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Introduction

The  disaccharide  lactose  (1,4-0-ß-D-galactopyranosyl-D-glucose)  is  a  byproduct  of

cheese production accumulating to amounts of 800 000 tons per year worldwide, of which 15

% is used as a carbon source for various microbial fermentations, such as cellulase production

by Trichoderma reesei or penicillin production by  Penicillium chrysogenum [1]. At present,

lactose is the only derepressing carbon source used on industrial scale. Nevertheless, little is

known about the regulation of its metabolism in filamentous fungi. Lactose is metabolized

slowly,  and some important  fungi  such as  A.  niger cannot  use  it  at  all.  A more  detailed

knowledge on the rate-limiting steps would be helpful to improve its industrial application.

We have chosen A. nidulans as an object for investigating how lactose and galactose

metabolism are regulated because it has long become a model system for biochemical and

genetic research on fungi, and mutants in the lactose-metabolizing pathway of A. nidulans are

available [2].



General scheme of lactose and D-galactose catabolism in A. nidulans

The first step in lactose metabolism is its transport by a lactose permease, followed by

a  hydrolysis  to  glucose  and  galactose  by  an  intracellular  ß-galactosidase  [3].  D-glucose

catabolism proceeds via  either the glycolytic  or the oxidative pentose phosphate pathway,

while D-Galactose degradation was known to occur exclusively via the Leloir-pathway. The

Leloir  pathway is  a ubiquitous  trait  in  pro-  and eukaryotic  cells  [4].  It  can be used as a

catabolic pathway for the degradation of D-galactose as an energy and carbon source while it

links  as  an  anabolic  pathway  the  metabolism of  carbohydrates,  such  as  the  synthesis  of

lipopolysaccharides,  of  cell  wall  components,  and  of  exopolysaccharides  for  which

galactosides  are  frequently  required  as  building  blocks.  In  cucumber,  Leloir  pathway was

reported  to  be  involved in  the  sucrose synthesis  from stachyose [5].  It  involves  an ATP-

dependent galactokinase (EC 2.7.1.6) to form D-galactose 1-phosphate, which is subsequently

transferred  to  UDP-glucose  in  exchange  with  D-glucose  1-phosphate  by  D-galactose  1-

phosphate-uridyltransferase (EC 2.7.7.12). The resulting UDP-galactose is a substrate for the

reaction catalyzed by UDP-galactose 4-epimerase (EC 5.1.3.2), resulting in UDP-glucose.

Regulation of formation of the ß-galactosidase activity

Wild-type  A.  nidulans do  not  exhibit  any  ß-galactosidase  activity  on  glucose  or

glycerol,  while it  is clearly present in mycelia  grown on lactose.  No extracellular  or cell-

bound ß-galactosidase activity can be detected. The time-profile of activity essentially parallel

growth and lactose consumption, and decline after exhaustion of the carbon source. The ß-

galactosidase  activity  of  mycelia  growing  on  lactose  can  further  raised  by  addition  of

galactose, indicating that enzyme formation is not maximal during growth on lactose [3, 6].



The formation  of ß-galactosidase on lactose or D-galactose,  but not on glucose or

glycerol suggests that its biosynthesis may be under carbon catabolite control. Addition of

glucose to cultures growing on lactose indeed immediately decreases ß-galactosidase activity.

Uptake of lactose is also suspended as long as glucose is present in the medium. After the

consumption  of  glucose,  lactose  is  consumed  again  and  also  ß-galactosidase  activity  is

reinitiated. 

These results demonstrate an immediate inhibition of the activity of ß-galactosidase by

glucose,  but  do  not  distinguish  between  inducer  exclusion  and  true  carbon  catabolite

repression. Employing the  A. nidulans mutant strain  4, in which the  creA locus had been

deleted [7], both lactose consumption and ß-galactosidase activity  remain unaffected upon

glucose pulse, indicating that lactose uptake is not inhibited but repressed by glucose. 

When A. nidulans mutant strain 4 is grown on glucose and glycerol, mycelia form a

clear, albeit low ß-galactosidase activity, corresponding to appr. 18 % of the levels observed

on lactose. This indicates that part of the ß-galactosidase formation is indeed subject to CreA-

dependent carbon catabolite regulation, but it is the induction that accounts for the major part

of the activity. In fact, ß-galactosidase is effectively induced by the addition of D-galactose.

Simultaneous addition of glucose and D-galactose do not inhibit the uptake of D-galactose,

but reduced the ß-galactosidase activity by about 30 %, thus indicating some effect of glucose

also on the induction process. The involvement of CreA in this effect was again proven by the

use of  A. nidulans mutant  strain  4, in which D-galactose induction of ß-galactosidase is

completely unaffected.

Our data show that the effect of glucose occurs at least at three levels, which are all

dependent  on  the  carbon  catabolite  repressor  CreA:  (a)  a  blockade  of  constitutive  ß-

galactosidase formation; (b) a partial interference with induction, such that in a CreA-negative

background 150 % of the wild-type levels of induction were obtained; and (c) a repression of



lactose uptake by glucose. Interference of CreA-dependent carbon catabolite regulation with

gene expression at multiple regulatory levels have been reported in A. nidulans [7]. However,

interference  of  CreA with  inducer  transporting  permeases  (such  as  here  with  the  lactose

permease) has not yet been shown.

Reductive pathway of D-galactose utilization in A. nidulans

Galactokinase is a key enzyme of the Leloir-pathway, and essential for the metabolism

of  D-galactose  in  yeast  [8].  Consistent  with  this,  an  A.  nidulans mutant  in  galactokinase

(galE) was reported to be unable to grow on D-galactose [9, 10]. In contrast, we have noted

that  A. nidulans galE mutants still grow on D-galactose [11]. A detailed comparison of the

conditions revealed that the former authors used nitrate as a nitrogen source, whereas we used

ammonium phosphate. Indeed, nitroge source strongly affects the ability of the galE mutant to

grow on D-galactose:  whereas the  galE mutant  exhibits  a strongly reduced growth on D-

galactose with nitrate as a nitrogen source, it grows well with ammonium as a nitrogen source,

independently  of  the  anion of  the  ammonium salt  (sulphate,  chloride,  phosphate).  It  was

therefore concluded that there is an alternative pathway for D-galactose catabolism operating

on media containing ammonium as a nitrogen source, which however is not operating in the

presence of nitrate.  Subsequent  studies provided genetic  and biochemical  evidence for an

alternative pathway for D-galactose degradation in A. nidulans, which involve reduction of D-

galactose to galactitol and oxidation of galactitol to L-sorbose, and for which we identified L-

arabinitol-4-dehydrogenase and hexokinase as essential enzymes.

It was long demonstrated that L-sorbose is not a carbon source for A. nidulans [9, 12].

However, evidence is now available that the wild-type and  galE mutant strains are able to

grow on L-sorbose when ammonium is used as a nitrogen source [11]. On the other hand, no

growth is observed on a nitrate-containing medium with L-sorbose. At the moment, we are



unable to provide scientific  explanation to this,  but speculate  that  L-sorbose catabolism –

similarly to the alternative reductive catabolism of D-galactose - is inhibited in the presence

of nitrate.

The further fate of L-sorbose is still unclear. One possibility would be its catabolism

via D-sorbitol and D-fructose [12] to D-fructose-6-phosphate. Alternatively, L-sorbose could

be  phosphorylated  to  L-sorbose-6-phosphate  and  subsequently  isomerized  to  fructose-6-

phosphate. Both pathways may also operate simultaneously.

Irrespective of the steps catabolizing L-sorbose, the reductive D-galactose pathway is

reminiscent  of  the  fungal  pathways  for  D-xylose  or  L-arabinose  catabolism,  which  also

proceed by reduction of the aldoses to the corresponding polyols, subsequent oxidation by

polyol  dehydrogenases  to  form a  ketose,  which  then  is  phosphorylated  [13].  The ketose-

phosphates  are  then  isomerized  to  ribulose-5-phosphate,  an  intermediate  of  the  pentose

phosphate pathway and thus primary metabolism [14]. No such reactions are known however

for hexoses, and we are therefore at present unaware whether a similar metabolic strategy will

be implied here.
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