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Excited-state Koopmans theorem for ensembles
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1Department of Chemistry and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118

2Institute of Theoretical Physics, Kossuth Lajos University, H-4010 Debrecen, Hungary
~Received 20 March 1998; revised manuscript received 15 October 1998!

Koopmans’s theorem is generalized for excited-state ensemble density-functional theory. Formal expres-
sions are derived that relate orbital energy differences to exchange-only excitation energies. These expressions
provide stringent requirements for approximating the universal exchange component of the exact exchange-
correlation functional for excited-state ensembles, and the expressions lead to a relation, containing a correla-
tion potential, that gives exact excited-state ionization energies.@S1050-2947~99!03202-3#
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I. INTRODUCTION

In ensemble density-functional theory for excited sta
@1–3#, there is an unknown exchange-correlation functio
that must be approximated. For this purpose, it is neces
to invoke known properties of the exact functional. With th
in mind, we here derive a relation that connects the repuls
energies of the components of the auxiliary noninteract
Kohn-Sham ensemble with an integral containing the co
sponding ensemble repulsion functional derivative. This
lation, Eq.~28!, is one that involves the exchange compon
of the unknown exchange-correlation functional. Furth
when this relation is combined with an earlier one@4# involv-
ing the ensemble correlation potential,vc , a new relation
results, Eq.~29!, that connects the exact excited-state ioni
tion energy with expectation values involving noninteracti
Kohn-Sham wave-function solutions andvc . Finally, ma-
nipulation of Eq. ~28! allows the development of a
exchange-only excited-state Koopmans theorem, Eq.~9!, that
relates, with a small correction term, an orbital energy d
ference, involving an unoccupied orbital from an exchan
only ground-state calculation, to an expectation value diff
ence involving Kohn-Sham determinants and the t
physical Hamiltonian of interest.

II. THEOREM

Let nGS be the exchange-only ground-state density of
N-electron Hamiltonian

Ĥv5T̂1V̂ee1(
i 51

N

v~r i !, ~1!

where T̂ is the kinetic energy operator andV̂ee is the
electron-electron repulsion energy operator. The auxili
Kohn-Sham equations fornGS are

$2 1
2 ¹21vs~r ;@nGS# !%f i~r !5e if i~r !, ~2!

where

e0<e1<e2¯ ~3!

and
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^f i uf j&5d i j . ~4!

Let us consider, for simplicity of presentation, the close
shell case, for evenN, where

nGS5(
i 51

N/2

2uf i u2. ~5!

Call FGS, whose density isnGS, the closed-shell determi
nant which is composed of the firstN/2 doubly occupied
Kohn-ShamF i . In other words,FGS is the ground state o
some local potentialvs and simultaneously minimizes th
expectation values ofĤv in Eq. ~1!. That is, FGS is the
ground state of the noninteracting Kohn-Sham Hamiltoni

Ĥs5(
i 51

N

2 1
2 ¹ i

21(
i 51

N

vs~r ;@nGS# !. ~6!

Next, defineFES
k as an excited state ofĤs that is formed

from FGS by exciting an electron from orbitali 5N/2 to
orbital i 5k. The density corresponding toFES

k has the form

nES
k 5(

i 51

M

2uf i u21ufN/2u21ufku2, ~7!

where

M5~N/2!21. ~8!

Consider the ensemble densityn which is composed of a
sum such that each element in the sum consists of a non
weight factor times an eigenstate density ofĤs @1–3#. It is
understood that included in the sum are all densities wh
energies, with respect toĤs , are less than or equal to th
energy ofnES

k . With n so defined, we shall prove the follow
ing ensemble Koopmans theorem for excited states:

ek2eN/21E Dv~r !ufk~r !u2dr

5^FES
k uĤvuFES

k &2^FGSuĤvuFGS&, ~9!
1687 ©1999 The American Physical Society



l
fo

ity

te

n

te

n-
of

-

ay

-

,

te

tion

n

1688 PRA 59BRIEF REPORTS
whereDv(r )5v(r )2v8(r ), andv8 is that external potentia
for which n is the optimum Kohn-Sham ensemble density
an exchange-only ensemble calculation, and whereFES

k is an

excited state ofĤs that yieldsnES
k . The potentialv, on the

other hand, is that external potential in Hamiltonian~1! for
which nGS is the optimum Kohn-Sham ground-state dens
in the exchange-only approximation. Also in Eq.~9!

eN/25^fN/2u2
1
2 ¹21vs~r ;@nGS# !ufN/2& ~10!

and

ek5^fku2
1
2 ¹21vs~r ;@nGS# !ufk&, ~11!

wherewN/2 is the highest-occupied orbital in the ground-sta
exchange-only calculation.

III. PROOF OF THE THEOREM

In line with the definition ofv8, we have

min
r

H E v8~r !r~r !dr1Fxo@r#J 5E v8~r !n~r !dr1Fxo@n#,

~12!

wherer~r ! is an arbitrary ensemble density given by

r~r !5tr$D̂ r̂~r !%, ~13!

wherer̂(r ) is the density operator. The noninteracting de
sity matrix D̂ is defined as

D̂5(
i 51

k

wi uF i&^F i u, ~14!

while the exchange-only functionalFxo has the definition

Fxo5tr$D̂~ T̂1V̂ee!%, ~15!

where theF i in Eq. ~14! yield r through Eq.~13! and are
simultaneously the lowest eigenfunctions of some nonin
acting Hamiltonian, and the weightswi are understood to be
the same as those withn. The minimization in Eq.~12! dic-
tates that the potentialv8 can be expressed as

v852
dFxo@r#

dr U
r5n

5vs2
dVee

KS@r#

dr
U

r5n

, ~16!

where

Vee
KS@r#5tr$D̂V̂ee%. ~17!

In Eq. ~16! it is understood, for later development, thatvs

and dVee
KS@r#/dr have been made to vanish asur u→`,

through additive constants as necessary.
Next, letn be the optimum density for

Ĥa5T̂1aV̂ee1(
i 51

N

ga~r i ;@n# !. ~18!

In other words,ga(r i ;@n#) is constructed such that the e
semble densityn, with fixed weights, remains independent
r

-

r-

a. Note thatg05vs wherevs is the Kohn-Sham potential in
Eq. ~2!. In other words,Ĥ05Ĥs . However,g1 is neitherv
nor v8, although close to both. DefinenGS

a andEGS
a , respec-

tively, as the ground-state density and energy ofĤa , and
define the eigenstate densitynES

k,a as that ensemble compo

nent ofn with the highest energy,EES
k,a , with respect toĤa .

Then, in accordance with previous studies@5#, the
asymptotic decay ofnGS is governed byuEGS

a 2EGS
a,N21u,

while unless prohibited by symmetry, the asymptotic dec
of nES

k,a is governed byuEES
k,a2EGS

a,N21u, whereEGS
a,N21 is the

ground-state energy ofĤa with one electron removed. Con
sequently@4#, the asymptotic decay ofn is governed by
uEES

k,a2EGS
a,N21u. This means thatuEES

k,a2EGS
a,N21u is indepen-

dent ofa becausen is independent ofa. ~Observe thatnES
k,a

connects withnES
k asa→0.!

Next, following the procedure of Ref.@6# for a ground-
state density-functional theory~DFT! Koopmans theorem
we here employ

]

]a
~EES

k,a2EGS
a,N21!ua5050, ~19!

and using Eq.~18!, we obtain

^FES
k uV̂eeuFES

k &1E drnES
k ]ga

]a U
a50

5^FGS
N21uV̂eeuFGS

N21&1E drnGS
N21 ]ga

]a U
a50

, ~20!

where FGS
N21 and nGS

N21 are, respectively, the ground-sta

wave function and density of the Kohn-ShamĤs of Eq. ~6!,
with one electron removed.

To identify the partial derivative in Eq.~20! we observe
that from the analogous ground-state adiabatic connec
expansion@7#, it follows here, for smalla, that

ga~r ;@n# !5vs2a
dVee

KS@r#

dr
U

r5n

1¯ . ~21!

This leads to

]ga

]a U
a50

52
dVee

KS

dr
U

r5n

. ~22!

Comparison with Eq.~16! gives

]ga

]a U
a50

5v8~r !2vs~r ,@n# ! ~23!

and the substitution of Eq.~23! into Eq. ~20! leads to

ek5^FES
k uĤv8uFES

k &2^FGS
N21uĤv8

N21uFGS
N21&, ~24!

where Ĥv8
N21 is Ĥv8 with one electron removed. Equatio

~24! may be conveniently written as
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ek1E Dv~r !ufK~r !u25^FES
k uĤvuFES

k &

2^FGS
N21uĤv

N21uFGS
N21&, ~25!

whereĤv
N21 is Ĥv with one electron removed.

Next, we use the following ground-state Koopmans th
rem, which was previously arrived at for finite@8,6# and
infinite systems@9#:

eN/25^FGSuĤvuFGS&2^FGS
N21uĤvuFGS

N21&. ~26!

The combination of Eqs.~25! and~26! yields our first desired
result, Eq.~9!. Further, combine Eqs.~20! and~22! to obtain

^FES
k uV̂eeuFES

k &2^fGS
N21uV̂eeuFGS

N21&

5E dr~nES
k 2nGS

N21!
dVee

KS

dr
U

r5n

, ~27!

or

^FES
k uV̂eeuFES

k &2^FGS
N21uV̂eeuFGS

N21&

5E drufk~r !u2
dVee

KS

dr
U

r5n

. ~28!

Equation~28! is in the form which is especially useful fo
imposing a stringent constraint for approximatingVee

KS@r#.
Finally, observe that by Eq.~24! and by the fact@4,5# that

ek5EES
k,12EGS

1,N21, it follows with a51 in Eq. ~18! that

EES
k,12EGS

1,N215^FES
k uĤ11(

i 51

N

vc~rW i !uFES
k &

2^FGS
N21uĤ1

N211 (
i 51

N21

vc~rW i !uFGS
N21&,

~29!

where Ĥ1
N21 is the Ĥ1 in Eq. ~18! with one electron re-

moved, and wherevc8 which equalsv82g1 , is the ensemble
correlation potential forn. ~This correlation potential identi
hy
-

fication for v82g makes sense becauseg1 is that potential
for which n is a sum of eigenstate densities, obtained wh
correlation is included, whilev8 is that potential for whichn
is the optimum ensemble density for an exchange-o
excited-state ensemble calculation, where by definition, c
relation is excluded.!. Equation~29! gives the exact ioniza-
tion energy from the highest eigenstate ofĤ1 whose density
is a component ofn. Of special relevance, of course, is whe
g1 is the atomic, molecular, or solid-state external poten
of interest.

IV. CONCLUDING REMARKS

Constraints~9!, ~27!, and~28! serve as stringent require
ments for the exchange component of the exchan
correlation functional for excited-state ensemble calcu
tions. Further, observe that analogous constraints arise
any excited-state formulation for which Eq.~19! applies.

It was previously observed@4# that the negative of the
highest-occupied Kohn-Sham orbital energy of the nonin
acting auxiliary ensemble gives the exact ionization ener
including correlation, of the highest-energy eigenstate in
occupied interacting ensemble for the true physical intera
ing Hamiltonian of interest. In the present paper we ha
shown that Eq.~29! provides an alternative formula for thi
exact eigenstate ionization energy from an ensemble ca
lation.

Finally, the ensemble Koopmans theorem for excit
states, Eq.~9!, is of special relevance for the study of the u
of unoccupied orbital energies in the approximation of ex
tation energies. In this connection, it is worth noting the fa
that cases have recently been reported, with explana
where these unoccupied orbital energies give surprisingly
curate excited-state ionization energies.~See Ref.@10#, and
references therein.!
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