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EFFECTIVE RESULTS FOR UNIT EQUATIONS OVER

FINITELY GENERATED DOMAINS

JAN-HENDRIK EVERTSE AND KÁLMÁN GYŐRY

Abstract. Let A ⊃ Z be a commutative domain which is finitely gen-

erated over Z as a Z-algebra and let a, b, c be non-zero elements of A.

Extending earlier work of Siegel [25, 1921], Mahler [18, 1933] and Parry

[20, 1950], Lang [13, 1960] proved that the equation (*) aε + bη = c in

ε, η ∈ A∗ has only finitely many solutions. Using Baker’s theory of loga-

rithmic forms, Győry [6, 1974], [7, 1979] proved that the solutions of (*)

can be determined effectively if A is contained in an algebraic number

field. In this paper we prove, in a precise quantitative form, an effective

finiteness result for equations (*) over an arbitrary domain A of charac-

teristic 0 which is finitely generated over Z. Our main tools are already

existing effective finiteness results for (*) over number fields and func-

tion fields, an effective specialization argument of Győry [8, 1983], [9,

1984], and effective results of Seidenberg [24, 1974] and Aschenbrenner

[1, 2004] on linear equations over polynomial rings. We prove also an ef-

fective result for the exponential equation aγv1

1
· · · γvs

s
+ bγw1

1
· · · γws

s
= c

in integers v1, . . . , ws, where a, b, c and γ1, . . . , γs are non-zero elements

of A.

1. Introduction

Let A ⊃ Z be a commutative domain which is finitely generated over Z

as a Z-algebra. As usual, we denote by A∗ the unit group of A. We consider

equations

(1.1) aε+ bη = c in ε, η ∈ A∗

where a, b, c are non-zero elements of A. Such equations, usually called

unit equations, have a great number of applications. For instance, the ring
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of S-integers in an algebraic number field is finitely generated over Z, so

the S-unit equation in two unknowns is a special case of (1.1). In this

paper, we consider equations (1.1) in the general case, where A may contain

transcendental elements, too.

Siegel [25, 1921] proved that (1.1) has only finitely many solutions in the

case that A is the ring of integers of a number field, and Mahler [18, 1933]

did this in the case that A = Z[1/p1 · · · pt] for certain primes p1, . . . , pt.

For S-unit equations over number fields, the finiteness of the number of

solutions of (1.1) follows from work of Parry [20, 1950]. Finally, Lang [13,

1960] proved for arbitrary finitely generated domains A that (1.1) has only

finitely many solutions. The proofs of all these results are ineffective.

Baker [2, 1968] and Coates [5, 1968/69] implicitly proved effective finite-

ness results for certain special (S-)unit equations. Later, Győry [6, 1974],

[7, 1979] showed, in the case that A is the ring of S-integers in a number

field, that the solutions of (1.1) can be determined effectively in princi-

ple. His proof is based on estimates for linear forms in ordinary and p-adic

logarithms of algebraic numbers. In his papers [8, 1983] and [9, 1984],

Győry introduced an effective specialization argument, and he used this to

establish effective finiteness results for decomposable form equations and

discriminant equations over a wide class of finitely generated domains A

containing both algebraic and transcendental elements, of which the ele-

ments have some “good” effective representations. His results contain as a

special case an effective finiteness result for equations (1.1) over these do-

mains. Győry’s method of proof could not be extended to arbitrary finitely

generated domains A.

It is the purpose of this paper to prove an effective finiteness result for

(1.1) over arbitrary finitely generated domains A. In fact, we give a quanti-

tative statement, with effective upper bounds for the “sizes” of the solutions

ε, η. The main new ingredient of our proof is an effective result by Aschen-

brenner [1, 2004] on systems of linear equations over polynomial rings over

Z.

We introduce the notation used in our theorems. Let again A ⊃ Z

be a commutative domain which is finitely generated over Z, say A =

Z[z1, . . . , zr]. Let I be the ideal of polynomials f ∈ Z[X1, . . . , Xr] such
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that f(z1, . . . , zr) = 0. Then I is finitely generated, hence

(1.2) A ∼= Z[X1, . . . , Xr]/I, I = (f1, . . . , fm)

for some finite set of polynomials f1, . . . , fm ∈ Z[X1, . . . , Xr]. We observe

here that given f1, . . . , fm, it can be checked effectively whether A is a

domain containing Z. Indeed, this holds if and only if I is a prime ideal of

Z[X1, . . . , Xr] with I ∩Z = (0), and the latter can be checked effectively for

instance using Aschenbrenner [1, Prop. 4.10, Cor. 3.5].

Denote by K the quotient field of A. For α ∈ A, we call f a rep-

resentative for α, or say that f represents α if f ∈ Z[X1, . . . , Xr] and

α = f(z1, . . . , zr). Further, for α ∈ K, we call (f, g) a pair of represen-

tatives for α or say that (f, g) represents α if f, g ∈ Z[X1, . . . , Xr], g 6∈ I

and α = f(z1, . . . , zr)/g(z1, . . . , zr). We say that α ∈ A (resp. α ∈ K) is

given if a representative (resp. pair of representatives) for α is given.

To do explicit computations in A and K, one needs an ideal membership

algorithm for Z[X1, . . . , Xr], that is an algorithm which decides for any given

polynomial and ideal of Z[X1, . . . , Xr] whether the polynomial belongs to

the ideal. In the literature there are various such algorithms; we mention

only the algorithm of Simmons [26, 1970], and the more precise algorithm

of Aschenbrenner [1, 2004] which plays an important role in our paper; see

Lemma 2.5 below for a statement of his result. One can perform arithmetic

operations on A and K by using representatives. Further, one can decide

effectively whether two polynomials f1, f2 represent the same element of

A, i.e., f1 − f2 ∈ I, or whether two pairs of polynomials (f1, g1), (f2, g2)

represent the same element of K, i.e., f1g2 − f2g1 ∈ I, by using one of the

ideal membership algorithms mentioned above.

The degree deg f of a polynomial f ∈ Z[X1, . . . , Xr] is by definition its

total degree. By the logarithmic height h(f) of f we mean the logarithm

of the maximum of the absolute values of its coefficients. The size of f is

defined by s(f) := max(1, deg f, h(f)). Clearly, there are only finitely many

polynomials in Z[X1, . . . , Xr] of size below a given bound, and these can be

determined effectively.

Theorem 1.1. Assume that r ≥ 1. Let ã, b̃, c̃ be representatives for a, b, c,

respectively. Assume that f1, . . . , fm and ã, b̃, c̃ all have degree at most d

and logarithmic height at most h, where d ≥ 1, h ≥ 1. Then for each

solution (ε, η) of (1.1), there are representatives ε̃, ε̃′, η̃, η̃′ of ε, ε−1, η, η−1,
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respectively, such that

s(ε̃), s(ε̃′), s(η̃), s(η̃′) ≤ exp
(
(2d)c

r
1(h+ 1)

)
,

where c1 is an effectively computable absolute constant > 1.

By a theorem of Roquette [22, 1958], the unit group of a domain finitely

generated over Z is finitely generated. In the case that A = OS is the ring of

S-integers of a number field it is possible to determine effectively a system

of generators for A∗, and this was used by Győry in his effective finiteness

proof for (1.1) with A = OS. However, no general algorithm is known to

determine a system of generators for the unit group of an arbitrary finitely

generated domain A. In our proof of Theorem 1.1, we do not need any

information on the generators of A∗.

By combining Theorem 1.1 with an ideal membership algorithm for

Z[X1, . . . , Xr], one easily deduces the following:

Corollary 1.2. Given f1, . . . , fm, a, b, c, the solutions of (1.1) can be de-

termined effectively.

Proof. Clearly, ε, η is a solution of (1.1) if and only if there are polynomials

ε̃, ε̃′, η̃, η̃′ ∈ Z[X1, . . . , Xr] such that ε̃, η̃ represent ε, η, and

(1.3) ã · ε̃+ b̃ · η̃ − c̃, ε̃ · ε̃′ − 1, η̃ · η̃′ − 1 ∈ I.

Thus, we obtain all solutions of (1.1) by checking, for each quadruple of

polynomials ε̃, ε̃′, η̃, η̃′ ∈ Z[X1, . . . , Xr] of size at most exp
(
(2d)c

r
1(h + 1)

)

whether it satisfies (1.3). Further, using the ideal membership algorithm,

it can be checked effectively whether two different pairs (ε̃, η̃) represent the

same solution of (1.1). Thus, we can make a list of representatives, one for

each solution of (1.1). �

Let γ1, . . . , γs be multiplicatively independent elements of K∗ (the multi-

plicative independence of γ1, . . . , γs can be checked effectively for instance

using Lemma 7.2 below). Let again a, b, c be non-zero elements of A and

consider the equation

(1.4) aγv1
1 · · · γvs

s + bγw1

1 · · ·γws

s = c in v1, . . . , vs, w1, . . . , ws ∈ Z.

Theorem 1.3. Let ã, b̃, c̃ be representatives for a, b, c and for i = 1, . . . , s,

let (gi1, gi2) be a pair of representatives for γi. Suppose that f1, . . . , fm,
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ã, b̃, c̃, and gi1, gi2 (i = 1, . . . , s) all have degree at most d and logarithmic

height at most h, where d ≥ 1, h ≥ 1. Then for each solution (v1, . . . , ws)

of (1.4) we have

max
(
|v1|, . . . , |vs|, |w1|, . . . , |ws|

)
≤ exp

(
(2d)c

r+s
2 (h+ 1)

)
,

where c2 is an effectively computable absolute constant > 1.

An immediate consequence of Theorem 1.3 is that for given f1, . . . , fm, a, b, c

and γ1, . . . , γs, the solutions of (1.4) can be determined effectively.

Since every domain finitely generated over Z has a finitely generated unit

group, equation (1.1) maybe viewed as a special case of (1.4). But since

no general effective algorithm is known to find a finite system of generators

for the unit group of a finitely generated domain, we cannot deduce an

effective result for (1.1) from Theorem 1.3. In fact, we argue reversely, and

prove Theorem 1.3 by combining Theorem 1.1 with an effective result on

Diophantine equations of the type γv1
1 · · · γvs

s = γ0 in integers v1, . . . , vs,

where γ1, . . . , γs, γ0 ∈ K∗ (see Corollary 7.3 below).

The idea of the proof of Theorem 1.1 is roughly as follows. We first

estimate the degrees of the representatives of ε, η using Mason’s effective

result [19, 1983] on two term S-unit equations over function fields. Next,

we apply many different specialization maps A → Q to (1.1) and obtain

in this manner a large system of S-unit equations over number fields. By

applying an existing effective finiteness result for such S-unit equations

(e.g., Győry and Yu [10, 2006]) we collect enough information to retrieve

an effective upper bound for the heights of the representatives of ε, η. In

our proof, we apply the specialization maps on a domain B ⊃ A of a

special type which can be dealt with more easily. In the construction of

B, we use an effective result of Seidenberg [24, 1974] on systems of linear

equations over polynomial rings over arbitrary fields. To be able to go back

to equation (1.1) over A, we need an effective procedure to decide whether

a given element of B belongs to A∗. For this decision procedure, we apply

an effective result of Aschenbrenner [1, 2004] on systems of linear equations

over polynomial rings over Z.

The above approach was already followed by Győry [8, 1983], [9, 1984].

However, in these papers the domains A are represented over Z in a dif-

ferent way. Hence, to select those solutions from B of the equations under
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consideration which belong to A, certain restrictions on the domains A had

to be imposed.

In a forthcoming paper, we will give some applications of our above the-

orems and our method of proof to other classes of Diophantine equations

over finitely generated domains.

2. Effective linear algebra over polynomial rings

We have collected some effective results for systems of linear equations

to be solved in polynomials with coefficients in a field, or with coefficients

in Z.

Here and in the remainder of this paper, we write

log∗ x := max(1, log x) for x > 0, log∗ 0 := 1.

We use notation O(·) as an abbreviation for c× the expression between the

parentheses, where c is an effectively computable absolute constant. At

each occurrence of O(·), the value of c may be different.

Given a commutative domain R, we denote by Rm,n the R-module of

m×n-matrices with entries in R and by Rn the R-module of n-dimensional

column vectors with entries in R. Further, GLn(R) denotes the group of

matrices in Rn,n with determinant in the unit group R∗. The degree of a

polynomial f ∈ R[X1, . . . , XN ], that is, its total degree, is denoted by deg f .

From matrices A,B with the same number of rows, we form a matrix

[A,B] by placing the columns of B after those of A. Likewise, from two

matrices A,B with the same number of columns we form [ AB ] by placing the

rows of B below those of A.

The logarithmic height h(S) of a finite set S = {a1, . . . , at} ⊂ Z is defined

by h(S) := logmax(|a1|, . . . , |at|). The logarithmic height h(U) of a matrix

with entries in Z is defined by the logarithmic height of the set of entries

of U . The logarithmic height h(f) of a polynomial with coefficients in Z is

the logarithmic height of the set of coefficients of f .

Lemma 2.1. Let U ∈ Zm,n. Then the Q-vector space of y ∈ Qn with

Uy = 0 is generated by vectors in Zn of logarithmic height at most mh(U)+
1
2
m logm.
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Proof. Without loss of generality we may assume that U has rank m, and

moreover, that the matrix B consisting of the first m columns of U is invert-

ible. Let ∆ := detB. By multiplying with ∆B−1, we can rewrite Uy = 0

as [∆Im, C]y = 0, where Im is the m × m-unit matrix, and C consists of

m × m-subdeterminants of U . The solution space of this system is gener-

ated by the columns of
[

−C
∆In−m

]
. An application of Hadamard’s inequality

gives the upper bound from the lemma for the logarithmic heights of these

columns. �

Proposition 2.2. Let F be a field, N ≥ 1, and R := F [X1, . . . , XN ].

Further, let A be an m×n-matrix and b and m-dimensional column vector,

both consisting of polynomials from R of degree ≤ d where d ≥ 1.

(i) The R-module of x ∈ Rn with Ax = 0 is generated by vectors x whose

coordinates are polynomials of degree at most (2md)2
N

.

(ii) Suppose that Ax = b is solvable in x ∈ Rn. Then it has a solution x

whose coordinates are polynomials of degree at most (2md)2
N

.

Proof. See Aschenbrenner [1, Thms. 3.2, 3.4]. Results of this type were

obtained earlier, but not with a completely correct proof, by Hermann [12,

1926] and Seidenberg [24, 1974]. �

Corollary 2.3. Let R := Q[X1, . . . , XN ]. Further, Let A be an m×n-matrix

of polynomials in Z[X1, . . . , XN ] of degrees at most d and logarithmic heights

at most h where d ≥ 1, h ≥ 1. Then the R-module of x ∈ Rn with Ax = 0 is

generated by vectors x, consisting of polynomials in Z[X1, . . . , XN ] of degree

at most (2md)2
N

and height at most (2md)6
N

(h+ 1).

Proof. By Proposition 2.2 (i) we have to study Ax = 0, restricted to vectors

x ∈ Rn consisting of polynomials of degree at most (2d)2
N

. The set of these

x is a finite dimensional Q-vector space, and we have to prove that it is

generated by vectors whose coordinates are polynomials in Z[X1, . . . , XN ]

of logarithmic height at most (2md)6
N

(h + 1).

If x consists of polynomials of degree at most (2md)2
N

, then Ax consists

of m polynomials with coefficients in Q of degrees at most (2md)2
N

+ d,

all whose coefficients have to be set to 0. This leads to a system of linear

equations Uy = 0, where y consists of the coefficients of the polynomials

in x and U consists of integers of logarithmic heights at most h. Notice
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that the number m∗ of rows of U is m times the number of monomials in

N variables of degree at most (2md)2
N

+ d, that is

m∗ ≤ m

(
(2md)2

N

+ d+N

N

)
.

By Lemma 2.1 the solution space of Uy = 0 is generated by integer vectors

of logarithmic height at most

m∗h+ 1
2
m∗ logm∗ ≤ (2md)6

N

(h + 1).

This completes the proof of our corollary. �

Lemma 2.4. Let U ∈ Zm,n, b ∈ Zm be such that Uy = b is solvable in Zn.

Then it has a solution y ∈ Zn with h(y) ≤ mh([U,b]) + 1
2
m logm.

Proof. Assume without loss of generality that U and [U,b] have rank m.

By a result of Borosh, Flahive, Rubin and Treybig [4, 1989], Uy = b has a

solution y ∈ Zn such that the absolute values of the entries of y are bounded

above by the maximum of the absolute values of the m×m-subdeterminants

of [U,b]. The upper bound for h(y) as in the lemma easily follows from

Hadamard’s inequality. �

Proposition 2.5. Let N ≥ 1 and let f1, . . . , fm, b ∈ Z[X1, . . . , XN ] be poly-

nomials of degrees at most d and logarithmic heights at most h where d ≥ 1,

h ≥ 1, such that

(2.1) f1x1 + · · ·+ fmxm = b

is solvable in x1, . . . , xm ∈ Z[X1, . . . , xN ]. Then (2.1) has a solution in

polynomials x1, . . . , xm ∈ Z[X1, . . . , XN ] with

(2.2) deg xi ≤ (2d)expO(N log∗ N)(h+1), h(xi) ≤ (2d)expO(N log∗ N)(h+1)N+1

for i = 1, . . . , m.

Proof. Aschenbrenner’s main theorem [1, Theorem A] states that Eq. (2.1)

has a solution x1, . . . , xm ∈ Z[X1, . . . , XN ] with deg xi ≤ d0 for i = 1, . . . , m,

where

d0 = (2d)expO(N log∗ N)(h + 1).

So it remains to show the existence of a solution with small logarithmic

height.
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Let us restrict to solutions (x1, . . . , xm) of (2.1) of degree ≤ d0, and

denote by y the vector of coefficients of the polynomials x1, . . . , xm. Then

(2.1) translates into a system of linear equations Uy = b which is solvable

over Z. Here, the number of equations, i.e., number of rows of U , is equal

to m∗ :=
(
d0+d+N

N

)
. Further, h(U,b) ≤ h. By Lemma 2.4, Uy = b has a

solution y with coordinates in Z of height at most

m∗h+ 1
2
m∗ logm∗ ≤ (2d)expO(N log∗ N)(h+ 1)N+1.

It follows that (2.1) has a solution x1, . . . , xm ∈ Z[X1, . . . , XN ] satisfying

(2.2). �

Remarks. 1. Aschenbrenner gives in [1] an example which shows that the

upper bound for the degrees of the xi cannot depend on d and N only.

2. The above lemma gives an effective criterion for ideal membership in

Z[X1, . . . , XN ]. Let b ∈ Z[X1, . . . , XN ] be given. Further, suppose that an

ideal I of Z[X1, . . . , XN ] is given by a finite set of generators f1, . . . , fm. By

the above lemma, if b ∈ I then there are x1, . . . , xm ∈ Z[X1, . . . , XN ] with

upper bounds for the degrees and heights as in (2.2) such that b =
∑m

i=1 xifi.

It requires only a finite computation to check whether such xi exist.

3. A reduction

We reduce the general unit equation (1.1) to a unit equation over a domain

B of a special type which can be dealt with more easily.

Let again A = Z[z1, . . . , zr] ⊃ Z be a commutative domain finitely gen-

erated over Z and denote by K the quotient field of A. We assume that

r > 0. We have

(3.1) A ∼= Z[X1, . . . , Xr]/I

where I is the ideal of polynomials f ∈ Z[X1, . . . , Xr] such that f(z1, . . . , zr)

= 0. The ideal I is finitely generated. Let d ≥ 1, h ≥ 1 and assume that

(3.2) I = (f1, . . . , fm) with deg fi ≤ d, h(fi) ≤ h (i = 1, . . . , m).

Suppose that K has transcendence degree q ≥ 0. In case that q > 0,

we assume without loss of generality that z1, . . . , zq form a transcendence

basis of K/Q. We write t := r − q and rename zq+1, . . . , zr as y1, . . . , yt,
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respectively. In case that t = 0 we have A = Z[z1, . . . , zq], A
∗ = {±1} and

Theorem 1.1 is trivial. So we assume henceforth that t > 0.

Define

A0 := Z[z1, . . . , zq], K0 := Q(z1, . . . , zq) if q > 0,

A0 := Z, K0 := Q if q = 0.

Then

A = A0[y1, . . . , yt], K = K0(y1, . . . , yt).

Clearly, K is a finite extension of K0, so in particular an algebraic number

field if q = 0. Using standard algebra techniques, one can show that there

exist y ∈ A, f ∈ A0 such that K = K0(y), y is integral over A0, and

A ⊆ B := A0[f
−1, y], a, b, c ∈ B∗.

If ε, η ∈ A∗ is a solution to (1.1), then ε1 := aε/c, η1 := bη/c satisfy

(3.3) ε1 + η1 = 1, ε1, η1 ∈ B∗.

At the end of this section, we formulate Proposition 3.8 which gives an

effective result for equations of the type (3.3). More precisely, we introduce

an other type of degree and height deg (α) and h(α) for elements α of B,

and give effective upper bounds for the deg and h of ε1, η1. Subsequently

we deduce Theorem 1.1.

The deduction of Theorem 1.1 is based on some auxiliary results which

are proved first. We start with an explicit construction of y, f , with effective

upper bounds in terms of r, d, h and a, b, c for the degrees and logarithmic

heights of f and of the coefficients in A0 of the monic minimal polynomial

of y over A0. Here we follow more or less Seidenberg [24, 1974]. Second,

for a given solution ε, η of (1.1), we derive effective upper bounds for the

degrees and logarithmic heights of representatives for ε, ε−1, η, η−1 in terms

of deg (ε1), h(ε1), deg (η1), h(η1). Here we use Proposition 2.5 (Aschenbren-

ner’s result).

We introduce some further notation. First let q > 0. Then since z1, . . . , zq
are algebraically independent, we may view them as independent variables,

and for α ∈ A0, we denote by degα, h(α) the total degree and logarithmic

height of α, viewed as polynomial in z1, . . . , zq. In case that q = 0, we have

A0 = Z, and we agree that degα = 0, h(α) = log |α| for α ∈ A0. We

frequently use the following estimate, valid for all q ≥ 0:
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Lemma 3.1. Let g1, . . . , gn ∈ A0 and g = g1 · · · gn. Then

|h(g)−
n∑

i=1

h(gi)| ≤ q deg g.

Proof. See Bombieri and Gubler [3, Lemma 1.6.11, pp. 27]. �

We write Y = (Xq+1, . . . , Xr) and K0(Y) := K0(Xq+1, . . . , Xr), etc.

Given f ∈ Q(X1, . . . , Xr) we denote by f ∗ the rational function of K0(Y)

obtained by substituting zi for Xi for i = 1, . . . , q (and f ∗ = f if q = 0).

We view elements f ∗ ∈ A0[Y] as polynomials in Y with coefficients in A0.

We denote by deg
Y
f ∗ the (total) degree of f ∗ ∈ K0[Y] with respect to Y.

We recall that deg g is defined for elements of A0 and is taken with respect

to z1, . . . , zq. With this notation, we can rewrite (3.1), (3.2) as

(3.4)





A ∼= A0[Y]/(f ∗
1 , . . . , f

∗
m),

deg
Y
f ∗
i ≤ d for i = 1, . . . , m,

the coefficients of f ∗
1 , . . . , f

∗
m in A0 have degrees at most d

and logarithmic heights at most h.

PutD := [K : K0] and denote by σ1, . . . , σD theK0- isomorphic embeddings

of K in an algebraic closure K0 of K0.

Lemma 3.2. (i) We have D ≤ dt.

(ii) There exist integers a1, . . . , at with |ai| ≤ D2 for i = 1, . . . , t such that

for w := a1y1 + · · ·+ atyt we have K = K0(w).

Proof. (i) The set

W := {y ∈ K0
t
: f ∗

1 (y) = · · · = f ∗
m(y) = 0}

consists precisely of the images of (y1, . . . , yt) under σ1, . . . , σD. So we have

to prove that W has cardinality at most dt.

In fact, this follows from a repeated application of Bézout’s Theorem.

Given g1, . . . , gk ∈ K0[Y], we denote by V(g1, . . . , gk) the common set of

zeros of g1, . . . , gk in K0
t
. Let g1 := f ∗

1 . Then by the version of Bézout’s

Theorem in Hartshorne [11, p. 53, Thm. 7.7], the irreducible components

of V(g1) have dimension t − 1, and the sum of their degrees is at most

degY g1 ≤ d. Take a K0-linear combination g2 of f ∗
1 , . . . , f

∗
m not vanish-

ing identically on any of the irreducible components of V(g1). For any of
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these components, say V, the intersection of V and V(g2) is a union of ir-

reducible components, each of dimension t − 2, whose degrees have sum

at most deg
Y
g2 · degV ≤ d degV. It follows that the irreducible compo-

nents of V(g1, g2) have dimension t− 2 and that the sum of their degrees is

at most d2. Continuing like this, we see that there are linear combinations

g1, . . . , gt of f
∗
1 , . . . , f

∗
m such that for i = 1, . . . , t, the irreducible components

of V(g1, . . . , gi) have dimension d− i and the sum of their degrees is at most

di. For i = t it follows that V(g1, . . . , gt) is a set of at most dt points. Since

W ⊆ V(g1, . . . , gt) this proves (i).

(ii) Let a1, . . . , at be integers. Then w :=
∑t

i=1 aiyi generates K over K0

if and only if
∑t

j=1 ajσi(yj) (i = 1, . . . , D) are distinct. There are integers

ai with |ai| ≤ D2 for which this holds. �

Lemma 3.3. There are G0, . . . ,GD ∈ A0 such that

D∑

i=0

Giw
D−i = 0, G0GD 6= 0,(3.5)

deg Gi ≤ (2d)expO(r), h(Gi) ≤ (2d)expO(r)(h + 1) (i = 0, . . . , D).(3.6)

Proof. In what follows we writeY = (Xq+1, . . . , Xr) andYu := Xu1

q+1 · · ·X
ut

q+t,

|u| := u1+ · · ·+ut for tuples of non-negative integers u = (u1, . . . , ut). Fur-

ther, we define W :=
∑t

j=1 ajXq+j.

G0, . . . ,GD as in (3.5) clearly exist since w has degree D over K0. By

(3.4), there are g∗1, . . . , g
∗
m ∈ A0[Y] such that

(3.7)

D∑

i=0

GiW
D−i =

m∑

j=1

g∗jf
∗
j .

By Proposition 2.2 (ii), applied with the field F = K0, there are polynomials

g∗j ∈ K0[Y] (so with coefficients being rational functions in z) satisfying

(3.7) of degree at most (2max(d,D))2
t

≤ (2dt)2
t

=: d0 in Y. By multiplying

G0, . . . ,GD with an appropriate non-zero factor from A0 we may assume that

the g∗j are polynomials in A0[Y] of degree at most d0 in Y. By considering

(3.7) with such polynomials g∗j , we obtain

(3.8)
D∑

i=0

GiW
D−i =

m∑

j=1

( ∑

|u|≤d0

gj,uY
u

)
·
( ∑

|v|≤d

fj,vY
v

)
,
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where gj,u ∈ A0 and f ∗
j =

∑
|v|≤d fj,vY

v with fj,v ∈ A0. We view G0, . . . ,GD

and the polynomials gj,u as the unknowns of (3.8). Then (3.8) has solutions

with G0GD 6= 0.

We may view (3.8) as a system of linear equations Ax = 0 over K0, where

x consists of Gi (i = 0, . . . , D) and gj,u (j = 1, . . . , m, |u| ≤ d0). By Lemma

3.2 and an elementary estimate, the polynomial WD−i = (
∑t

k=1 akXq+k)
D−i

has logarithmic height at most O(D log(2D2t)) ≤ (2d)O(t). By combining

this with (3.4), it follows that the entries of the matrix A are elements of A0

of degrees at most d and logarithmic heights at most h0 := max((2d)O(t), h).

Further, the number of rows of A is at most the number of monomials in

Y of degree at most d0 + d which is bounded above by m0 :=
(
d0+d+t

t

)
.

So by Corollary 2.3, the solution module of (3.8) is generated by vectors

x = (G0, . . . ,GD, {gi,u}), consisting of elements from A0 of degree and height

at most
(
2m0d

)2q
≤ (2d)expO(r),

(
2m0d

)6q
(h0 + 1) ≤ (2d)expO(r)(h+ 1),

respectively.

At least one of these vectors x must have G0GD 6= 0 since otherwise (3.8)

would have no solution with G0GD 6= 0, contradicting (3.5). Thus, there

exists a solution x whose components G0, . . . ,GD satisfy both (3.5), (3.6).

This proves our lemma. �

It will be more convenient to work with

y := G0w = G0 · (a1y1 + · · ·+ atyt).

In the case D = 1 we set y := 1. The following properties of y follow at

once from Lemmas 3.1–3.3.

Corollary 3.4. We have K = K0(y), y ∈ A, y is integral over A0, and y

has minimal polynomial F(X) = XD + F1X
D−1 + · · ·+ FD over K0 with

Fi ∈ A0, degFi ≤ (2d)expO(r), h(Fi) ≤ (2d)expO(r)(h+ 1)

for i = 1, . . . , D.

Recall that A0 = Z if q = 0 and Z[z1, . . . , zq] if q > 0, where in the

latter case, z1, . . . , zq are algebraically independent. Hence A0 is a unique

factorization domain, and so the gcd of a finite set of elements of A0 is well-

defined and up to sign uniquely determined. With every element α ∈ K we
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can associate an up to sign unique tuple Pα,0, . . . , Pα,D−1, Qα of elements of

A0 such that

(3.9) α = Q−1
α

D−1∑

j=0

Pα,jy
j with Qα 6= 0, gcd(Pα,0, . . . , Pα,D−1, Qα) = 1.

Put

(3.10)

{
deg α := max(degPα,0, . . . , degPα,D−1, degQα),

h(α) := max
(
h(Pα,0), . . . , h(Pα,D−1), h(Qα)

) .

Then for q = 0 we have degα = 0, h(α) = logmax
(
|Pα,0|, . . . , |Pα,D−1|, |Qα|

)
.

Lemma 3.5. Let α ∈ K∗ and let (a, b) be a pair of representatives for α,

with a, b ∈ Z[X1, . . . , Xr], b 6∈ I. Put d∗ := max(d, deg a, deg b), h∗ :=

max(h, h(a), h(b)). Then

(3.11) degα ≤ (2d∗)expO(r), h(α) ≤ (2d∗)expO(r)(h∗ + 1).

Proof. Consider the linear equation

(3.12) Q · α =
D−1∑

j=0

Pjy
j

in unknowns P0, . . . , PD−1, Q ∈ A0. This equation has a solution with Q 6=

0, since α ∈ K = K0(y) and y has degree D over K0. Write again Y =

(Xq+1, . . . , Xr) and put Y := G0 · (
∑t

j=1 ajXq+j). Let a∗, b∗ ∈ A0[Y] be

obtained from a, b by substituting zi for Xi for i = 1, . . . , q (a∗ = a, b∗ = b

if q = 0). By (3.4), there are g∗j ∈ A0[Y] such that

(3.13) Q · a∗ − b∗
D−1∑

j=0

PjY
j =

m∑

j=1

g∗j f
∗
j .

By Proposition 2.2 (ii) this identity holds with polynomials g∗j ∈ A0[Y] of

degree in Y at most (2max(d∗, D))2
t

≤ (2d∗)t2
t

, where possibly we have

to multiply (P0, . . . , PD−1, Q) with a non-zero element from A0. Now com-

pletely similarly as in the proof of Lemma 3.3, one can rewrite (3.13) as a

system of linear equations over K0 and then apply Corollary 2.3. It follows

that (3.12) is satisfied by P0, . . . , PD−1, Q ∈ A0 with Q 6= 0 and

deg Pi, degQ ≤ (2d∗)expO(r),

h(Pi), h(Q) ≤ (2d∗)expO(r)(h∗ + 1) (i = 0, . . . , D − 1).
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By dividing P0, . . . , PD−1, Q by their gcd and using Lemma 3.1 we obtain

Pα,0, . . . , PD−1,α, Qα ∈ A0 satisfying both (3.9) and

degPi,α, degQα ≤ (2d∗)expO(r),

h(Pi,α), h(Qα) ≤ (2d∗)expO(r)(h∗ + 1) (i = 0, . . . , D − 1).

�

Lemma 3.6. Let α1, . . . , αn ∈ K∗. For i = 1, . . . , n, let (ai, bi) be a pair of

representatives for αi, with ai, bi ∈ Z[X1, . . . , Xr], bi 6∈ I. Put

d∗∗ := max(d, deg a1, deg b1, . . . , deg an, deg bn),

h∗∗ := max
(
h, h(a1), h(b1), . . . , h(an), h(bn)

)
.

Then there is a non-zero f ∈ A0 such that

A ⊆ A0[y, f
−1], α1, . . . , αn ∈ A0[y, f

−1]∗,(3.14)

deg f ≤ (n+ 1)(2d∗∗)expO(r), h(f) ≤ (n + 1)(2d∗∗)expO(r)(h∗∗ + 1).(3.15)

Proof. Take

f :=
t∏

i=1

Qyi ·
n∏

j=1

(
Qαi

Qα−1

i

)
.

Since in general, Qββ ∈ A0[y] for β ∈ K∗, we have fβ ∈ A0[y] for β =

y1, . . . , yt, α1, α
−1
1 , . . . , αn, α

−1
n . This implies (3.14). The inequalities (3.15)

follow at once from Lemmas 3.5 and 3.1. �

Lemma 3.7. Let λ ∈ K∗ and let ε be a non-zero element of A. Let (a, b)

with a, b ∈ Z[X1, . . . , Xr] be a pair of representatives for λ. Put

d0 := max(deg f1, . . . , deg fm, deg a, deg b, deg λε),

h0 := max
(
h(f1), . . . , h(fm), h(a), h(b), h(λε)

)
.

Then ε has a representative ε̃ ∈ Z[X1, . . . , Xr] such that

deg ε̃ ≤ (2d0)
expO(r log∗ r)(h0 + 1), h(ε̃) ≤ (2d0)

expO(r log∗ r)(h0 + 1)r+1.

If moreover ε ∈ A∗, then ε−1 has a representative ε̃′ ∈ Z[X1, . . . , Xr] with

deg ε̃′ ≤ (2d0)
expO(r log∗ r)(h0 + 1), h(ε̃′) ≤ (2d0)

expO(r log∗ r)(h0 + 1)r+1.
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Proof. In case that q > 0, we identify zi with Xi and view elements of A0

as polynomials in Z[X1, . . . , Xq]. Put Y := G0 · (
∑t

i=1 aiXq+i). We have

(3.16) λε = Q−1
D−1∑

i=0

Piy
i

with P0, . . . , PD−1, Q ∈ A0 and gcd(P0, . . . , PD−1, Q) = 1. According to

(3.16), ε̃ ∈ Z[X1, . . . , Xr] is a representative for ε if and only if there are

g1, . . . , gm ∈ Z[X1, . . . , Xr] such that

(3.17) ε̃ · (Q · a) +
m∑

i=1

gifi = b

D−1∑

i=0

PiY
i.

We may view (3.17) as an inhomogeneous linear equation in the unknowns

ε̃, g1, . . . , gm. Notice that by Lemmas 3.2–3.5 the degrees and logarith-

mic heights of Qa and b
∑D−1

i=0 PiY
i are all bounded above by (2d0)

expO(r),

(2d0)
expO(r)(h0 + 1), respectively. Now Proposition 2.5 implies that (3.17)

has a solution with upper bounds for deg ε̃, h(ε̃) as stated in the lemma.

Now suppose that ε ∈ A∗. Again by (3.16), ε̃′ ∈ Z[X1, . . . , Xr] is a

representative for ε−1 if and only if there are g′1, . . . , g
′
m ∈ Z[X1, . . . , Xr]

such that

ε̃′ · b
D−1∑

i=0

PiY
i +

m∑

i=1

g′ifi = Q · a.

Similarly as above, this equation has a solution with upper bounds for deg ε̃′,

h(ε̃′) as stated in the lemma. �

Recall that we have defined A0 = Z[z1, . . . , zq], K0 = Q(z1, . . . , zq) if

q > 0 and A0 = Z, K0 = Q if q = 0, and that in the case q = 0, degrees

and deg -s are always zero. Theorem 1.1 can be deduced from the following

Proposition, which makes sense also if q = 0. The proof of this Proposition

is given in Sections 4–6.

Proposition 3.8. Let f ∈ A0 with f 6= 0, and let

F = XD + F1X
D−1 + · · ·+ FD ∈ A0[X ] (D ≥ 1)

be the minimal polynomial of y over K0. Let d1 ≥ 1, h1 ≥ 1 and suppose

max(deg f, degF1, . . . , degFD) ≤ d1, max(h(f), h(F1), . . . , h(FD)) ≤ h1.
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Define the domain B := A0[y, f
−1]. Then for each pair (ε1, η1) with

(3.18) ε1 + η1 = 1, ε1, η1 ∈ B∗

we have

deg ε1, deg η1 ≤ 4qD2 · d1,(3.19)

h(ε1), h(η1) ≤ expO
(
2D(q + d1) log

∗{2D(q + d1)}+Dh1

)
.(3.20)

Proof of Theorem 1.1. Let a, b, c ∈ A be the coefficients of (1.3), and ã, b̃, c̃

the representatives for a, b, c from the statement of Theorem 1.1. By Lemma

3.6, there exists non-zero f ∈ A0 such that that A ⊆ B := A0[y, f
−1],

a, b, c ∈ B∗, and moreover, deg f ≤ (2d)expO(r) and h(f) ≤ (2d)expO(r)(h+1).

By Corollary 3.4 we have the same type of upper bounds for the degrees

and logarithmic heights of F1, . . . ,FD. So in Proposition 3.8 we may take

d1 = (2d)expO(r), h1 = (2d)expO(r)(h + 1). Finally, by Lemma 3.2 we have

D ≤ dt.

Let (ε, η) be a solution of (1.1) and put ε1 := aε/c, η1 := bη/c. By

Proposition 3.8 we have

deg ε1 ≤ 4qd2t(2d)expO(r) ≤ (2d)expO(r), h(ε1) ≤ exp
(
(2d)expO(r)(h+ 1)

)
.

We apply Lemma 3.7 with λ = a/c. Notice that λ is represented by (ã, c̃).

By assumption, ã and c̃ have degrees at most d and logarithmic heights at

most h. Letting ã, c̃ play the role of a, b in Lemma 3.7, we see that in that

lemma we may take h0 = exp
(
(2d)expO(r)(h + 1)

)
and d0 = (2d)expO(r). It

follows that ε, ε−1 have representatives ε̃, ε̃′ ∈ Z[X1, . . . , Xr] such that

deg ε̃, deg ε̃′, h(ε̃), h(ε̃′) ≤ exp
(
(2d)expO(r)(h+ 1)

)
.

We observe here that the upper bound for h(ε1) dominates by far the other

terms in our estimation. In the same manner one can derive similar upper

bounds for the degrees and logarithmic heights of representatives for η and

η−1. This completes the proof of Theorem 1.1. �

Proposition 3.8 is proved in Sections 4–6. In Section 4 we deduce the

degree bound (3.19). Here, our main tool is Mason’s effective result on

S-unit equations over function fields [19, 1983]. In Section 5 we work out

a more precise version of an effective specialization argument of Győry [8,
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1983], [9, 1984]. In Section 6 we prove (3.20) by combining the specialization

argument from Section 5 with a recent effective result for S-unit equations

over number fields, due to Győry an Yu [10, 2006].

4. Bounding the degree

We start with recalling some results on function fields in one variable. Let

k be an algebraically closed field of characteristic 0 and let z be transcen-

dental over k. Let K be a finite extension of k(z). Denote by gK/k the genus

of K, and by MK the collection of valuations of K/k, i.e, the valuations of

K with value group Z which are trivial on k. Recall that these valuations

satisfy the sum formula
∑

v∈MK

v(x) = 0 for x ∈ K∗.

As usual, for a finite subset S of MK the group of S-units of K is given by

O∗
S = {x ∈ K∗ : v(x) = 0 for v ∈ MK \ S}.

The (homogeneous) height of x = (x1, . . . , xn) ∈ Kn relative to K/k is

defined by

HK(x) = HK(x1, . . . , xn) := −
∑

v∈MK

min(v(x1), . . . , v(xn)).

By the sum formula,

(4.1) HK(αx) = HK(x) for α ∈ K∗.

The height of x ∈ K relative to K/k is defined by

HK(x) := HK(1, x) = −
∑

v∈MK

min(0, v(x)).

If L is a finite extension of K, we have

(4.2) HL(x1, . . . , xn) = [L : K]HK(x1, . . . , xn) for (x1, . . . , xn) ∈ Kn.

By deg f we denote the total degree of f ∈ k[z]. Then for f1, . . . , fn ∈ k[z]

with gcd(f1, . . . , fn) = 1 we have

(4.3) Hk(z)(f1, . . . , fn) = max(deg f1, . . . , deg fn).
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Lemma 4.1. Let y1, . . . , ym ∈ K and suppose that

Xm + f1X
m−1 + · · ·+ fm = (X − y1) · · · (X − ym)

for certain f1, . . . , fm ∈ k[z]. Then

[K : k(z)]max(deg f1, . . . , deg fm) =

m∑

i=1

HK(yi).

Proof. By Gauss’ Lemma we have for v ∈ MK ,

min(v(f1), . . . , v(fm)) =

m∑

i=1

min(0, v(yi)).

Now take the sum over v ∈ MK and apply (4.2), (4.3). �

Lemma 4.2. Let K be the splitting field over k(z) of F := Xm+f1X
m−1+

· · ·+ fm, where f1, . . . , fm ∈ k[z]. Then

gK/k ≤ (d− 1)m · max
1≤i≤m

deg fi,

where d := [K : k(z)].

Proof. This is Lemma H of Schmidt [23, 1978]. �

In what follows, the cardinality of a set S is denoted by |S|.

Proposition 4.3. Let K be a finite extension of k(z) and S be a finite

subset of MK. Then for every solution of

(4.4) x+ y = 1 in x, y ∈ O∗
S \ k∗

we have max(HK(x), HK(y)) ≤ |S|+ 2gK/k − 2.

Proof. See Mason [19, 1983]. �

We keep the notation from Proposition 3.8. We may assume that q > 0

because the case q = 0 is trivial. Let as before K0 = Q(z1, . . . , zq), K =

K0(y), A0 = Z[z1, . . . , zq], B = Z[z1, . . . , zq, f
−1, y].

Fix i ∈ {1, . . . , q}. Let ki := Q(z1, . . . , zi−1, zi+1, . . . , zq) and ki its al-

gebraic closure. Thus, the domain A0 is contained in ki[zi]. Let y(1) =

y, . . . , y(D) denote the conjugates of y over K0. Let Mi denote the splitting

field of the polynomial XD + F1X
D−1 + · · ·+ FD over ki(zi), i.e.

Mi := ki(zi, y
(1), . . . , y(D)).
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The subring

Bi := ki[zi, f
−1, y(1), . . . , y(D)]

ofMi contains B = Z[z1, . . . , zq, f
−1, y] as a subring. Put ∆i := [Mi : ki(zi)].

We apply Lemmas 4.1, 4.2 and Proposition 4.3 with zi,ki,Mi instead of

z,k, K. Denote by gMi
the genus of Mi/ki. The height HMi

is taken with

respect to Mi/ki. For g ∈ A0, we denote by degzi g the degree of g in the

variable zi.

Lemma 4.4. Let α ∈ K and denote by α(1), . . . , α(D) the conjugates of α

over K0. Then

degα ≤ qD · d1 +

q∑

i=1

∆−1
i

D∑

j=1

HMi
(α(j)).

Proof. We have

α = Q−1
D−1∑

j=0

Pjy
j

for certain P0, . . . , PD−1, Q ∈ A0 with gcd(Q,P0, . . . , PD−1) = 1. Clearly,

(4.5) deg α ≤

q∑

i=1

µi, where µi := max(degzi Q, degzi P0, . . . , degzi PD−1).

Below, we estimate µ1, . . . , µq from above. We fix i ∈ {1, . . . , q} and use

the notation introduced above.

Obviously,

α(k) = Q−1

D−1∑

j=0

Pj · (y
(k))j for k = 1, . . . , D.

Let Ω be the D ×D-matrix with rows

(1, . . . , 1), (y(1), . . . , y(D)), . . . ,
(
(y(1))D−1, . . . , (y(D))D−1

)
.

By Cramer’s rule, Pj/Q = δj/δ, where δ = detΩ, and δj is the determinant

of the matrix obtained by replacing the j-th row of Ω by (α(1), . . . , α(D)).

Gauss’ Lemma implies that gcd(P0, . . . , PD−1, Q) = 1 in the ring in ki[zi].

By (4.3) (with zi in place of z) we have

µi = max(degzi Q, degzi P0, . . . , degzi PD−1)

= H
k(zi)

(Q,P0, . . . , PD−1).
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Using [Mi : ki(zi)] = ∆i, the identities (4.2), (4.1) (with zi instead of z)

and the fact that (δ, δ1, . . . , δD) is a scalar multiple of (Q,P0, . . . , PD−1) we

obtain

(4.6) ∆iµi = HMi
(Q,P0, . . . , PD−1) = HMi

(δ, δ1, . . . , δD).

We bound from above the right-hand side. A straightforward estimate yields

that for every valuation v of Mi/ki,

−min(v(δ), v(δ1), . . . , v(δD))

≤ −D

D∑

j=1

min(0, v(y(j)))−
D∑

j=1

min(0, v(α(j))).

Then summation over v and an application of Lemma 4.1 lead to

HMi
(δ, δ1, . . . , δD) ≤ D

D∑

j=1

HMi
(y(j)) +

D∑

j=1

HMi
(α(j)),

≤ D∆imax(degzi F1, . . . , degFD) +
D∑

j=1

HMi
(α(j))

≤ ∆i ·Dd1 +

D∑

j=1

HMi
(α(j)),

and then a combination with (4.6) gives

µi ≤ Dd1 +∆−1
i

D∑

j=1

HMi
(α(j)).

Now these bounds for i = 1, . . . , q together with (4.5) imply our Lemma. �

Proof of (3.19). We fix again i ∈ {1, . . . , q} and use the notation introduced

above. By Lemma 4.2, applied with ki, zi,Mi instead of k, z,K and with

F = F = XD + F1X
D−1 + · · ·+ FD, we have

(4.7) gMi
≤ (∆i − 1)Dmax

j
degzi(Fj) ≤ (∆i − 1) ·Dd1.

Let S denote the subset of valuations v of Mi/ki such that v(zi) < 0 or

v(f) > 0. Each valuation of ki(zi) can be extended to at most [Mi : ki(zi)] =



22 J.-H. EVERTSE AND K. GYŐRY

∆i valuations of Mi. Hence Mi has at most ∆i valuations v with v(zi) < 0

and at most ∆i deg f valuations with v(f) > 0. Thus,

(4.8) |S| ≤ ∆i +∆i degzi f ≤ ∆i(1 + deg f) ≤ ∆i(1 + d1).

Every α ∈ Mi which is integral over ki[zi, f
−1] belongs to OS. The

elements y(1), . . . , y(D) belong to Mi and are integral over A0 = Z[z1, . . . , zq]

so they certainly belong to OS. As a consequence, the elements of B and

their conjugates over Q(z1, . . . , zq) belong to OS. In particular, if ε1, η1 ∈ B∗

and ε1 + η1 = 1, then

(4.9) ε
(j)
1 + η

(j)
1 = 1, ε

(j)
1 , η

(j)
1 ∈ O∗

S for j = 1, . . . , D.

We apply Proposition 4.3 and insert the upper bounds (4.7), (4.8). It

follows that for j = 1, . . . , D we have either ε
(j)
1 ∈ ki or

HMi
(ε

(j)
1 ) ≤ |S|+ 2gMi

− 2 ≤ 3∆i ·Dd1;

in fact the last upper bound is valid also if ε
(j)
1 ∈ ki. Together with Lemma

4.4 this gives

deg ε1 ≤ qDd1 + qD · 3Dd1 ≤ 4qD2d1.

For deg η1 we derive the same estimate. This proves (3.19). �

5. Specializations

In this section we prove some results about specialization homomorphisms

from the domain B from Proposition 3.8 to Q. We start with some notation

and some preparatory lemmas.

The set of places of Q is MQ = {∞} ∪ {primes}. By | · |∞ we denote

the ordinary absolute value on Q and by | · |p (p prime) the p-adic absolute

value, with |p|p = p−1. More generally, let L be an algebraic number field

and denote by ML its set of places. Given v ∈ ML, we define the absolute

value | · |v in such a way that its restriction to Q is | · |p if v lies above

p ∈ MQ. These absolute values satisfy the product formula
∏

v∈ML
|x|dvv = 1

for x ∈ L∗, where dv := [Lv : Qp]/[L : Q].

The (absolute logarithmic) height of x = (x1, . . . , xm) ∈ Lm \ {0} is

defined by

h(x) = h(x1, . . . , xm) = log
∏

v∈ML

(
max(|x1|v, . . . , |xm|v)

)dv
.



UNIT EQUATIONS OVER FINITELY GENERATED DOMAINS 23

By the product formula, h(αx) = h(x) for α ∈ L∗. Moreover, h(x) depends

only on x and not on the choice of the field L such that x ∈ Lm. So it

defines a height on Q
m
\ {0}. The (absolute logarithmic) height of α ∈ Q

is defined by h(α) := h((1, α)). In case that α ∈ L we have

h(α) = log
∏

v∈ML

max(1, |α|dvv ).

For a = (a1, . . . , am) ∈ Zm with gcd(a1, . . . , am) = 1 we have

(5.1) h(a) = logmax(|a1|, . . . , |am|).

It is easy to verify that for a1, . . . , am, b1, . . . , bm ∈ Q,

(5.2) h(a1b1 + · · ·+ ambm) ≤ h(1, a1, . . . , am) + h(1, b1, . . . , bm) + logm.

Let G be a polynomial with coefficients in L. If a1, . . . , ar are the non-

zero coefficients of G, we put |G|v := max(|a1|v, . . . , |ar|v) for v ∈ ML. For

a polynomial G with coefficients in Z we define h(G) := log |G|∞.

We start with four auxiliary results that are used in the construction of

our specializations.

Lemma 5.1. Let m ≥ 1, α1, . . . , αm ∈ Q and suppose that G(X) :=∏m
i=1(X − αi) ∈ Z[X ]. Then

|h(G)−
m∑

i=1

h(αi)| ≤ m.

Proof. See Bombieri and Gubler [3, Theorem 1.6.13, pp. 28]. �

Lemma 5.2. Let m ≥ 1, let α1, . . . , αm ∈ Q be distinct and suppose that

G(X) :=
∏m

i=1(X − αi) ∈ Z[X ]. Let q, p0, . . . , pm−1 be integers with

gcd(q, p0, . . . , pm−1) = 1,

and put

βi :=

m−1∑

j=0

(pj/q)α
j
i (i = 1, . . . , m).

Then

logmax(|q|, |p0|, . . . , |pm−1|) ≤ 2m2 + (m− 1)h(G) +
m∑

j=1

h(βj).
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Proof. For m = 1 the assertion is obvious, so we assume m ≥ 2. Let Ω be

the m×m matrix with rows (αi
1, . . . , α

i
m) (i = 0, . . . , m− 1). By Cramer’s

rule we have pi/q = δi/δ (i = 0, . . . , m − 1), where δ = detΩ and δi is

the determinant of the matrix, obtained by replacing the i-th row of Ω by

(β1, . . . , βm). Put µ := logmax(|q|, |p0|, . . . , |pm−1|). Then by (5.1),

µ = h(q, p0, . . . , pm−1) = h(δ, δ0, . . . , δm−1).

Let L = Q(α1, . . . , αm). By Hadamard’s inequality for the infinite places

and the ultrametric inequality for the finite places, we get

max(|δ|v, |δ1|v, . . . , |δm|v) ≤ cv

m∏

i=1

max(1, |αi|v)
m−1 max(1, |βi|v)

for v ∈ ML, where cv = mm/2 if v is infinite and cv = 1 if v is finite. By

taking the product over v ∈ ML and then logarithms, it follows that

µ ≤ 1
2
m logm+

m∑

i=1

(
(m− 1)h(αi) + h(βi)

)
.

A combination with Lemma 5.1 implies our lemma. �

Lemma 5.3. Let g ∈ Z[z1, . . . , zq] be a non-zero polynomial of degree d and

N a subset of Z of cardinality > d. Then

|{u ∈ N q : g(u) = 0}| ≤ d|N |q−1.

Proof. We proceed by induction on q. For q = 1 the assertion is clear.

Let q ≥ 2. Write g =
∑d0

i=0 gi(z1, . . . , zq−1)z
i
q with gi ∈ Z[z1, . . . , zq−1] and

gd0 6= 0. Then deg gd0 ≤ d − d0. By the induction hypothesis, there are at

most (d−d0)|N |q−2·|N | tuples (u1, . . . , uq) ∈ N q with gd0(u1, . . . , uq−1) = 0.

Further, there are at most |N |q−1 ·d0 tuples u ∈ N q with gd0(u1, . . . , uq−1) 6=

0 and g(u1, . . . , uq) = 0. Summing these two quantities implies that g has

at most d|N |q−1 zeros in N q. �

Lemma 5.4. Let g1, g2 ∈ Z[z1, . . . , zq] be two non-zero polynomials of de-

grees D1, D2, respectively, and let N be an integer ≥ max(D1, D2). Define

S := {u ∈ Zq : |u| ≤ N, g2(u) 6= 0}.

Then S is non-empty, and

|g1|p ≤ (4N)qD1(D1+1)/2 max{|g1(u)|p : u ∈ S}(5.3)

for p ∈ MQ = {∞} ∪ {primes}.
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Proof. Put Cp := max{|g1(u)|p : u ∈ S} for p ∈ MQ. We proceed by

induction on q, starting with q = 0. In the case q = 0 we interpret g1, g2 as

non-zero constants with |g1|p = Cp for p ∈ MQ. Then the lemma is trivial.

Let q ≥ 1. Write

g1 =

D′

1∑

j=0

g1j(z1, . . . , zq−1)z
j
q , g2 =

D′

2∑

j=0

g2j(z1, . . . , zq−1)z
j
q ,

where g1,D′

1
, g2,D′

2
6= 0. By the induction hypothesis, the set

S ′ := {u′ ∈ Zq−1 : |u′| ≤ N, g2,D′

2
(u′) 6= 0}

is non-empty and moreover,

(5.4) max
0≤j≤D′

1

|g1j |p ≤ (4N)(q−1)D1(D1+1)/2C ′
p for p ∈ MQ

where

C ′
p := max{|g1j(u

′)|p : u
′ ∈ S ′, j = 0, . . . , D′

1}.

We estimate C ′
p from above in terms of Cp. Fix u′ ∈ S ′. There are at least

2N+1−D′
2 ≥ D′

1+1 integers uq with |uq| ≤ N such that g2(u
′, uq) 6= 0. Let

a0, . . . , aD′

1
be distinct integers from this set. By Lagrange’s interpolation

formula,

g1(u
′, X) =

D′

1∑

j=0

g1j(u
′)Xj

=

D′

1∑

j=0

g1(u
′, aj)

D′

1∏

i=0

i 6=j

X − ai
aj − ai

.

From this we deduce

max
0≤j≤D′

1

|g1j(u
′)| ≤ C∞

D′

1∑

j=0

D′

1∏

i=0

i 6=j

1 + |ai|

|aj − ai|

≤ C∞(D′
1 + 1)(N + 1)D

′

1 ≤ (4N)D
′

1
(D′

1
+1)/2C∞.

Now let p be a prime and put ∆ :=
∏

1≤i<j≤D′

1
|aj − ai|. Then

max
0≤j≤D′

1

|g1j(u
′)|p ≤ Cp|∆|−1

p ≤ ∆Cp ≤ (4N)D
′

1
(D′

1
+1)/2Cp.
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It follows that C ′
p ≤ (4N)D

′

1
(D′

1
+1)/2Cp for p ∈ MQ. A combination with

(5.4) gives (5.3). �

We now introduce our specializations B → Q and prove some properties.

We assume q > 0 and apart from that keep the notation and assumptions

from Proposition 3.8. In particular, A0 = Z[z1, . . . , zq], K0 = Q(z1, . . . , zq)

and

K = Q(z1, . . . , zq, y), B = Z[z1, . . . , zq, f
−1, y],

where f is a non-zero element of A0, y is integral over A0, and y has minimal

polynomial

F := XD + F1X
D−1 + · · ·+ FD ∈ A0[X ]

over K0. In the case D = 1, we take y = 1, F = X − 1.

To allow for other applications (e.g., Lemma 7.2 below), we consider a

more general situation than what is needed for the proof of Proposition 3.8.

Let d1 ≥ d0 ≥ 1, h1 ≥ h0 ≥ 1 and assume that

(5.5)

{
max(degF1, . . . , degFD) ≤ d0, max(d0, deg f) ≤ d1,

max
(
h(F1), . . . , h(FD)

)
≤ h0, max(h0, h(f)) ≤ h1.

Let u = (u1, . . . , uq) ∈ Zq. Then the substitution z1 7→ u1, . . . , zq 7→ uq

defines a ring homomorphism (specialization)

ϕu : α 7→ α(u) : {g1/g2 : g1, g2 ∈ A0, g2(u) 6= 0} → Q.

We want to extend this to a ring homomorphism from B to Q and for this,

we have to impose some restrictions on u. Denote by ∆F the discriminant

of F (with ∆F := 1 if D = degF = 1), and let

(5.6) H := ∆FFD · f.

Then H ∈ A0. Using that ∆F is a polynomial of degree 2D−2 with integer

coefficients in F1, . . . ,FD, it follows easily that

(5.7) degH ≤ (2D − 1)d0 + d1 ≤ 2Dd1.

Now assume that

(5.8) H(u) 6= 0.

Then f(u) 6= 0 and moreover, the polynomial

Fu := XD + F1(u)X
D−1 + · · ·+ FD(u)
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has D distinct zeros which are all different from 0, say y1(u), . . . , yD(u).

Thus, for j = 1, . . . , D the assignment

z1 7→ u1, . . . , zq 7→ uq, y 7→ yj(u)

defines a ring homomorphism ϕu,j from B to Q; in the case D = 1 it is just

ϕu. The image of α ∈ B under ϕu,j is denoted by αj(u). Recall that we

may express elements α of B as

α =

D−1∑

i=0

(Pi/Q)yi(5.9)

with P0, . . . , PD−1, Q ∈ A0, gcd(P0, . . . , PD−1, Q) = 1.

Since α ∈ B, the denominator Q must divide a power of f , hence Q(u) 6= 0.

So we have

(5.10) αj(u) =

D−1∑

i=0

(Pi(u)/Q(u))yj(u)
i (j = 1, . . . , D).

It is obvious that ϕu,j is the identity on B ∩ Q. Thus, if α ∈ B ∩ Q, then

ϕu,j(α) has the same minimal polynomial as α and so it is conjugate to α.

For u = (u1, . . . , uq) ∈ Zq, we put |u| := max(|u1|, . . . , |uq|). It is easy to

verify that for any g ∈ A0, u ∈ Zq,

(5.11) log |g(u)| ≤ q log deg g + h(g) + deg g logmax(1, |u|).

In particular,

(5.12) h(Fu) ≤ q log d0 + h0 + d0 logmax(1, |u|)

and so by Lemma 5.2 (ii),

(5.13)

D∑

j=1

h(yj(u)) ≤ D + q log d0 + h0 + d0 logmax(1, |u|).

Define the algebraic number fields Ku,j := Q(yj(u)) (j = 1, . . . , D). De-

note by ∆L the discriminant of an algebraic number field L. We derive an

upper bound for the discriminant ∆Ku,j
of Ku,j.

Lemma 5.5. Let u ∈ Zq with H(u) 6= 0. Then for j = 1, . . . , D we have

[Ku,j : Q] ≤ D and

|∆Ku,j
| ≤ D2D−1

(
dq0 · e

h0 max(1, |u|)d0
)2D−2

.
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Proof. Let j ∈ {1, . . . , D}. The estimate for the degree is obvious. To

estimate the discriminant, let Pj be the monic minimal polynomial of yj(u).

Then ∆Ku,j
divides the discriminant ∆Pj

of Pj . Using the expression of the

discriminant of a monic polynomial as the product of the squares of the

differences of its zeros, one easily shows that ∆Pj
divides ∆Fu

in the ring of

algebraic integers and so also in Z. Therefore, ∆Ku,j divides ∆Fu
in Z.

It remains to estimate from above the discriminant of Fu. By, e.g., Lewis

and Mahler [14, bottom of p. 335], we have

|∆Fu
| ≤ D2D−1|Fu|

2D−2,

where |Fu| denotes the maximum of the absolute values of the coefficients

of Fu. By (5.12), this is bounded above by dq0e
h0 max(1, |u|)d0, so

|∆Fu
| ≤ D2D−1

(
dq0e

h0 max(1, |u|)d0
)2D−2

.

This implies our lemma. �

We finish with two lemmas, which relate the height of α ∈ B to the

heights of αj(u) for u ∈ Zq.

Lemma 5.6. Let u ∈ Zq with H(u) 6= 0. Let α ∈ B. Then for j = 1, . . . , D,

h(αj(u)) ≤ D2 + q(D log d0 + log degα) +Dh0 + h(α) +

+(Dd0 + degα) logmax(1, |u|).

Proof. Let P0, . . . , PD−1, Q as in (5.9) and write αj(u) as in (5.10). By (5.2),

h(αj(u)) ≤ logD +(5.14)

+h
(
1, P0(u)/Q(u), . . . , PD−1(u)/Q(u)

)
+ (D − 1)h(yj(u)).

From (5.11) we infer

h(1, P0(u)/Q(u), . . . , PD−1(u)/Q(u))

≤ logmax(|Q(u)|, |P0(u)|, . . . , |PD−1(u)|)

≤ q log degα + h(α) + degα · logmax(1, |u|).

By combining (5.14) with this inequality and with (5.13), our lemma easily

follows. �
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Lemma 5.7. Let α ∈ B, α 6= 0, and let N be an integer with

N ≥ max
(
degα, 2Dd0 + 2(q + 1)(d1 + 1)

)
.

Then the set

S := {u ∈ Zq : |u| ≤ N, H(u) 6= 0}

is non-empty, and

h(α) ≤ 5N4(h1 + 1)2 + 2D(h1 + 1)H

where H := max{h(αj(u)) : u ∈ S, j = 1, . . . , D}.

Proof. It follows from our assumption on N , (5.7), and Lemma 5.4 that S

is non-empty. We proceed with estimating h(α).

Let P0, . . . , PD−1, Q ∈ A0 be as in (5.9). We analyse Q more closely. Let

f = ±pk11 · · · pkmm gl11 · · · glnn

be the unique factorization of f in A0, where p1, . . . , pm are distinct prime

numbers, and ±g1, . . . ,±gn distinct irreducible elements of A0 of positive

degree. Notice that

m ≤ h(f)/ log 2 ≤ h1/ log 2,(5.15)

n∑

i=1

lih(gi) ≤ qd1 + h1,(5.16)

where the last inequality is a consequence of Lemma 5.1. Since α ∈ B, the

polynomial Q is also composed of p1, . . . , pm, g1, . . . , gn. Hence

(5.17) Q = aQ̃ with a = ±p
k′1
1 · · · pk

′

m
m , Q̃ = g

l′1
1 · · · gl

′

n
n

for certain non-negative integers k′
1, . . . , l

′
n. Clearly,

l′1 + · · ·+ l′n ≤ degQ ≤ degα ≤ N,

and by Lemma 3.1 and (5.16),

(5.18) h(Q̃) ≤ q degQ+
n∑

i=1

l′ih(gi) ≤ N(q + qd1 + h1) ≤ N2(h1 + 1).

In view of (5.11), we have for u ∈ S,

log |Q̃(u)| ≤ q log d1 + h(Q̃) + degQ logN

≤ 3
2
N logN +N2(h1 + 1) ≤ N2(h1 + 2).
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Hence

h(Q̃(u)αj(u)) ≤ N2(h1 + 2) +H

for u ∈ S, j = 1, . . . , D. Further, by (5.10), (5.16) we have

Q̃(u)αj(u) =

D−1∑

i=0

(Pi(u)/a)yj(u)
i.

Put

δ(u) := gcd(a, P0(u), . . . , PD−1(u)).

Then by applying Lemma 5.2 and then (5.12) we obtain

log

(
max(|a|, |P0(u)|, . . . , |PD−1(u)|

δ(u)

)
(5.19)

≤ 2D2 + (D − 1)h(Fu) +D
(
N2(h1 + 2) +H

)

≤ 2D2 + (D − 1)(q log d1 + h1 + d1 logN) +D
(
N2(h1 + 2) +H

)

≤ N3(h1 + 2) +DH.

Our assumption that gcd(Q,P0, . . . , PD−1) = 1 implies that the gcd of

a and the coefficients of P0, . . . , PD−1 is 1. Let p ∈ {p1, . . . , pm} be one of

the prime factors of a. There is j ∈ {0, . . . , D − 1} such that |Pj|p = 1.

Our assumption on N and (5.7) imply that N ≥ max(degH, deg Pj). This

means that Lemma 5.4 is applicable with g1 = Pj and g2 = H. It follows

that

max{|Pj(u)|p : u ∈ S} ≥ (4N)−qN(N+1)/2.

That is, there is u0 ∈ S with |Pj(u0)|p ≥ (4N)−qN(N+1)/2. Hence

|δ(u0)|p ≥ (4N)−qN(N+1)/2.

Together with (5.19), this implies

log |a|−1
p ≤ log |a/δ(u0)|+ log |δ(u0)|

−1
p

≤ N3(h1 + 2) +DH + 1
2
N3 log 4N ≤ N4(h1 + 3) +DH.

Combining this with the upper bound (5.15) for the number of prime factors

of a, we obtain

(5.20) log |a| ≤ 2N4h1(h1 + 3) + 2Dh1 ·H.
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Together with (5.17), (5.18), this implies

h(Q) ≤ 2N4h1(h1 + 3) + 2Dh1 ·H +N2(h1 + 1)(5.21)

≤ 3N4(h1 + 1)2 + 2Dh1 ·H.

Further, the right-hand side of (5.20) is also an upper bound for log δ(u),

for u ∈ S. Combining this with (5.19) gives

logmax{|Pj(u)| : u ∈ S, j = 0, . . . , D − 1}

≤ N3(h1 + 2) +DH + 3N4(h1 + 1)2 + 2Dh1 ·H

≤ 4N4(h1 + 1)2 + 2D(h1 + 1) ·H.

Another application of Lemma 5.4 yields

h(Pj) ≤ 1
2
qN(N + 1) log 4N + 4N4(h1 + 1)2 + 2D(h1 + 1) ·H

≤ 5N4(h1 + 1)2 + 2D(h1 + 1) ·H

for j = 0, . . . , D − 1. Together with (5.21) this gives the upper bound for

h(α) from our lemma. �

6. Completion of the proof of Proposition 3.8

It remains only to prove the height bound in (3.20). We use an effective

result of Győry and Yu [10, 2006] on S-unit equations in number fields. To

state this, we need some notation.

Let L be an algebraic number field of degree dL. We denote by OL, ML,

∆L, hL, RL the ring of integers, set of places, discriminant, class number

and regulator of L. The norm of an ideal a of OL, i.e., |OL/a|, is denoted

by Na.

Further, let S be a finite set of places of L, containing all infinite places.

Suppose S has cardinality s. Recall that the ring of S-integers OS and the

group of S-units O∗
S are given by

OS = {x ∈ L : |x|v ≤ 1 for v ∈ ML \ S},

O∗
S = {x ∈ L : |x|v = 1 for v ∈ ML \ S}.

If case that S consists only of the infinite places of L, we put P := 2,

Q := 2. If S contains also finite places, let p1, . . . , pt denote the prime
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ideals corresponding to the finite places of S, and put

P := max{Np1, . . . , Npt}, Q := N(p1 · · ·pt).

Further, let RS denote the S-regulator associated with S. In case that S

consists only of the infinite places of L it is equal to RL, while otherwise

RS = hSRL

t∏

i=1

logNpi,

where hS is a divisor of hL whose definition is not important here. By,

e.g., formula (59) of [10] (which is an easy consequence of formula (2) of

Louboutin [16, 2000]) we have

hLRL ≤ |∆L|
1/2(log∗ |∆L|)

dL−1.

By the inequality of the geometric and arithmetic mean, we have for t > 0,

t∏

i=1

logNpi ≤
(
t−1 log(Np1 · · ·Npt))

t ≤ (logQ)s

and hence,

(6.1) RS ≤ |∆L|
1/2(log∗ |∆L|)

dL−1 · (log∗Q)s.

This is clearly true also if t = 0.

Proposition 6.1. Let ε, η such that

(6.2) ε+ η = 1, ε, η ∈ O∗
S.

Then

(6.3) max(h(ε), h(η)) ≤ c1PRS (1 + log∗RS/ logP ) ,

where

c1 = max(1, π/dL)s
2s+3.527s+27(log 2s)d

2(s+1)
L (log∗ 2dL)

3.

Proof. This is Theorem 1 of Győry, Yu [10] with α = β = 1. �

Proof of (3.20). As before, we use O(·) to denote a quantity which is c× the

expression between the parentheses, where c is an effectively computable ab-

solute constant which may be different at each occurrence of the O-symbol.

We first consider the case q > 0. Let ε1, η1 be a solution of (3.18). Pick

u ∈ Zq with H(u) 6= 0, pick j ∈ {1, . . . , D} and put L := Ku,j. Further,

let the set of places S consist of all infinite places of L, and all finite places
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of L lying above the rational prime divisors of f(u). Note that yj(u) is an

algebraic integer, and f(u) ∈ O∗
S. Hence ϕu,j(B) ⊆ OS and ϕu,j(B

∗) ⊆ O∗
S.

So

(6.4) ε1,j(u) + η1,j(u) = 1, ε1,j(u), η1,j(u) ∈ O∗
S,

where ε1,j(u), η1,j(u) are the images of ε1, η1 under ϕu,j.

We estimate from above the upper bound (6.3) from Proposition 6.1. By

assumption, f has degree at most d1 and logarithmic height at most h1,

hence

(6.5) |f(u)| ≤ dq1e
h1 max(1, |u|)d1 =: R(u).

Since the degree of L is dL ≤ D, the cardinality s of S is at most s ≤

D(1 + ω), where ω is the number of prime divisors of f(u). Using the

inequality from prime number theory, ω ≤ O(log |f(u)|/ log log |f(u)|), we

obtain

(6.6) s ≤ O
( D log∗R(u)

log∗ log∗ R(u)

)
.

From this, one easily deduces that

(6.7) c1 ≤ expO(D log∗R(u)).

Next, we estimate P and RS. By (6.5), we have

(6.8) P ≤ Q ≤ |f(u)|D ≤ expO(D log∗R(u)).

To estimate RS, we use (6.1). By Lemma 5.5 (using d0 ≤ d1) we have

|∆L| ≤ D2D−1
(
dq1e

h1 max(1, |u|)d1
)2D−2

≤ expO(D log∗R(u)),

and this easily implies

|∆L|
1/2(log∗∆L)

D−1 ≤ expO(D log∗R(u)).

Together with the estimates (6.6),(6.8) for s and Q, this leads to

(6.9) RS ≤ expO
(
D log∗R(u) + s log∗ log∗Q

)
≤ expO(D log∗R(u)).

Now by collecting (6.7)–(6.9), we infer that the right-hand side of (6.3) is

bounded above by expO(D log∗ R(u)). So applying Proposition 6.1 to (6.4)

gives

(6.10) h(ε1,j(u)), h(η1,j(u)) ≤ expO(D log∗R(u)).
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We apply Lemma 5.7 with N := 4D2(q + d1 + 1)2. From the already

established (3.19) it follows that deg ε1, deg η1 ≤ N . Further, since d1 ≥ d0
we have N ≥ 2Dd0+2(d1+1)(q+1). So indeed, Lemma 5.7 is applicable with

this value of N . It follows that the set S := {u ∈ Zq : |u| ≤ N, H(u) 6= 0}

is not empty. Further, for u ∈ S, j = 1, . . . , D, we have

h(ε1,j(u)) ≤ expO(Dq log d1 +Dh1 +Dd1 log
∗N)

≤ expO(N1/2 log∗N +Dh1),

and so by Lemma 5.7,

h(ε1) ≤ expO(N1/2 log∗N +Dh1).

For h(η1) we obtain the same upper bound. This easily implies (3.20) in

the case q > 0.

Now assume q = 0. In this case, K0 = Q, A0 = Z andB = Z[f−1, y] where

y is an algebraic integer with minimal polynomial F = XD+F1X
D−1+· · ·+

FD ∈ Z[X ] over Q, and f is a non-zero rational integer. By assumption,

log |f | ≤ h1, log |Fi| ≤ h1 for i = 1, . . . , D. Denote by y1, . . . , yD the

conjugates of y, and let L = Q(yj) for some j. By a similar argument as in

the proof of Lemma 5.5, we have |∆L| ≤ D2D−1e(2D−2)h1 . The isomorphism

given by y 7→ yj maps K to L and B to OS, where S consists of the infinite

places of L and of the prime ideals of OL that divide f . The estimates

(6.5)–(6.9) remain valid if we replace R(u) by eh1. Hence for any solution

ε1, η1 of (3.18),

h(ε1,j), h(η1,j) ≤ expO(Dh1),

where ε1,j ,η1,j are the j-th conjugates of ε1, η1, respectively. Now an appli-

cation of Lemma 5.2 with g = F , m = D, βj = ε1,j gives

h(ε1) ≤ expO(Dh1).

Again we derive the same upper bound for h(η1), and deduce (3.20). This

completes the proof of Proposition 3.8. �

7. Proof of Theorem 1.3

We start with some results on multiplicative (in)dependence.

Lemma 7.1. Let L be an algebraic number field of degree d, and γ0, . . . , γs
non-zero elements of L such that γ0, . . . , γs are multiplicatively dependent,
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but any s elements among γ0, . . . , γs are multiplicatively independent. Then

there are non-zero integers k0, . . . , ks such that

γk0
0 · · · γks

s = 1,

|ki| ≤ 58(s!es/ss)ds+1(log d)h(γ0) · · ·h(γs)/h(γi) for i = 0, . . . , s.

Proof. This is Corollary 3.2 of Loher and Masser [15, 2004]. They attribute

this result to Yu Kunrui. Another result of this type was obtained earlier

by Loxton and van der Poorten [17, 1983]. �

We prove a generalization for arbitrary finitely generated domains. As

before, let A = Z[z1, . . . , zr] ⊇ Z be a domain, and suppose that the ideal

I of polynomials f ∈ Z[X1, . . . , Xr] with f(z1, . . . , zr) = 0 is generated by

f1, . . . , fm. Let K be the quotient field of A. Let γ0, . . . , γs be non-zero

elements of K, and for i = 1, . . . , s, let (gi1, gi2) be a pair of representatives

for γi, i.e., elements of Z[X1, . . . , Xr] such that

γi =
gi1(z1, . . . , zr)

gi2(z1, . . . , zr)
.

Lemma 7.2. Assume that γ0, . . . , γs are multiplicatively dependent. Fur-

ther, assume that f1, . . . , fm and gi1, gi2 (i = 0, . . . , s) have degrees at most

d and logarithmic heights at most h, where d ≥ 1, h ≥ 1. Then there are

integers k0, . . . , ks, not all equal to 0, such that

γk0
0 · · · γks

s = 1,(7.1)

|ki| ≤ (2d)expO(r+s)(h+ 1)s for i = 0, . . . , s.(7.2)

Proof. We assume without loss of generality that any s numbers among

γ0, . . . , γs are multiplicatively independent (if this is not the case, take a

minimal multiplicatively dependent subset of {γ0, . . . , γs} and proceed fur-

ther with this subset). We first assume that q > 0. We use an argument

of van der Poorten and Schlickewei [21, 1991]. We keep the notation and

assumptions from Sections 3–5. In particular, we assume that z1, . . . , zq is a

transcendence basis of K, and rename zq+1, . . . , zr as y1, . . . , yt, respectively.

For brevity, we have included the case t = 0 as well in our proof. But it

should be possible to prove in this case a sharper result by means of a more

elementary method. In the case t > 0, y and F = XD+F1X
D−1+ · · ·+FD

will be as in Corollary 3.4. In the case t = 0 we take m = 1, f1 = 0,
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d = h = 1, y = 1, F = X − 1, D = 1. We construct a specialization

such that among the images of γ0, . . . , γs no s elements are multiplicatively

dependent, and then apply Lemma 7.1.

Let V ≥ 2d be a positive integer. Later we shall make our choice of V

more precise. Let

V := {v = (v0, . . . , vs) ∈ Zs+1 \ {0} :(7.3)

|vi| ≤ V for i = 0, . . . , s, and with vi = 0 for some i}.

Then

γv :=
( s∏

i=0

γvi
i

)
− 1 (v ∈ V)

are non-zero elements of K. It is not difficult to show that for v ∈ V, γv
has a pair of representatives (g1,v, g2,v) such that

deg g1,v, deg g2,v ≤ sdV.

In the case t > 0, there exists by Lemma 3.6 a non-zero f ∈ A0 such that

A ⊆ B := A0[y, f
−1], γv ∈ B∗ for v ∈ V

and

deg f ≤ V s+1(2sdV )expO(r) ≤ V expO(r+s).

In the case t = 0 this holds true as well, with y = 1 and f =
∏

v∈V((g1,v·g2,v).
We apply the theory on specializations explained in Section 5 with this f .

We put H := ∆FFDf , where ∆F is the discriminant of F . Using Corollary

3.4 and inserting the bound D ≤ dt from Lemma 3.2 we get for t > 0,

(7.4){
d0 := max(deg f1, . . . , deg fm, degF1, . . . , degFD) ≤ (2d)expO(r),

h0 := max
(
h(f1), . . . , h(fm), h(F1), . . . , h(FD)

)
≤ (2d)expO(r)(h+ 1) ;

with the provision deg 0 = h(0) = −∞ this is true also if t = 0. Combining

this with Lemma 3.5, we obtain

degH ≤ (2D − 1)d0 + deg f ≤ V expO(r+s).

By Lemma 5.3 there exists u ∈ Zq with

(7.5) H(u) 6= 0, |u| ≤ V expO(r+s).

We proceed further with this u.
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As we have seen before, γv ∈ B∗ for v ∈ V. By our choice of u, there are

D distinct specialization maps ϕu,j (j = 1, . . . , D) from B to Q. We fix one

of these specializations, say ϕu. Given α ∈ B, we write α(u) for ϕu(α). As

the elements γv are all units in B, their images under ϕu are non-zero. So

we have

(7.6)
s∏

i=0

γi(u)
vi 6= 1 for v ∈ V,

where V is defined by (7.3).

We use Lemma 5.6 to estimate the heights h(γi(u)) for i = 0, . . . , s.

Recall that by Lemma 3.5 we have

deg γi ≤ (2d)expO(r), h(γi) ≤ (2d)expO(r)(h+ 1)

for i = 0, . . . , s. By inserting these bounds, together with the bound D ≤ dt

from Lemma 3.2, those for d0, h0 from (7.4) and that for u from (7.5) into

the bound from Lemma 5.6, we obtain for i = 0, . . . , s,

h(γi(u)) ≤ (2d)expO(r)(1 + h+ logmax(1, |u|))(7.7)

≤ (2d)expO(r+s)(1 + h + log V ).

Assume that among γ0(u), . . . , γs(u) there are s numbers which are mul-

tiplicatively dependent. By Lemma 7.1 there are integers k0, . . . , ks, at least

one of which is non-zero and at least one of which is 0, such that

s∏

i=0

γi(u)
ki = 0,

|ki| ≤ (2d)expO(r+s)(1 + h + log V )s−1 for i = 0, . . . , s.

Now for

(7.8) V = (2d)expO(r+s)(h+ 1)s−1

(with a sufficiently large constant in the O-symbol), the upper bound for the

numbers |ki| is smaller than V . But this would imply that
∏s

i=0 γi(u)
vi = 1

for some v ∈ V, contrary to (7.6). Thus we conclude that with the choice

(7.8) for V , there exists u ∈ Zq with (7.5), such that any s numbers among

γ0(u), . . . , γs(u) are multiplicatively independent. Of course, the numbers

γ0(u), . . . , γs(u) are multiplicatively dependent, since they are the images
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under ϕu of γ0, . . . , γs which are multiplicatively dependent. Substituting

(7.8) into (7.7) we obtain

(7.9) h(γi(u)) ≤ (2d)expO(r+s)(h+ 1) for i = 0, . . . , s.

Now Lemma 7.1 implies that there are non-zero integers k0, . . . , ks such that

s∏

i=0

γi(u)
ki = 1,(7.10)

|ki| ≤ (2d)expO(r+s)(h+ 1)s for i = 0, . . . , s.(7.11)

Our assumption on γ0, . . . , γs implies that there are non-zero integers

l0, . . . , ls such that
∏s

i=0 γ
li
i = 1. Hence

∏s
i=0 γi(u)

li = 1. Together with

(7.10) this implies
s∏

i=1

γi(u)
l0ki−lik0 = 1.

But γ1(u), . . . , γs(u) are multiplicatively independent, hence l0ki − lik0 = 0

for i = 1, . . . , s. That is,

l0(k0, . . . , ks) = k0(l0, . . . , ls).

It follows that
s∏

i=0

γki
i = ρ

for some root of unity ρ. But ϕu(ρ) = 1 and it is conjugate to ρ. Hence

ρ = 1. So in fact we have
∏s

i=0 γ
ki
i = 1 with non-zero integers ki satisfying

(7.11). This proves our Lemma, but under the assumption q > 0. If q =

0 then a much simpler argument, without specializations, gives h(γi) ≤

(2d)expO(r+s)(h + 1) for i = 0, . . . , s instead of (7.9). Then the proof is

finished in the same way as in the case q > 0. �

Corollary 7.3. Let γ0, γ1, . . . , γs ∈ K∗, and suppose that γ1, . . . , γs are

multiplicatively independent and

γ0 = γk1
1 · · · γks

s

for certain integers k1, . . . , ks. Then

|ki| ≤ (2d)expO(r+s)(h+ 1)s for i = 1, . . . , s.
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Proof. By Lemma 7.2, and by the multiplicative independence of γ1, . . . , γs,

there are integers l0, . . . , lm such that
m∏

i=0

γli
i = 1,

l0 6= 0, |li| ≤ (2d)expO(r+s)(h + 1)s for i = 0, . . . , s.

Now clearly, we have also
s∏

i=1

γl0ki−li
i = 1,

hence l0ki − li = 0 for i = 1, . . . , s. It follows that |ki| = |li/l0| ≤

(2d)expO(r+s)(h+ 1)s for i = 1, . . . , s. This implies our Corollary. �

Proof of Theorem 1.3. We keep the notation and assumptions from the state-

ment of Theorem 1.3. Define the domain

Ã := A[γ1, γ
−1
1 , . . . , γs, γ

−1
s ].

Then

Ã ∼= Z[X1, . . . , Xr, Xr+1, . . . , Xr+2s]/Ĩ

with

Ĩ =
(
f1, . . . , fm, g12Xr+1 − g11, g11Xr+2 − g12, . . .

. . . , gs2Xr+2s−1 − gs1, gs1Xr+2s − gs2

)
.

Let (v1, . . . , ws) be a solution of (1.4), and put ε :=
∏s

i=1 γ
vi
i , η :=

∏s
i=1 γ

wi

i .

Then

aε+ bη = c, ε, η ∈ Ã∗.

By Theorem 1.1, ε has a representative ε̃ ∈ Z[X1, . . . , Xr+2s] of degree and

logarithmic height both bounded above by

exp
(
(2d)expO(r+s)(h+ 1)

)
.

Now Corollary 7.3 implies

|vi| ≤ exp
(
(2d)expO(r+s)(h+ 1)

)
for i = 1, . . . , s.

For |wi| (i = 1, . . . , s) we derive a similar upper bound. This completes the

proof of Theorem 1.3. �
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Primteiler binärer Formen), Math. Ann. 107 (1933), 691–730.

[19] R.C. Mason, The hyperelliptic equation over function fields, Math. Proc. Camb.

Philos. Soc. 93 (1983), 219–230.

[20] C.J. Parry, The p-adic generalisation of the Thue-Siegel theorem, Acta Math. 83

(1950), 1–100.



UNIT EQUATIONS OVER FINITELY GENERATED DOMAINS 41

[21] A.J. van der Poorten, H.P. Schlickewei, Additive relations in fields, J. Aus-

tral. Math. Soc. (Ser. A) 51 (1991), 154–170.

[22] P. Roquette, Einheiten und Divisorenklassen in endlich erzeugbaren Körpern,

Jber. Deutsch. Math. Verein 60 (1958), 1–21.

[23] W.M. Schmidt, Thue’s equation over function fields, J. Austral. Math. Soc. Ser.

A 25 (1978), 385–422.

[24] A. Seidenberg, Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974),

273–313.

[25] C.L. Siegel, Approximation algebraischer Zahlen, Math. Zeitschrift 10 (1921), 173–

213.

[26] H. Simmons, The solution of a decision problem for several classes of rings, Pacific

J. Math. 34 (1970), 547–557.

J.-H. Evertse

Universiteit Leiden, Mathematisch Instituut,

Postbus 9512, 2300 RA Leiden, The Netherlands

E-mail address : evertse@math.leidenuniv.nl

K. Győry
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