Using the definition τL,0 = 1

4r∇2%̄ if l = 0
and τL,l = 1

4
∇2%̄
r2l−2 if l 6= 0 I can immediately arrive at the cusp relations

τL,0(0) = −Zαη0(0) = −Zα%(0), (3.21)

τ ′L,0(0) =
3
4
η
′′
0 (0) =

3
4
%
′′
(0), (3.22)

τ ′L,0(0)
τL,0(0)

= − 3η
′′
0 (0)

4Zαη0(0)
= − 3%

′′
(0)

4Zα%(0)
, (3.23)

and
τL, l(0) =

1
2
l(2l + 1)ηl(0), (3.24)

τ
′
L, l(0) = −(2l + 1)Zαηl(0), (3.25)

τ
′
L, l(0)

τL, l(0)
= −2Zα

l
. (3.26)

Consider now the kinetic energy density t1 (Eq.(3.1)) and apply Eq.(3.14). If
l = 0 I obtain

t1,0(0) =
Z2

α

2
η0(0), (3.27)

t′1,0(0) = −2Zα

3
(A + Z2

α)η0(0) +
2Zα

3

∑

nlm

λnlmχ2
nlm(0)εn, (3.28)

t′1,0(0)
t1,0(0)

= −4
3

(
A

Zα
+ Zα

)
+

4
3

1
Zαη0(0)

∑

nlm

λnlmχ2
nlm(0)εn. (3.29)

If l 6= 0 I define

τ1,l =
t̄1

r2l−2
. (3.30)

In this case

τ1,l(0) =
1
2
l(2l + 1)ηl(0), (3.31)

τ
′
1,l(0) = −2lZαηl(0), (3.32)

τ
′
1,l(0)

τ1,l(0)
= − 4Zα

2l + 1
. (3.33)
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Expressions (3.20),(3.23),(3.26),(3.29) and (3.33) are the main results of this
chapter that will be illustrated by simple examples in the next section.

The cusp relations which I derived in this chapter can be used to obtain infor-
mation on the atomic number. In the same way as the cusps of the density tell us
where the nuclei are and what the atomic numbers are, that is, contain information
on the Hamiltonian.

It can be concluded that there are several quantities including local ones, such
as electron density and kinetic energy density, which contain information on the
external potential, in a certain analogy to the first Hohenberg-Kohn theorem. This
knowledge is more limited as it is restricted to Coulombic systems only and it is
broader as it is valid on excited states as well.

3.2 Illustrative examples

The cusp relations derived above are now illustrated on a couple of simple examples.
Consider first the ground state of the hydrogen atom or hydrogenic ions. After
elmentary calculation I obtain τ2,1s = rt2 = Z%(1 − Z

2 r), that leads to the cusp
relation

τ2,1s(0) = Z%(0). (3.34)
The derivative of τ2,1s gives

τ
′
2,1s(0) = −5

2
Z2%(0) (3.35)

and
τ
′
2,1s(0)

τ2,1s(0)
= −5

2
Z. (3.36)

The results (3.34), (3.35) and (3.36) are in complete agreement with Eqs (3.17),
(3.19) and (3.20) as A = 0 and the last term in Eq.(3.19) reduces to only one term
with ε1s = −Z2

2 . For the Laplacian of the density I obtain τL,1s = Z(Zr − 1)%. It

leads to the relations τL,1s(0) = −Z%(0), τ
′
L,1s(0) = 3Z2%(0) and τ

′
L,1s(0)

τL,1s(0) = −3Z in
accord with Eqs (3.21), (3.22) and (3.23). The kinetic energy density t1 takes the
form

t1,1s = τ1,1s =
1
2
Z2%, (3.37)

that is proportional with the density. Then

τ
′
1,1s(0)

τ1,1s(0)
=

t
′
1,1s(0)

t1,1s(0)
= −2Z (3.38)

in complete agreement with Eq(3.29). Note that this cusp condition is the same as
the one that holds for the density (Eq(2.42)) because of Eq(3.37).
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The second example is the 2p state of hydrogen atom or hydrogenic ions. In
this case

η2p(r) =
%̄2p

r2l
= ce−Zr, (3.39)

where l = 1 and c = Z3/24 is a constant.

τ2,2p(0) =
t̄x2,2p

r
= Z

(
1− Z

8
r

)
η2p. (3.40)

Then I obtain the expressions τ2,2p(0) = Zη2p(0), τ
′
2,2p(0) = −9Z2η2p(0)/8

and τ
′
2,2p(0)/τ2,2p(0) = −9Z/8 which are in complete agreement with Eqs (3.17),

(3.19) and (3.20) as A = 0 and the last term in Eq.(3.19) reduces to only one term
with ε2p = −Z2/8. For the Laplacian of the density I obtain τL,2p = (6 − 6Zr +
Z2r2)η2p/4. It leads to the relations τL,2p(0) = 3η2p(0)/2, τ

′
L,2p(0) = −3Zη2p(0)

and τ
′
L,2p(0)/τL,2p(0) = −2Z in accord with Eqs (3.24), (3.25) and (3.26). The

kinetic energy density t1 has the form τ1,2p = t̄1,2p = η2p(3 − Zr + Z2r2/4)/2.
Then I immediately obtain that τ1,2p(0) = 3η2p(0)/2, τ

′
1,2p(0) = −2Zη2p(0) and

τ
′
1,2p(0)/τ1,2p(0) = −4Z/3 in complete accord with Eqs (3.31), (3.32) and (3.33).

The third example is He-like ions with large atomic number. The first-order
density matrix was given by Hall et al. [55]:

γ(r, r′) =
%(r′)

2

[
%0(r)
%0(r′)

]1/2

+
%(r)
2

[
%0(r′)
%0(r)

]1/2

, (3.41)

where %0(r) = Z3e−2Zr/π is the bare Coulombic density. After some algebra I am
led to the relations

τ1 = t̄1 = −Z

2
d%̄

dr
− Z2

2
%̄, (3.42)

τ1(0) =
Z2

2
%(0), (3.43)

τ
′
1(0) = −2Z3

3

(
1 +

A− ε1s

Z2

)
%(0). (3.44)

These are in complete agreement with Eqs (3.27), (3.28) and (3.29). For τL,0 =
1
4r∇2%̄ the relations (3.21), (3.22) and (3.23) should hold. Then for τ2 = rt̄2 =
rt1 − τL,0 I obtain τ2(0) = Z%(0), τ

′
2(0) = −(2Z2 − ε1s + A)%(0) and τ

′
2(0)/τ2(0) =

(A− ε1s)/Z − 2Z in acordance with Eqs (3.17), (3.19) and (3.20).
In summary, I have derived cusp relations for the kinetic energy relations. These

are valid for ground and excited states, even highly excited states. The two most
frequently used kinetic energy density expressions imply different behaviour at the
nuclei.
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Chapter 4

Kinetic and exchange energy
related non-locally

It is of considerable interest for density functional theory (DFT) to relate the
single-particle kinetic energy density to the exchange energy counterpart in the
ground state of atoms and molecules. The exchange energy density has been use-
fully approximated by adding a term involving density gradients to a local density
approximation but orbital-free kinetic energy density theory is presently of much
poorer quality.

Therefore, in the present chapter I have worked out from Hartree-Fock theory
for finite closed shell molecules and clusters an expression for the kinetic energy
density in terms of a non-local exchange energy kernel introduced in the early work
of March and Santamaria [56, 57]. An illustration of this relation between kinetic
and exchange contributions is then presented for two-level systems such as the Be
atom or LiH.

Though the earliest form of DFT proposed by Thomas [1], Fermi [3] and Dirac
[58], now known as the local density approximation (LDA) to current DFT, yielded
explicit functionals for kinetic energy density t[%] and exchange energy density εx[%],
namely

tTFD[%] = ck{%(r)}5/3 : ck =
6π2

5

(
3
8π

)2/3

(4.1)

and

εTFD
x [%] = −cx{%(r)}4/3 : cx =

3
4

(
3
π

)1/3

, (4.2)

it is the latter that has proved much more useful for recent quantitative versions of
DFT, when corrected for density gradients [59, 60]. Therefore, in the Kohn-Sham
procedure [5] the single-particle kinetic energy problem is bypassed by returning,
as in Hartree self-consistent field theory but without self-interaction correction, to
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one-electron Schrödinger equations. Nevertheless, a number of workers in DFT
continue to study orbital-free approximations to the single-particle kinetic energy.
The present chapter is a contribution in this latter area, and directly connects the
exchange and kinetic contributions. However, to do so explicitly, I shall appeal
to restricted Hartree-Fock (HF) theory for closed shell systems. This theory is
attractive as a result of Möller and Plesset confirms the high quality of its ground-
state-electron density %(r), the central tool of DFT.

4.1 Non-local generalizations of kinetic and ex-
change energy densities

In HF theory, the natural starting point for the direct calculation of kinetic energy
density , t(r) say, is the idempotent Dirac density matrix γ(r, r′) defined by

γ(r, r′) =
∑

occupied i

Ψi( r)Ψ∗i (r
′) (4.3)

where Ψi( r) denotes the ith HF orbital. Defining the quantity F ( r, r′) by

F (r, r′) = γ(r, r′)2 , (4.4)

Dawson and March [61] pointed out that the kinetic energy density t(r) can be
written as

t(r) ∼ 1
8

∫
(∇rF (r, r′))2

F (r, r′)
dr′ , (4.5)

which is somewhat reminiscent of the ’inhomogeneity’ kinetic energy density pro-
posed by von Weizsäcker [62], namely

tw(r) =
1
8

(∇r%(r))2

%(r)
, (4.6)

to which quantity I refer again later in Eq.(4.22) below.
Having written t(r) in terms of F (r, r′) = γ2(r, r′) in Eq.(4.5), let us similarly

express the exchange energy density εx(r) in HF theory. To do so, the Dirac [58]
total exchange energy Ex in terms of γ(r, r′) is the natural starting point, namely

Ex = −1
4

∫
γ(r, r′)2

|r− r′| drdr′ . (4.7)

Though it is not unique, the definition of the exchange energy density εx(r) which
I adopt in the following, naturally enough, from Eq.(4.7) as

Ex =
∫

εx(r)dr (4.8)

where
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εx(r) = −1
4

∫
γ(r, r′)2

|r− r′| dr′

= −1
4

∫
F (r, r′)
|r− r′| dr

′ , (4.9)

the latter step utilizing the definition (4.4).
March and Santamaria [56, 57] proposed to define non-local kinetic and ex-

change energy kernels which they denoted respectively by K(r, r′) and X(r, r′)
such that

τ(r) =
∫

K(r, r′)dr′ , (4.10)

where τ(r) differs from t(r) by an N -dependent-constant only and

εx(r) =
∫

X(r, r′)dr′ . (4.11)

Then the simplest explicit forms for K(r, r′) and X(r, r′), which I adopt as defini-
tions below, follow respectively from Eqs(4.5) and (4.9) as

K(r, r′) =
1
8

(∇rF (r, r′))2

F (r, r′)
(4.12)

and

X(r, r′) = −1
4

F (r, r′)
|r− r′| . (4.13)

Given Eqs( 4.12) and (4.13), it is a straightforward matter by using

F (r, r′) = −4X(r, r′)|r− r′| (4.14)

in Eq.(4.12), to write the kinetic energy non-local kernel K(r, r′) solely in terms of
its exchange energy counterpart X(r, r′). Then after some straightforward manip-
ulation, I obtain,

K(r, r′) = −1
2
|r− r′| (∇rX)2

X
−∇rX · ∇r|r− r′| − X

2|r− r′| (∇r|r− r′|)2 . (4.15)

Integrating Eq.(4.15) with respect to r′ we find the HF (normalized) kinetic energy
density τ(r) in terms of the non-local exchange kernel X(r, r′) as

τ(r) =
∫

K(r, r′)dr′ = −1
2

∫
|r− r′| (∇rX(r, r′))2

X(r, r′)
dr′

−
∫
∇rX(r, r′) · ∇r|r− r′|dr′ − 1

2

∫
(∇r|r− r′|)2
|r− r′| X(r, r′)dr′ . (4.16)
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In the last subsection 4.3 of this chapter, I will show that the idempotency of the
Dirac density matrix γ(r, r′) can be utilized to rewrite the second term appearing
in Eq.(4.16), a Laplacian term∇2

r%(r) then being introduced into the kinetic energy
density.

In subsection 4.2 below I apply Eq.(4.16), valid for an arbitrary number of
doubly filled spin-compensated levels in HF theory, to a two-level system such as
the Be atom or the diatomic molecule LiH.

4.2 Calculation of kinetic energy density density
for a two-level system

To illustrate the utility of Eq.(4.16), let us calculate t(r) for the Be atom. Then,
using the 1s and 2s wave functions in terms of the density amplitude %1/2(r) and
the phase Θ(r) we have [61]

Ψ1s =
(%

2

)1/2

cosΘ (4.17)

and

Ψ2s =
(%

2

)1/2

sinΘ . (4.18)

Evidently the Dirac density matrix is given by substituting these wave functions
into Eq.(4.3), when I obtain the known result

γ(r, r′) = %1/2(r)%1/2(r′)cos(Θ(r)−Θ(r′)) . (4.19)
or from Eq.(4.4):

F (r, r′) = %(r)%(r′)cos2(Θ(r)−Θ(r′)) . (4.20)

Substituting therefore Eq.(4.20) into Eq.(4.13), I find the non-local exchange kernel
to be

X(r, r′) = −1
4

%(r)%(r′)cos2(Θ(r)−Θ(r′))
|r− r′| . (4.21)

Inserting Eq.(4.21) into Eq.(4.16) I must find the result already in the literature
that the total kinetic energy T is given by

T =
1
8

∫
(∇%)2

%
dr +

1
2

∫
%(∇Θ)2dr . (4.22)

Though the most direct way still of reaching Eq.(4.22) is from 1
2

∂2

∂r′∂rγ(r, r′)
∣∣∣
r′=r

using Eq.(4.19), from Eq.(4.16) and after allowing for the N -dependent normaliza-
tion constant relating τ(r) and t(r) plus idempotency and the pendulum equation
[61], the two-level result (4.22) must emerge.
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4.3 Further relations resulting from idempotency
of Hartree-Fock Dirac density matrix

Already, in reaching Eqs(4.5) and (4.16), Dawson and March [61] had employed the
idempotency of the Dirac density matrix defined in Eq.(4.3). For doubly occupied
levels considered throughout this article, this idempotency condition reads

∫
γ(r, r′′)

2
γ(r′′, r′)

2
dr′′ =

γ(r, r′)
2

. (4.23)

Putting r′ = r, and using the definition (4.4) readily yields
∫

F (r, r′)dr′ = 2%(r) . (4.24)

Inserting Eq.(4.14) into Eq.(4.24), I find
∫
|r− r′|X(r, r′)dr′ = −2%(r) . (4.25)

Taking the gradient with respect to r of Eq.(4.25) yields

∫
∇r|r− r′|X(r, r′)dr′ +

∫
|r− r′|∇rX(r, r′)dr′ = −2∇r%(r) . (4.26)

A further gradient operation on Eq.(4.26) then leads to the result

∫
∇2

r|r− r′|X(r, r′)dr′ + 2
∫
∇r|r− r′| · ∇rX(r, r′)dr′

+
∫
|r− r′|∇2

rX(r, r′)dr′ = −2∇2
r%(r) . (4.27)

This identity (4.27) can be used to remove the scalar product term ∇rX ·∇r|r−r′|
from Eq.(4.16), which may be helpful in subsequent practical applications.
Eq.(4.16), when combined with Eq.(4.11), sums up the main achievement of this
chapter. The kinetic energy density τ(r) in Eq.(4.16) is determined solely by the
exchange energy kernel X(r, r′), which in turn is related to the exchange energy
density εx(r) by Eq.(4.11). The relation between t(r) and the exchange kernel
X(r, r′) is fundamentally non-local, in contrast to that in the Thomas-Fermi-Dirac
statistical theory valid for large numbers of electrons N , the essential functional
content of which has been displayed in Eqs(4.1) and (4.2). Naturally, one can
rewrite Eqs(4.1) and (4.2) through the elementary local relation between kinetic
energy density t(r) and its exchange counterpart εx(r) as

tTFD(r) = const.{|εTFD
x (r)|}5/4 . (4.28)

This relation (4.28) is valid only in LDA and must be replaced in HF theory by
Eq.(4.16). This must then lead to the correct two-level result (4.22), but I reiterate
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that the relation (4.16) between τ(r) and the non-local exchange kernel X(r, r′) is
valid for an arbitrary number of spin-compensated occupied levels.
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Chapter 5

Exact energy expression in
the strong-interaction limit
of the density functional
theory

There have been numerous studies concerning the coupling-constant dependence
of the exchange-correlation functional. The success of the so-called hybrid schemes
[67] was explained on the grounds of the coupling-constant dependence of the
exchange-correlation energy. The adiabatic connection [19], [20]-[23] provides the
link between the real interacting and the fictitious non-interacting systems. The
key quantities, such as the exchange-correlation energy are defined through adia-
batic connection. It has recently been shown [24]-[27] that adiabatic connection
has an important role in studying strongly interacting systems within the density
functional theory.

To find improved approximations is the aim of much current research. To test
new functionals one needs highly accurate density, exchange-correlation energy
density or pair-correlation function. These can be obtained from accurate many-
body calculations, such as configuration interaction (CI) or quantum Monte Carlo
(QMC) methods. There is another way of testing the quality of new functionals:
to find out how accurately the trial functionals satisfy exact relations. So exact
expressions have even practical importance. They provide a tool of improving
functionals. The aim of this paper is to derive such an exact relation.

This chapter is organized as follows: In the following subsection adiabatic con-
nection is summarized. Then the coupling constant dependent approximations
for the exchange-correlation energy are reviewed. A subsection is devoted to the
derivation of higher-order cusp relations for the wave function and the electron
density for arbitrary coupling constant. In the last subsection the main result of
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this chapter: a total energy expression in the strong-interaction limit is presented.

5.1 Adiabatic connection

Consider a system of N interacting electrons in a local external potential v(r). The
Hamiltonian has the form

Ĥλ = T̂ + V̂ee + V , (5.1)
where

T̂ =
N∑

i=1

(−1
2
∇2

i ) (5.2)

and

V̂ee =
N∑

i<j

1
|ri − rj | (5.3)

are the kinetic energy and the electron-electron energy operators and

V =
N∑

i=1

v(ri). (5.4)

Then a coupling constant λ is introduced into the Hamiltonian with the definition

Ĥλ = T̂ + λV̂ee + V λ . (5.5)

V λ =
N∑

i=1

vλ(ri) (5.6)

is defined by the condition that the density % is fixed along the adiabatic path.
λ = 1 corresponds to the real interacting system, λ = 0 gives the non-interacting
Kohn-Sham system. In this case the Schrödinger equation is

(
T̂ + V λ=0

)
Ψλ=0 = Eλ=0Ψλ=0, (5.7)

where the Kohn-Sham potential V λ=0 =
∑N

i=1 vKS(ri) is defined by the condition
that the density of the non-interacting and the interacting systems are the same.
For a non-degenerate system Eq. (5.7) takes the well-known form:

(
−1

2
∇2 + vKS

)
φi = εiφi (5.8)

and the density is expressed with the occupied one-electron orbitals φi as

% =
∑

i

|φi|2. (5.9)
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It has been shown [19, 23] that the exchange-correlation energy can be given as
an integral with respect to the coupling constant

Exc[%↑, %↓] =
∫ 1

0

dλWλ[%↑, %↓], (5.10)

where
Wλ[%↑, %↓] = 〈Ψλ|V̂ee|Ψλ〉 − J. (5.11)

J =
1
2

∫
%(r)%(r′)
|r− r′| drdr′ (5.12)

is the classical Coulomb energy. The density of electrons with spin σ is defined as

%σ(r) = N

∫
|Ψλ(rσ, x2, ..., xN )|2dx2...dxN . (5.13)

The variable x stands for both the spatial r and spin σ variables. Wλ can also be
expressed with the pair density

Γλ(r, r′) =
1
2
N(N − 1)

∫
|Ψλ(rσ1, r′σ2, x3, ..., xN )|2dx3...dxNdσ1dσ2 (5.14)

as

Wλ[%↑, %↓] =
∫

Γλ(r, r′)
|r− r′| drdr′ − J. (5.15)

The pair density can be written in the form

Γλ(r, r′) =
1
2
%(r)

[
%(r′) + %λ

xc(r, r
′)

]
. (5.16)

Applying Eq. (5.10) the exchange-correlation energy reads as

Exc[%↑, %↓] =
1
2

∫ 1

0

dλ

∫
%(r)%λ

xc(r, r′)
|r− r′| drdr′ (5.17)

%λ
xc(r, r

′) is the density at r′ of the exchange-correlation hole around an electron at
r for coupling strength λ. It can be easily shown that the charge of the exchange-
correlation hole is -1:

∫
%λ

xc(r, r
′)dr′ = −1. (5.18)

The weak interaction limit is λ → 0. For a given shape of the density the weak
interaction limit can also be performed at λ = 1 by uniform density scaling to the
high-density limit [68]

%(r) → γ3%(γr) and γ →∞. (5.19)
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In this limit the Kohn-Sham theory is exactly the exchange-only theory and the
pair density Γ can be given by a Hartree-Fock like expression

Γλ(r, r) = %2(r)− %2
↑(r)− %2

↓(r). (5.20)

For the fully polarized density, i.e. %↑ = % and %↓ = 0 we obtain Γλ(r, r) = 0, while
for the fully unpolarized case, that is for %↑ = %↓ = %/2 we arrive at Γλ(r, r) =
%2(r)/2.

In the weakly correlated case, from the competition between the kinetic energy
and the Coulomb repulsion, the kinetic energy dominates. The wave function tends
to that of the non-interacting system, which minimizes the kinetic energy for a given
density.

Originally the adiabatic connection was defined between λ = 0 and λ = 1.
However, it is possible to extend the value of λ outside the range of the coupling
constant integration of Eq. (5.10). Then the strong-interaction limit is λ → ∞.
The density functional measure of the correlation strength of the true wave function
(λ = 1) is defined as (W0−W1)/(W0−W∞). For independent electrons it is 0, for
strictly correlated electrons it gives 1. (Other measures can also be used [69]).

The strong-interaction limit can also be performed in another way: with the
low density limit for λ = 1

%(r) → γ3%(γr) and γ → 0. (5.21)

In this limit the pair-density function at r = r′, called on-top pair-density, goes to
zero:

Γλ(r, r) → 0 for λ →∞. (5.22)

It has been shown [69, 70] that the integral of Γλ for any volume fragment Ω of
the system

∫

Ω

Γλ(r, r)drdr′ = 〈N̂2
Ω〉 − 〈N̂Ω〉2 (5.23)

is the mean square fluctuation of electron number in the volume Ω.

N̂Ω =
∫

Ω

%̂dr =
∫

dr
N∑

i=1

δ(r− ri) (5.24)

is the particle number operator for the volume Ω. Strong correlation means a
strong supression of electron number fluctuations. When the system is strongly
correlated the Coulomb repulsion dominates. The wave function is close to the
one which minimizes the Coulomb repulsion for a given density. In this case there
is a deep exchange-correlation hole around the electron and the electron number
fluctuations are supressed.

Examples in model or real systems for strong correlations: A uniform electron
gas with density %(r) = % = 3

4πr3
s

becomes strongly correlated in the low density
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limit rs → ∞. The electrons avoid one another as much as they can and form a
Wigner lattice. H atoms on a lattice are strongly correlated at large lattice constant.
In some materials containing transition-metal or rear-earth ions with partially filled
narrow d or f Kohn-Sham bands, the d or f electrons localize and the fluctuations
of electron numbers are suppressed to minimize the Coulomb repulsion.

It is known that LSD [5, 7] and GGA [12, 60], [71]-[73] cannot describe strongly
correlated electrons with realistic densities, because of self-correlation error. Conse-
quently, these methods cannot give a proper description of the Wigner crystalliza-
tion of the low-density uniform electron gas. Inclusion of self-interaction correction
to LSD or LSD+U method [74]-[76] leads to a more reliable description. There
is a hope that the recently developed self-interaction free meta-GGA [77]-[84] and
hyper-GGA [85, 86] will be able to describe strongly correlated systems reliably.

5.2 Coupling constant dependent approximations
for the exchange-correlation energy

In this subsection a summary of the coupling constant dependent approximations
is presented. The λ dependence of W and Ec has been studied by several authors
[87]-[94]. Knowledge of exact properties of these functionals contributes to find
improved approximations (see e.g. [89, 90, 94]). Several exact expressions have
already been derived. The key properties for W have the form [68, 95, 96]

Wλ[%] = λW1[%1/λ], (5.25)

%λ(r) = λ3%(λr), (5.26)

W ′
λ[%] ≡ dWλ[%]

dλ
< 0 (λ ≥ 0), (5.27)

W0[%] = Ex[%], (5.28)
W ′

0[%] = 2EGL2
c [%], (5.29)

W∞[%] = lim
λ→∞

Wλ[%] (finite). (5.30)

Ex is the exchange energy, while EGL2
c denotes the second-order coefficients in the

Görling-Levy perturbation theory [95], where the correlation energy is expanded
in a series

Exc[%] = Ex[%] +
∞∑

n=2

EGLn
c [%]. (5.31)

It has been shown [25, 27] that

Wλ[%] → W0[%] + W ′
0[%]λ (λ → 0) (5.32)

in the weak interaction limit and

Wλ[%] → W∞[%] + W ′
∞[%]λ−1/2 (λ →∞) (5.33)
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in the strong interaction limit.
As λ → ∞ the electrons become strongly correlated. The concept of “strictly

correlated electrons” (SCE) [25, 26, 69] has been worked out for them. This
model can be solved exactly for one-dimensional systems and three-dimensional
two-electron systems with spherically symmetric density %(r). In the latter case
the two electrons can be found on opposite sides of the spherical center [25, 26].
The radial distance r1 of one of the electrons strictly determines that of the other
electron, r2 = f(r1). The “correlation” function f(r) is uniquely determined by
the density %(r). It is interesting to note that the differential equation satisfied by
f ,

df(r)
dr

= − r2%(r)
f(r)2%(f(r))

, (5.34)

closely resembles the expression of a local scaling transformation [97]. It has been
shown that for a two-electron system

WSCE
∞ [%] = 2π

∫ ∞

0

dr
r2%(r)

r + f(r)
− J [%]. (5.35)

The generalization for systems having more than two electrons is difficult. Based
on the expressions (5.25) - (5.30) a simple interpolation was proposed [25]

W appr
λ = W∞ +

W0 −Wλ√
1 + 2Xλ

, (5.36)

where

X =
W ′

0

W∞ −W0
. (5.37)

Integration of Eq. (5.36) leads to the correlation energy

Eappr
c = (W0 −W∞)

[
1
X

(√
1 + 2X − 1

)
− 1

]
. (5.38)

This model functional predicts accurate ground-state correlation energies for real
atoms and the two-dimensional uniform electron gas [25].

Though there is no exact expression for the strong interaction or the low density
limit, it is supposed that the SCE energy should be close to that of a bcc Wigner
crystal [98]-[100]

EW
xc = −0.89593

rs
+

1.325

r
3/2
s

+ ... . (5.39)

The uniform electron gas expression for (rs →∞) has the form

Exc = −0.90000
rs

+
1.500

r
3/2
s

+ ... . (5.40)
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The closeness of the energy expressions for the Wigner crystal and the uniform
electron gas for rs →∞ was observed long ago [11, 101].

Another model is the point-charge-plus-continuum (PC) model. This is an ap-
proximation to the SCE concept and provides simple explicit functionals WPC

∞ [%]
and W ′PC

∞ [%] for the coefficients in Eqs. (5.33). The interaction strength interpo-
lation (ISI) [27] gives the following model expression:

W ISI
λ = W∞,ISI +

X√
1 + λY + Z

, (5.41)

where

X =
xy2

z2
, Y =

x2y2

z4
, Z =

xy2

z3
− 1 , (5.42)

x = −2W ′
0 , y = W ′

∞ , z = W0 −W∞ . (5.43)

The analytical integration in Eq. (5.10) leads to

EISI
xc [%] = W∞ +

2X

Y

[
(1 + Y )1/2 − 1− Z ln

(
(1 + Y )1/2 + Z

1 + Z

)]
. (5.44)

A combination of the ISI model with the “point-charge-plus-continuum “ (PC)
model [25, 27] leads to a new correlation functional. The PC approximations have
the form

WPC
∞ =

∫
dr

[
A%(r)4/3 + B

|∇%(r)|2
%(r)4/3

]
(5.45)

and

W ′PC
∞ =

∫
dr

[
C%(r)3/2 + D

|∇%(r)|2
%(r)7/6

]
. (5.46)

A, B, C and D are constants. Functionals of the form (5.45) and (5.46) can be
considered exact for the uniform electron gas. The atomization energies calculated
in the ISI model [27] are remarkably accurate: the error is 2.8% of the mean
experimental atomization energies.

5.3 Higher-order cusp relations for the wave func-
tion and the electron density for arbitrary cou-
pling constant

The aim of this subsection is to derive a new exact relation. To achieve this goal
first Kato’s theorem [13, 33, 34, 63] is generalized for arbitrary value of λ. The
original theorem states that for an eigenfunction Ψ of the Hamiltonian H for an
N -electron system

∂Ψ̄
∂r

∣∣∣∣
r=Rα

= −Zα Ψ|r=Rα
, (5.47)
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where the partial derivatives are taken at the nuclei α and Ψ̄ is the average value of
Ψ taken over the sphere r = constant around the nucleus α, for fixed values of the
remaining electron coordinates. Steiner [33] derived the corresponding theorem for
the electron density

Zα = − 1
2%(r)

∂%(r)
∂r

∣∣∣∣
r=Rα

. (5.48)

The cusp condition for wave functions were generalized by Roothaan and Kelly
[102] and Pack and Brown [38]. Futher references can be found in [16]-[18],[51, 52].
Recently this theorem has been generalized for highly excited states for λ = 0 and
λ = 1 [18]. Now an extension for any value of λ follows.

The total Hamiltonian (5.1) can be written as a sum

Ĥλ = Ĥ1 + F̂λ + Ĝλ, (5.49)
where

Ĥ1 = −1
2
∇2

1 −
Zα

r1
, (5.50)

F̂λ = −
M∑

β 6=α

Zβ

|r1 −Rβ | + ṽλ(r1) + λ

N∑

j=2

1
|r1 − rj | (5.51)

and

Ĝλ = −
N∑

i=2




M∑

β 6=α

Zβ

|ri −Rβ | + ṽλ(ri)


 + λ

N∑

i=2

N∑

j 6=i

1
|ri − rj | (5.52)

−1
2

N∑

i=2

∇2
i −

N∑

j 6=1

Zα

rj
. (5.53)

The external potential V λ which is defined to ensure the density being fixed is
written as a sum of the true external potential and the remaining term Ṽ λ =∑N

i=1 ṽλ(ri):

V λ =
M∑

β=1

Zβ

|ri −Rβ | + Ṽ λ. (5.54)

In the following the origin of the coordinate system is placed at the nucleus α. To
study the wave function in the vicinity of the nucleus α consider the case where
|r1| = r1 is small. Taking into account the expansions

1
|r1 − r2| =

∑

l,m

4π

2l + 1
rl
1

rl+1
2

Y ∗
lm(Ω1)Ylm(Ω2) (5.55)

and
ṽλ =

∑

l,m

rl
1ṽ

λ
lmY ∗

lm(Ω1) , (5.56)
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Fλ has the form

Fλ =
∑

l,m

rl
1F

λ
lmY ∗

lm(Ω1) , (5.57)

where Fλ
lm depend on r2, ..., rN but do not depend on r1

Fλ
lm = − 4π

2l + 1




M∑

β 6=α

Zβ
Ylm(Ωβ)

Rl+1
β

− λ

N∑

j>1

Ylm(Ωj)
rl+1
j


 + ṽλ

lm . (5.58)

Ylm are the spherical harmonics. The operator Gλ acts only on r2, ..., rN .
The antisymmetric wave function Ψλ is expanded around the nucleus α

Ψλ =
∑

l,m

rl
1χ

λ
lm(r1, X)Ylm(Ω1) , (5.59)

where X stands for the coordinates s1, r2, s2, ..., rN , sN . In certain highly excited
states the spherical average of the derivative of the wave function can be zero at a
nucleus: χλ

00(0, X) = 0. This corresponds to the case where there is no s electrons.
So Eq. (5.59) is rewritten in the form

Ψλ =
∑
m

rl
1χ

λ
lm(r1, X)Ylm(Ω1) +

∑

l′>l,m′
rl′
1 χλ

l′m′(r1, X)Yl′m′(Ω1) , (5.60)

where l is the smallest integer for which χλ
lm is not zero. So the expressions, which

I derived in the following, are valid not only in the ground state but even in the
highly excited states. Then the function χλ

lm is expanded as

χλ
lm(r,X) = a

(0)λ
lm (X) + a

(1)λ
lm (X)r + a

(2)λ
lm (X)r2 + a

(3)λ
lm (X)r3 + ... (5.61)

Substituting expressions (5.60), (5.61) and (5.57) into the Schrödinger equation

ĤλΨλ = EλΨλ , (5.62)

multiplying it with the spherical harmonics Y ∗
lm(Ω1), integrating on the polar angles

Ω1 and equating the coefficients of rl−1, rl, rl+1 separately to zero, I arrive at the
system of equations

Zαa
(0)λ
lm (X) + (l + 1)a(1)λ

lm (X) = 0 , (5.63)

(2l + 3)a(2)λ
lm (X) + Zαa

(1)λ
lm (X)−

(
Ĝλ + F̄λ − Eλ

)
a
(0)λ
lm (X) = 0 , (5.64)

where F̄λ = (4π)−1/2Fλ
00.

Combining these equations I am led to the relations for the terms aλ
l,m

a
(1)λ
lm (X) = − Zα

l + 1
a
(0)λ
lm (X) , (5.65)

a
(2)λ
lm (X) =

1
2l + 3

[
Z2

α

l + 1
+ Ĝλ + F̄λ − Eλ

]
a
(0)λ
lm (X) . (5.66)

39



For l = 0 and λ = 0 the relations of Rassolov and Chipman [103] can be recovered.
The spherical average of the electron density can be obtained by integrating

|Ψλ|2 for all coordinates but r

%̄(r) =
∑
m

r2l(̃χλ
lm)2 +

∑

l′,m′

l′>l

r2l′ ˜(χλ
l′m′)2 , (5.67)

where (̃χλ
lm)2 is obtained after integrating (χλ

lm)2 for all the coordinates X

(̃χλ
lm)2 =

∫
(χλ

lm)2dX . (5.68)

To include even the highly excited states I introduced the function ηl(r) instead of
%̄(r) with the definition

ηl(r) =
%̄(r)
r2l

. (5.69)

From Eqs. (5.67) and (5.69) follows that

ηl(r) =
∑
m

(̃χλ
lm)2 +

∑

l′,m′

l′>l

r2(l′−l) ˜(χλ
l′m′)2 . (5.70)

Taking ηl(r) at the nucleus α

ηl(0) =
∑
m

(̃χλ
lm)2(0) =

∫
[a(0)λ

lm ]2dX . (5.71)

Differentiating Eq. (5.70) with respect to r and making use of Eq. (5.65) I arrive
at the cusp relation for ηl(r)

η′l(0) = −2
Zα

l + 1
ηl(0) . (5.72)

The second derivative can be given by

η′′l (0) = 2
[

1
2l + 3

[(
Z2

α

(l + 1)2
(4l + 5)− 2Eλ

)
ηl(0)

+2
(

Fλ
l (0) + Gλ

l (0)
)]

+ ηl+1(0)
]

, (5.73)

where
Fλ

l (0) = N
∑
m

∫
a
(0)λ
lm F̄λa

(0)λ
lm dX , (5.74)

Gλ
l (0) = N

∑
m

∫
a
(0)λ
lm Ĝλa

(0)λ
lm dX . (5.75)

(These relations have already been derived [18] for λ = 1.) This expression for the
second derivative is the main relation that is going to be applied in the strong-
interaction limit in the next section.
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5.4 Total energy expression in the strong-interaction
limit

First I emphasize that the density and consequently ηl and their derivatives are
the same for any value of λ. Taking arbitrary two values of λ the total energy
difference can be written as

Eλ2 − Eλ1 =
Fλ2

l (0)− Fλ1
l (0) + Gλ2

l (0)−Gλ1
l (0)

ηl(0)
. (5.76)

For the ground state and low excited states l = 0 and ηl(0) = %(0).
To consider the strong-interaction limit λ →∞ the Schrödinger equation

(
T̂ + λV̂ee + V λ

)
Ψλ = EλΨλ (5.77)

is rewritten as

 1

λ
T̂ + V̂ee +

1
λ

∑

β

Zβ

|ri −Rβ | +
1
λ

Ṽ λ


Ψλ =

Eλ

λ
Ψλ. (5.78)

If λ →∞ Eq. (5.78) reduces to
(

V̂ee +
1
λ

Ṽ λ

)
Ψλ =

Eλ

λ
Ψλ, (5.79)

consequently for λ À 1

Ṽ λ = λU = λ

N∑

i=1

u(ri) (5.80)

and
ṽλ

lm = λulm(ri). (5.81)

Then from (5.73) follows that

lim
λ→∞

Eλ

λ
=

N

ηl(0)

∑
m

∫
|a(0)∞

lm |2(F∞ + G∞)dX , (5.82)

where

F∞ =
√

4π




N∑

j=2

1
rj

+ u00


 (5.83)

and

G∞ =
N∑

j=2

(
N∑

i=3

1
|ri − rj | + u(rj)

)
. (5.84)

For the ground state and low excited states l = 0 and ηl(0) = %(0), therefore

lim
λ→∞

Eλ

λ
=

N

%(0)

∫
|a(0)∞

00 |2(F∞ + G∞)dX . (5.85)
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This final equation (5.85) is an exact relation that contains only the first term
in the wave function expansion around the given nucleus and parts of the electron-
electron interaction and external potential operators. Notice that one should obtain
the same relation for any nucleus. One can see from Eq. (5.78) that the 1/r terms
in the kinetic and the true external terms that cancel each other at a nucleus α
both are divided by λ, therefore there is an exact cancellation at any value of λ. If
λ →∞ both the kinetic and the true external terms are negligible.

There are exact relations for the functionals themself, see e. g. Eqs. (5.25)-
(5.30). Other expressions are formalized for average values of certain quantities,
such as the total energy or certain parts of the energy. A well-known relation of
the latter type is the virial theorem. The exact expression derived in this paper
belongs to the latter category.
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Chapter 6

Subspace density of the first
excited state for two
harmonically interacting
electrons with isotropic
harmonic confinement

There is a growing interest in studying excited states within the density functional
theory. Several theories [4, 19] [32]-[41] have been worked out. In all of them the
exact form of the functional is unknown. (It is not surprising as it is unknown
even in the ground state.) Hohenberg and Kohn [4] proved in 1964 that the ground
state of a system is uniquely determined by the ground-state density. A further
developement of the density functional theory was given by Kohn and Sham [5].
They showed that it is possible to determine the exact one-particle properties of
a many-electron system by using a set of Schrödinger -type equations, in which
the exchange operator is approximated by a local potential. These theories are
restricted to the description of the ground state of a system. The generalization
of the KS-theory for excited states was not straightforward. The main difference
was that subspace had to be considered instead of eigenstates. Either it can be the
lowest-energy states of each symmetry [19]. Later it was shown rigorously that the
density can be used as a basic variable for describing excited states by Theophilou
[32]. There is correspondence between the subspace and the sum of the densities
of lowest eigenstates, which spanned the given subspace instead of between an
eigenstate and its density. Fritsche [108] and Englisch et al. [109] also provided
formalisms for excited states. A more general treatment was given by Gross et al.
[39]. Nagy and Nagy et al. did several calculations using this method [110]-[116].

The main object of this chapter is to demonstrate certain properties of the
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subspace density of the first excited state for two harmonically interacting electrons
with antiparallel spins and isotropic harmonic confinement. (In the Letter of March
et al. [117] ground-state properties were presented.) This system, also known as
Moshinsky model, has the Hamiltonian

H =
1
2

(−∇2
1 + r2

1

)
+

1
2

(−∇2
2 + r2

2

)
+

1
2
Kr2

12, (6.1)

where
r12 = r1 − r2. (6.2)

The first and the third term are the kinetic energies of te electrons. The second
and the fourth term are the external (harmonic) potentials and the last term is the
interparticle interaction between electrons. After introducing relative (Eq.(6.2))
and centre of mass coordinates

R =
1
2

(r1 + r2) (6.3)

the Schrödinger equation can be separated leading to the equations
(
−1

2
∇2

R + 2R2

)
ΨCM = ECMΨCM (6.4)

and
1
2

(
−∇2

r12
+

1
2
(
1
2

+ K)r2
12

)
ΨRM = ERMΨRM . (6.5)

The total energy has the form:

E = nCM +
3
2

+ (nRM +
3
2
)(1 + 2K)1/2, (6.6)

where nCM and nRM are the quantum numbers. In the first excited state nCM = 1
and nRM = 0 as for K > 0 (1 + 2K)1/2 > 1. Introducing the notation

α =
1
2

(
1 + (1 + 2K)1/2

)
, (6.7)

the total energy of the first excited state is

E1 = 3α + 1. (6.8)

The spatial part of the wave function

Ψ(1) = ΨCM(1)
1 ΨRM

0 (6.9)

has to be multiplied by the antisymmetric spin state α(1)β(2) − α(2)β(1). The
interelectronic part of the wave function has the ground-state form

ΨRM
0 = π−3/4

(
2α− 1

2

)3/4

exp
(
−2α− 1

4
r2
12

)
. (6.10)
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The CM part of the Schrödinger equation has a three-fold degeneracy with wave
functions

ΨCM(1)
1 = 2X

(
2
π

)3/4

e−R2
(6.11)

and ΨCM(2)
1 and ΨCM(3)

1 are the same expressions having Y and Z respectively,
instead of X, the coordinates of R.

The pair density function is the diagonal element of the second-order density
matrix. The subspace pair density function can be obtained by the average: [118]

n1(r1, r2) =
1
3

(
|Ψ(1)|2 + |Ψ(2)|2 + |Ψ(3)|2

)
, (6.12)

where
Ψ(i) = ΨCM(i)

1 ΨRM
0 . (6.13)

Its value at coincidence, r1 = r2 = r is

n1(r, r) =
4
3

(
2α− 1

π2

)3/2

r2e−2r2
. (6.14)

With the notation

Γ(r, r) =
n1(r, r)

r2
(6.15)

at r = 0

Γ1(0, 0) =
4
3

(
2α− 1

π2

)3/2

. (6.16)

Using this relation with Eq. (6.8) the total energy can be expressed as

E1 =
5
2

(
1 + aπ2 [Γ1(0, 0)]2/3

)
, (6.17)

where a = 1
5

35/3

24/3 . It is worth comparing this remarkable expression with the corre-
sponding ground-state relation

E0 =
3
2

(
1 + π2 [n0(0, 0)]2/3

)
. (6.18)

The difference is in the fact that the total energy is determined by Γ(0, 0) instead
of n(0, 0).

An interesting analogy with the generalization of Kato’s theorem for highly
excited states of Coulomb systems [16, 18, 35] can be noticed here. Using Eq.(5.48)
and taking the 2p orbital of the hydrogen atom, then the spherical average of the
derivative of the density is zero and the value of the density

%2p(r) = cr2e−Zr (6.19)

is also zero at the nucleus. So instead of the density, another quantity

η2p(r) =
%2p

r2
= ce−Zr (6.20)
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should be defined and the corresponding cusp relation for the density is

−2Zη2p(0) = 2η′2p(0) . (6.21)

So, the atomic number Z is determined by η and its derivative taken at r = 0.
According to the analogue relation (6.17) here E1 is determined by Γ1.

Now I turn to the electron density %:

%(r) = 2
∫
|Ψ(r, r′)|2dr′ (6.22)

The subspace electron density of the first excited state can be given by

%1(r) =
2
3

∫ (
|Ψ(1)|2 + |Ψ(2)|2 + |Ψ(3)|2

)
dr′ (6.23)

After some algebra I am led to

%1(r) =
%0(r)
2α

[
1 +

2
3

(2α− 1)2

α
r2

]
, (6.24)

where

%0(r) = 2
(

(2α− 1)
πα

)3/2

exp
(
− (2α− 1)

α
r2

)
(6.25)

is the ground-state density. At r = 0 I obtain

%1(0) =
%0(0)
2α

, (6.26)

where

%0(0) = 2
(

2α− 1
πα

)3/2

. (6.27)

From Eqs.(6.8) and (6.26) I arrive at the remarkable expression for the energy

E1 = 1 +
3

2− π
(

%0(0)
2

)2/3
. (6.28)

That is the first excited state energy is determined uniquely by the value of the
ground-state density at r = 0. The relationship between E1 and the subspace
density of the first excited state %1(0) at r = 0 is somewhat more complicated:

%1(0) = b
(2E1 − 5)3/2

(E1 − 1)5/2
, (6.29)

where b = 3π−3/2. Again, E1 is completely determined by %1(0), though in this
case it is easier to express %1(0) by E1.
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Finally, relationship between the subspace density of the first excited state %1

and the pair function of coincidence n(r, r) is established. Using Eqs. (6.14) and
(6.24) I can readily arrive at

%1(r) = c

[
3
4
π3 Γ1(r, r)

(2α− 1)3/2

] (2α−1)
2α

[
1− 1

3
(2α− 1)2

α
ln

(
3
4
π3 Γ1(r, r)

(2α− 1)3/2

)]
,(6.30)

where c = 1
α

[
(2α−1)

πα

]3/2

.
In summary, I derived similar relations for the subspace density and pair density

at coincidence of the first excited state of two harmonically interacting electrons
with antiparallel spins and isotropic harmonic confinement that were previously
found for the ground state. It was shown that the total energy is uniquely deter-
mined by the value of the pair density at coincidence at r = 0 and the subspace
electron density can be expressed by the subspace pair density at coincidence.
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Chapter 7

Summary

Electron density is used in density functional theory [1]-[5] instead of N -electron
wave function. Electron density has only 3 variables for any many-particle system,
which gives a great simplification in the treatment of many particle problem. Al-
tough the electron density is the basic variable of the density functional theory,
its rigorous information on its structural properties is not available in sufficient
quantity. Kato’s theorem [13] provides probably the most useful relations [13, 14].
It describes the behaviour of density functionals at the place of the nucleus. The
progress I made in this area of DFT is listed below.

1. Cusp relations for the kinetic energy density are derived for highly excited
states of atoms, ions or molecules, for which the spherical average of the
derivative of the wave function is zero at a nucleus. The two most frequently
used kinetic energy density expressions imply different behaviour at the nu-
clei.

2. Using a non-local exchange kernel X(r, r′) defined earlier by March and San-
tamaria, Hartree-Fock theory is shown to yield an exact relation for the ki-
netic energy density t(r). This involves X(r, r′) and its low-order gradients
with respect to r. A two-level example applicable to either the Be atom or
the heteronuclear molecule LiH confirms the general relation between t(r)
and X(r, r′) presented here.

3. Exact energy expression is presented in the strong-interaction limit of the den-
sity functional theory. The derivation utilizes the adiabatic connection. The
coupling constant dependent approximations for the exchange-correlation en-
ergy are reviewed. Higher-order cusp relations for the wave function and
electron density for arbitrary coupling constant is derived. A total energy
expression in the strong-interaction limit is presented.

4. The subspace density and pair density at coincidence of the first excited
state for two harmonically interacting electrons with antiparallel spins and
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isotropic harmonic confinement are calculated. It is shown that the total
energy is uniquely determined by the value of the pair density at coincidence
at r = 0. A relationship between the energy and the subspace density at
r = 0 is derived.
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Chapter 8

Magyar nyelvű összefoglaló

Az 1920-as években, Thomas és Fermi [1]-[3] alapozták meg a sűrűségfunkcionál
elméletet. Teljessé azonban az 1960-as években vált, amikor Kohn, Hohenberg
és Sham [4, 5] publikálták eredményeiket. Az, hogy a Schrödinger egyenletben
mindent, az N -elektronos hullámfüggvény helyett a mindössze 3 változós elektron-
sűrűséggel fejezünk ki, lehetővé tette a nagyobb elektronszámú rendszerek tárgya-
lását.

Thomas és Fermi zseniális észrevétele az volt, hogy az elektronok eloszlását
egy atomban lehet statisztikusan is tárgyalni. Thomas feltevései [1] a következők
voltak. Egyrészt az elektronok eloszlása egy atomban, a 6-dimenziós fázistérre
nézve egyenletes, másrészt létezik egy olyan effekt́ıv potenciál, amely önmagában
meghatározza az atommag töltését és az elektronok eloszlását. Ezen két feltevés
alapján le lehet vezetni a Thomas-Fermi egyenletet.

Egy N -elektronszámot tartalmazó alapállapoti rendszerben a v(r) külső po-
tenciált ismerve, tudom a rendszer Ĥ Hamilton operátorát is. Vagyis az N elekt-
ronszám és a v(r) külső potenciál ismeretében a rendszer minden tulajdonságát
meg lehet adni, alapállapotban. Az első Hohenberg-Kohn tétel [4] alapján azonban
az N és v(r) helyett be lehet vezetni a %(r) elektronsűrűséget, mint központi men-
nyiséget. A tétel szerint ugyanis a v(r) külső potenciált egyértelműen megadja a
%(r) elektronsűrűség egy addit́ıv állandótól eltekintve. Ugyanakkor a %(r) elektron-
sűrűséget a teljes térre kiintegrálva megkapjuk az elektronok N számát. Vagyis a
%(r) elektronsűrűség ismeretében meg lehet adni a v(r) külső potenciált és az N
elektronszámot is, s ezzel a rendszer Ĥ Hamilton operátorát is, alapállapotban. A
tárgyalásmód ezen szintjén a v(r) nem csak Coulomb-potenciál lehet!

A második Hohenberg-Kohn tétel [4] a variációs elvet mondja ki a rendszer
teljes energiájára. A tétel álĺıtása szerint a teljes energia alapállapotban pontosan
az egzakt alapállapoti sűrűségnél veszi fel a minimumát, miközben a külső potenciál
rögźıtett.

A tételek a megfelelő funkcionáloknak csak a létezését garantálják. Arra vi-
szont nem adnak útmutatót hogyan alkossuk meg a funkcionálokat. A Coulomb-
potenciállal rendelkező rendszerek napjainkban elérhető energiafunkcionáljait ál-
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talában két különböző, de egymástól nem teljesen független elgondolás alapján
alkotják meg. Az egyik a homogén elektrongáz modellen alapszik, mı́g a másik a
félklasszikus sorfejtések technikáját használja fel.

Ha közvetlenül a variációs elv alapján szeretnénk megadni az alapállapoti ener-
giafunkcionálokat, akkor nehézségekbe ütközünk. A probléma legfőbb oka az egzakt
kinetikus energia funkcionál ismeretének hiánya. Ezért közeĺıtéseket alkalmazunk,
ami pontatlan eredményekhez vezet. Például a Thomas-Fermi modellben a kineti-
kus energia funkcionál csak az elektronsűrűség funkcionálja. Nehéz a közeĺıtés ezen
szintjéről továbblépni, ha meg szeretnénk őrizni a viszonylagos egyszerűséget.

Pontos, egyben bonyolultabb is a Kohn-Sham [5] modell. A Kohn-Sham mód-
szernek köszönhetően a sűrűségfunkcionál elmélet alkalmassá vált arra, hogy nagy
pontossággal végezzenek el számı́tásokat, akár nagyobb rendszerekre is, alapálla-
potban. A Kohn-Sham egyenletek megoldásai a Kohn-Sham pályák, a kölcsön-
ható rendszer részecske sűrűségét helyesen adják vissza. A Kohn-Sham tételnek
köszönhetően Kohn-Sham tárgyalásmódban a Ĥ Hamilton operátor feĺırható egy
nemkölcsönható kinetikus energia és egy egyrészecskés, effekt́ıv, úgynevezett Kohn-
Sham potenciál összegeként. Ez a Kohn-Sham potenciál tartalmazza a klasszikus
Coulomb kölcsönhatásokat elektron-mag és elektron-elektron között, továbbá az
összes nemlokális kölcsönhatást is. A kölcsönható rendszer nemlokális kölcsönha-
tásait tartalmazó egyrészecske potenciált kicserélődési-korrelációs potenciálnak vxc

nevezzük. A sűrűségfunkcionál elméletben a vxc kicserélődési-korrelációs potenciált
a kicserélődési-korrelációs energia funkcionál sűrűség szerinti funkcionálderiváltja-
ként definiáljuk. Az elmélet alapján a kicserélődési-korrelációs energia univerzális,
azaz minden rendszerre ugyanaz, ahol a külső kölcsönhatást Coulomb-potenciállal
jellemezzük.

Ugyanúgy, mint a Hohenberg-Kohn tételeknél, a probléma itt is az, hogy csak a
létezését biztośıtják a funkcionáloknak, megalkotásukhoz nem adnak seǵıtséget. A
Kohn-Sham tárgyalásmódban a kicserélődési-korrelációs potenciált nem ismerjük.
Amit jelenlegi ismereteink alapján tudunk a leendő funkcionálokról, olyan feltéte-
lek, amiket mindenképpen teljeśıteniük kell.

Napjainkban tehát a sűrűségfunkcionál elmélet három generációját különböztet-
jük meg. A sűrűségfunkcionál elmélet első generációjában explicite sűrűségtől függő
funkcionálokat használnak a nemkölcsönható kinetikus energia és a kicserélődési-
korrelációs energia közeĺıtésére. A legegyszerűbb közeĺıtés a Thomas-Fermi mo-
dell, amely a kicserélődési-korrelációs energiát teljes mértékben elhagyja, s csak
a nemkölcsönható kinetikus energiára ad közeĺıtést. Ezekre a funkcionálokra a
Hohenberg-Kohn variációs elv közvetlenül használható, amely Thomas-Fermi t́ı-
pusú egyenletekhez vezet. Mivel egyedül az elektronsűrűség funkcionáljai, ezért
numerikusan könnyen megoldhatók. A rendszer alapállapoti energiájára azonban
elfogadhatatlanul nagy hibával ad csak értéket.

A sűrűségfunkcionál elmélet második generációjában a nemkölcsönható kineti-
kus energiát az egyelektron pályák funkcionáljaként egzaktul kezelik, s a kicserélő-
dési-korrelációs energiát a sűrűség funkcionáljaként ı́rjuk fel. Lényegében a sűrűség-
funkcionál elmélet Kohn-Sham tárgyalását adja vissza. Ekkor a Hohenberg-Kohn
egyenleteket kell ön-konzisztens módon megoldani, ahol az Exc(%) kicserélődési-
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korrelációs energiafunkcionál explicite függ az elektronsűrűségtől. Numerikusan
könnyen kezelhető, s igen jó eredményeket ad a legtöbb atomra, molekulára és
szilárdtestre.

Végül, a sűrűségfunkcionál elmélet harmadik generációjában egzaktul kezeljük
a nemkölcsönható kinetikus energiát és a kicserélődési energiát. Csak a korrelációs
energia az elektronsűrűség funkcionálja, a Ĥ operátor többi tagja mind pályafüggő
funkcionál. Az ı́gy kapott Kohn-Sham egyenleteket kell megoldani. A sűrűség-
funkcionál elmélet második és harmadik generációja között az a különbség, hogy a
kicserélődési-korrelációs energiát másképp kezelik.

Lényegében a disszertáció célja is az, hogy az energiafunkcionálok viselkedésére
újabb feltételeket adjunk meg, további seǵıtséget nyújtva az egzakt energiafunkci-
onálok megtalálásához. Valósźınűleg a leghasznosabb feltételek egyike a Coulomb
szingularitással kapcsolatos feltételek, amelyeket Kato [13] tétele alapján lehet lev-
ezetni. Kato tétele azt mondja meg, hogyan kell viselkedniük a funkcionáloknak
az atommmag helyén. Ez alapján meg lehet mondani azt is, hol van az atom-
mag és mennyi az atommag rendszáma. Azonban Kato tétele csak Coulomb
kölcsönhatással jellemezhető rendszerekre igaz. Kato tételét egyszeresen gerjesztett
állapotokra is lehet általánośıtani [15]. A nemkölcsönható és kölcsönható rendsz-
ereket adiabatikusan össze lehet kapcsolni, és a kölcsönható és nemkölcsönható
rendszerek adiabatikus összekapcsolásával egyszeresen gerjesztett állapotra vonat-
kozó elméletet lehet felálĺıtani.

Az ezt követő fejezetben Coulomb szingularitással kapcsolatos feltételeket ve-
zettem le a kinetikus energiasűrűségekre (3. fejezet). A 4. fejezetben összefüggést
adtam meg a kinetikus és kicserélődési energiasűrűség között a Hartree-Fock elmélet
alapján. Majd az adiabatikus kapcsolás seǵıtségével egy egzakt kifejezést származ-
tattam az erősen korrelált rendszererek teljes energiájára (5. fejezet). Az adia-
batikus csatolás [19]-[23] biztośıtja a kapcsolatot a kölcsönható és a neki megfe-
lelő nemkölcsönható rendszerek között. Mostanában publikálták [24]-[27], hogy
az adiabatikus csatolás fontos az erősen korrelált rendszerek tanulmányozásához.
Továbbá két, harmónikusan kölcsönható elektron egy gerjesztett állapotához tar-
tozó sűrűséget is megadtam az 6. fejezetben, amikor a kölcsönhatás izotrópikus és
harmónikus.

A sűrűségfunkcionál elmélettel számos, különféle rendszert, például molekulákat
modelleznek. Egy jól ismert példa a biotechnológiai alkalmazása. Ide tartozik a
proteinek tanulmányozása is, amely lényeges a fehérjék szabályozási folyamatainak
megértéséhez, vagy a DNS szekvenciák meghibásodási és jav́ıtási folyamatainak
a léırásához. Egy másik alkalmazási területként megemĺıthető a farmakológia is,
ahol az új gyógyszer, hatóanyag megtervezése előbb számı́tógépes szimulációval
történik, s csak ezután álĺıtják elő a tényleges protot́ıpust.

A sűrűségfunkcionál elmélet ezen területén elért eredményeimet az alábbi pon-
tokban foglaltam össze:

1. A kinetikus energiasűrűségekre vezettem le Coulomb szingularitással kapcso-
latos feltételeket, magasan gerjesztett állapotú atomokra, ionokra és mole-
kulákra. Ekkor a hullámfüggvény gömbi átlagának a deriváltja az atom-
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mag helyén zérus. A két leggyakrabban használt kinetikus energiasűrűség
másképp viselkedik az atommag helyén.

2. March és Santamaria által megadott X(r, r′) nem-lokális kicserélődési sűrű-
séget felhasználva, a Hartree-Fock elmélet alapján egzakt relációt vezettem
le a kinetikus energiasűrűségre. Az összefüggés tartalmazza az X(r, r′) nem-
lokális kicserélődési sűrűséget s annak alacsonyabb rendű gradienseit.

3. Magasabb rendű Coulomb szingularitással kapcsolatos feltételeket származ-
tattam a hullámfüggvényre és az elektronsűrűségre, tetszőleges értékű csato-
lási állandóra. A sűrűségfunkcionál elmélet erős kölcsönhatású határesetében
megadtam egy egzakt energiakifejezést.

4. Meghatároztam két harmónikusan kölcsönható elektron egy gerjesztett álla-
potában a sűrűséget. Az elektronok közti kölcsönhatás izotróp, az elektronok
spinje antiparallel beállású. Megadtam egy kifejezést a rendszer teljes en-
ergiájára is. A rendszer teljes energiája és a gerjesztett állapothoz tartozó
sűrűség között származtattam egy összefüggést.
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[R1] Zs. Jánosfalvi, K. D. Sen and Á. Nagy; Cusp conditions for non-interacting
kinetic energy density of the density functional theory; Phys. Lett. A 344
(2005) p.1-6
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