
tmcs@inf.unideb.hu

http://tmcs.math.klte.hu

Proof-sheets (2008), 1–21

Shall we use one more

representation?

Suggestions about establishing the notion of
recursion in teaching informatics in primary
schools

Cećılia Sitkuné Görömbei

Abstract. Among the most prominent developmental tasks of primary school education
one finds increasing pupils’ cognitive capacity with especial regard to observing, in-
terpreting, coding and proving skills, which form an integral part of information and
communication culture.

Info-technology (problem solving with the tools and methods of informatics), a sub-
ject matter within informatics, provides outstanding opportunities to reach the aims
outlined above.

This study presents methodological ideas related to the subfield Algorithmization
and data modelling of Info-technology. More specifically, it presents teaching methods to
be applied while establishing the notion of recursion in grades 3–8 of primary education,
and at the same time it also focuses on various realization possibilities of the prominent
developmental tasks mentioned above.

Key words and phrases: primary education, teaching informatics, programming, Logo,
recursion.

ZDM Subject Classification: P40, R90, Q60.

Introduction

Among the most prominent developmental tasks of primary school education

one finds increasing pupils’ cognitive capacity with especial regard to observing,

interpreting, coding and proving skills, which form an integral part of informa-

tion and communication culture. One of the most important tasks of teachers

Copyright c© 2008 by University of Debrecen

2 Cećılia Sitkuné Görömbei

is to strive to improve pupils’ reasoning power, first of all systematization, ex-

perimental observation, argumentation and problem solving with especial regard

to enhancing analysis, synthesis, comparison, generalization, concretization and

their everyday use. It is also important that pupils be able to apply the acquired

knowledge in novel situations. Hence, forming new ideas, i.e. developing creative

thinking comes into prominence. At the same time it is essential to focus on the

following areas: decision making, examining various alternatives, comprehensive

use of these alternatives, evaluation, argumentation and selecting the best options.

[12] Info-technology (problem solving with the tools and methods of informatics),

a subject matter within informatics, provides outstanding opportunities to reach

the aims outlined above.

This study presents methodological ideas related to the subfield Algorithmiza-

tion and data modelling of Info-technology. More specifically, it presents teaching

methods to be applied while establishing the notion of recursion in grades 3–8 of

primary education, and at the same time it also focuses on various realization pos-

sibilities of the prominent developmental tasks mentioned above. My suggestions

are based on experience gained while teaching informatics both in classrooms

and study circles for grades 3–4 and 5–7 and while preparing pupils for various

programming competitions.

Algorithmization and data modelling

Aims, tasks, tools

The aim to be achieved while teaching the subfield Algorithmization and data

modelling is that pupils be able to recognize and express the algorithmic particu-

lars appearing in their environments in various forms. In order to attain this goal

the National Core Curriculum specifies the following developmental tasks:

Grades 1–4:

• Recognizing, expressing and executing simpler algorithms.

• Interpreting data used in algorithms.

• Describing common data (numbers, texts, drawings. . .).

• Using a simple development system.

Grades 5–6:

• Computer-aided accomplishment of algorithms in order to solve a given task.

• Determining results on the basis of known data while solving a problem.

Shall we use one more representation? 3

• Getting acquainted with tables, diagrams and data organizing.

• Task solving with simple development systems.

Grades 7–8:

• Designing, accomplishing and executing algorithms in order to solve a given

problem.

• Tools of algorithmic abstraction, the principle of step by step improvement.

• The relation between the relevant data and the result in problem solving.

• Differentiating and handling datum and complex data.

• Task solving with development systems.

According to the core curriculum various programming languages and devel-

opment environments can be used as a computational tool for teaching algorith-

mization. The most preferred one is the Hungarian speaking Comenius Logo and

its upgraded version, Imagine, which can be used up to grade 8. (Nevertheless,

experience of the National Logo General Competition indicates that it is a pop-

ular and effective programming environment not only in grades 3–8, but also in

grades 9–10.

Recursion

The term recursion is of Latin origin, it means running backwards, return

in time, repetition. In Tótfalusi István’s book entitled Idegenszó-tár (Dictionary

of Foreignisms) one finds the following interpretation: “A series of operations

comprising repeated steps, where the result always returns to serve as the starting

point for further operations.” [21]

The notion is used in various scientific fields with specific interpretations.

For instance, in literature it surfaces in connection with the almost infinite stories

of folk tales, which go there and back,—Mikkó és a makaróni (Mikko and the

Macaroni); A kóró és a kismadár (The Dry Stalk and the Little Bird)—[8]. The

notion may also be connected with belletristic works, for instance it appears in

the essays entitled The Thousand and One Nights or Partial Enchantments of the

Quxiote by Luis Borges as a typical example of the literary version of recursion,

i.e. the constructional method similar to the principle of Russian “Matryoshkas”:

numbers of story boxes nested into one another. [2]

4 Cećılia Sitkuné Görömbei

Within mathematics the field of recursive functions is the most well-known,

its typical examples—mentioning now only the classic ones—are the factorial

function, the Fibonacci sequence and the Ackermann function.

The notion of recursion is also used in information science; within the field

of programming it means a kind of special repetition, a self-invoking algorithm.

One subtype of recursive algorithms realizes computational solutions of recursive

mathematical problems, while the other subtype comprises explicit computational

problems. For instance certain algorithms of searching and sorting belong to the

latter.

Many have tried to define the notion of recursive algorithms in various ways.

Obviously, the principle is formulated uniformly, namely, the subprogram (pro-

cedure or function) invokes itself; however, there are various explanations related

to the special approaches taken by the individual authors. [1, 7, 9, 19]

It is also common in the works mentioned above that the characteristics of

recursive algorithms are systemized same important properties are foregrounded.

For instance: If a given task is solved recursively, then

• we look for the simplest case where the solution is obvious,

• we find out how the task can be solved in the following way: via repeated

simplifications we get to the simplest case meanwhile supposing that in each

simplified case the task has been solved (hence, in each case the solution in

question can be used). [9]

Or: In a recursive routine there must be

• a variable which keeps on changing during the calls and in principle it can

reach a threshold limit.

• a command which directs the variable towards the threshold limit.

• a halting condition, which decides whether the given variable has reached the

threshold limit. If yes, then the recursive calls terminate. [1]

Terminology

A procedure is called directly recursive if it invokes itself. It is called indirectly

recursive if it invokes a procedure which (directly or indirectly) invokes the given

procedure.

A procedure is called simply recursive if it contains one and only one direct

recursive call of itself, and this call is not located within a repetition.

An algorithm is a multiple recursion if it contains more than one recursive

calls. [9]

Shall we use one more representation? 5

A procedure is a right recursion if it invokes itself at the very end of the

procedure, it is a left recursion if it invokes itself at the beginning, and it is a

general recursion if it invokes itself in the middle. [22]

Step by step recursion

What kinds of tasks shall we choose?

There are various types of tasks that lend themselves to introducing the

notion of recursion. In what follows we will consider possibilities that arise while

constructing geometrical figures, i.e. when we have pupils draw figures with the

help of the turtle.

Even the simplest geometrical figures including repetitions are suitable to

gain such experience that facilitates establishing the notion in question. Such

figures are for instance regular polygons, spirals and figures which are similar in

a mathematical sense. [22, 13]

Figure 1. Regular polygons

Figure 2. Spiral variants

Figure 3. Similar figures

6 Cećılia Sitkuné Görömbei

Besides the figures presented above self-similar figures (fractals)—such as the

Koch-curve and trees—also provide great possibilities to establish and deepen

the notion of recursion. However, construction of the latter requires different and

special solutions from a methodological point of view, for that reason we do not

deal with them in the present study.

What kinds of steps are involved in the process of forming the notion? How

can we facilitate attainment of the objectives of the National Core Curriculum

with these?

First,—after having taught the basic commands (Level 1: sequence)—we pre-

pare introduction of recursion via repetition (Level 2: iteration) and via forming

the notion of procedure (Level 3: procedure); in other words we provide a possi-

bility to acquire preliminary and necessary knowledge. It is recommended that

pupils acquire these already in grades 1–4. Pupils familiarize themselves with a

simple development system (a version of Logo), they execute simple algorithms

and interpret data used in algorithms. Understanding is facilitated in a way

which suits best the characteristics of primary school pupils, i.e. using graphic

presentation of abstract notions.

Second, pupils’ attention may be directed to recursion while they are drawing

the figures mentioned above (Level 4: recursion), but only on the level of referring

to the notion, trying it, experimenting with it; simply showing pupils that there

is such a possibility in Logo programming language.

Pupils will see that repetition can also be achieved when the procedure invokes

itself. Self-calling is not yet bound to a condition, hence, recursion results in an

infinite procedure. In grades 1–4 this topic can be raised only in study groups,

but in grades 5–6 we can deal with it in course of lessons. The problem in question

(recursion is infinite) is extremely suitable for developing thinking and creativity.

Graphic presentation still considerably facilitates understanding, and it also helps

to reconcile the different functioning of the left and right hemispheres.

Third, the solution of the problem which is related to the answer of the

previous problem (recursion is infinite) comes to the foreground (Level 5: regular

recursion). This process highlights an important property of recursive algorithms,

namely, that their halting must be bound to a condition. At the same time this is

a good occasion to introduce the notion of selection. Characterizing the notions

in question can be a task in grades 5–8. Examining the alternatives, looking for

solutions of various kinds and realizing these solutions develop pupils’ thinking

and their evaluation and reasoning capacity well.

Shall we use one more representation? 7

Fourth, the acquired knowledge is used to create more difficult figures (Level 6:

experimenting with recursive figures). While experimenting with drawing partic-

ular figures further notions related to recursion are being formed, for instance the

notions of left and right recursion, general recursion, levels of recursion (Level 7:

applying experience gained while experimenting in different problem situations).

It is especially important to focus on these possibilities in grades 7–8.

How can we put to practice the methodological steps outlined above?

A possible way to accomplish the first three steps will be presented below with

the help of two concrete examples (cf. Figures 1 and 2).—The tasks in question

are also suitable for introducing the notion of recursion when they are treated

independently from one another.—The fourth step is exemplified in the third

exercise, with the help of drawing similar figures (cf. Figure 3).

Example 1: drawing regular polygons

While learning the basic commands pupils willingly draw regular polygons.

However, if a polygon has too many sides, then one must type quite a lot in order

to draw the figure. Thus, pupils themselves demand introducing the command

of repetition. Introducing the notion of recursion via drawing polygons is not as

spectacular as drawing spirals or fractals; however, because of its simplicity it

lends itself particularly well to the given objective.

First step: preparation

We draw a square with the help of sequence and iteration, then the notion of

procedure and that of parameter are introduced. More specifically:

Level 1 (sequence):

Only basic commands are used to complete the drawing. The commands

of moving are the following: ‘forward’, ‘back’. The commands of turning

are ‘left’, ‘right’.

The actual commands are the following:

forward 100 right 90 forward 100 right 90

forward 100 right 90 forward 100 right 90

The complete drawing is shown below:

8 Cećılia Sitkuné Görömbei

Figure 4. The complete drawing and the position of the turtle before
and after drawing

Figure 5. The complete drawing and the positions of the turtle at
different stages of drawing

Level 2 (iteration):

Besides the basic commands iteration (cycle organizing) commands are

also used. One of the tools to realize the cycle in the specified number of

steps is the command ‘repeat’.

The actual commands are the following:

repeat 4[forward 100 right 90]

Level 3 (procedure):

Procedures are written, first one without a parameter, then a parametric

one.

The key word of writing a procedure in Comenius Logo is ‘to’, the

closing command of the procedure is ‘end’.

a. The procedure without a parameter:

to square_1

repeat 4[forward 100 right 90]

end

The procedure is called by ‘square 1’, i.e. its name.

b. The recursive procedure when one parameter is used:

to square_2 :sidelength

forward :sidelength right 90

Shall we use one more representation? 9

square_2 :sidelength

end

The procedure is called by ‘square 2 100’, i.e. its name and a specified

value for its parameter.

If the connection between the polygon’s number of sides and the angle

of turning is discovered, then on this level a “universal” polygon drawing

procedure can be written, which, with an adequate parameter setting,

can draw polygons of any numbers of sides and of any side lengths.

c. The procedure when both number of sides and side length are pa-

rameterized:

to polygon_1 :sidelength :sidenumber

repeat :sidenumber ~

[forward :sidelength right 360/:sidelength]

end

Second step: the notion of recursion

Level 4: (recursion):

Applying the procedures the possibility of recalling is presented, i.e. re-

cursion.

a. The recursive procedure without a parameter:

to square_3

forward 100 right 90

square_3

end

b. The recursive procedure when one parameter is used:

to square _4 :sidelength

forward :sidelength right 90

square_4 :sidelength

end

c. The recursive procedure when two parameters are used:

to polygon_2 :sidelength :sidenumber

forward :sidelength right 360/:sidenumber

polygon_2 :sidelength :sidenumber

end

NB: Procedure a of level 4 can also be applied after procedure a of

level 3.

10 Cećılia Sitkuné Görömbei

The process of drawing can be made more suggestive if the command

‘Step by step execution’ is chosen from the menu ‘Settings’.

The figure becomes more interesting and the infiniteness of the pro-

cess is even more suggestive when the command of line colouring is used,

selecting the colour randomly from the colour palette of Comenius Logo.

The figure becomes even more descriptive if a short waiting time is in-

serted before recalling.

In order to accomplish these aims the procedures given above must

be slightly modified, namely, before recalling the following commands are

added:

setpencolor random 15; and wait 100

The recursive solutions applied on level 4 provide a good occasion for

interesting observations and they also raise a new problem. The figure

is the same (apart from side length) as the ones prepared on level 1, 2

or 3, however, the turtle does not stop, it is “running” round and round

on the perimeter of the square (or another type of polygon)—hence, the

procedure has become infinite.

Third step: the notion of regular recursion, components of “good” recursion

Level 5 (regular recursion):

The problem which has arisen on level 4 can be handled in the following

way adhering to the principle of recursion:

• In order to specify the halting condition another parameter is intro-

duced, which serves to signal levels of recursion.

(This is the variable which keeps on changing during the recursive

calls and in theory it can reach a threshold limit.)

• The value of this parameter is decreased by 1 on each call.

(This is the command which directs the parameter mentioned above

towards the threshold limit.)

• The resumption condition is determined. If the value of the param-

eter does not meet the value specified in the resumption condition,

then the procedure is finished, there are no more recalls.

(This is the halting condition, which decides whether the variable in

question has reached the threshold limit. If the answer is yes, then

there are no more recursive calls.)

Shall we use one more representation? 11

a. The procedure with regular recursion, only levels of recursion

is parameterized:

to square_5 :level

if :level > 0 [forward 100 right 90 ~

square_5 :level-1]

end

b. The procedure with regular recursion, size of figure and levels

of recursion are parameterized:

to square_6 :sidelength :level

if :level > 0 [forward :sidelength right 90 ~

square_6 :sidelength :level-1]

end

c. The procedure with regular recursion, size of figure, number

of sides and levels of recursion are parameterized:

to polygon_3 :sidelength :sidenumber :level

if :level > 0 [forward :sidelength ~

right 360 / :sidenumber~

polygon_3 :sidelength :sidenumber :level-1]

end

When the procedures are called it is important how the beginning

value of the parameter ‘:level’ is set. For instance, in case of drawing

a square the call ‘square 5 4’ or the call ‘square 6 100 4’ is needed in

order to get the correct solution. If the value of the parameter ‘:level’ is

smaller than 4, then the procedure does not draw a square, if it is bigger

than 4, then one side may be redrawn more than one times, and this is

redundant according to the interpretation of the task.

Example 2: drawing spirals

Spirals often occur in nature, too. Pupils are especially motivated by the

movement experienced while drawing the figure. The process is hardly more

difficult than drawing regular polygons. Increasing the side length may be prob-

lematic, but this can be handled on more than one levels. Let us consider an

example:

First step: preparation

Level 1 (sequence):

12 Cećılia Sitkuné Görömbei

The commands are the following:

forward 10 right 90 forward 20 right 90

forward 30 right 90 forward 40 right 90

etc.

The complete drawing is presented below:

Figure 6. The complete drawing and the positions of the turtle before
and after drawing

The first level of concept-formation is similar to that of drawing

polygons, however, on the second level a special problem arises. In order

to produce figures of varying sizes with repetition one has to handle size

variation within repetition itself. To tackle this problem such a parameter

is needed that can receive a new value at each step of repetition. The

problem in question can also be treated in Logo using a global parameter.

However, on the one hand this solution does not fit Logo, which is an

automaton based programming language; and on the other hand this

solution is also quite difficult from a conceptual point of view, therefore

its use is not recommended methodologically in grades 3–6. Nevertheless,

construction of the figure may be linked to Level 4 in producing Figure 1.

Namely, spirals can also be drawn with recalling, similarly to the case of

squares. However, in the case of spirals the procedure is not only called,

the value of the parameter is increased on each recall.

Second step: the notion of recursion

Level 4 (recursion):

to spiral_5 :s_length

forward :s_length right 90

spiral_5 :s_length + 10

end

The experience gained is the following: recursion is also infinite here,

just like in the case of procedures written on the first example’s fourth

Shall we use one more representation? 13

level, however, infiniteness is quite disturbing here: after a time the figure

is not discernible. The reason for this is that because of drawing line

segments of increasing length on one another after a time the whole

screen is the same colour as the colour of the pen.

Adding the comments marked by semicolons to the procedure—this

is the usual way to mark comments in Comenius Logo—; infinity can be

demonstrated well, hence we get closer to interpreting the execution of

the algorithm.

The procedure is called by its name and the beginning value of the

parameter in question; in this case this is ‘spiral 5 10’.

It is worth experimenting further with the procedures mentioned

above. Interesting figures can be drawn if not side length, but angle

of turning is parameterized and this may be tested with more than one

settings. Instead of the traditional spiral more difficult figures are being

drawn in such cases, figures which are usually called inda ‘samentum’

or rózsa ‘rose’ in the literature. The external character of the figures

also varies depending on the beginning value assigned to the parameter

‘:angle’ on the first call and on the measure of its increase on the recall.

For further details I refer the reader to Farkas (1994). [3]

b. The procedure using a parameter when angle of turning is parame-

terized is the following:

to spiral_6 :angle

forward 10 right :angle

spiral_6 :angle + 10

end

Figure 7. Figures obtained by applying procedure spiral 6

Third step: the notion of regular recursion, components of “good” recursion

Level 5 (regular recursion):

14 Cećılia Sitkuné Görömbei

The problem arising on the fourth level can be solved in a way which is

quite similar to the one presented in the first example. However, there

are now two possibilities of regulating recursion:

• One solution—which is more “natural” and therefore pupils can

more easily grasp it—is that the condition of resumption is deter-

mined as a function of side length.

• The other solution concerns introducing a new parameter which rep-

resents levels of recursion. (Cf. the outline of the fifth level in the

first example.)

a. The procedure with regular recursion—halting depends on

side length:

to spiral_7 :s_length

if :s_length < 120 [forward :s_length right 90 ~

spiral_7 :s_length + 10]

end

The number of the spiral’s line segments depends on the beginning

value of the parameter designating side length.

b. The procedure with regular recursion—levels of recursion is

also parameterized:

to spiral_8 :s_length :level

if :level > 0 [forward :s_length right 90 ~

spiral_8 :s_length + 10 :level - 1]

end

The number of the spiral’s line segments depends on the value of

the parameter ‘:level’.

Drawing similar figures also lends itself well to introducing the notion of

recursion. The first three steps can be realized in a way which is quite similar to

the ones of drawing spirals. However, this task, when compared to the previous

ones, provides much more opportunities for experimenting and for grasping the

working mechanism of recursive algorithms in a more profound manner. The

opportunities in question are presented below.

Example 3: similar figures

First and second steps : cf. the examples above

Third step: a solution applying regular recursion

Shall we use one more representation? 15

to squares_1 :s_length :level

if :level > 0 [repeat 4 [forward :s_length right 90]~

squares_1 :s_length+10 :level-1]

end

Figure 8. Squares; the figure can be drawn with or without recursion

Fourth step: drawing complex recursive figures

Level 6 (experiments):

The external character of the figure may be different depending on the

location of the recall within the procedure. Now the recursive call is

located within a repetition; hence, this is not a case of simple recursion.

It is recommended to observe the process of drawing with the help of

step by step execution.

At this point of the discussion various problems can be raised. Con-

sider the following:

What happens if . . .

• the procedure is recalled while drawing the square, before turning

right?

to squares_2.a :s_length :level

if :level > 0 [repeat 4 [forward :s_length ~

squares_2.a :s_length :level-1 right 90]]

end

• the procedure is recalled while drawing the square, before turning

right, and bisecting side length?

to squares_2.b :s_length :level

if :level > 0 [repeat 4 [forward :s_length ~

squares_2.b :s_length / 2 :level - 1 right 90]]

end

16 Cećılia Sitkuné Görömbei

(a) squares 2.a 20 1 (b) squares 2.a 20 2 (c) squares 2.a 20 3

Figure 9

(a) squares 2.b 40 1 (b) squares 2.b 40 2 (c) squares 2.b 40 3

Figure 10

• the procedure is recalled while drawing the square, after turning

right, and bisecting side length?

to squares_3.a :s_length :level

if :level > 0 [repeat 4 [forward :s_length right 90~

squares_3.a :s_length / 2 :level - 1]]

end

(a) squares 3.a 40 1 (b) squares 3.a 40 2 (c) squares 3.a 40 3

Figure 11

Shall we use one more representation? 17

• the procedure is recalled while drawing the square, after turning

right and dividing side length into three parts?

to squares_3.b :s_length :level

if :level > 0 [repeat 4 [forward :s_length right 90~

to squares_3.b :s_length / 3 :level - 1]]

end

(a) squares 3.b 40 1 (b) squares 3.b 40 2 (c) squares 3.b 40 3

Figure 12

• the procedure is recalled while drawing the side of the square?

to squares_4.a :s_length :level

if :level > 0 [repeat 4 [forward :s_length/3 ~

squares_4.a :s_length/3 :level-1 ~

forward :s_length/3 * 2 right 90]]

end

(a) squares 4.a 50 1 (b) squares 4.a 50 2 (c) squares 4.a 50 3

Figure 13

• the procedure is recalled while drawing the side of the square, but

before the recall we turn away?

to squares_4.b :s_length :level

if :level > 0 ~

[repeat 4 [forward :s_length/2 left 135 ~

squares_4.b :s_length/3 :level-1 right 135 ~

forward :s_length/2 right 90]]

end

18 Cećılia Sitkuné Görömbei

(a) squares 4.b 50 1 (b) squares 4.b 50 2 (c) squares 4.b 50 3

Figure 14

And so on, the number of possibilities is almost infinite.

Level 7 (applying experiences gained from experimenting)

On this level many types of tasks can be used in order to deepen the

acquired knowledge and to apply it in new situations.

Complete figures may be shown to pupils, and their task is to draw

these while applying the observed regularities. For instance,

(a) triangle 50 1 (b) triangle 50 2 (c) triangle 50 3

Figure 15

Tasks which serve to facilitate understanding the role of parameters

and that of commands and the working mechanism of recalls can also be

devised. For example,

(1) Specify the value of ‘ANGLE’ in the procedure below in order to get

the following figure:

Shall we use one more representation? 19

Figure 16. triangles 50 2

to triangles :length :level

if :level > 0 [repeat 3 [forward :length right ANGLE1 ~

triangles :length / 2 :level - 1 right ANGLE2]]

end

(ANGLE1=60, ANGLE2=60)

(2) How many circles are drawn if the call ‘circles 1 3’ is used?

to circles :length :level

if :level > 0 [repeat 8 [circles :length/2 :level - 1~

repeat 45 [forward :length j 1]]]

end

(8 · 8 + 8 + 1 = 73 circles are drawn)

(3) Specify the position of the recursive recall (A, B, C or D) in the

procedure below in order to get the following figure:

Figure 17. Flower

to flower :length :level

if :level > 0[repeat 4[A repeat 270[forward :length

right 1 B] C right 180 D]]

end

(C)

20 Cećılia Sitkuné Görömbei

Summary

Recursion is perhaps one of those phenomena appearing in nature that are

the most difficult to understand; its realization is one of the most complicated

programming tasks. However, the notion can be made suggestive and it can be

related to concrete activities, hence, it can be taught even in primary schools.

It is important to note that “teaching” is not used here in its traditional sense,

meaning conveying a given material; it rather means pupils’ active participation

in the process of acquiring knowledge. The teacher’s task is to organize this

process, to monitor it and to provide the necessary circumstances for individual

work.

This study has analysed various realization possibilities of the notion of recur-

sion applying the tools of the Logo turtle-graphics. One methodological solution

has been presented out of the two fundamental ones that are available. This

solution has many abstraction levels and the presentation also exemplified the

principle of gradual building through consecutive steps. The other methodologi-

cal solution is going to be presented in the forthcoming part of this study.

References

[1] Angster Erzsébet, Programozás tankönyv I–II. [Programming I–II.], 4KÖR Bt.,
1999.

[2] Bartha Judit, Három ,,ḱınai” útvesztő [Three “Chinese” Labyrinth], Jelenkor 10

(2003), 1023–1027.

[3] Farkas Károly, The World of Turtle Roses, Acta Didactica Universitatis Comeniae
Informatics, Issue, Comenius University Slovakia, Bratislava (1994), 63–67.

[4] Farkas Károly, How had Logo effected to a pedagogue?, 2005,
http://eurologo2005.oeiizk.waw.pl/PDF/E2005Farkas.pdf, last download: 2008. 06.
01.

[5] Heizlerné Bakonyi Viktória, Zsakó László, Logo versenyfeladatok tára [A collection
of Logo competition tasks], NJSZT, Budapest, 2003, 2008.

[6] A Logo országos számı́tástechnikai tanulmányi verseny feladatsorai (1998–2008)
[Task sheets of the National Logo Programming Competition (1998–2008)],
http://logo.inf.elte.hu/, last download: 2008. 06. 01.

[7] Járdán Tamás, Pomaházi Gábor, Adatszerkezetek és algoritmusok [Data structures
and algorithms], KTF Ĺıceum Kiadó, Eger, 1998.

[8] Kisgyermekek nagy mesekönyve [The Great Storybook for Little Children], Móra,
Budapest, 1975.

Shall we use one more representation? 21

[9] C. H. A. Koster, Programozás felülnézetben [Programming from above], Műszaki
Könyvkiadó, Budapest 186, 1988.

[10] Kőrösné Mikis Márta, Itt a magyar Comenius Logo! [Here comes the Hungarian
Comenius Logo], Iskolakultúra 1997 6–7 (1997), 118–120.

[11] Mészáros Tamásné, Logo-világ [Logo-world], Nemzeti Tankönyvkiadó, Budapest,
1997.

[12] A Kormány 202/2007. (VII. 31.) rendelete [Governmental regulation 202/2007.

(VII. 31.)] (Nemzeti alaptanterv 2007. [National Core Curriculum 2007.]), Oktatási
és Kulturális Minisztérium, 2007,
http://www.okm.gov.hu/letolt/kozokt/nat_070926.pdf, last download: 2008. 06. 01.

[13] Seymour Papert, Mindstorms—Children, Computers and Powerful Ideas, BASIC
BOOKS, Inc., HARPER COLOPHON BOOKS, 1981.

[14] Seymour Papert, Észrengés – A gyermeki gondolkodás titkos útjai, SZÁMALK, Bu-
dapest, 1988, 61–63, Hungarian translation of the book above.

[15] Rozgonyi-Borus Ferenc, Informatika [Informatics]. Kerettanterv-rendszer az általá-
nos iskolák számára [A system of core curriculum for primary education], Mozaik
Kiadó, Szeged, 2004.

[16] Rozgonyi-Borus Ferenc, Imagine I–II–III, Abax Kiadó, Szeged, 2007.

[17] Robert J. Sternberg, Talia Ben-Zeev, The Nature of Mathematical Thinking,
Lawrence Erlbaum Associates, Publishers, Mahvah, NJ, 1996.

[18] Robert J. Sternberg, Talia Ben-Zeev, A matematikai gondolkodás természete, Vince
Kiadó Kft., Budapest, 1998, Hungarian translation of the book above.

[19] Szlávi Péter, Zsakó László, Módszeres programozás: Rekurzió [Systematic pro-
gramming: recursion], Mikrológia sorozat, ELTE Informatikai Tanszékcsoport,
1991–1997.

[20] Szlávi Péter, Zsakó László, Programozás tańıtási módszerek [Programming teach-
ing methods], in: Informatika a felsőoktatásban 2002 Konferencia tanulmánykötete,
2002, 1006–1013.

[21] Tótfalusi István, Idegenszó-tár [Dictionary of Foreignisms], Tinta Kiadó, Budapest,
2005.

[22] Turcsányiné Szabó Márta, Zsakó László, Comenius Logo gyakorlatok [Comenius
Logo exercises], Kossuth Kiadó, Budapest 4, 1997, 42–45.

[23] Turcsányiné Szabó Márta, LÓGÓ-s tanulás [Learning Logo], 1994,
http://comlogo.web.elte.hu/publikaciok/hun94.html, last download: 2008. 07. 24.

CECÍLIA SITKUNÉ GÖRÖMBEI

NYÍREGYHÁZI FŐISKOLA

H–4400 NYÍREGYHÁZA

SÓSTÓI U. 31/B.

HUNGARY

E-mail: sitkune@zeus.nyf.hu

(Received **********)

