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1. INTRODUCTION 

 

Electrophoresis covers a number of bioseparation tools where charged materials are separated 

due to differences in migration speed under the influence of an electrical field. This separation 

and chemical analysis technique was born in 1937 with the work of a Swedish biochemist called 

Arne Tiselius [1], who won the Nobel Prize for Chemistry in 1948. Since the 1950s, slab gel 

electrophoresis has been routinely used by analysts to separate and identify large biopolymers 

such as nucleic acids, proteins and complex carbohydrates. Although it is one of the most 

widely used separation techniques in molecular biology and biochemistry labs, slab gel 

electrophoresis generally suffers from long analysis times, low efficiencies and difficulties in 

detection and automation. 

 

Capillary gel electrophoresis (CGE), on the other hand, is fast becoming the separation and 

characterization technique of choice in the bioanalytical field, which combines the advantages 

of liquid chromatography and ‘conventional’ slab/rod gel electrophoresis. In addition, this 

technique is not only used for the separation of biopolymers, but also in other areas, where has 

not earlier used the electrophoresis (e.g., food analysis, forensics and environmental protection, 

etc.). In addition, CGE is a reliable, fully-automated approach, offering rapid separations with 

high sensitivity, excellent resolution, ruggedness and ease of operation for the analysis of 

biologically important macromolecules, which contributed to the earlier completion of the 

Human Genome Project (HUGO) than originally planned.  Although capillary electrophoresis 

(CE) first emerged as a free solution method, sieving media for size selective separations were 

developed soon after (such as sieving matrices made of agarose, polyacrylamide, polyethylene 

oxide, polyvinylpyrrolidone, sodium dodecyl sulfate, and so on). In case of CGE, the narrow-

bore capillaries are filled with cross-linked gels or linear polymer sieving matrices for the 

separation. In addition, CGE technique can be used for the investigation of small molecule 

interactions and enzyme kinetic reactions. 

 

At present, existing CGE methods can be readily transferred from the capillary format to 

electrophoresis microchips, i.e. lab-on-a chip, which offers rapid and effective separations for 

the biologically important macromolecules.  
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2. THEORETICAL BACKGROUND OF CGE 

 

2.1. Instrumentation 

A typical CGE instrument consists of a separation capillary, a high-voltage power supply, a 

sample introduction system, a detection assembly and data acquisition device as illustrated in 

Figure 1.  

In case of CGE, the overall size of the separation capillary is in the range of 10-100 cm (usually 

20-100 μm i.d. with 150-360 μm o.d.). In single- or multicapillary systems, the inside wall of 

the fused silica capillary can be coated (covalent or dynamic) to eliminate electroosmotic flow 

(EOF) and prevent possible adsorption of the analytes. For sample introduction, CGE 

instruments mainly apply electrokinetic method, because the higher viscosity of the gel-buffer 

usually does not support pressure injection mode. In the electrokinetic injection method, the 

charged analyte molecules are forced into the capillary tubing by an applied electric field, while 

in case of pressure injection, a sample vial is temporarily pressurized to allow the sample 

flowing into the separation capillary. Electrokinetic injection from aqueous samples (with no/or 

little salt) results in large sample intake, because the buffer co-ions do not compete with the 

analyte molecules resulting excellent limits of detection (LOD) [2]. It is also important that 

CGE systems have temperature control to ensure reproducible results.  

According to CGE principle, during the injection process, both ends of the capillary and the 

electrodes are dipped into the respective sample and outlet buffer reservoirs, and the applied 

voltage or pressure drives the analyte molecules into the capillary tubing. During the separation 

process, the analyte molecules migrate within the separation gel-buffer system filled capillary 

tubing towards the detection area. Most of modern CGE systems allow separation voltages up 

to 30 kV, which is orders of magnitudes higher than in conventional slab gel electrophoresis. 

Detection can be accomplished by UV/UV-Vis light absorbance including scanning diode 

array, laser- (LIF) and light-emitting diode-induced fluorescence (LEDIF), or other special 

systems such as electrochemical detection (Figure 1). In optical detection systems, a 

photomultiplier tube (PMT) is placed close to the outlet end of the capillary. If mass 

spectrometry detection is used, the end of the capillary may act as a sprayer tip [3].   
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Figure 1. Schematic illustration of a CE-LIF instrument with reversed polarity (cathode at 

injection side). 

 

2.2. Basic Theory of Capillary Gel Electrophoresis 

 

2.2.1. Electrophoretic Mobility 

In electric field-mediated separation methods, when a uniform electric field (E) is applied to a 

solute molecule with a net charge of Q, an electrical force (Fe) is defined as: 

 

 
EQFe 

 (eq 1) 

 

When using a gel-buffer matrix in the separation capillary, a frictional force (Ff) acts in the 

opposite direction, where f is the translational friction coefficient, dx and dt are the distance and 

time increments as delineated in equation 2:   

 











dt

dx
fF f

 (eq 2) 

 

The migration of the charged analytes under the applied electric field strength is expressed 

according to Newton’s second law of motion as:   
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 (eq 3) 

 

In equation 3, m is the mass and d2x/dt2 is the acceleration. When Fe and Ff are counterbalanced 

the analytes migrate with a steady-state velocity (v):   

 

 
f

Q
E

dt

dx
v 

 (eq 4) 

 

The translational friction coefficient (f) is proportional to the viscosity (


) of the background 

electrolyte as delineated in equation 5 [4].  

 

                                                     (eq 5) 

 

where c is a proportional constant, which is influenced by molecular configuration, for example, 

for small spherical molecules, and c is defined as 6πr, in which r is the radius of the analyte ion 

[5]. The electrophoretic mobility (μ) is defined as the velocity per unit field strength, which 

represents the field normalized velocity, v/E, can be expressed as: 

 

 


c

Q

E

v
µ

                                               (eq 6) 

 

When using a separation sieving matrix in the capillary tubing, the retardation of the analytes 

is defined by the sieving polymer concentration (P) and its physical interaction with the analyte 

molecule is determined by the retardation coefficient (KR). Equation 7 represents the mobility 

of the solute as the function of the retardation coefficient at a given polymer concentration, 

where μ0 is the free solution electrophoretic mobility of the analyte [6]. 

 

      
PKRe


 0µµ
                                                (eq 7) 

 

In this instance, the KR values are the actual slopes of the Ferguson plots of logarithmic 

electrophoretic mobility vs. sieving polymer concentration:  

 cf
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(eq 8) 

 

In CGE, molecular sieving can be delineated by the Ogston theory [7] when the hydrodynamic 

radius of the migrating solute is in the same range as that of the average pore size of the sieving 

matrix. The retardation coefficient (KR) depends on the molecular weight (MW) of the 

migrating molecule at constant polymer concentration [8] and the mobility of the analyte 

molecule is a logarithmic function of the MW [6] as defined in equation 9.  

 

 µ ~ exp(-MW) (eq 9) 

  

The Ogston theory also assumes that the migrating particles behave as spherical objects with 

similar size to the gel pores. On the other hand, large biopolymers containing flexible chains 

(e.g., DNA or SDS protein complexes) can migrate through the pores of the polymer sieving 

that has significantly smaller pores than the size of the solute [9]. These large biomolecules 

behave as “snake-like” objects when migrating through the much smaller gel pores [10-12]. 

This phenomenon is described by the reptation model, where the size of the migrating solute 

(e.g., the chain length, n in case of DNA molecules) is inversely proportional to the mobility as 

shown in equation 10. 

 

(eq 10) 

 

In CGE, the biased reptation models describe electromigration at very high electric field 

strengths. In equation 11, b is a function of the size of the network polymer as well as the charge, 

and the segment length of the migrating biomolecules. 

 

 (eq 11) 

 

According to the Eyring-Polanyi equation [13], the viscosity of the background electrolyte can 

be expressed as:  

 

 
RT/EaeA 

 (eq 12) 

 

2µ bE
n

E


n

E
µ

PKR 0µlnµln
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where A is a pre-exponential factor, Ea is the activation energy of the viscous flow in the sieving 

matrix, R is the universal gas constant, and T is the absolute temperature. Please note that the 

electrophoretic mobility values have to be corrected with the temperature-influenced viscosity 

change of the solution (1.1% per °C) [14]. The electrophoretic mobility (μ) can also be 

expressed by combining equations 6 and 12 (const indicates a collection of constant including 

c and A from equations above).     

   

RTEae
const

/Q
µ




 (eq 13) 

 

In practice, the Ea values are usually derived from the slopes of the Arrhenius plots [15], when 

the logarithm of the electrophoretic mobility is plotted against the reciprocal absolute 

temperature according to equation 14:  

 

                                                          RT

E

const

Q a lnµln
 (eq 14) 

 

In CGE, different electrophoretic mobilities are due to differences in sample properties such as 

shape, size, or net charge, all of which affect the electromigration. When viscosity modifiers 

and/or polymeric additives are added to the background electrolyte, the activation energy can 

be considered as the energy required by the migrating analyte ion to overcome the barriers 

created by the separation gel-buffer. Retardation of the migrating ions, on the other hand, 

depends on the viscosity modifier/polymeric additive of the background electrolyte, possible 

interactions between the solute and additive (earlier described as retardation coefficient, KR) as 

well as the concentration of viscosity and/or polymeric additive (P) as characterized by equation 

7 [6]. 

 

2.2.2. Column Efficiency and Resolution 

In CGE, the theoretical plate number (N) can be characterized by equation 15, where μ is the 

electrophoretic mobility of the analyte, l is the effective length of the capillary tubing, and D is 

the diffusion coefficient of the migrating analytes. 

 

(eq 15) 

 

D

lE
N

2
µ



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Resolution (Rs) in CGE can be expressed by equation 16, calculated from the differences of the 

electrophoretic mobilities (Δμ) between the two electrophoretic peaks [16] and the 

electrophoretic mobility of the analyte molecule of interest (μm).  

 

 (eq 16)  

 

 

Equations 15 and 16 show that higher efficiency (N) and higher resolution (Rs) would be 

resulted by lower solute diffusion coefficient and higher applied electric field. According to 

equation 17, the limiting factor in the achievement of the high resolution is mainly the so-called 

Joule heat (Qj) generated by the applied power (P=V×I) [17], where r means the internal radius 

of the column, L is the total length of the capillary tubing, and I is the current. 

 

(eq 17) 

 

 

To achieve adequate migration reproducibility and decrease Joule heat change-related problems 

in CGE, state-of-the-art capillary electrophoresis units utilize temperature control systems (i.e. 

liquid or air cooling) during the separation process.  

 

 

2.3. Most Popular Gel Formulations in CGE 

In the early 1990s, high resolving power was achieved with the use of narrow-bore-fused silica 

tubings filled with various gel formulations for the analysis of the biopolymers such as nucleic 

acids, proteins and complex carbohydrates. Two types of polymers were utilized in CGE: cross-

linked and non-cross-linked. Today, the most frequently used gels are linear non-cross-linked 

polymers such as linear polyacrylamide (LPA), polyethylene oxide (PEO), 

polydimethylacrylamide (PDMA), polydiethylacrylamide (PDEA), polyvinylpyrrolidone 

(PVP) and cellulose derivatives like hydroxypropyl methylcellulose (HPMC) [18]. The most 

important properties of these polymer matrices are discussed in the following section. 

 

 

 

 

mµD

lE
µ18.0




sR

LIr

P
Q j




2
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2.3.1. Acrylamide-Based Sieving Polymers 

In CGE, polyacrylamide (PA)-based sieving matrix can be utilized as linear and/or cross-linked 

polyacrylamide for the analysis of biologically important macromolecules, mostly DNA. Cross-

linked PA gels (also known as chemical gels), have been useful for the separation of shorter 

single-stranded DNA (ssDNA) and small proteins by SDS-based CGE [19]. These gels are 

covalently attached to the inside wall of the fused silica capillary tubing to improve their 

stability. In that case, samples can only be introduced into cross-linked gel-filled capillaries by 

electrokinetic injection, which results in sharp peaks with some sample pre-concentration at the 

interface of the gel and the sample buffer. However, this method leads to biased injection as 

smaller or highly charged molecules preferably enter the capillary tubing. In addition, higher 

separation temperatures may lead to deterioration of the gel structure (shrinking or bubble 

formation), if cross-linked PA-gels are used as sieving matrices during the separation process. 

On the other hand, chemical gels offer high resolving power, especially for the analysis of low-

molecular-weight oligomers.    

Non-cross-linked gels (so-called physical gels or low-viscosity LPA solutions) are widely used 

in CGE. These linear polymer gels are not attached to the inner surface of the capillary, thus 

sample injection are possible both by electrokinetic and pressure modes. In addition, physical 

gels are not sensitive to high temperature, pH or salt concentration changes during the 

separation process. Linear polymer matrices also permit simple replacement of the separation 

matrix in the capillary by positive or negative pressure. Contrary to cross-linked PA, linear 

polyacrylamide does not become cross-linked during the gelation process, so the inner surface 

of the capillary must be coated with a non-charged material to minimize the effect of EOF. Such 

polymer matrices have been useful in coated capillaries for the separation of double-stranded 

DNA (dsDNA), SDS–protein complexes, and complex carbohydrates [20]. In addition, the use 

of these non-cross-linked gels in DNA sequencing was a very important step toward the 

introduction of large-scale DNA sequencing by CGE, which was capable to sequence the 

Human Genome within a reasonable time frame [21]. Table 1 summarizes the main differences 

between cross-linked and non-cross-linked polyacrylamide sieving matrices.  
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Table 1. Features of polyacrylamide gels used in CGE. Adapted from [22]. 

 
Cross-linked polyacrylamide gel 

(Chemical gel) 

Non-cross-linked polyacrylamide gel 

(Physical gel) 

Attachment 
linked to the inside wall 

of the capillary 

not linked to the inside wall 

of the capillary 

Pore 

Structure 

well-defined, rigid 
flexible, dynamic, polymer networks with 

linear/branched structures 

Pore Size 
cannot be varied 

after polymerization 
Variable 

Viscosity high-viscosity Low to high viscosity 

Heat 

Tolerance 

sensitive insensitive 

Sample 

Injection 

Mode 

electrokinetic electrokinetic and pressure 

Application ssDNA fragments, small proteins 
dsDNA fragments, large proteins, complex 

carbohydrates 

 

2.3.2. Agarose as Sieving Medium 

Contrary to polyacrylamide, agarose has a larger pore size and usually applied for the separation 

of relatively large dsDNA fragments [23]. CGE compared to manual slab gel electrophoresis 

provides better resolution, especially in the <600 base pair range during the separation process. 

In contrast with PA, agarose does not become cross-linked during the gelation process, 

therefore the inside wall of the capillary must be coated with an adequate non-charged material, 

e.g., LPA, to eliminate the effect of EOF. Agarose-gel-filled capillaries were used primarily for 

the separation of larger dsDNA fragments, but the effective size range was limited up to ∼12kb 

[19]. Unlike polyacrylamide, agarose-gel-filled capillaries has not been widely used in CGE, 

therefore prepacked capillaries or gel kits with agarose are not available commercially [19].  

 

2.3.3. Polyethylene Oxide, Polyvinylpyrrolidone, and Other Sieving Matrices 

Although the most commonly used sieving matrices are acrylamide-based polymers in CGE, 

PEO and PVP are also preferred sieving polymers, offering good separation for biologically 

important biomolecules [18]. In the 1990s, low-viscosity PEO-based separation polymer 

solutions were introduced in capillary array electrophoresis for non-denaturing DNA fragment 

analysis [24].  
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Hu et al. utilized PEO to study the protein contents from HT29 human colon adenocarcinoma 

cells by SDS-CE [25]. Barta et al. analyzed 21-hydroxylase deficiency with a primer extension 

technique using a PVP sieving matrix and detected the most common mutations in the gene 

[26]. SDS–protein complexes were separated with PEG and dextran sieving matrices by 

Ganzler et al. [27, 28], utilizing one of the advantages of polysaccharides namely their low UV 

absorption. Such capillary gel separation kits are commercially available for CGE from 

companies such as, SCIEX (www.sciex.com), BiOptic Inc. (www.bioptic.com.tw), Qiagen 

(www.qiagen.com) and Agilent Technologies (www.agilent.com). SDS-MW Gel Buffer Kit 

(SCIEX) has been extensively applied for quantitative and qualitative analysis of membrane 

proteins [29], protein biotoxins [30], and antibodies [31]. Another gel-buffer system from the 

same company has been routinely used for standard N-linked glycan analysis. 

  

2.4. Capillary Coatings  

In the early 1980s, special capillary coating methods (dynamic or covalent) were introduced for 

CGE to eliminate/modify the effects of electroosmotic flow (EOF) and decrease possible wall 

absorption of the analyte molecules. Firstly, Hjerten et al. used a γ-methacryloxypropyl-

trimethoxysilane bifunctional reagent in the capillary tubing, and then cross-linked the surface-

bound methylacryl groups with acrylamide (without crosslinker) polymerization solution to 

suppress EOF [32]. One of the problems with this coating technique was that linear polymers 

could not completely cover the inside wall of the capillary [28] and thus was not stable for a 

longer time, particularly at higher pH values. In 2004, Gao et al. introduced a cross-linked PA 

coating technique, which was successfully used in SDS-CGE analysis. Bruin et al. attached the 

same bifunctional of γ-methacryloxypropyl-trimethoxysilane to covalently coat fused silica 

capillaries for the separation of small carbohydrate molecules [33], but the Si-O-Si bond was 

tended to hydrolyze at higher pH values. To address this problem, Cobb, Dolnik and Novotny 

developed a more stable direct Si-C bond-based capillary coating that improved stability over 

a wide separation pH range of 2-10 [34]. Covalently, coated capillaries reduced interactions 

between analytes and capillary and also provided high-speed separation without the 

requirement of pre-separation equilibration with the separation background electrolyte. From 

the 1990s, in addition to covalently coated capillaries, the noncovalent so-called „dynamic 

coatings” have rapidly emerged in CGE. Dynamic coatings can be easily prepared by simply 

rinse the capillary with polymer solution, detergent, or multivalent ions, but these coatings do 

not completely eliminate the effect of EOF.  

http://www.sciex.com/
http://www.bioptic.com.tw/
http://www.agilent.com/
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Polymers used as a dynamic coating substances involve polydimethylacrylamide [35], poly-N-

hydroxyethylacrylamide [36], and epoxy-poly(dimethylacrylamide) [37-39]. Further efforts in 

CGE were that the advantages of covalent and dynamic coatings were combined, which showed 

a stable performance for more than 200 sample injections (acid rinses between runs) [18, 40]. 

Today in CGE, both covalently and dynamic coating techniques are successfully utilized in 

conjugation with polymer solutions and gels in bioanalysis [41, 42]. To improve separation 

efficiency and reduce adsorption effects, similar coatings are also applied to microchip 

electrophoresis [43, 44].  

 

2.5. Detection Options for CGE 

 

2.5.1. UV-Visible Detector 

UV-visible absorbance detectors are the most widely used in CE, included CGE. Two special 

types of light sources are available for UV-Vis, i.e., single line and continuous source. Atomic 

lamps are the simplest UV light source, which produce strong emission lines at well-defined 

wavelengths, e.g., the As lamp at 200 nm, the Zn lamp at 214 nm, the Cd lamp at 229 nm or the 

low-pressure Hg lamp at 254 nm. A medium-pressure Hg lamp is also used as a light source 

providing emission lines at 254, 280, 313, 365, 405, 436, and 546 nm wavelengths. In addition, 

two special types of light sources are commonly employed as continuous light in UV-Vis 

detection. The first source, the deuterium arc lamp, yields good continuous intensity in the UV 

region, ranging from 180 to 350 nm. However, noise from the lamp often caused problems in 

the overall detection performance of the instrument, so modern deuterium arc lamps have lower 

noise [45]. The intensity of such light sources is consistently decreasing with usage time, with 

typical half-lives of approximately 1,000h. The second continuous wavelength light source is 

the tungsten-halogen lamp that provides high intensity over the upper part of the UV spectrum 

and the full visible range from 280 to 1000 nm. In addition, this type of lamp has very low 

noise, short drift, and long life with half-lives of approximately 10,000h.  

In this “forward optics” design, a polychromatic light from the source is focused onto the 

entrance slit of a monochromator, which selectively transmits a narrow band of light. After that, 

this light is transported through the capillary tubing to a photodiode detector. Contrary to other 

liquid-based separation methods such as LC, the sensitivity of the UV-VIS detectors is limited, 

because the path length is a direct function of the capillary diameter, that is, rather short.  
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Indirect UV detection can also be used, if the analyte components do not have UV absorbing 

properties. Indirect UV detection is universal and useful for the simultaneous detection of 

absorbing and non-absorbing samples. On the other hand, the disadvantages of these detectors 

are that they cannot be applied for additional identity confirmation and samples can exhibit 

positive and negative peaks [46]. 

 

2.5.2. Diode Array Detector 

Multi-wavelength detectors, including diode array detectors (DAD), use a “reverse optics” 

design. In 1989, the first diode array detector in CE was introduced for on-capillary photometric 

detection [47]. In this “reverse optics” design, a polychromatic light from the source mentioned 

above is first transported through the capillary tubing, and then focused onto the entrance slit 

of a monochromator. This monochromator consists of a diffraction grating, which transmits the 

light onto an array system consisting of numerous photodiodes that measures a narrow band of 

the spectrum. The bandwidth of the light detected by a diode is defined by the size of the diode 

and monochromator entrance slit. In this array detection, the number of the individual diodes 

determines the wavelength range and resolution of the detector. Using a diode-array detector, 

the maximum absorbance in DADs can be calculated by software, and the data can be visualized 

in a three-dimensional form. Thus, a whole wavelength range can be used, i.e., all light-

absorbing components of the analyte can be detected within a single analysis providing UV-

Vis spectra at any time points of the separation, thus DADs offer spectral analysis of each 

sample component along with qualitative information [46].  

 

2.5.3. Laser-Induced Fluorescence Detector 

The laser-induced fluorescence (LIF) detector is one of the most sensitive on-capillary detection 

designs for CE, even capable to detecting a single-molecule, but most commonly requires the 

use of chemical derivatizations. Various charged and uncharged fluorescent dyes are 

commercially available for protein analysis such as fluorescein isothiocyanate (FITC) [48], 3-

(2-furoyl)quinoline-2-carboxaldehyde (FQ) [25], and naphthalene-2,3-dicarboxaldehyde 

(NDA) [49]. For the analysis of carbohydrate, mostly 8-aminopyrene-1,3,6-trisulfonic acid 

(APTS) [50, 51], 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) [52], 5-amino-2-

napthalenesulfonic acid (5-ANSA), 7 aminonaphthalene-1,3-disulfonic acid (ANDSA), and 2-

aminonaphthalene-1-sulfonic acid (2-ANSA) [53] are used. In addition, labeling of DNA with 
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different dyes based on Sanger method provides the advantage of high-throughput and has been 

applied to DNA sequencing in capillary electrophoresis. Thus, the method has played a crucial 

role in completing the human genome sequences. Two types of labeling dyes have been utilized 

for the analysis of nucleic acids in CGE-LIF: non-intercalating dyes and intercalating dyes (e.g., 

mono- and bis-intercalating dye). For example, non-intercalating dyes such as 5-

carboxyfluorescein (FAM), 6-carboxy-N,N,N’N’-tetramethyl-rhodamine (6-TAMRA), 6-

carboxyrhodamine (ROX) and sulfoindocyanine succinimidyl esters (Cy5) have been 

commonly used for DNA sequencing by CE-LIF. Common intercalating dyes include ethidium 

bromide (EtBr), ethidium homodimer (EthD), benzoxazolium-4-pyridinium dimer (POPO-3), 

benzoxazolium-4-quinolinium dimer (YOYO-1) and benzothiazolium-4-quinolinium dimer 

(TOTO-1), and so on that can be inserted between adjacent base pairs of dsDNA [54].       

In LIF detection, the two special types of lasers commonly used are the continuous wavelength 

or pulsed ones. The first CE system with LIF detection was introduced by Zare et al. [55] with 

largely improved limit of detection (LOD) [56]. Later, Mathies et al. described a confocal 

fluorescence detection setting using very same lens set to focus the illuminating laser beam into 

the center of the capillary and to collect the fluorescent light emitted by the fluorophore-labeled 

components (either covalently or non-covalently tagged) [57, 58]. This detection design proved 

to be relatively simple and very efficient, but some re-optimization of the alignment required 

on a daily basis [59, 60]. In 1990s, Dovichi et al. introduced a sheath-flow fluorescence 

detection cuvette to achieve high sensitivity with low light losses and/or scatter [61, 62]. In 

addition, CE system with LIF detection was used to sequence the Human Genome. This detector 

type neared the end of the capillary recorded the fluorescent signal in four different spectral 

channels to resolve the fluorescence signature from the four dyes [63]. Today in CE, commonly 

used lasers are the helium-neon, which generates light at 543 nm, 594 nm, 604 nm, 612 nm and 

633 nm; helium–cadmium laser, which emits light at 325 nm, 354 nm and 442 nm; and argon–

ion laser (air cooled), which radiates light at 457 nm, 472 nm, 476 nm, 488 nm, 496 nm, 501 

nm and 514 nm. 

Using an LIF detector, the excitation light from the laser is focused to the detection window, 

close to the outlet end of the separation capillary, and the emitted light is measured as shown 

in Figure 2. Laser-quality mirrors and lenses are used to orient the laser beam to the detection 

area of the separation capillary. In CGE-LIF detection, the use of these mirrors with good 

reflectance is not usually a limiting factor, because most of the lasers have more power than 

necessary to generate the fluorescent signal in the narrow bore columns.  
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However, the disadvantages of these mirrors are that owing to the long path of the rays from 

the laser source to the capillary, noise is often caused problems in the detector by small 

vibrations of the instrument [64]. Most of these limiting factors can be avoided if optical fibers 

or ball lenses are used, which collect the light from the laser source and focus onto the 

separation capillary [65]. In LIF detection, very low light emissions can be measured by using 

such devices as photomultiplier tubes, avalanche photodiodes, or image detectors like charge 

coupled devices (CCD) and intensified charge coupled devices [64]. 

 

Figure 2. Laser-induced fluorescence (LIF) detection in CGE. Adapted from [22]. 

 

2.5.4. Light-Emitting Diode-Induced Fluorescence Detection 

For high detection sensitivity, the use of a strong light source is required to achieve good signal 

intensity. Although for many years, laser detectors were exclusively used for this purpose, lately 

LEDIF detections have emerged [66]. Today in CGE, new-generation LEDs provide an 

alternative light source to lasers, because these small solid-state light sources are less expensive 

and consume very low energy [67]. For the separation of amino acids or proteins, some 

fluorescent labeling dyes are routinely utilized in CGE-LEDIF detection, such as FITC, FQ, 

NDA and 5-carboxy-tetramethylrhodamine N-succinimidyl ester (5-TAMRA) [68]. For CGE-

LEDIF-based glycan profiling experiments, APTS and ANTS are routinely used [69]. 
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Carboxyfluorescein dyes such as fluorescein, 6-carboxyfluorescein and rhodamine B are used 

for the separation of ssDNA oligonucleotides [70]. LEDs have also been used from 390 nm to 

440 nm in few cases, e.g. an ultraviolet-emitting laser diode based on gallium nitride [71]. LEDs 

can also be utilized in integrated optical detectors in microchip designs [46]. 

 

2.6. Novel CGE Instrument Designs 

In recent years, a novel single-channel instrument has been introduced in CGE with real-time 

LED-induced fluorescent detection (LEDIF), using a disposable, pen-shaped cartridge that 

incorporated single separation capillary tubing, a lower (cathode) and upper (anode) electrode 

and a detection window (Figure 3). To accommodate separation matrix replacement, the pen-

shaped cartridge consists of a compact injection molded body with an integrated running gel-

buffer reservoir that directly coupled to a modular nitrogen pressure source as illustrated in 

Figure 3. Depending on the viscosity of the sieving matrix, pressures of up to 60 psi can be 

applied to the capillary tubing through the top gel-buffer reservoir for gel replacement. The 

overall length of this separation capillary is in the range of 15-20 cm (generally 50-75 µm i.d. 

with 360 µm o.d.). The external detection optics can automatically clamp onto the capillary 

cartridge, not requiring any fine alignment in respect to the detection zones after the installation. 

This approach offers simplicity in the use of the capillary cartridge and accommodates easy 

cartridge replacement [72].           

 

Figure 3. The front view of the pen-shaped capillary cartridge. Adapted from [72]. 
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Figure 4 depicts the schematics of this CGE-LEDIF system, including the separation platform, 

the high-voltage power supply and the LEDIF detection. The instrument utilizes electrokinetic 

injection for sample introduction. During the injection process, the lower electrode (the 

cathode) with its embedded capillary is dipped into the sample well, the negatively charged 

sample components are electrokinetically forced by the applied voltage into the capillary toward 

the upper electrode (the anode). When the fluorescently labeled sample molecules migrate 

through the detection window of the separation capillary, the excitation light transports through 

by the excitation fiber from the LED source. The resulting fluorescent signal is collected by the 

emission fiber from the detection area and transferred to the PMT for detection and data 

acquisition. For sample injection and separation, a high-voltage power supply is utilized to 

provide 500-20 000 V of electrical potential to the separation capillary. The detection optics 

includes a super-bright royal blue LED (505 nm with FWHM about 30 nm for dsDNA or 380-

390 nm without any filter for fluorophore-labeled glycan analysis) as excitation radiation 

source. Furthermore, the PMT detector contains an emission filter, 590-650 nm long pass filter 

for dsDNA or 52545 nm band pass filter for ANTS-labeled glycan analysis to improve the 

detection sensitivity. To move the sample and buffer tray, the CGE instrument also comprises 

a fully automated modular X-Y-Z translation stage mechanism with a hybrid linear actuator 

and a stepper motor. The sample tray is able to accept a single microfuge tube, a 12-well sample 

strip or a 96-well microtiter plate interfacing with the disposable single-capillary gel-cartridge 

[72].   

 

Figure 4. Schematic representation of the CGE instrument with LED-induced fluorescent 

detection design. Adapted from [72]. 
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In addition, the detection optics consists of microball ended incident (excitation fiber) and 

output (emission fiber) optical fibers. Figure 5A shows the configuration of this detection 

optics. Using microball ended optical fibers, the incident radiation is transferred from the LED 

to the detection window and the output radiation is collected from the detection window as 

illustrated in Figure 5B, which is located at approximately 140o apart from each other to 

increase detection sensitivity. To reduce the background fluorescence, both excitation and 

emission fibers with microball tips are positioned at the opposite sides of the capillary tubing 

in a noncontact mode. The tips of the microball end of the optical fibers are spaced at 

approximately 200-250 µm from the external wall of the capillary to prevent any physical 

damage to either the separation capillary or the microballs. Figure 5C illustrates the dimensions 

of the microball ended optical fibers, which have 200-µm-diameter cores to orient the light 

within an external sheathing, and 350-µm-diameter microball shaped tips (i.e. the ratio of the 

fiber core diameter to the ball diameter is 1:1.75).  

The microball lenses establish a very strongly-built optical fiber assembly and effective optical 

alignment with respect to the separation capillary. By having the microball at the end of the 

optical fibers there are no additional micro lenses necessary simplifying in this way the optical 

alignment. The microballs also offer higher numerical aperture and simultaneously higher 

power density focusing on the inside of the separation capillary, and besides provide strength 

to the tip of the fiber to protect from possible mechanical damages. The angles of the optical 

fibers are about 70o. In contrast with flat-end fibers (i.e. bare fiber, without microball lenses), 

the microball ended fibers offer good focusing of incident radiation for the excitation fiber and 

high collection efficiency (high numerical aperture, > 0.3 NA) for the emission fiber. To obtain 

high fluorescence detection sensitivity, the distal output end of the excitation fiber provides 

good coupling efficiency inside the capillary. Finally, the fiber optic and modular design 

coupling allow easy exchange of the excitation radiation sources, i.e. to a laser module or other 

type of light sources [72].  
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Figure 5. Optical track design. (A) Schematic representation of the detection optics of the gel-

cartridge including detection optic configuration, (B) The actual center plane sectional view at 

the detection region in the gel-cartridge in panel A, (C) Dimensions of the microball ended 

incident (excitation fiber) and output (emission fiber) detection optics as well as the separation 

capillary. Adapted from [72]. 

 

2.7. Capillary Gel Electrophoresis of Nucleic Acids 

Currently, most molecular biology laboratories still utilize manual PA or agarose slab gel 

electrophoresis methods for the size separation of oligonucleotides, which require time-

consuming and labor-intensive manual steps, poorly automated, and also lack adequate 

resolving power in one-dimensional format [21]. CGE is an emerging tool used in the molecular 

biology and biotechnology industry laboratories, especially for the analysis of nucleic acids and 

protein purity studies. The method provides a reliable, easy-to-use and fully-automated 

approach with rapid separation times, excellent resolution, high sensitivity and ruggedness [72]. 

High-throughput and large-scale analysis of nucleic acids by CGE involves polymerase chain 

reaction (PCR) product sizing [73], DNA restriction fragment analysis [74], genotyping [75], 

and last but not least DNA sequencing [21].  

The investigation of single nucleotide polymorphism (SNP) is one of the most commonly used 

techniques in the nucleic acid field, which can be detected by regular CGE format [76]. Barta 

et al. reported on rapid molecular diagnostics of 21-hydroxylase deficiency by detecting the 

most common mutation in the 21-hydroxylase gene using primer extension and CE with a PVP 
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matrix [26]. In this study, first the region with the site of interest was amplified by PCR, 

followed by separation of the two possible primer extension products (mutant and wild-type) 

and the Cy5-labeled primer by CGE within 90 s. Constant denaturant capillary electrophoresis 

(CDCE) is another CGE approach, which yields large-scale analysis of DNA variations based 

on their differential melting temperature for applications including mutation analysis and SNP 

discovery in individual and pooled samples [77]. To identify SNPs in Scnn1a and Scnn1b genes, 

Xue et al. also used the CDCE for the separation of pooled blood samples, and a two-point LIF 

detection setup was introduced to improve mutation identification [78].  

Allele-specific PCR is another frequently used genotyping method, also known as the 

amplification-refractory sequence variant system [79]. In this amplification method, allele-

specific primers are used to hybridize at the 3’-end of the SNP site, followed by amplification 

using a DNA polymerase enzyme lacking 3’-exonuclease activity, thus amplification in that 

case occurs only if the primer sequence perfectly matches with the template sequence. Szántai 

et al. reported on a novel haplotyping method to investigate two SNPs (-616CG and -521CT) 

in the Dopamine D4 receptor gene by CGE [80]. Our laboratory reported successful haplotyping 

of two adjacent miRNA-binding SNPs in the Wolframin gene (WFS1) by combining allele-

specific amplification and rapid CGE analysis with LEDIF detection [2]. DNA sequencing by 

CGE became another mature field in a remarkably short period of time. The first paper on DNA 

sequencing option by CGE is appeared in the 1980s suggesting that CGE can solve the DNA 

sequencing problems [73, 81]. Later, Mathies et al. introduced a novel multicapillary array 

system for large-scale analysis of DNA sequencing fragments [44]. These capillary array tools 

also required sensitive detection design due to the use of capillary bundles. Dovichi et al. 

reported on a high-sensitivity post-column LIF detector, based on a sheath-flow cuvette to 

minimize background signal arising from the light diffraction of the gel-filled capillary (as 

mentioned in section 2.5.3.) [61]. At present, despite of the introduction of second-and third-

generation DNA sequencing techniques, fully-automated, easy-to-use multicapillary array 

systems are still in use to analyze hundreds of DNA samples with long read lengths [82].  

The use of microfabricated capillary arrays offers new opportunities in multiplexing nucleic 

acids research. Easley et al. developed a fully-integrated microfluidic genetic analysis device 

with sample-in-answer-out capability [83]. To analyze DNA fragments, some experiments have 

been accomplished in nanolits, nanochannels, channels with nanosized entropic traps and pillars 

[84].         
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2.8. Protein Separation by Capillary Gel Electrophoresis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is a commonly used 

technique in the biopharmaceutical field for size separation and quality control of proteins [28]. 

Traditional SDS-PAGE is time-consuming and labor intensive, also requiring improvements in 

terms of resolving power. SDS-capillary gel electrophoresis (SDS-CGE) offers many 

advantages over classical SDS-PAGE by providing on-column detection with excellent 

sensitivity, high-resolution and the capability of accurate quality control, fully-automated 

operation, and molecular mass evaluation [68, 85].  

As early as in the 1980s, the first papers on SDS-CGE were reported by applying cross-linked 

PA or agarose as sieving matrices [86, 87]. These polymers were directly filled into the capillary 

tubing before the separation process, either as polymerization reaction mixture (cross-linked 

PA) or as hot solutions (agarose). In the early 1990s, cross-linked PA was polymerized in the 

capillary tubing but the lifespan of these capillaries was limited, i.e. <10 runs per capillary, with 

poor run-to-run reproducibility. Later, water-soluble and replaceable linear or slightly branched 

polymers were developed such as low concentration cross-linked PA [88-90] or linear PA [27, 

91, 92], PEO [93], PEG [27], dextran [27], and hexosyl polymer (pullulan) [94, 95] as sieving 

gels for the separation of SDS-protein complexes. Currently, SDS-CGE kits are commercially 

available for quality control of therapeutic proteins such as recombinant monoclonal antibodies 

[96-99]. Our laboratory reported on high-throughput analysis of therapeutic monoclonal 

antibodies by SDS-multicapillary CGE (SDS-mCGE) as shown in Figure 6 [98].  

SDS-CGE was successfully conjugated with matrix-assisted laser desorption ionization time-

of-flight (MALDI-TOF) MS by using a moving poly(tetrafluoroethylene) membrane past the 

outlet end of the capillary tubing to continuously collect fractions for MS analysis [100]. CGE-

MALDI-MS has also been used for the quality control of monoclonal antibodies in the 

biopharmaceutical industry [101].       
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Figure 6. High-resolution analysis of a therapeutic monoclonal antibody by SDS-

multicapillary gel electrophoresis (SDS-mCGE). (a) Upper trace: covalently fluorophore 

tagged molecular mass ladder; lower trace: reduced mAb sample (0 remaining labeling dye, 

LC and HC represent the light and the heavy chains of mAb). (b) The calibration plot for 

molecular mass assessment in the 10–250 kDa mass range vs. reciprocal electrophoretic 

mobility [cm2/Vs]. Adapted from [98].  

 

2.9. Capillary Gel Electrophoresis of Complex Carbohydrates 

Glycosylation is one of the most common and structurally diverse post-translational 

modifications, which modulates the physical, chemical and biological properties of proteins. In 

addition, glycosylation plays crucial roles in different biochemical processes including protein 

stability, folding, localization, and cellular communications [102]. Some changes in biological 

activities are often the result of alterations in glycosylation, i.e., the same glycoproteins may 

possess by diversified carbohydrate moieties, even at the same glycosylation site 

(microheterogeneity), or exhibit different glycosylation site occupancy (macroheterogeneity) 

[103]. Aberrant glycosylation and the discovery of associated potential oligosaccharide-

biomarkers have been noted in many disease including immune deficiencies, cardiovascular 

syndromes and cancer [104].  
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Currently, structural elucidation of protein derived N-linked oligosaccharides poses a 

substantial analytical challenge, because most native glycans lack chromophore or fluorophore 

features in their structures that would enable their UV-VIS or LIF detection. Due to the 

discovery of glycan-based biomarkers, MALDI-TOF MS and high-performance liquid 

chromatography (HPLC) of fluorescently labeled oligosaccharides have emerged as techniques 

for the analysis of biological fluids or tissue samples [105, 106]. Prior to MALDI-TOF MS, 

permethylation of N-glycans is often a necessary sample preparation step. In spite of these 

advances, MS is unable to differentiate between isobaric glycan structures without using 

tandem MS, which leads to problems with quantitation originating from competitive ionization 

of different glycan structures within the ion source of the mass spectrometer [107]. The great 

advance of CGE in carbohydrate separation is the ability to distinguish both linkage and 

positional isomers [108, 109]. In addition, CGE-LIF detection also offers glycan sequencing 

options by top-down digestion and bottom-up identification using sugar-specific 

exoglycosidases as illustrated in Figure 7 [109].   

Typically, the carbohydrate moiety of a glycoprotein is enzymatically released with an 

endoglycosidase, such as peptide-N4-(N-acetyl--glucosaminyl)asparagine amidase (PNGase 

F), endo-β-N-acetylglucosaminidase H (endo-H), etc. While PNGase F liberates all classes of 

N-linked glycans from mammalian glycoproteins, endo-H specifically released high-mannose 

and hybrid type oligosaccharides [110]. In most cases, the liberated glycosylamines are 

converted to aldehyde form (reducing sugars) at acidic pH, and reacted with primary amino 

group containing dyes via reductive amination [70, 111, 112]. In most instances, for CGE the 

carbohydrates are labeled with APTS fluorescent dye. For glycan labeling, the use of other 

charged fluorescent reagents was also discussed in section 2.5.3 and 2.5.4. Aldose labeling with 

2,3-naphthalenediamine to produce highly fluorescent naphthimidazole derivatives were 

introduced by Kuo et al. [113]. Our laboratory reported the successful establishment of an 

ANTS-labeled N-glycan database for rapid (<200 s) CGE-LEDIF-based glycan profiling [114]. 

CGE-LIF is an excellent orthogonal technique to LC or MS based methodologies for the 

investigation of carbohydrates based on their different separation mechanisms [109]. In 

addition, CE was successfully conjugated with MS for the analysis of glycans for glycoprofiling 

of biotherapeutics [101, 115, 116]. Another advantage of CGE-based techniques is the option 

of easy multiplexing up to 12, 48, or even 96 capillaries for high-throughput applications [117, 

118]. 
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Figure 7. Overview of the experimental strategy for exoglycosidase digestion-based 

carbohydrate sequencing of IgG N-glycans by CGE-LIF. Adapted from [109].  

 

 

2.9.1. Theory of Glycan Structure Elucidation by CGE  

Oligosaccharide Standards. Co-injection of purified glycan standards with an unknown sample 

mixture poses a simple and effective way for glycan structure elucidation. The analysis of 

glycans by CGE is based on their different hydrodynamic volume to mass ratios. This proved 

to be decisive in the separation of glycans built of different monosaccharide blocks and 

featuring diverse positional and linkage patterns. For correct structural assignment, the use of 

glycan sequencing is a crucial step [108]. Anticipation of molecular size from analyte migration 

time can be achieved by the ancillary separation of gradually sized oligomeric sugar standards. 

Optimal reference standards involve equally distributed oligosaccharide pools showing a linear 

relationship between molecule size and migration time. Thus, linear homooligosaccharide 

ladders with degrees of polymerization (DP) 1, 2, …., n, of glucose (14 or 6), glucose 

(14)n, created by hydrolyzing starch, chitin-type polysaccharide chains, and cellulose are 
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frequently applied as standards. Hydrolysates of branched structures, such as high-mannose 

type glycans, are usually recommended due to the limited DP range and the occurrence of 

positional isomers. To assure the highest possible precision of migration time measurement, 

molecular size standards can either be co-injected with the sample or analyzed in a separate 

experimental run, where alignment standards are generally introduced in both standard and 

sample run.   

  

Migration Time Normalization. High accuracy CGE-based glycan analysis can be achieved by 

normalizing the migration times of the peaks of interest with a lower (migrating faster than any 

peak of interest) and an upper bracketing standard (migrating slower than any sugar structure 

of interest in the sample mixture) [119]. The migration times of the peaks within the boundaries 

can be converted to relative migration times (RMTx) by applying the following equation [120]:  

 

                                          





























lowerupper

lowerx

x

upper

x
MTMT

MTMT

MT

MT
RMT

                                  (eq 18) 

        

According to equation 18, migration times normalize into the interval between 0 and 1, where 

MTx is the migration time of the analyte of interest, MTlower and MTupper are the migration times 

of the lower and the upper bracketing standards, respectively. Thus, the analytical precision 

increases significantly, not only between consecutive repetitive runs, but also between 

oligosaccharide ladder standard and sample runs.      

 

Calculation of Glucose Unit (GU) Values. Glucose unit (GU) values are derived from the 

relative migration times of separately run maltooligosaccharide oligomers and calculated for 

the sample peak of interest based on its adjacent glucose oligomers peaks as characterized by 

equation 19: 

                                         
















 nn

nx
x

RMTRMT

RMTRMT
nGU

1                                                     (eq 19) 

 

where GU is the sugar unit value of the unknown oligosaccharide, n is the degree of 

polymerization (DP) of the preceding maltooligosaccharide ladder peak. RMTx is the relative 

migration time of the unknown sample peak. RMTn and RMTn+1 are the relative migration times 

of the homooligomers immediately preceding and following the peak of interest, respectively.  
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The generation of GU values of purified oligosaccharide standards with known structural 

identity helps the establishment of a GU database, which can support elucidation of unknown 

sugar structures [108].   

 

2.10. Future Trends: Miniaturization, Lab-On-a-Chip Systems 

To integrate multiple analytical processes on monolithic chip platform, a microfabricated lab-

on-a-chip (LOC) devices have been developed, comprising sample pretreatment, solution 

distribution/mixing, separation, detection, and all other necessary compartments as illustrated 

in Figure 8 [121]. The major purpose of the utilization of microfluidic analysis systems is to 

apply standard laboratory steps in a miniaturized format. Microfabricated CGE systems are 

very fast, separations take place in the seconds scale, because of the short length of the 

separation channels [28]. Capillary electrophoresis microchips utilize channels etched into 

planar substrates by applying common microfabrication methods from the semiconductor 

industry such as photolithography and chemical etching. In the miniaturized format, nanoliter 

sample volumes can be introduced with a simple cross or double T-injector structures [122]. 

The separated analyte molecules are typically detected by confocal microscopy with LIF 

detection. These features make CE microchips attractive technology platforms for next-

generation instrumentation. CE microchips have been utilized for the separation of biopolymers 

such as DNA fragments [123, 124], PCR-product sizing [125], genotyping [126], DNA 

sequencing [127], protein separation [28, 128, 129], carbohydrate profiling [130], cell and 

tissue studies [131], and environmental monitoring [132].  

Ultrathin-layer gel electrophoresis is another approach of miniaturization, which combines slab 

gel electrophoresis and CGE techniques, providing multilane separation to achieve rapid and 

efficient analysis of biomolecules [133]. Lab-on-a-chip systems can also be integrated with 

applications of micromachined chromatographic methods, i.e., high-performance micro- and 

nanovolume liquid chromatography (LC) [134]. Toward fully-automated lab-on-a-chip 

systems, various microfluidic lab-on-a-chip platforms have emerged from the effective 

integration of multiple microfluidic components for sophisticated biomedical analyses [135]. 

In the field of genomic research, Rech et al. first introduced a portable microchip 

electrophoresis (ME)-based genotyping system including a four-color solid-state single photon 

avalanche photodiode (SPAD) array detector [136].  
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In recent years, Rhazi et al. reported on a high-throughput microchip-based protein assay for 

quantitation of high-molecular-weight glutenin subunits [137], which provides comparable 

resolution and sensitivity to conventional reversed-phase HPLC (RP-HPLC), but in 

approximately 100 times faster time scale (45 s per sample analysis vs. 80 min for RP-HPLC). 

In 2012, He et al. introduced a tunable thick polymer coating for on-chip electrophoretic protein 

and peptide separation to control the effect of EOF and eliminate non-specific protein 

adsorption [138]. Furthermore, ME technology is also utilized for miniaturized bioanalytical 

devices in clinical analysis [139]. In the field of cancer research, Zhang et al. introduced a 

microfluidic beads-based immunosensor for the sensitive detection of a cancer biomarker 

protein, α-fetoprotein, using multienzyme amplification and quantum dot labeling [140]. Wang 

et al. established an application of poly(dimethylsiloxane)/glass microchip for fast 

electrophoretic separation of small, dense low-density lipoprotein in the field of clinical 

research [141]. In recent years, Kamaruzzaman et al. reported on a sensitive 

chemiluminescence microfluidic system using gold nanoparticles enhanced luminol silver 

nitrate for the identification of vitamin B12 [142]. For screening monoclonal antibody product 

quality, microchip CE-SDS systems are commonly used in the pharmaceutical industry, which 

offer sufficient resolution and sensitivity for this purpose, but faster [143]. Primack et al. 

established a high-throughput microchip-based glycan screening assay for antibody cell culture 

samples, including clone selection and cell culture process optimization [144]. With this 

microchip CE, the relative levels of high-mannose, fucosylated and galactosylated glycoforms 

in the Fc domain were measured for hundreds of crude cell culture samples in a few hours (i.e., 

less than 1 min per sample).  

In recent years, microchip devices have been successfully coupled to electrospray ionization 

(ESI) and MALDI-TOF MS for the analysis of biological samples [145]. The main advantage 

ME-ESI-MS is the low flow rate that results in seamless interfacing without disrupting the 

electrophoretic separation.            
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Figure 8. Lab-on-a-chip electrophoresis design. Reproduced with permission from Ref. [146]. 
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3. AIMS AND MOTIVATION 

 

Capillary gel electrophoresis (CGE) is a rapidly developing technique, which is routinely used 

mostly in biopharmaceutical and biomedical analyses. This dissertation is started with a 

summary of the theoretical and practical aspects of CGE including separation principles, 

instrument design, capillary coatings, and the most frequently used gel-buffers. It is followed 

by the description of various detection options, such as UV-Vis, diode-array, laser-induced 

fluorescence, and light-emitting diode-induced fluorescence types. Then, an overview of the 

key application areas is given with the main emphasis on nucleic acids, proteins, and complex 

carbohydrate analysis, as well as the latest developments in microchip electrophoresis devices. 

The aims of this study were as follows:  

 

1. To introduce a novel single-channel capillary gel electrophoresis system with microball 

ended emission optical fiber based LED-induced fluorescence detection design. To 

evaluate the suitability of this separation system, the degradation level of a large number 

(cc 1000) gDNA samples were analyzed to assess their quality, focusing on migration 

time reproducibility, limit of detection, as well as detector linearity in comparison to 

conventional agarose slab gel electrophoresis. 

 

2. After the reproducibility studies, the aim was to develop a haplotyping (i.e. 

simultaneous multiple genotyping) method of two adjacent miRNA-binding miR-SNPs 

(rs1046322 and rs9457) in Wolfram syndrome-1 gene (WFS1) by combining double-

tube allele-specific amplification and rapid capillary gel electrophoresis with LED-

induced fluorescent detection to analyze the resulting DNA fragments. 

 

3. The increasing use of glyco-markers and the huge market of therapeutic monoclonal 

antibodies requires the generation of synthetic carbohydrate antigens. In the third part 

of this study, the aim was to investigate polyclonal antibody response for newly 

synthesized maltose-BSA conjugates. First of all, a simple carbohydrate, maltose, was 

conjugated to a carrier protein (BSA) by reductive amination to improve their 

immunogenicity. After that, the synthetized neoglycoproteins were investigated by 

SDS-CGE as well as MALDI-TOF MS, and then induced immune response against 

themselves.  
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This elaborated method may be utilized in order to generate monoclonal antibody 

libraries for the discovery of mAbs in normal and disease models with unique sugar 

specificities, which can be readily applied to biomedical research and clinical 

diagnostics. 

 

4. In the fourth part of this study, the aim was to introduce an 8-aminonaphtalene-1,3,6-

trisulfonic acid (ANTS) oligosaccharide database for capillary gel electrophoresis using 

LED-induced fluorescent detection. The validation of the generated GU values in the 

database was verified with N-glycans released from human immunoglobulin G and 

bovine pancreatic ribonuclease B. Currently, there are no structural databases for CGE-

LEDIF separations, which contributed to the novelty and importance of this topic. In 

the absence of database, the migration properties must be calculated with the use of 

purified N-linked carbohydrate standards or in conjugation with other analytical 

techniques (e.g., NP-HPLC, MS, etc.). However, this generated database may prove 

useful for fellow separationists in the biomarker research and drug development. It is 

not necessary to separate large carbohydrate standards before each evaluation, thus, the 

unknown structures can be identified based on the migration times of the peaks of 

standards. 

 

5. Finally, the activation energy concept related to the electromigration of carbohydrates 

were studied in CGE-LIF using linear (sugar oligomers with α1-4 linked glucose) and 

branched (sialylated, neutral and core fucosylated IgG) N-glycans. The aim of this study 

was to determine the electrophoretic mobility shift between the different structure 

oligosaccharides at different temperature/background electrolyte. The APTS-labeled 

oligosaccharides were separated in the temperature range of 20 – 50oC, using either 

viscosity modifier (ethylene glycol) or polymeric additive (linear polyacrylamide, 

polyethylene oxide) containing BGEs. Previous reports have not noticed the effect of 

separation temperature on structure specific glycan migration using viscosity modifiers 

and/or polymeric additives containing BGEs. These factors may influence the stability 

of structural database, which contributed to the novelty and importance of this topic.     
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4. MATERIALS AND METHODS  

  

 

4.1. Large-Scale Genomic DNA Analysis  

For large-scale genomic DNA (gDNA) analysis, the gDNAs were from the Clinical Genomics 

Center (Debrecen, Hungary) and kept at -20oC in TE buffer (10 mM Tris, 1 mM EDTA, 

adjusted to pH 8.0 with HCl) until use.  

 

4.1.1. Analysis of gDNA by CGE 

For CGE-LEDIF separation, the GeneRuler 1kb Plus DNA sizing ladder (Biocenter, Szeged, 

Hungary, size range of 75 – 20 000 bases) was diluted to 50 ng/µL and the gDNA samples were 

diluted to 25 ng/µL final concentration with HPLC-grade water (Sigma-Aldrich, St. Louis, MO, 

USA). For the migration time reproducibility study, the 100 bp Plus DNA molecular mass 

marker (Biocenter, size range of 100 – 3 000 bases) was used for this evaluation in a final 

concentration of 25 ng/µL with HPLC-grade water. After dilutions, all gDNA samples and 

DNA molecular mass markers were aliquoted and stored at -20oC until use. CGE-LEDIF 

separations were accomplished by a novel single-channel DNA-CE instrument (Qsep100, 

BiOptic, New Taipei City, Taiwan) containing a 75 µm i.d. (360 µm o.d.) bare fused silica 

capillary with the effective separation length of 11 cm (total length: 15 cm). The optical 

detection system comprised a super-bright royal blue LED (Cree XLamp, New York, NY, 

USA) as excitation radiation source. The CGE instrument also included a high sensitivity 

multialkali PMT for data acquisition (Hamamatsu Photonics, Bridgewater, NJ, USA). DNA-

CE high-resolution gel-buffer and DNA-CE running buffer (Qsep100, BiOptic) was used for 

the CGE separations. To accommodate fluorescent detection, the gel-buffer system contained 

ethidium-bromide. Prior to use, new capillary was washed first with 5 mL approximately 70oC 

MilliQ-grade water (Millipore, Billerica, MA, USA) and the capillary was rinsed for 500 s 

followed by the transfer of 5 mL DNA-CE gel buffer into the gel reservoir and purging for 2 × 

1 000 s. To avoid any possible carryover, the sieving gel was replaced in the capillary by means 

of a 10 s purge step between injections, followed by the injection of an HPLC-grade water plug 

(4 kV for 3 s), and the electrokinetic sample introduction from a 96-well plate at 4 kV for 6 s. 

Each separation was carried out at ambient temperature applying 8 kV for 300 s with a high-

voltage power supply (EMCO, Sutter Creek, CA, USA). Data analysis was performed using the 

Q-Analyzer software package (BiOptic). 
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4.1.2. Analysis of gDNA by Agarose Gel Electrophoresis 

For agarose slab gel electrophoresis, the 1 kb Plus DNA sizing marker (Biocenter) was diluted 

to 0.1 µg/µL final concentration prior to use. A total of 500 ng gDNA samples (in TE buffer) 

were injected into the sampling wells of the agarose gels. Agarose slab gel electrophoresis was 

performed in an E-Gel iBas Power System (Thermo Fisher Scientific, Darmstadt, Germany) for 

separation and the E-Gel Safe Imager Real-Time Transilluminator (Thermo Fisher Scientific). 

Precast agarose gels containing 2% agarose (2 × 8 wells, size range of 100 – 2 000 bases) E-

Gel 2% double comb with ethidium bromide (Thermo Fisher Scientific) was utilized for the 

separation of the gDNA samples and DNA sizing marker. The molecular mass marker and 

gDNA samples were applied into the sampling wells of the agarose gels and electrophoresed in 

the E-Gel system for 8 min, after that, the separated bands were visualized by a blue light 

transilluminator in real time. Data analysis was performed using the Alpha DigiDoc AD-1201 

imaging system (Bio-Science, Budapest, Hungary) equipped with an Olympus digital camera 

(C-4000ZOOM) with appropriate filters (Olympus, Budapest, Hungary). 

 

4.2. Molecular Haplotype Analysis  

  

4.2.1. Non-Invasive DNA Sampling and DNA Extraction 

The gDNA samples were from the Department of Medical Chemistry, Molecular Biology and 

Pathobiochemistry (Budapest, Hungary). gDNAs were acquired using non-invasive DNA 

sampling with the use of buccal swabs from healthy Hungarian volunteers. The study protocol 

was approved by the Local Ethical Committee (ETT-TUKEB ad.328/KO/2005, ad.323-

86/2005-1018EKU from the Scientific and Research Ethics Committee of the Medical Research 

Council). DNA samples were purified by standard procedure as described [147]. 

 

4.2.2. Allele-Specific PCR 

For ultrafast molecular haplotype analysis, the amplification of the rs1046322 and rs9457 SNPs 

was performed by allele-specific PCR. The HotStarTaq DNA polymerase lacking 3’ 

exonuclease activity together with the 10 × reaction buffer, and the Q-solution (Qiagen, 

Valencia, CA, USA) were applied for the allele-specific PCR and each DNA sample was 

investigated in two separate reactions.  
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Both PCR reaction mixtures included approximately 4 ng gDNA template, 200 µM 

deoxyadenosine triphosphate (dATP), deoxycitidine triphosphate (dCTP), deoxyguanosine 

triphosphate (dGTP), deoxythymidine triphosphate (dTTP), 0.5 U HotStar Taq DNA 

polymerase, and 1 µM of each outer oligonucleotide primer (Sigma Genosys, Woodlands, TX, 

USA; forward: 5’ TCT GTC CAC TCT GAA TAC 3’ and reverse: 5’ CAG GCT CTT CTA 

AAC ACT 3’). Reaction mixture-I was employed to investigate the presence of the rs1046322A 

and rs9457C alleles, as well as their haplotype, thus it comprised the rs1046322A specific sense 

(5’ GAG CCT GAC CTT TCT GAA 3’) and the rs9457C specific antisense (5’ CCA CTA CCT 

GCT GGA G 3’) primers. Reaction mixture-II was used to analyze the other possible variants 

(rs1046322G-specific forward primer: 5’ GAG CCT GAC CTT TCT GAG 3’, rs9457G-

specific reverse primer: 5’ CCA CTA CCT GCT GGA C 3’). PCR amplification reactions were 

performed in a total volume of 10 µL. The sequences of the primers were designed by the Oligo 

5.0 software (Molecular Biology Insights, Cascade, CO, USA). Thermocycling conditions were 

started at 95oC for 15 min to activate the hotstart DNA polymerase enzyme. This was followed 

by 40 cycles of denaturation (94oC for 30 s), annealing (55oC for 30 s), and then extension 

(72oC for 1 min). The last procedure of the PCR was a final extension at 72oC for 10 min after 

that the PCR samples were stored at 8oC.  

For the detection limit and linearity studies by CGE-LEDIF, the PCR mixture included 

approximately 4 ng gDNA template, 200 µM of each deoxyribonucleotide triphosphate (dATP, 

dCTP, dGTP and dTTP), 0.05 U/µL HotStarTaq DNA polymerase with 1× reaction buffer and 

1× Q-solution, as well as 1 µM of each primer (forward: 5’ GCC CTT CTC GAG TCT TGC 

AGC GCC GGA ATA GGC 3’ and reverse: 5’ GCA GAA GCT TAA GTT GTT CGG GAG 

CAG CTG AAC G 3’). The amplification reaction was carried out in a total volume of 100 µL. 

The thermocycling was initiated at 95oC for 15 min to denature gDNA and to activate the 

enzyme; it was followed by 40 cycles of denaturation at 94oC for 30 s, annealing at 65oC for 30 

s, and then extension at 72oC for 1 min. The last step of the amplification was a final extension 

at 72oC for 10 min after that the PCR-product was kept at 8oC.  

 

4.2.3. Analysis of PCR-Product by CGE       

In CGE-LEDIF separations, and the DNA mass ladder (BiOptic; size range of 50 – 3 000 bases, 

10.5 ng/µL) as well as the lower and upper DNA alignment markers (BiOptic; 20 base pair, 

1.442 ng/µL and 5000 base pair, 1.852 ng/µL) were used for this evaluation.  
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The WFS1 PCR-fragments (576 base pair, 253.19 ng/µL) were diluted to the appropriate 

concentrations with dilution buffer (BiOptic) or MilliQ-grade water (Millipore) for the 

detection limit and linearity studies. Rapid CGE analysis of the PCR-fragments was also 

accomplished by the DNA-CE instrument using the DNA-CE gel-buffer and DNA-CE running 

buffer (Qsep100, BiOptic). The capillary was conditioned under the same procedures as 

mentioned above. Samples were injected electrokinetically at 4 kV for 10 s. To avoid any 

sample cross-contamination, the capillary tubing was immersed into MilliQ-grade water 

(Millipore) at 0 kV for 1 s as a washing step. To improve precisions, two DNA alignment 

markers were used (20 bp and 5000 bp). Separations were carried out at ambient temperature 

by applying 6 kV electric potential. Data analysis was also performed using the Q-Analyzer 

software package (BiOptic).  

 

4.2.4. Analysis of PCR-Product by Agarose Gel Electrophoresis 

The GeneRuler 100 base pair DNA ladder (Thermo Fisher Scientific, FL, USA) was diluted to 

a final concentration of 0.5 µg/µL and kept at -20oC until use. Agarose powder was mixed with 

1× TAE electrophoresis buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA, pH 8.0) in 

a final concentration of 2%, and then heated until the agarose powder dissolved completely. 

Ethidium bromide as an intercalating dye was added to the melted gel in a final concentration 

of 0.5 µg/mL. After jellification at room temperature, 20 ng of PCR samples and the 100 base 

pair DNA molecular mass marker (100 – 1 000 bp, 0.5 µg/µL) containing DNA loading dye 

(6× loading dye: 10 mM Tris–HCl (pH 7.6), 0.03% bromophenol blue, 0.03% xylene cyanol 

FF, 60% glycerol and 60 mM EDTA) were injected into the sample wells and electrophoresed 

for 45 min at 100V (Bio-Rad PowerPac 300, Hercules, CA, USA). The separated DNA bands 

were detected in a UV light box (Bio-Rad Gel-Doc XR System). 

 

4.3. Immune Response against Neoglycoproteins  

 

4.3.1. General Procedures 

Thin-layer chromatography (TLC) was performed on Kieselgel 60 F254 precoated aluminum 

plates (Merck Millipore, Darmstadt, Germany). Sample compounds were detected by treating 

the plates with 10% H2SO4 and heating to 140oC. Column chromatography was accomplished 

with Kieselgel 60 (Merck Millipore, 0.063 – 0.2 mm) with solvents specified under the relevant 

sections.  
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All organic phases were concentrated in a rotary vacuum evaporator (Büchi Rotavapor R-114, 

Flawil, Switzerland) after extraction. NMR spectra were performed using a Bruker (Bremen, 

Germany) DRX-360 instrument (1H 360.13 MHz, 13C 90.56 MHz) at room temperature in 

CDCl3 solvent, with a Me4Si internal standard.  

The uncorrected melting points were carried out by a Kofler apparatus (Dresden, Germany). 

All chemicals for the synthesis of neoglycoproteins and the general reagents for CE, MALDI-

TOF MS, and ELISA tests were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

 

4.3.2. Synthesis of Neoglycoproteins 

Neoglycoproteins are carbohydrate-modified proteins. The synthesis of neoglycoproteins can 

be random or specific using chemical and enzymatic methods. Reducing oligosaccharides can 

be conjugated directly to amino groups or using functionalized glycan bearing spacer arms 

between the carbonyl group of sugar and the amino groups of proteins [148]. In this study, a 

formyl-heptil spacer was used to minimize the risk of introducing a stronger immunogen close 

to the sugar residue, i.e. this spacer contains no functional groups in the vicinity of the 

carbohydrate.  

Acetylation step: 6.8 mg (105 mmol) of sodium acetate was dissolved in 60 mL acetic anhydride 

and the reaction mixture was stirred for 15 min at 60oC. After that 10 g (29 mmol) maltose (1, 

numbers indicate the structures of compounds in section 5.3.1.) was added to the mixture and 

stirred for 1.5 h at 110oC. The reaction solution was mixed with ~200 mL ice-water, diluted in 

2 to 1 ratio with methylene chloride and washed twice with dH2O. The combined organic phases 

were dried over MgSO4, filtered and concentrated in a rotary vacuum evaporator. Finally, the 

sample was crystallized from methanol resulting in 11.61 g of 2,3,4,6-tetra-O-acetyl--D-

glucopyranosyl-(1→4)-1,2,3,6-tetra-O-acetyl--D-glucopyranose (2) compound (59%) as 

white crystals.  

NMR data for compound 2 (melting point= 158oC): 1H NMR (CDCl3): δ 5.85 (d, J = 8 Hz, 1H, H-1), 

5.51 (d, J = 4 Hz, 1H, H-1’), 5.46 (t, J = 10, Hz, 1H), 5.40 (t, J = 9 Hz, 1H), 5.16 (t, J = 10 Hz, 1H), 

5.08 (t, J = 9 Hz, 1H), 4.96 (dd, J = 10, 4.00 Hz, 1H, H-2’), 4.56 (dd, J = 12, 2 Hz, 1H, H-6a’), 4.34 

(dd, J = 12, 3.5 Hz, 1H, H-6b’), 4.18-4.11 (m, 1H, H-6a, H-6b), 4.08-4.03 (m, 1H), 3.99-3.92 (m, 1H), 

2.24, 2.21, 2.20, 2.15, 2.13, 2.12, 2,11 and 2.10 (8s, 3H, 8 COCH3); 13C NMR (CDCl3): δ 170.37, 170.30, 

170.23, 169.87, 169.68, 169.40, 169.25 and 168.60 (COCH3), 95.59 and 91.13 (C-1 and C-1’), 75.06, 

72.87, 72.38, 70.81, 69.89, 69.17, 68.45 and 67.86 (C-2, C-2’, C-3, C-3’, C-4, C-4’, C-5, C-5’), 62.40 

and 61.34 (C-6 and C-6’), 20.70, 20.62, 20.50 and 20.41 (COCH3).  
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Deprotection step: The resulted 2 g of maltose octaacetate (2) (2.95 mmol) was dissolved in 30 

mL anhydrous N,N-dimethylformamide, the solution was cooled to 0oC and 494 mg hydrazine-

acetate (5.34 mmol) was added to the mixture. The reaction solution was stirred at room 

temperature for 3 h and concentrated in a rotary vacuum evaporator. The residue was diluted in 

2 to 1 ratio with methylene chloride and washed twice with dH2O. The combined organic phases 

were dried over MgSO4, filtered, concentrated in a rotary vacuum evaporator, and then purified 

by Kieselgel 60 column chromatography using 3:2 hexanes-acetone eluent to yield 1.56 g of 

2,3,4,6-tetra-O-acetyl--D-glucopyranosyl-(1→4)-2,3,6-tri-O-acetyl-,-D-glucopyranose 

(83%) anomers (3:3 ~ 1:3, NMR). 

NMR data for compound 3: 1H NMR (CDCl3): δ 5.58 (t, J = 9.5 Hz, 1H), 5.43 (d, J = 4 Hz, 1H, H-

1’), 5.41-5.32 (m, 2H), 5.08 (d, J = 10 Hz, 1H, H-1), 4.86 (dd, J = 10, 4 Hz, 1H, H-2’), 4.76 (dd, J = 

10, 3.5 Hz, 1H, H-6a’), 4.52-4.46 (m, 1H, H-6b’), 4.30-4.17 (m, 3H), 4.10-3.91 (m, 3H), 2.14, 2.10, 

2.06, 2.05, 2.02, 2.01 and 2.00 (7s, 3H, 7 COCH3); 13C NMR (CDCl3): δ 170.64, 170.26, 169.94 and 

169.44 (COCH3), 95.43 and 89.87 (C-1 and C-1’), 72.57, 72.26, 71.54, 69.95, 69.31, 68.33, 67.93 and 

67.58 (C-2, C-2’, C-3, C-3’, C-4, C-4’, C-5, C-5’), 62.75 and 61.36 (C-6 and C-6’), 20.89, 20.79, 20.61 

and 20.53 (COCH3). MALDI TOF-MS calc. for C26H36O18: 636.19 M. Found: 659.22 M+Na+. 

 

Spacer addition step: The methylene chloride (50 mL) solution of the resulted 1.27 g hemiacetal 

(3) (2 mmol) was mixed with 5.83 mL trichloro-acetonitrile (57.4 mmol). 2 g potassium 

carbonate was added and the mixture was stirred overnight at room temperature, filtered 

through a Celite pad and concentrated in a rotary vacuum evaporator. The resulted imidate (4) 

and 496 mg 7-(1,3-dioxan-2-yl)-heptan-1-ol (5) (2.42 mmol) was dissolved in 30 mL methylene 

chloride and 5 g of 4 Å molecular sieving beads were added to the mixture. The reaction 

solution was dried at room temperature for 1 h under Ar atmosphere, cooled to -40oC followed 

by dropwise addition of 95 µL trimethylsilyl trifluoromethanesulfonate (0.52 mmol), stirred at 

room temperature for 1 h, neutralized with triethylamine, diluted with methylene chloride and 

washed twice with saturated aqueous NaHCO3. The combined organic phases were dried over 

MgSO4, filtered, concentrated in a rotary vacuum evaporator and the residue was purified by 

column chromatography using Kieselgel 60 with 3:2 hexanes-acetone eluent to yield 595 mg 

(36% in two steps) of [7-(1,3-dioxan-2-yl)-heptyl]-2,3,4,6-tetra-O-acetyl--D-glucopyranosyl-

(1→4)-2,3,6-tri-O-acetyl--D-glucopyranose (6) compound. 

NMR data for compound 6: 1H NMR (CDCl3): δ 5.41 (d, J = 4 Hz, 1H), 5.36 (t, J = 10 Hz, 1H), 5.25 

(t, J = 9 Hz, 1H), 5.05 (t, J = 10 Hz, 1H), 4.90-4.78 (m, 2H), 4.57-4.43 (m, 3H), 4.31-4.21 (m, 2H), 
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4.15-3.93 (m, 5H), 3.88-3.63 (m, 4H), 3.54-3.39 (m, 1H), 2.14, 2.10, 2.05, 2.03, 2.01 and 2.00 (5s, 21H, 

COCH3), 1.65-1.47 (m, 5H), 1.47-1.21 (m, 11H); 13C NMR (CDCl3): δ 170.50, 170.23, 169.92, 169.57 

and 169.39 (COCH3), 102.34 (acetal C), 100.25 and 95.48 (C-1 and C-1’), 75.45, 72.78, 72.21, 72.03, 

69.97, 69.34, 68.44 and 68.02 (C-2, C-2’, C-3, C-3’, C-4, C-4’, C-5, C-5’), 70.13 and 66.86 (CH2), 62.90 

and 61.50 (C-6 and C-6’), 35.16, 29.36, 29.11, 25.83, 25.63 and 23.84 (CH2), 20.89, 20.82 and 20.58 

(COCH3). MALDI TOF-MS calc. for C37H56O20: 820.34 M. Found: 843.42 M+Na+. 

 

Then the protected maltose with the 387 mg aglycone spacer (6) (0.47 mmol) was dissolved in 

20 mL methanol, and then sodium methylate catalyst was added (pH~8-9) in the catalytic 

amount.  

The mixture was stirred overnight and quenched with Amberlite IR 120 hydrogen ion exchange 

resin until pH 7.0 was reached. Ultimately, the residue was filtered, concentrated in a rotary 

vacuum evaporator, and the mixture was purified by Kieselgel 60 column chromatography 

using 4:1 methylene chloride-methanol eluent to yield 178 mg (72%) of [7-(1,3-dioxan-2-yl)-

heptyl]--D-glucopyranosyl-(1→4)--D-glucopyranose (7) compound. 

NMR data for compound 7: 1H NMR (CD3OD): δ 5.15 (d, J = 4 Hz, 1H, H-1), 4.53 (t, J = 5 Hz, 1H), 

4.26 (d, J = 8 Hz, 1H, H-1’), 4.07-4.00 (m, 2H), 3.94-3.73 (m, 6H), 3.72-3.48 (m, 6H), 3.43 (dd, J = 

10, 4 Hz, 1H), 3.39-3.16 (m, 6H), 2.08-1.89 (m, 1H), 1.67-1.47 (m, 4H), 1.43-1.26 (m, 9H); 13C NMR 

(CD3OD): δ 104.35 (acetal C), 103.69 and 102.95 (C-1 and C-1’), 81.37, 77.90, 76.62, 75.12, 74.81, 

74.74, 74.21 and 71.24 (C-2, C-2’, C-3, C-3’, C-4, C-4’, C-5, C-5’), 70.94 and 67.95 (CH2), 62.80 and 

62.24 (C-6 and C-6’), 36.21, 30.78, 30.54, 30.48, 27.01 and 24.95 (CH2). MALDI TOF-MS calc. for 

C23H42O13: 526.26 M. Found: 549.24 M+Na+. 

 

Conjugation step: After removing the protecting acetyl groups, the 13.15 mg compound (7) 

(0.025 mmol) was dissolved in 96% acetic acid (1.18 mL) and stirred for 2 h at 50oC, and then 

concentrated in a rotary vacuum evaporator. After heating, the residue was dissolved in 2 mL 

phosphate buffer (0.1 M, pH=7.0) and 16.75 mg (250 nmol) bovine serum albumin (BSA) was 

added to the mixture. Then 3.17 mg (0.050 mmol) sodium cyanoborohydride (NaCNBH3) was 

added and allowed to stand at room temperature for 1 day. The resulting neoglycoprotein 

(carbohydrate antigen) was dialyzed against water and lyophilized (Heraeus-Christ, Osterode, 

Germany) to yield 4.5 mg of neoglycoprotein (9a). The synthesis of other neoglycoproteins was 

performed similar as described above (9b, 9c and 9d). The molar ratio of compound 7 with 

aglycone spacer and the reagents to BSA was varied in the coupling reaction as shown in Table 

2. 
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Table 2. Analysis of the number of conjugated sugar residues in the synthesized antigens by 

MALDI-TOF MS and parameters of the conjugation step. 

 

a) Sugar-spacer (C20H35O11):451 Da; BSA: 66 401 Da; Calculation: (80 851 – 66 401)/451 = 32 units. 

 

 

4.3.3. Analysis of Neoglycoproteins by CGE 

For fluorophore labeling of neoglycoproteins, the fluorescent reagent Chromeo P503 (Active 

Motif, Rixensart, Belgium) was diluted with methanol to 1 mg/mL final concentration and the 

stock solution was kept at 4oC until use. Samples were diluted in MilliQ-grade water (Millipore) 

in a final concentration of 2 mg/mL. For the SDS-CGE separation, a total of 5 µL of each 

glycoconjugate was transferred to 200 µL PCR tubes followed by the addition of 0.5 µL of 1 

mg/mL dye stock solution, 2.5 µL of 10% SDS, 2 µL of 0.5 M dithiothreitol (DTT) reducing 

agent and 25 µL of 25 mM NaHCO3 buffer (final concentration: 17.86 mM, pH 9.20) to a total 

volume of 35 µL and incubated at 90oC for 30 min. Prior to the SDS-CGE separation, the 

glycoconjugates were allowed to cool to ambient temperature and centrifuged at 3000 × g for 

30 s (Centrifuge 5424, Eppendorf, Hamburg, Germany).  

 NEOGLYCOPROTEINS 

 
BSA-32-

maltose (9a) 

BSA-50- 

maltose (9b) 

BSA-59- 

maltose (9c) 

BSA-66- 

maltose (9d) 

Maltose containing  

spacer (mg) 
13.15 26.3 39.5 78.9 

Maltose containing  

spacer (mmol) 
0.025 0.05 0.075 0.15 

Acetic acid (mL) 1.18 2.36 3.54 7 

Water (mL) 0.3 0.6 0.9 1.8 

Phosphate buffer (mL) 2 2 2 2 

BSA (mg) 16.75 16.75 16.75 16.75 

BSA (nmol) 250 250 250 250 

NaCNBH3 (mg) 3.17 6.35 9.51 19 

NaCNBH3 (mmol) 0.050 0.1 0.15 0.3 

Amount of antigens (mg) 4.5 19.2 9.9 18.6 

MALDI-TOF MS (Da)a) 80 851.1 88 854.5 93 171.6 96 258.5 

Carbohydrate units 32 50 59 66 
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In all electrophoretic analysis, 60 mM tris–borate containing 0.1% SDS buffer (pH 8.45) was 

used as background electrolyte (BGE). The sample buffer consisted of 25 mM NaHCO3 and 

the pH was adjusted to 9.2 by the addition of 0.1 M NaOH. All separations were carried out in 

a P/ACE MDQ instrument (SCIEX, Brea, CA, USA), which equipped with a 488 nm Ar-ion 

laser having a strong 514 nm line and the emission signal was collected through a 600 nm long 

pass filter. Before the first use, new capillary (75 µm i.d., 360 µm o.d., 10 cm effective length 

and 30 cm total length) was washed with MilliQ-grade water, then 0.1 M HCl, and rinsed with 

MilliQ-grade water before the SDS-MW gel buffer (SCIEX) was transferred into the capillary. 

Prior to each sample injection, the gel-buffer was replaced in the capillary tubing. The sample 

injection process was preceded by the introduction of an HPLC-grade water plug (12.5 kV for 

5 s). The glycoconjugates were introduced electrokinetically at the short side of the capillary 

(10 cm) from a 96-well plate (25 kV for 10 s). All separations were carried out at 25oC by 

applying 500 V/cm electric field strength. Data analysis was performed using the Karat 32 

version 7.0 software package (SCIEX).  

 

4.3.4. Analysis of Neoglycoproteins by MALDI-TOF MS 

MALDI-TOF MS analysis of the synthesized glycoconjugations was performed in positive 

reflectron mode using a BIFLEX III mass spectrometer (Bruker) with delayed-ion extraction. 

Spectra from multiple (>100) laser shots (N2 laser, 337 nm) using 19 kV accelerating and 20 

kV reflectron voltage were summarized. BSA was used (6 – 8 mg/mL in 0.1% TFA) as external 

calibration solution. TFA solution was prepared by dissolving 0.1% TFA in a mixture of 2:1 

acetonitrile–water. A total of 10 µL of sample, 25 µL matrix (3,5-dimethoxy-4-

hydroxycinnamic acid), and 15 µL TFA solution were mixed and 0.5 µL was applied to the 

target plate and allowed to dry at room temperature before analysis. 

 

4.3.5. Immunization with Neoglycoproteins 

For each immunization step (BALB/c (♀): inbred white albino mouse, Charles River Hungary, 

Isaszeg, Hungary), both the lowest (32 units/mol) and highest (66 units/mol) amount of sugar-

incorporated synthetic glycoconjugates (50 µg/mL in phosphate buffered saline, pH 7.4) were 

mixed with equal volume of Freund’s complete adjuvant and incomplete Freund’s adjuvant for 

the first and consecutive immunization injections, respectively. After that, the mixture was 

injected subcutaneously into the hind legs of the mice three times in two week intervals.  
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Seven to ten days after the third injection, blood was taken from the eye corners of the mice. 

The serum was separated from the red blood cells and tested by enzyme-linked immunosorbent 

assay (ELISA). 

 

4.3.6. Analysis of Neoglycoproteins by ELISA  

Immunoassay plates (Corning 96-well plates, half-area clear polystyrene, high-binding, 

nonsterile, Sigma-Aldrich) were coated with synthetic immunogens, i.e. 30 µL per well in the 

coating buffer (14.7 mM Na2CO3, 34.9 mM NaHCO3, pH 9.6), and then incubated at 37oC for 

1 h. To detect the antibody response, a total of 10 µg/mL and a twofold serial dilution from 1.25 

to 0.08 µg/mL of immunogen coatings were used, as well as 0.2 µg/mL BSA and synthetic 

neoglycoprotein as immunogen coatings were prepared for the experiments, which were done 

in the presence of inhibitors. The plates were washed twice with PBS-Tween wash buffer (123.2 

mM NaCl, 3.2 mM KH2PO4, 10.5 mM Na2HPO4, 0.05 v/v% Tween-20, pH 7.2), the remaining 

protein-binding sites were blocked by the addition of 60 µL PVP blocking buffer (376.5 mM 

NaCl, 0.5 m/v% polyvinyl-pyrrolidone (Mw 10 000) in the PBS-Tween buffer) and incubated 

at 37oC for 30 min. After that, the plates were washed twice with wash buffer and 30 µL of 

appropriately diluted immune sera was added to each well followed by incubation at 37oC for 

1 h. To check the polyclonal antibody response, serum dilutions of 1 000 – 128 000× were used, 

and then the plates were washed four times with the wash buffer. This was followed by washing 

the plates four times with wash buffer before 30 µL of appropriately (8000-fold) diluted 

horseradish peroxidase (HRP-labeled) conjugated secondary antibody (goat-anti-mouse IgG, 

Southern Biotechnology, Birmingham, AL, USA) was added to each well and incubated at 37oC 

for 30 min. To measure the bound antibody, 30 µL of 3,3’,5,5’-tetramethylbenzidine substrate 

solution was added to each well. This solution comprised 3,3’,5,5’-tetramethylbenzidine tablet 

(2 mg) dissolved in the mixture of 1 mL DMSO and 9 mL citrate-phosphate buffer (52.0 mM 

Na2HPO4, 25.5 mM citric acid, pH 5.0). A total of 2 µL of fresh 30% hydrogen peroxide was 

added per 10 mL of substrate buffer solution immediately prior to use. The estimated incubation 

times for the enzyme-substrate reaction ranged from 10 to 15 min, after which 30 µL stop 

solution (4 M H2SO4) was added to the reaction and the plates were interrogated at 450 nm in 

a Multiscan Ascant reader (Thermo Fisher Scientific, Hudson, NH, USA). In the inhibition 

studies, 0.1 –1.6 g/mL BSA, neoglycoproteins, and 2.00 – 0.06 mg/mL maltose, glucose, 

isomaltose, lactose, galactose, and maltodextrin were used to inhibit the binding of specific 

antibodies from the suitably diluted (2 000-fold) plasma preparations.  
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4 000-fold dilutions of sera were prepared without inhibitors as control. After coating and 

blocking, the serum was mixed with an equal volume of the inhibitor. The mixture was placed 

on the well and incubated for 1 h at 37oC. This was followed by washing the plates four times 

with wash buffer before 30 µL of appropriately (8 000-fold) diluted horseradish peroxidase 

(HRP labeled) conjugated secondary antibody (goat-anti-mouse IgG, Southern Biotechnology) 

was added to each well and incubated at 37oC for 30 min. Then the plates were washed four 

times with the wash buffer. Antibody binding was measured as described above. 

 

 

4.4. High-Performance CGE Analysis of Complex Carbohydrates   

 

4.4.1. Sample Preparation for CGE 

Glycoprotein digestions, i.e. 50 µg of hIgG and bovine RNase B (Sigma-Aldrich), were 

performed using the GlykoPrep Digestion Module according to the manufacturer’s protocol 

(Prozyme, Hayward, CA, USA). The released N-glycans were dried in a centrifugal vacuum 

evaporator (Thermo Fisher Scientific, Asheville, USA). The maltodextrin ladder (SCIEX), 

dried sugars, D-(+)-maltose monohydrate (Sigma-Aldrich), and carbohydrate standards (0.2 µg 

of each N-glycan standard) were labeled with ANTS-fluorescent dye (Prozyme) as described in 

[52]. Briefly, the dried sugars were fluorescently labeled via reductive amination by the addition 

of 6.0 µL of 0.1 M ANTS (λex 356 nm and λem 512 nm) in 15% v/v acetic acid and 2.0 µL of 1 

M sodium cyanoborohydride (in THF). The reaction mixture was incubated at 37°C overnight. 

After that, the unreacted fluorescent dye was subsequently removed by Cleanup cartridges 

according to the protocol of the manufacturer (Prozyme). Briefly, the binding step was 

performed in 200 µL 1× cleanup solution to each glycan sample followed by washing off the 

unreacted dye from the cartridges, and finally the elution of glycans by water. In CGE 

separation, ANTS-labeled-maltose (ANTS-G2) was used as lower bracketing standard and the 

upper bracketing standard was prepared as follows: maltose (G2) was fluorescently labeled via 

reductive amination by the addition of 6.0 µL of 0.1M 5-amino-2-naphtalenesulfonic acid (5-

ANSA, Sigma-Aldrich) in 15% v/v acetic acid and 2.0 µL of 1 M sodium cyanoborohydride 

(in THF) at 37°C overnight. The upper bracketing standard was chosen based on the 

electrophoretic mobility of the 5-ANSA-maltose conjugate [149].    

 

 



44 

 

4.4.2. N-Glycan Separation by CGE  

Rapid CGE separations of the ANTS-labeled N-glycans were performed by a single-channel 

Glycan Analyzer (GL1000, BiOptic) instrument containing a 50 µm i.d. (360 µm o.d.) N-CHO 

capillary with an effective separation length of 11.5 cm (total length: 15.5 cm). To match the 

ANTS excitation/emission spectra, the instrument contained an LED source of 350 – 390 nm 

range (Cree XLamp). The glycan separation gel-buffer and running-buffer (BiOptic) was used 

for CGE-LEDIF separations. Prior to each sample injection, the gel-buffer was replaced in the 

separation capillary by means of a 30 s purge step, followed by injection of the mixture of the 

lower (ANTS-G2) and upper (ANSA-G2) bracketing standards by applying 2 kV for 3 s. For 

migration time correction, the bracketing standards were used as mentioned earlier in section 

2.9.1. To avoid any cross-contamination, the inlet end of the capillary tubing was immersed 

into MilliQ-grade water (0 kV for 1 s) as a washing step. This cleaning step was carried out 

after injecting each of the N-glycans. After that, the samples were introduced electrokinetically 

from a 96-well plate at 2 kV for 3 s. All CGE separations were accomplished at ambient 

temperature by applying 6 kV electric potential with a high-voltage power supply (EMCO). 

Data analysis was also performed using the Q-Analyzer software package (BiOptic). All 

samples were run six times and the GU values were calculated from the average. Glycan 

nomenclature and symbolic representations are as previously suggested by Harvey et al. [150]. 

 

 

4.5. Study of the Activation Energy by CGE 

 

4.5.1. Sample Preparation for CGE 

For the release of the N-linked glycans, 100 µg of hIgG (Sigma-Aldrich, stock solution: 10 

mg/mL) was dissolved in 10 µL of 20 mM sodium-bicarbonate solution (pH 7.0), reduced with 

1 µL of 50 mM DTT for 15 min at 65oC and then alkylated with 1 µL of 50 mM iodoacetamide 

(IAA) for 30 min at 37oC in dark. After incubation, 1 µL of 1 U/µL PNGase F (Prozyme) was 

added to the solution and incubated overnight at 37oC. The released N-linked glycans were 

partitioned with CleanSeq magnetic beads (SCIEX) as described in Ref. [151]. The 

maltooligosaccharide ladder (SCIEX), the maltose internal standard (Sigma-Aldrich) and the 

purified sugars were fluorescently labeled via reductive amination by the addition of 6.0 µL of 

20 mM APTS (SCIEX) in 15% v/v acetic acid and 2.0 µL of 1 mM cyanoborohydride (in THF) 

and incubated for 1 h at 50oC. After the labeling reaction, the unreacted fluorescent dye was 
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removed with the CleanSeq magnetic beads as above. Cleanup procedure was not necessary, 

because the maltooligosaccharide was in 3x excess to the fluorescent dye. The samples were 

analyzed directly after solubilization or kept at -20oC until use. Viscosity measurements of the 

buffer systems, i.e. 25 mM lithium acetate buffer containing i) no additives, ii) 10 − 60% 

ethylene glycol iii) 0.5 − 3.0% linear polyacrylamide iv) 0.4% 300kDa polyethylene oxide, 

were made at 20, 30, 40 and 50oC on an AR 550 model rheometer (TA Instruments, New Castle, 

Germany) equipped with a 60 mm diameter, 2° angle steel cone geometry and a built-in Peltier 

heating/cooling plate.    

 

4.5.2. CGE-based Separation of Linear and Branched Carbohydrates 

Rapid CGE separations of the APTS-labeled oligosaccharides were performed in a PA 800 Plus 

Pharmaceutical Analysis System (SCIEX, Brea, CA, USA) containing a 50 µm i.d. N-CHO 

capillary (360 µm o.d.) with an effective separation length of 21 cm (total length: 31 cm). The 

CGE system was equipped with a solid state laser based fluorescent detector (λex 488 nm and 

λem 520 nm). To alleviate for any variations caused by temperature changes, the temperature of 

the gel-filled separation capillary was controlled by the liquid cooling system of the CE 

instrument ( 0.1oC). All samples were analyzed at 20, 30, 40 and 50oC using the corresponding 

buffer systems. The background electrolyte was 25 mM lithium acetate buffer (Sigma-Aldrich, 

pH 4.75) containing: i) no additives, ii) ethylene glycol (Sigma-Aldrich, 10 – 60% v/v), iii) 

linear polyacrylamide (Polysciences, Warrington, PA, USA, 10 kDa, 0.5 – 3.0% v/v) and iv) 

polyethylene oxide (Sigma-Aldrich, 300 kDa 0.4% v/v). Prior to use, the separation capillary 

was conditioned by subsequent rinsing with MilliQ-grade water and the BGE (both with and 

without modifiers/additives) for 10 min at 30 psi. The capillaries were also rinsed with the 

respective BGE for 5 min at 30 psi between injections to avoid any possible carryover issues. 

Samples were pressure injected (0.5 psi for 5.0 s). The applied electric field strengths were 400 

V/cm, with the cathode at the injection side and the anode at the detection side (reversed 

polarity). For migration time correction and normalization, APTS-labeled maltose (APTS-G2) 

was co-injected with each sample. All sample runs were done in triplicates. Data analysis was 

performed using the 32 Karat, ver 9.1 software package (SCIEX). GU values were calculated 

according to Eq. 19 as described above, using the 5th order polynomial approach [120]. 

Hydrodynamic volumes of relevant (DP 7-12) and major IgG N-glycans (FA2, FA2[6]G1, 

FA2[3]G1, and FA2G2) were calculated using TURBOMOLE 6.3 quantum chemical program 

package and COSMOtherm suite (COSMOlogic GmbH, Leverkusen, Germany).        
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5. RESULTS 

 

Here, this section starts with the introduction of a novel single-channel capillary gel 

electrophoresis in order to evaluate the suitability of this separation system. Therefore, the 

degradation level of a large number (about 1000) gDNA samples were analyzed focusing on 

migration time reproducibility, limit of detection and detector linearity in comparison to 

conventional technique. DNA analysis was chosen at the beginning, because this system was 

first commercially available in the market. It followed by the development of a haplotyping 

method in WFS1 gene by allele-specific amplification and rapid capillary gel electrophoresis 

with the same CGE system in order to analyze the resulted DNA fragments. After that the 

synthesis of neoglycoproteins was introduced as carbohydrate antigens to elicit specific 

immune response, which was analyzed then by CGE and MALDI-TOF MS. In the next part of 

this study, the establishment of a novel ANTS-labeled database was generated for CGE analysis 

of complex N-linked carbohydrates. The validation of the generated GU values in the database 

was verified with N-glycans released from human IgG and bovine pancreatic RNase B. Finally, 

the activation energy concept related to the electromigration of complex N-linked carbohydrates 

was analyzed by capillary electrophoresis in order to determine the electrophoretic mobility 

shift between the different structure oligosaccharides at different temperature/background 

electrolyte. The results of this study are discussed in more detail in the following sections.   

 

5.1. Large-Scale gDNA Analysis by CGE   

In the first part of this study, an efficient micoball ended fiber optic based CGE-LEDIF 

detection system was introduced for large-scale gDNA analysis, also utilizing a single-channel 

separation capillary. To assess the suitability of this novel system, the degradation level of a 

close to a thousand gDNA samples were analyzed. The capability to quickly distinguish 

between intact and degraded gDNA samples was a crucial step for downstream quantitative 

PCR fragment analysis.  

Figure 9 compares the results of the analysis of representative intact and variously degraded 

gDNA samples. For fragment size determination, a DNA molecular mass ladder was used in 

the base pair range of 75 ‒ 20 000 bp (upper trace). Non-degraded intact gDNA sample showed 

a large peak pattern at the 2 000 base pair range of the separation area (lower trace: intact 

gDNA, sample ID: 10231). 
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The variously degraded gDNA samples featured patterns at the lower base pair range of several 

hundreds, i.e. strongly suggesting sample degradation (middle traces: degraded gDNAs, sample 

IDs: 10267, 10297, 10279, 10343, 10277).  

 

 

 

Figure 9. Typical CGE-LEDIF analysis of selected gDNA samples. Upper trace: DNA sizing 

ladder (75 bases to 20 000 bases), middle traces: degraded gDNA samples (sample IDs 10267, 

10297, 10279, 10343 and 10277), lower trace: non-degraded gDNA sample (sample ID 10231). 

Separation conditions: capillary: 75 µm i.d., effective separation length of 11 cm (total 

separation length of 15 cm); sample injection: 4 kV/6 s; separation voltage 8 kV/300 s; ambient 

temperature. Adapted from [72].  

 

 

Figure 10 shows the conventional agarose slab gel electrophoresis based separation of the same 

gDNA samples for comparative purposes. Please note that compared to CGE analysis, several 

degraded DNA bands were not visible on 2% agarose slab gel (sample IDs: 10343, 10297), 

while all degraded DNA peak patterns were clearly detected by CGE.  
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Figure 10. Agarose slab gel electrophoresis based analysis of the same gDNA samples as in 

Figure 9. Lanes 1: non-degraded gDNA sample (sample ID 10231); Lanes 2– 8: degraded 

gDNA samples (sample IDs 10267, 10297, 10279, 10343, and 10277); M: DNA mass ladder 

(75 bases to 20 kilobases). Separation conditions: samples were separated on the E-Gel system 

power source containing 2% agarose gel (2 × 8 wells) for 8 min; injection: 20 µL per well 

containing 500 ng gDNA. Adapted from [72].  

 

 

The migration time reproducibility of this CGE system was determined by a 10-run 

repeatability study. For this evaluation, a 100 bp Plus DNA mass ladder was used in the base 

pair range of 100 ‒ 3 000 bp, which was diluted in a final concentration of 25 ng/µL. Each 

sample was injected from the same well of the 96-well plate. Table 3 summarizes the CGE-

LEDIF results, showing that the average migration times of the DNA mass ladder were between 

88.22 and 143.22 s in the base pair range of 100 – 3 000 bp. The average percent RSD (RSD%) 

of the migration times were between 0.5118 – 0.7477%, which exhibited an excellent 

reproducibility.  
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Table 3. Ten-run migration time reproducibility study using the 100 – 3 000 bp DNA mass 

ladder. Adapted from [72].  

 

5.2. Molecular Haplotype Analysis  

5.2.1. Allele-Specific PCR 

In the second part of this study, simultaneous multiple genotyping of two adjacent putative 

miRNA-binding SNPs in the WFS1 gene was introduced by an efficient double-tube allele-

specific amplification method in conjunction with a novel CGE-LEDIF detection system to 

investigate the resulting DNA fragments.  

Wolframin (WFS1) is a transmembrane protein in the endoplasmic reticulum (ER), which is 

generated at higher levels in pancreatic beta-cells and specific neurons in the central nervous 

system [152]. It plays a crucial role in the ER calcium homeostasis [152-154] and in the ER 

stress response [155]. Riggs et al. reported on the inactivation of the Wolframin gene (WFS1) 

in the beta-cells of rodents, which caused ER stress and death of the beta-cells by accelerated 

apoptosis [156]. Mutations in the WFS1 gene are causing the so-called Wolfram syndrome 

[157] that comprises young onset non-autoimmune insulin dependent diabetes mellitus, 

diabetes insipidus, optic atrophy, deafness or other neurological and endocrine abnormalities 

[158, 159]. In addition, SNPs in the WFS1 gene has recently been presented to be associated 

with diabetes mellitus type 2 in populations of European descents [160-162]. Therefore, 

simultaneous study of haplotyping these abnormalities is getting more and more attention to 

investigate the genetic background of complex diseases [163].  

sec             bp 100 200 300  400  500  600  700  800  900  1000  1200  1500  2000  3000  

First run (s) 87.6 101.8 114.3 122.2 125.9 128.3 130.0 130.8 131.0 132.2 134.8 137.6 140.2 143.8 

Second run (s) 88.6 102.5 114.8 122.7 126.4 128.8 130.4 131.2 131.9 132.7 135.2 137.9 140.4 144.0 

Third run (s) 89.5 102.5 115.0 123.1 125.0 127.5 132.2 130.0 131.6 132.5 135.0 137.8 140.3 144.0 

Fourth run (s) 88.9 102.9 115.3 123.4 127.2 129.7 130.3 132.2 132.9 133.6 136.1 138.9 141.3 143.0 

Fifth run (s) 88.5 102.3 114.7 122.6 126.4 128.8 130.4 131.2 131.4 132.6 135.2 137.9 140.4 144.0 

Sixth run (s) 88.2 101.9 114.2 122.1 125.8 128.2 129.9 130.6 131.7 132.0 134.5 137.2 139.7 143.3 

Seventh run (s) 88.0 101.7 114.0 121.8 125.5 127.9 129.6 130.3 130.4 131.7 134.2 136.9 139.4 142.9 

Eighth Run (s) 87.9 101.7 114.0 121.8 125.5 127.9 129.5 130.3 131.0 131.7 134.2 136.9 139.3 142.9 

Ninth run (s) 87.6 101.3 113.5 121.3 125.0 127.5 129.0 129.8 130.4 131.2 133.7 136.4 138.8 142.4 

Tenth Run (s) 87.4 101.0 113.2 121.0 124.7 127.1 128.7 129.4 130.0 131.8 133.3 135.9 138.3 141.9 

tM (s) 88.2 102.0 114.3 122.2 125.7 128.2 130.0 130.6 131.2 132.2 134.6 137.3 139.8 143.2 

SD 0.7 0.6 0.7 0.8 0.8 0.8 1.0 0.8 0.9 0.7 0.8 0.9 0.9 0.7 

RSD (%) 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.5 0.6 0.6 0.6 0.5 



50 

 

Direct haplotype determination by allele-specific amplification (ASA), i.e. molecular 

haplotyping, offers fast and reliable genotyping data of many SNP variations in a single tube 

multiplex polymerase chain reaction (mPCR) followed by electrophoresis analysis [79, 164]. 

In this molecular haplotype study, the rs9457 and rs1046322 SNPs are presumably miR-SNPs, 

which are located in the WFS1 gene 3’ UTR. In addition, their in silico data analysis suggested 

that they may alter the binding of miR-185 and miR-668. The haplotype determination of 

double heterozygote samples (rs1046322AG and rs9457CG) is significant, since otherwise it is 

uncertain if the two allelic variants possibly affecting miRNA-binding are located on the same 

mRNA (“cis”) or can be found on two different chromosomes (“trans”) as illustrated in Figure 

11.  

 
 

Figure 11. Schematic illustration of the putative effect of the two SNPs on miRNA binding. 

Genotypes and haplotypes can be specified by allele-specific amplification using sense 

rs1046322- and antisense rs9457-specific primers in different combination in case of double 

heterozygote samples (samples 1 and 2). The four thick gray lines mark the four haplotypes on 

the same chromosomes: A–C, G–G, A–G and G–C. Adapted from [2].  

 

An allele-specific amplification based approach was introduced for the haplotype determination 

of the two SNPs of interest, which was comprised simultaneously two outer and two allele-

specific primers in a multiplex reaction as shown in Figure 12. These allele-specific primers 

were designed to anneal to the SNP by their 3’ end. For the chromosomal localization, a sense 

rs1046322- and an antisense rs9457-specific primer were used in the amplification reaction. 
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One reaction mixture examined the presence of one allele at each loci as well as one haplotype 

combination, consequently two reaction mixtures were necessary to determine the genotype 

and the haplotype (Figure 12).  

Figure 12A illustrates the analysis of the reaction mixture-I using the sense rs1046322A- and 

the antisense rs9457C-specific primers in combination with the outer oligos. A 488-bp-long 

fragment was generated by the rs1046322A-specific and the antisense outer primers in case of 

the presence of an A allele at the rs1046322 site. Similarly, if the sample possessed the C allele 

at the rs9457 locus, the primer specific for this variant together with the sense outer primer 

could amplify a 437-bp-long fragment. More importantly, a 384-bp-long PCR fragment could 

be produced, if the rs1046322A and rs9457C alleles are located on the same chromosome, 

which is generated by the two allele specific primers and suggested the presence of the A–C 

haplotype. The longest, 541-bp outer product is a control PCR fragment synthesized 

independently of the genotype and haplotype of the sample of interest.  

Figure 12B depicts the analysis of the reaction mixture-II using the rs1046322G- and rs9457G-

specific primers in conjugation with the outer oligos. If the rs1046322G allele was present, a 

488-bp-long product could be observed, whereas a 437-bp-long product produced in case of the 

presence of the rs9457G allele and the 384-bp-long product suggested the G–G haplotype. 

Thus, genotype and haplotype information could be unambiguously determined by these two 

amplification reactions. In addition, two redundant combinations were also utilized in a subset 

of 24 samples for additional validation, i.e. rs1046322G allele−, rs9457C allele− and thus G–

C haplotype specific reaction and rs1046322A allele−, rs9457G allele− and consequently A–G 

haplotype specific mixture. Results of these analyses confirmed the data obtained by the 

original setup. For additional optimization effect of partial (25% and 50%) substitution of dGTP 

with deoxyinosine-triphosphate (dITP) in the PCR was tested. This optimization step is 

particularly important if longer PCR-products tend not to be efficiently amplified, as 

deoxyinosine forms a base pair with deoxycytidine (similarly to deoxyguanosine) containing 

only two hydrogen-bonds, therefore the melting temperature of the long amplicons is decreased. 

The amount of allele-specific primers has been increased to 2.5 µM in a pilot experiment. 

However, in case of our haplotyping technique, neither modification has resulted in any further 

improvement, consequently, the original protocol (described above) has been utilized in our 

subsequent experiments. 95 healthy Hungarian individuals were investigated by the method 

described above, and the genotype results were in 98.9% concordance with the data determined 
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earlier using sequence specific TaqMan probes, i.e. by an independent approach (data not 

shown). The single discordant result could be resolved by repeated genotype and haplotype 

determination. This latter method provided the possibility of single genotype analysis only, not 

capable to determine the haplotype of the two SNPs.  

Figure 12C delineates genotype and haplotype determination of the rs1046322 and the rs9457 

SNPs by conventional agarose slab gel electrophoresis in case of double heterozygote samples. 

To determine the size of the double allele-specific amplicons in the case of both haplotypes, a 

100 bp DNA molecular mass marker (M) was used with the PCR products (Lanes 1-2). PCR 

fragments generated using reaction mixture-I (rs104632A- and rs9457C-specific primers) can 

be seen on the left (“A”), whereas reaction mixture II (rs104632G- rs9457G-specific primers) 

are shown on the right side (“B”) in Figure 12C. 

 

A 

 

B 
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C 

 

Figure 12. Direct haplotype determination of the rs1046322 and rs9457 SNPs in the WSF1 

gene by allele-specific multiplex PCR. (A) Products were generated in the presence of the sense 

rs1046322A- and the antisense rs9457C-specific primers in conjugation with the outer oligos. 

The 384-bp-long fragment was produced by rs1046322A and rs9457C primers and suggested 

the presence of the A–C haplotype. (B) PCR products were obtained in the presence of the 

rs1046322G- and rs9457G-specific primers in combination with the outer oligos. The 384-bp-

long fragment demonstrated the presence of the G–G haplotype. (C) Genotype and haplotype 

readings by agarose slab gel electrophoresis. M: 100 base pair DNA mass ladder; Lanes 1–2: 

PCR samples: A: 437, 488, 541 bp dsDNA fragments; B: 384, 437, 488, 541 bp dsDNA 

fragments from the multiplex amplification reaction. Separation conditions: 2% agarose gel in 

1× TAE containing 0.5 µg/mL ethidium bromide; U = 100 V; t = 45 min; room temperature. 

Adapted from [2].  

 

 

5.2.2. Haplotype Determination by CGE  

The final step of the haplotyping protocol was the CGE-based size determination of the dsDNA 

fragments from the multiplex amplification reaction. Figure 13 depicts the CGE traces of the 

PCR fragments created by the haplotyping protocol. For fragment size assessment, the DNA 

mass ladder was extended with fragments in the size range of 50 – 3 000 bp (upper trace). The 

CGE separation of the mPCR samples is represented in the middle and lower traces. To obtain 

high fragment sizing accuracy, the mPCR samples were co-injected with the lower and upper 

alignment markers (M1= 20 bp dsDNA and M2= 5 000 bp dsDNA).  
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The middle trace in Figure 13 represents the CGE separation of three dsDNA fragments from 

the reaction mixture-I with calculated sizes of 454, 500 and 583 bp fragments, corresponding 

to 437, 488 and 541 bp of the actual PCRs (see variance data in Table 4). The lower trace in 

Figure 13 illustrates the CGE separation of four dsDNA fragments from the reaction mixture-

II with calculated sizes of 399, 457, 504 and 591 bp fragments, corresponding to 384, 437, 488 

and 541 bp of the actual PCRs (with better than 95% average accuracy) by the rapid CGE-

LEDIF analysis (see variance data in Table 4). The bp accuracy of each DNA fragment was 

analyzed by the Q-Analyzer software package with the accuracy range of 2.4 – 9.2% as shown 

in Table 4. In addition, the concentration of each DNA fragment was calculated based on their 

peak areas as also listed in Table 4. 

 

 

 

Figure 13. Representative electropherograms of selected mPCR amplicons. Upper trace: DNA 

mass ladder (M= 50 – 3 000 bp) co-injected with the lower (M1= 20 bp) and upper (M2= 5 000 

bp) alignment markers; middle and lower traces: representative mPCR samples of 1 and 2 were 

the same as in Figure 12 with the respective alignment markers. Separation conditions: 

capillary: 75 µm i.d., effective separation length of 11 cm length (total separation length of 15 

cm); sample and marker injection: 4 kV/10 s; separation voltage: 6 kV; ambient temperature. 

Adapted from [2].  
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Table 4. Base pair accuracy determination and calculated concentrations of the mPCR samples 

by CGE. Adapted from [2].  

 

5.2.3. Limit of Detection and Detector Linearity Study for CGE 

To determine the detection limit of the system, Figure 14A compares the resulting CGE traces 

after the injection of different concentration samples from 0.01 ng/µL to as low as 0.002 ng/µL. 

In this study, the 576 bp PCR fragment was diluted in water. When the detector linearity 

analysis was performed with the same water diluted samples, the linear detection range was 

quite narrow, i.e. 1.5 orders of magnitude, probably due to the effect of field amplification. 

Therefore, the detection linearity study was accomplished by using a dilution series in sample 

buffer in that case a linear detector response was obtained in a large interval of 0.08 – 10.0 

ng/µL with an R2= 0.9997, as shown in Figure 14B and Table 5. Injection from water diluted 

samples resulted in much larger sample intake, because the buffer co-ions did not compete with 

the sample molecules, resulting in excellent LOD. On the other hand, measurements of the 

sample concentration were more precise from buffer diluted samples as shown in Table 5.  

These results clearly present the numerous advantages of the capillary gel electrophoresis unit 

(Qsep100, BiOptic) in comparison to traditional techniques. The detection limit of slab gel 

electrophoresis was in the nanogram scale, which – even loading relatively high volume of a 

diluted sample – was ca. 2 orders of magnitude worse than that of CGE. Furthermore, automated 

quantification is readily available in a broad concentration range by this CGE instrument 

exceeding the accuracy, reliability, throughput and sensitivity of slab gel densitometry. 

 

 

1. PCR sample 

(Figure 13 middle trace) 

2. PCR sample 

(Figure 13 lower trace) 

Fragment 

(bp) 

Measured 

(bp) 

Variance 

(bp) 

Accuracy 

(%) 

Concentration 

(ng/µL) 
Fragment 

(bp) 

Measured 

(bp) 

Variance 

(bp) 

Accuracy 

(%) 

Concentration 

(ng/µL) 

‒ ‒ ‒ ‒ ‒ 384 399 15 3.9 1.65 

437 454 17 3.8 1.34 437 457 20 4.5 0.90 

488 500 12 2.4 4.16 488 504 16 3.2 4.04 

541 583 42 7.7 2.38 541 591 50 9.2 1.09 
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A 

 

B 

 

 

Figure 14. Limit of detection and detector linearity study for CGE. (A) Determination of the 

limit of detection (LOD) with the 576-bp-long PCR product serially diluted in water compared 

to the DNA mass ladder. (B) Detection linearity study using the 576 bp PCR product serially 

diluted in the sample buffer. Separation conditions, mass ladder as well as lower and upper 

alignment markers were the same as in Figure 13. Adapted from [2].   
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Table 5. CGE detection linearity study using the 576-bp-long PCR product in the 10.00 - 0.08 

ng/µL concentration range. Adapted from [2].  

a) WFS1 PCR samples were diluted with dilution buffer. b) Average peak area was determined from 

triplicate measurements for each concentration. 

 

 

5.3. Immune Response against Carbohydrate Antigens 

  

5.3.1. Synthesis of Carbohydrate Antigens  

Today, the study of glycoproteins is an area of intensive research for chemical biologist in the 

glycobiology field [165]. Antibody development against carbohydrates is of increasing 

importance, because carbohydrate antigens play a crucial role in biomarker research and 

discovery [166]. For detecting carbohydrate antigens, the anti-carbohydrate antibodies have 

been utilized as diagnostic markers in several diseases [167] as well as it may occur as 

neoglycoprotein-based antibacterial vaccines or neoglycoprotein-based antitumor vaccines for 

cancer [168]. As early as in 1931, neoglycoproteins as sugar-specific antigens were noted as 

glycoconjugate vaccines by Avery and Goebel [169]. Since then neoglycoproteins have been 

utilized as immune response triggers antitumor-associated sugar antigens [170]. Cancer-

associated carbohydrates are mostly located on the surface of cancer cells, which demonstrate 

potential targets for new diagnostic assays and therapeutic treatments [171]. The synthesis of 

neoglycoproteins particularly incorporates random or defined coupling sites on the surface of 

the carrier protein, which is covalently modified with glycans via their reducing end or 

functionalized glycan bearing spacer arms [168, 172, 173].  

In the third part of this study, a simple sugar-specific antigen (maltose) was conjugated to a 

carrier protein (namely BSA) by reductive amination. BSA was chosen as a carrier protein since 

  
Detector linearity of the 576 bp PCR sample 

 

 No 1. No 2. No 3. No 4. No 5. No 6. No 7. No 8. No 9. No 10. 

Concentration 

(ng/µL)a) 
10.0 5.00 2.50 1.00 0.80 0.50 0.40 0.20 0.10 0.08 

Average  

peak areab)  
1898510 930498 487797 199921 160618 96405 65104 21230 15755 12894 

SD 21552 7487 23358 8014 748 2960 11572 2038 1589 1007 

RSD% 1.13 0.80 4.78 4.00 0.46 3.07 17.77 9.60 10.08 7.81 
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in its natural form it voids glycosylation. To conserve the intact annular maltose structure, an 

aglycone spacer was utilized for the synthesis of neoglycoproteins. Neoglycoproteins were 

synthesized under controlled conditions with different numbers of oligomeric/dimeric maltose 

molecules (between 32 and 66 units/mol) linked to the lysine ε-amino residues of BSA. After 

that the maltose-conjugated BSA samples were investigated by SDS-CGE as well as MALDI-

TOF MS and the resulted glycoconjugates were presented on their ability to elicit specific 

immune response. The first step in the synthesis, maltose 1 was converted into maltose 

octacetate 2 with acetic anhydride, followed by the removal of the anomeric acetyl group with 

hydrazine acetate to yield the 3α, 3β hemiacetal anomers as shown in Scheme 1.  

 

 

Scheme 1. Synthesis of neoglycoproteins I.: Maltose (1) was converted into maltose octaacetate 

(2) and then into 3α, 3β hemiacetal anomers (3). Reagents and conditions: (i) Ac2O, NaOAc, 

110oC (ii) NH2NH2·AcOH, DMF. Adapted from [174].  

 

After that the resulted hemiacetal was converted to a trichloroacetimidate donor 4 with 

trichloro-acetonitrile, and then reacted with the aglycone spacer of 7-(1,3-dioxan-2-yl)-heptan-

1-ol 5 to obtain a protected maltose with the formyl-heptyl spacer 6. Ultimately, the protecting 

acetyl groups were removed with sodium methylate 7 as illustrated in Scheme 2.    

 

 

Scheme 2. Synthesis of neoglycoproteins II.: The resulted hemiacetal was converted (3) to a 

trichloroacetimidate donor (4), and then was reacted with an aglycone spacer (5) to obtain a 

protected maltose with a formyl-heptyl spacer (6). Reagents and conditions: (i) Cl3CCN, 

K2CO3, CH2Cl2 (ii) TMSOTf, CH2Cl2, -40oC (iii) NaOCH3, CH3OH. Adapted from [174].  

http://www.google.com/search?hl=en&pwst=1&authuser=0&biw=1366&bih=653&sa=X&ei=nuABTvvWCY2WswbCzoyPDQ&ved=0CBQQBSgA&q=trichloroacetimidate&spell=1
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After removing the acetal protecting groups with acid hydrolysis, the resulting aldehyde 8 was 

attached to the lysine ɛ-amino groups of BSA to form the Schiff base, which was consequently 

reduced with NaCNBH3 to obtain a stable conjugate 9. Different sugar-containing 

neoglycoproteins were synthesized (9a, 9b, 9c and 9d) by means of the conjugation methods as 

illustrated in Scheme 3. The molar ratio of compound 7 (and the reagents) to BSA was varied 

in the coupling reaction as mentioned in Table 2.      

 

 

 

Scheme 3. Synthesis of neoglycoproteins III.: After removing the protecting acetyl groups (7), 

carbohydrate antigens (9a, 9b, 9c and 9d) were synthesized by reductive amination. Reagents 

and conditions: (i) 96% AcOH, 50oC (ii) BSA, NaCNBH3, pH 7.0. Adapted from [174]. 

  

5.3.2. Analysis of Neoglycoproteins by CGE and MALDI-TOF MS  

After modifying BSA with many different sugars, the reaction products were first analyzed by 

SDS-CGE for purity and homogeneity. Figure 15 depicts the resulting SDS-CGE traces of the 

unconjugated dye (first peaks at 10 min) and the resulted neoglycoproteins (second peaks), 

having 32, 50, 59, and 66 units/mol maltose units. The number of conjugated sites was 

determined by MALDI-TOF mass spectrometry, as shown in Table 2.  

In this study, a decrease was observed in signal intensity of the glycoconjugates with increasing 

sugar unit content and the longer migration times during the separation. The former was due to 

the effect of the larger molecular mass of the conjugates with the attached maltose residues and 

the concomitantly suppressed SDS binding to these hydrophilic patches, both causing migration 

time increase. The decreasing signal intensity of the conjugate (and the increasing signal 

intensity of the unconjugated free dye) with the increasing maltose content was due to the 

reduced number of available conjugation sites for the fluorescent dye, i.e. remaining free amino 

residues on BSA.  

It should be emphasized that the incorporation level of sugars increased from 32 to 66 units by 

increasing the molar ratio of the maltose to BSA. This result was surprising, because BSA only 

contained 60 free amino groups but can be explained by the studies of Schwartz et al. [175], 
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who demonstrated that tertiary amines can be also formed during the reductive amination 

reaction possessing two sugar structures, consequently increasing the maximum number of 

conjugated glycans beyond 60. 

 

Figure 15. Representative electropherograms of covalently fluorophore tagged and reduced 

glycoconjugate samples by SDS-CGE. Peaks: (1) remaining labeling dye, (2) sugar-conjugated 

BSA. Separation conditions: capillary: 75 µm i.d., effective length of 10 cm (total separation 

length of 30 cm); BGE: SDS-MW gel buffer (SCIEX); E=500 V/cm; electrokinetic injection: 25 

kV for 10 s; ambient temperature. Adapted from [174].    

 

5.3.3. Polyclonal Antibody Response to Neoglycoproteins Mediated Immunization    

To generate polyclonal antibody response, BALB/c mice were immunized using 

neoglycoproteins with low and high sugar incorporation levels as immunogens (i.e. 32 and 66 

maltose units/BSA) and the sugar components of the conjugates were investigated by ELISA. 

In mice, immunized with the neoglycoprotein of low sugar incorporation level, a rather unified 

response was observed towards the different antigens, as illustrated in Figure 16A. In mice 

immunized with the high sugar incorporated neoglycoprotein the IgG response was more 

intense towards the modified antigens and was distinguishable to that of the significantly 

weaker carrier specific response (Figure 16B). When the experiment was monitored under 

immunogen limiting conditions, this difference was even more pronounced.  
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Thus, a more significant antibody response could be observed against neoglycoproteins than 

against the carrier proteins in the presence of limited amount of immunogen as shown in Figure 

16C and D. Although, this difference might vary depending on the immunogen used for the 

immunization or even as the response of the individual animals. However, the recognition of 

the carrier and the glycan modified BSA by the immune sera of some mice suggested the 

presence of antibody populations specific for the neoglycoproteins.   

 

 
 

 

Figure 16. Polyclonal antibody response towards the protein carrier and the synthesized 

neoglycoproteins. Antiglycan antibodies generated by immunization with BSA-32-maltose (A 

and C) and BSA-66-maltose (B and D) incorporated sugar-containing neoglycoproteins 

detected by ELISA. Experiments were done either by using a fixed amount of immobilized 

antigens (10 µg/mL); and serial (1 000 – 128 000×) dilutions of immune-sera (A and B), or by 

using serial dilution of immobilized antigens (from 1.25 to 0.08 µg/mL) and 4 000-fold dilution 

of the sera. Adapted from [174].  
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5.3.4. Inhibition of Mouse Antibody Binding in ELISA  

In order to test the specificity of the polyclonal antibody response to synthetic neoglycoproteins, 

some inhibition experiments were analyzed by ELISA. In this study, the polyclonal antisera 

were reacted with immobilized BSA-32-maltose and BSA-66-maltose in the presence of 

inhibitors. Response to each immunogen, that is BSA, BSA-32-maltose, and BSA-66-maltose, 

was specifically inhibited by the corresponding immunogens, i.e. BSA-specific response was 

inhibited by BSA (Figure 17A), BSA-32-maltose-specific response was inhibited by BSA-32-

maltose (Figure 17B), and BSA-66-maltose specific response was inhibited by BSA-66-maltose 

(Figure 17C). In addition, BSA-32-maltose inhibited BSA-specific response (Figure 17B), 

while BSA-66-maltose inhibited both BSA- and BSA-32-specific responses (Figure 17C). On 

the other hand, no IgG antibody response was detected in the presence of free maltose and other 

sugars such as glucose, isomaltose, lactose, galactose and maltodextrin (data not shown). This 

result suggests that the synthesized glycoconjugates contained specific epitopes, which were 

unique to the presence of the defined number of conjugated maltose units per BSA molecules. 

Overall, these results suggest that immunogenic neoepitopes were induced by maltose 

conjugation and increase in the maltose units from BSA-32-maltose to BSA-66-maltose 

resulted in the appearance of new epitopes not present on the BSA-32-maltose molecules.  

 

 

 

 

 

 

 

 

 

 

 



63 

 

 

 

Figure 17. Schematic illustration of the inhibition of antiglycan antibody binding to their 

antigens using BSA (A), BSA-32-maltose (B), and BSA-66-maltose (C) sugar incorporated 

glycoprotein inhibitors. Antiglycan antibodies (4 000× serum dilutions, immunized with high 

sugar incorporated antigens in mice) were examined with all three coatings (0.2 µg/mL) in the 

presence of BSA inhibitor (0.1–1.6 µg/mL), BSA-32-maltose and BSA-66-maltose (0.1–1.6 

µg/mL) glycoprotein inhibitors. Adapted from [174].  
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5.4. Generation of an ANTS-labeled N-Glycan Database for CGE Analysis of 

Carbohydrates 

 

5.4.1. Generation of an ANTS-labeled N-Glycan Database 

In this part of the work, an 8-aminonaphtalene-1,3,6-trisulfonate (ANTS)-labeled N-glycan 

database was developed for the LED-induced fluorescent (LEDIF) CGE system. At this time, 

the establishment of ANTS-labeled N-glycan database includes 25 oligosaccharides of mostly 

biopharmaceutical interest, such as for N-glycosylation profiling of therapeutic antibodies.  

For the generation of this comprehensive N-glycan database, the individual glycan standards 

were labeled via reductive amination using the ANTS labeling reagent, and then separated by 

CGE, each possessing only one charged fluorophore. This fluorescent dye provided the 

necessary charges for the carbohydrate molecules to support their electric-field mediated 

separation, and it also assisted as a fluorophore for high-sensitivity LEDIF detection. In 

addition, this labeling reagent offers 1:1 stoichiometry, meaning that only one fluorophore 

label, possessing three strong negative charges, is attached to the glycosidic OH group of all 

sugar structures, making accurate quantitation possible. Relative migration times (RMTs) of 

the oligosaccharides were calculated based on the migration times of the bracketing standards 

according to equation 18, which was introduced in section 2.9.1. 

Table 6 illustrates the commercially available individual sugar standards with their GU values, 

separated one-by-one by CGE-LEDIF. The database represents the abbreviated names of the 

individual glycan standards with their graphic representation following the proposed symbol 

nomenclature of Rudd et al. [150], the precise molecular mass and the glucose unit (GU) values 

with the corresponding standard deviations (SD). These GU values in Table 6 show the 

migration position of each sugar structure, which is dependent on the number of oligosaccharide 

residues as well as positional and linkage related conformational changes, i.e. shape of the 

molecule. Each GU entry is the average of a total of six runs and associated with their SD 

values. The resulted GU values can be applied as reference values for rapid structural 

elucidation of unknown glycan samples as explained below in reference to Figures 18 and 19.  
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Table 6. Abbreviated names, structures, molecular masses, and CGE-LEDIF GU values of 

ANTS-labeled individual N-glycan standards. Adapted from [114].   

Peak  

No. 

 
Name Structurea) 

Mass  

Averageb) 

GU  

valuesc) 

1 NEUTRAL F(6)M3 

 

1056.9651 5.90 ± 0.05 

2 
 

M3 

 

910.8236 5.25 ± 0.03 

3 

 

M5 

 

1235.1053 7.10 ± 0.01 

4 

 

M6 

 

1397.2462 7.97 ± 0.01 

5 

 

M7 

 

1559.387 8.94 ± 0.02 

6 

 

M8 

 

1721.5278 9.69 ± 0.14 

7 

 

M9 

 

1883.6687 10.28 ± 0.08 

8 

 

A2 

 

1317.2094 7.34 ± 0.07 

9 

 

F(6)A2 

 

1463.3508 8.02 ± 0.06 

10 

 

A2[6]G(4)1 

 

1479.3502 8.31 ± 0.01 
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11 

 

A2[3]G(4)1 

 

1479.3502 8.51 ± 0.01 

12 

 

F(6)A2[6]G(4)1 

 

1625.4917 8.91 ± 0.04 

13 

 

F(6)A2[3]G(4)1 

 

1625.4917 9.13 ± 0.05 

14 

 

A2G(4)2 

 

1641.4911 9.44 ± 0.02 

15 

 

F(6)A2G(4)2 

 

1787.6326 10.26 ± 0.01 

16 

 

F(6)A2BG(4)2 

 

1990.8254 10.41 ± 0.18 

17 

 

A3 

 

1520.4023 8.22 ± 0.01 

18 
 

A3G3 

 

2006.8248 11.78 ± 0.04 

19 

 

A4 

 

1723.5952 9.27 ± 0.01 

20 

 

A4G(4)4 

 

2372.1587 13.72 ± 0.07 

21 
MONO-SIALO  

(S1) 
A2G(4)2S1 

 

1932.7462 6.81 ± 0.19 

22 

 

F(6)A2G(4)2S1 

 

2078.8877 7.04 ± 0.02 

23 
DI-SIALO 

(S2) 
A2G(4)2S2 

 

2224.0012 5.33 ± 0.10 
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Symbols:  Mannose;  N-acetyl glucosamine;  Fucose;  Galactose;  Sialic acid 

a) The glycan symbol nomenclature proposed by Harvey et al. was used for drawing structural diagrams 

of N-linked glycans [150]. b) Mass averages of the glycan standards were applied from the NIBRT 

GlycoBase 3.2.4 suite of databases. c) Each GU value was calculated from six runs. 

 

5.4.2. Validation of the ANTS-labeled N-Glycan Database 

Finally, the generated GU values in this database were verified with N-glycans released from 

human IgG and bovine pancreatic RNase B. Briefly, glycoproteins were first released by the 

endoglycosidase PNGase F and then the liberated sugars were labeled via reductive amination 

using the ANTS labeling reagent. After that, the ANTS-labeled N-glycans were separated by 

CGE. 

Immunoglobulins are highly abundant glycosylated serum proteins, readily available for glycan 

analysis, containing two light (LC) and two heavy (HC) chains, held together and folded 

through intra- and inter-chain disulfide bounds. Each heavy chain possesses a single covalently 

attached N-glycan at the highly conserved Asn-297 site in each of the CH2 domains of the Fc 

portion of the molecule [176]. The attached oligosaccharides are structurally important for the 

stability of the antibody [177].  

Another commonly used glycoprotein for glycan analysis is ribonuclease B (bovine pancreatic, 

Mr: 15 500) with one N-linked glycosylation site at the Asn-34 position, which occupies at least 

five to nine different high-mannose (Man) type carbohydrate structures of varying size linked 

to the side chain of asparagine through an N-acethylglucosamine (GlcNAc) residue [178]. 

Please note that CGE can differentiate even isobaric oligosaccharide structures holding the 

same charge just based on their differences in shape. Oligosaccharides differing by one or more 

sugar residues and/or with different linkages/positions shift the migration time therefore readily 

separated by CGE. To support the highest possible precision of migration time measurement, a 

lower (ANTS-G2) and a higher (ANSA-G2) bracketing standard were co-injected with the 

sample in all CGE separations.  

24 

 

F(6)A2G(4)2S2 

 

2370.1426 5.69 ± 0.01 

25 
TRI-SIALO 

(S3) 
A3G(4)3S3 

 

2880.5900 5.63 ± 0.02 
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Figure 18 compares the CGE separation traces of the ANTS-labeled maltooligosaccharide 

ladder (trace L) with the individual glycan standards of F(6)A2G(4)2S1 (trace A, peak 22), 

F(6)A2 (trace B, Peak 9), F(6)A2[6]G(4)1 and F(6)A2[3]G(4)1 (trace C, peaks 12 and 13, 

respectively), and F(6)A2G(4)2 (trace D, peak 15). Trace E shows the CGE separation of the 

ANTS-labeled human IgG glycan pool, including the individual peaks of 22, 9, 12, 13, and 15 

as the standards above. The measured GU values of these peaks are compared to the database 

values in Table 7 and show very little differences (<0.14 GU). It should be emphasized that the 

CGE analysis times were around 200 s. All peak numbers correspond to the entries in Table 6. 

 

 

Figure 18. CGE-LEDIF separation of ANTS-labeled glycan standards and N-glycans released 

from human IgG. Traces: (L) maltooligosaccharide ladder, (A) F(6)A2G(4)2S1, (B) F(6)A2, 

(C) F(6)A2[6]G(4)1, and F(6)A2[3]G(4)1, as well as (D) F(6)A2G(4)2 and (E) hIgG glycans. 

All samples were co-injected with lower (ANTS-G2) and upper (ANSA-G2) bracketing 

standards. Numbers on the peaks in the upper trace correspond to the degree of polymerization 

of the standard glucose ladder. Numbers on the peaks in traces A–E correspond to the 

structures in Tables 6 and 7. Separation conditions: capillary: 50 µm i.d., effective length of 

11.5 cm (total separation length: 15.5 cm); sample and marker injection: 2 kV/3 s; separation 

voltage: 6 kV; ambient temperature. Adapted from [114].  
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Table 7. Abbreviated names, structures and CGE-LEDIF GU values (measured and database 

values) of ANTS-labeled N-glycans released from human IgG. Adapted from [114].    

Symbols are the same as in Table 6.  

a) The glycan symbol nomenclature proposed by Harvey et al. was used for drawing structural diagrams 

of N-linked glycans [150]. b) The database values of the glycan standards arose from Table 6.   

 

 

In a similar manner, Figure 19 compares the CGE analysis of the ANTS-labeled 

maltooligosaccharide ladder (trace L) with the individual high-mannose type glycan structures 

of M5 (trace A, peak 3), M6D3 (trace B, peak 4), M7D3 (trace C, peak 5), M8 (trace D, peak 

6), and M9 (trace E, peak 7). Trace F shows the CGE separation trace of the ANTS-labeled 

RNase B glycan pool, including the individual peaks of 3, 4, 5a (M7D2), 5b (M7D3), 5c 

(M7D1), 6, and 7 as the standards in Table 8. Very little differences can also be observed 

between the GU values of the corresponding glycoprotein derived glycan peaks and the 

individual standards (<0.13 GU). All peak numbers correspond to the entries in Table 6. 

Peak 

No. 
Name Structurea) 

Database  

Valuesb) 

Measured 

GU Values 
Differences 

22 FA2G(4)2S(6)1 

 

7.04 ± 0.02 6.94 ± 0.05 -0.10 

9 F(6)A2 

 

8.02 ± 0.06 7.88 ± 0.05 -0.14 

12 F(6)A2[6]G(4)1 

 

8.91 ±0.04 8.95 ± 0.06 +0.04 

13 F(6)A2[3]G(4)1 

 

9.13± 0.05 9.23 ± 0.06 +0.1 

15 F(6)A2G(4)2 

 

10.26± 0.01 10.27 ± 0.06 +0.01 
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Figure 19. Representative CGE-LEDIF electropherograms of ANTS-labeled sugar standards 

and high-mannose type oligosaccharides released from bovine RNase B. Traces: (L) 

maltooligosaccharide ladder, (A) M5, (B) M6, (C) M7, (D) M8, (E) M9, and (F) RNase B glycan 

pool. All samples were co-injected with lower (ANTS-G2) and upper (ANSA-G2) bracketing 

standards. Numbers on peaks in traces A–F correspond to the structures in Tables 6 and 8. 

Separation conditions were the same as in Figure 18. Adapted from [114].   
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Table 8. Abbreviated names, structures and CGE-LEDIF GU values (measured and database 

values) of ANTS-labeled N-glycans released from bovine RNase B. Adapted from [114].   

Symbols are the same as in Table 6. 

a) The glycan symbol nomenclature proposed by Harvey et al. was used for drawing structural diagrams 

of N-linked glycans [150]. b) The database values of the glycan standards arose from Table 6.   

 

 

 

5.5. Effect of Separation Temperature and Background Electrolyte Composition 

on Structure Specific Glycan Migration in CGE 

 

5.5.1. Activation energy associated with the electromigration of linear sugar oligomers  

In the last part of the study, the activation energy (Ea) associated with the electromigration of 

linear sugar oligomers was determined from the electrophoretic mobilities of the sample 

components at different temperatures.  

Peak  

No. 
Name Structurea) 

Database  

Valuesb) 

Measured  

GU Values 
Differences 

3 M5 
 

7.10 ± 0.01 6.99 ± 0.03 -0.11 

4 M6 

 

7.97 ± 0.01 7.84 ± 0.03 -0.13 

5a M7 a (M7 D2) 

 

N/A 8.58 ± 0.03 N/A 

5b M7 b (M7 D3) 

 

8.94 ± 0.02 8.83 ± 0.03 -0.11 

5c M7 c (M7 D1) 

 

N/A 9.31 ± 0.03 N/A 

6 M8 

 

9.69 ± 0.14 9.71 ± 0.03 +0.02 

7 M9 

 

10.28 ± 0.08 10.34 ± 0.03 +0.06 
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The effects of a monomeric viscosity modifier (ethylene glycol) and a polymeric additive 

(linear polyacrylamide) containing BGE were investigated with respect to the electrophoretic 

migration of increasing chain length α1-4 linked glucose units (maltooligosaccharide, DP 

1→15) using the activation energy concept.  

First, the electrophoretic separation of APTS-labeled linear sugar oligomers was monitored by 

CGE-LIF detection in the temperature range of 20 ‒ 50oC, using a simple BGE of 25 mM 

lithium acetate (pH 4.75) without any viscosity modifier or polymeric additive. The results 

suggested that the electromigration of the sample components significantly increased with the 

increase of the separation temperature, i.e. resulted in faster migration as shown in Figure 20, 

panel A and B.  

 

A       B 

 

 

C       D 
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E       F 

 

 

Figure 20. CGE-LIF separation traces of APTS-labeled linear maltooligosaccharides at 20°C 

(panels A, C and E) and 50°C (panels B, D and F). Panels A and B: no viscosity modifier or 

polymeric additive containing BGE; Panels C and D: 10% EG containing BGE; Panels E and 

F: 2% LPA (MW 10 000) containing BGE. Separation conditions: capillary: 50 µm i.d., 

effective length of 21 cm (total length of 31 cm); BGE: 25 mM lithium acetate (pH 4.75) with 

corresponding viscosity modifier (C and D) and polymeric additive (E and F); E=400 V/cm; 

Sample injection: 0.5 psi/5 s; Separation temperature: as indicated. Adapted from [179].  

   

 

In Figure 21A, the Ea curves were plotted based on the slopes of the Arrhenius plots obtained 

from glucose (DP 1) to maltopentadecaose (DP 15) using equation 14, as discussed in section 

2.2.1. Detailed investigation of the Arrhenius plots suggested that the Ea requirement associated 

with the electrophoretic mobility of linear maltooligosaccharides changed with their degree of 

polymerization (DP). In Figure 22, the Ea values were plotted based on the function of DP using 

lithium acetate (plot of 0% EG) as background electrolyte, where a monotone increase of Ea 

with growing size of the maltooligomers was observed with 73 J/mol per glucose unit (r2= 0.96) 

in the range of between maltose (DP 2) to maltopentadecaose (DP 15). It should be emphasized 

that the monomeric glucose unit (DP 1) was excluded from the slope calculation, because it did 

not maintain the ring structure after reductive amination based derivatization.   
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Figure 21. Arrhenius plots of logarithmic electrophoretic mobility vs. reciprocal absolute 

temperature. Panel A: no viscosity modifier or polymeric additive containing BGE; Panel B: 

10% EG viscosity modifier containing BGE; Panel C: 2% LPA (MW 10 000) polymeric additive 

containing BGE. The solid lines illustrate the linear least-squares fit of the data. Adapted from 

[179].  

 

5.5.2. Effect of Viscosity-Modifier (Ethylene Glycol, EG) 

The separation of APTS-labeled maltooligosaccharides was accomplished by CGE at 20oC and 

50oC, using a simple BGE of 25 mM lithium acetate (pH 4.75) with 0 − 60% ethylene glycol 

(EG) in order to investigate the effect of viscosity modifier on structure specific glycan 

migration. Figure 20, panel C and D represent the CGE-LIF electropherograms with 10% EG 

containing BGE in the temperature range of 20oC to 50oC, respectively. Similarly to panel A 

and B, faster migration were observed at 50oC in both instances. To calculate the Ea values 

(Figure 21B), the Arrhenius plots were plotted similarly as mentioned above.  
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Figure 22 shows the Ea changes as the function of the DP of the maltooligosaccharides with 

increasing EG concentration from 10 − 60% delineating a monotonous increase of about 72-13 

J/mol per glucose unit, respectively. It should be emphasized that the Ea values slightly 

increased with the size of the analyte molecules, when the BGE of 25 mM lithium acetate 

contained more than 40% EG.   

 

Figure 22. Calculated Ea values as a function of the DP of the linear maltooligosaccharides in 

increasing EG viscosity modifier (0 − 60%) containing BGE of 25 mM lithium acetate (pH 

4.75). Adapted from [179].  

 

 

5.5.3. The Effect of Polymeric Additive (Linear Polyacrylamide, LPA)  

First the entanglement threshold value of the LPA solution was measured as published earlier 

[52] and found to be 1.5%. Based on this information, LPA polymeric additive was used in the 

concentration range of 0.5 – 3.0%, i.e., below (0.5 and 1.0%, considered as diluted solution), at 

(1.5%) and above (2.0% and 3.0% entangled polymer network) the threshold. Molecular 

sieving, in the traditional sense of gel electrophoresis based separation system [7], was not 

considered in these experiments because of the mass to charge ratios of the growing DP 

maltooligosaccharides were monotonically increasing, supporting zone electrophoresis-based 

migration.  
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Please note that the viscosity of 2% LPA solution was very similar to the 10% EG containing 

BGE at 20oC and 50oC, i.e. 2% LPA (20oC) = 1.30 mPa.s; 2% LPA (50oC) = 0.82 mPa.s and 

10% EG (20oC) = 1.28 mPa.s; 10% EG (50oC) = 0.74 mPa.s.  

Figure 20, panel E and F compare the CGE-LIF separation traces of the APTS-labeled linear 

maltooligosaccharides using 2% LPA polymeric additive containing lithium acetate BGE in the 

temperature range of 20oC and 50oC. To calculate the Ea values (Figure 21C), the Arrhenius 

plots were plotted similarly as mentioned above. Figure 23 represents the Ea changes as the 

function of the DP of the maltooligosaccharides with increasing LPA concentration from 0 ‒ 

3.0%. Interestingly, clear breakpoints were noted in practically all the plots around DP 7 

(maltoheptaose). For oligosaccharides shorter than DP 7 the Ea values increased by the rate of 

212 J/mol per glucose unit, while the Ea values only increased with the rate of 68 J/mol per 

glucose unit for oligosaccharides longer than DP 7. It has been reported earlier, that the glucose 

building blocks in maltooligosaccharides linked by α1-4 linkage form a full turn of a helix 

around 7 glucose units (DP 7) [120], therefore these breakpoints in the Ea plots suggest a 

conformational change in the linear carbohydrate chains. This conformation change was 

considered to be the reason for this 144 J/mol per glucose unit transition in the Ea values. 

Therefore, oligosaccharides with DP < 7 migrate in random coil configuration, while at and 

above DP 7, they migrate as elongated helical structures under the conditions applied. However, 

the shorter oligosaccharides (DP <7) may have their less hydrophilic side exposed (no helix 

yet) that might interact with the –(CH2-CH(CO-NH2)-CH2)-LPA chains in the background 

electrolytes, resulting in higher Ea requirement. In case of higher polymeric additive 

concentrations (2.0 – 3.0%), shallower Ea slopes were observed for both segments, because the 

polymer network should be more entangled, therefore less non-networked LPA chains are 

available to interact with the solute molecules. At the entire range of 0 ‒ 3.0% polymeric 

additive concentration, the slope values were positive, suggesting no analyte and/or no network 

deformation.     
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 Figure 23. Calculated Ea values as a function of the DP of the linear maltooligosaccharides 

in increasing LPA polymeric additive (0 ‒ 3.0%) containing BGE of 25 mM lithium acetate (pH 

4.75). Adapted from [179].  

 

 

5.5.4. Activation Energy Associated with the Electromigration of Branched 

Oligosaccharides 

Next, the activation energy associated with the electromigration of branched oligosaccharides 

was determined from the electrophoretic mobilities of the sample components in the 

temperature range of 20 ‒ 50oC. Figure 24 represents the CGE-LIF separation traces for the two 

sample types (upper trace: maltooligosaccharides; lower trace: IgG glycans) at the separation 

temperatures of 20oC (panel A) and 50oC (panel B). Interestingly, the migration time 

differences between all the branched (lower trace: peaks 1-10 showing sialylated, neutral and 

core fucosylated biantennary IgG glycans) and linear structures (upper trace: peaks DP1 − 

DP15) decreased with the increase of the separation temperature. For example, F(6)A2 glycan 

derived from IgG (see peak 4) migrated close to the maltooctaose (DP 8) at 20oC, but migrated 

slightly slower than the maltoheptaose (DP 7) at 50oC as shown in Figure 24.  
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Figure 24. Representative electropherograms of APTS-labeled linear maltooligosaccharides 

(upper traces) and branched IgG N-glycans (lower traces) at the separation temperatures of 

20oC (panel A) and 50oC (panel B). Numbered peaks correspond to the abbreviated structures 

listed in Table 9. Separation conditions: capillary: 50 µm i.d., effective length of 21 cm (total 

length of 31 cm); BGE: 25 mM lithium acetate (pH 4.75); E=400 V/cm; Sample injection: 0.5 

psi/5 s; Separation temperature: as indicated. Adapted from [180].  

 

The corresponding GU values of the IgG N-glycans were calculated based on equation 19 (see 

in section 2.9.1.) and were shown in the upper left panel of Table 9 (column: 25 mM Li-acetate). 

In the separation temperature range of 20 ‒ 50oC, the average GU values shift of the IgG N-

glycans was -0.89 GU, i.e., the complex biantennary structures migrated that much faster than 

their corresponding linear maltooligosaccharide counterparts at higher temperatures. As a first 

approximation, the Ea requirement for the electromigration of these structurally different 

sample types was considered to play an important role. To calculate the Ea values, the Arrhenius 

diagrams were plotted for the relevant DP range of the linear maltooligosaccharides (DP 7−12) 

and the major biantennary IgG N-glycans (peaks 4, 6, 7, 9) using equation 13 as shown in Figure 

25, panel A and B, respectively. It is important to note that the glucose building blocks in 

maltooligosaccharides with α1-4 linkage form a full helical turn at DP 7 as mentioned above, 

therefore, their structure was considered as linear-helical at the range of this comparative study 

with the IgG N-glycans [120].            
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Table 9. GU values shifts of the IgG N-glycans as the function of separation temperature using 

25 mM lithium acetate BGE with and w/o monomeric (10% EG viscosity modifier) as well as 

polymeric additives (2% LPA and 0.4% PEO). N-glycan nomenclature as proposed by Harvey 

et al. [150], and the major structures are highlighted in bold. Adapted from [180].   

 

 

 

 

 

GU values 25 mM Li-acetate 25 mM Li-acetate + 10% EG 

Peak 

No. 
Sample ID 20oC 30oC 40oC 50oC RSD% ∆ 20oC 30oC 40oC 50oC RSD% ∆ 

1 F(6)A2G(4)2S2 5.22 4.95 4.86 4.95 3.12 -0.27 6.29 6.29 6.20 6.09 1.55 -0.20 

2 F(6)A2[3]G(4)1S1 6.31 5.91 5.75 5.83 4.23 -0.48 6.48 6.50 6.41 6.30 1.41 -0.18 

3 F(6)A2G(4)2S1 7.07 6.58 6.34 6.44 4.90 -0.63 7.00 7.01 6.89 6.76 1.66 -0.24 

4 F(6)A2 8.14 7.50 7.17 7.28 5.74 -0.86 8.00 7.99 7.82 7.62 2.24 -0.37 

5 F(6)A2B 8.65 7.97 7.62 7.74 5.78 -0.91 8.50 8.50 8.33 8.11 2.21 -0.39 

6 F(6)A2[6]G(4)1 9.27 8.53 8.11 8.23 6.12 -1.04 9.07 9.04 8.85 8.61 2.41 -0.47 

7 F(6)A2[3]G(4)1 9.61 8.85 8.40 8.54 6.10 -1.07 9.38 9.35 9.16 8.91 2.34 -0.47 

8 A2BG(4)2 10.03 9.25 8.79 8.93 5.98 -1.10 9.81 9.78 9.59 9.33 2.28 -0.48 

9 F(6)A2G(4)2 10.71 9.82 9.32 9.45 6.37 -1.26 10.41 10.37 10.15 9.86 2.48 -0.55 

10 F(6)A2BG(4)2 11.02 10.12 9.61 9.77 6.25 -1.26 10.73 10.70 10.49 10.19 2.34 -0.53 

11 Average     5.46 -0.89     2.09 -0.39 

GU values 25 mM Li-acetate + 2% LPA 25 mM Li-acetate + 0.4% PEO 

Peak 

No. 
Sample ID 20oC 30oC 40oC 50oC RSD% ∆ 20oC 30oC 40oC 50oC RSD% ∆ 

1 F(6)A2G(4)2S2 4.98 5.14 5.25 5.26 2.49 0.28 4.52 4.70 4.81 4.90 3.44 0.38 

2 F(6)A2[3]G(4)1S1 5.94 6.13 6.23 6.22 2.18 0.28 5.49 5.67 5.74 5.93 3.23 0.45 

3 F(6)A2G(4)2S1 6.72 6.91 7.01 7.00 1.94 0.28 6.17 6.36 6.43 6.65 3.11 0.48 

4 F(6)A2 7.57 7.67 7.79 7.76 1.30 0.19 7.25 7.42 7.45 7.64 2.15 0.39 

5 F(6)A2B 8.02 8.20 8.35 8.32 1.82 0.30 7.79 7.96 7.98 8.17 1.96 0.38 

6 F(6)A2[6]G(4)1 8.67 8.85 8.92 8.88 1.26 0.21 8.36 8.52 8.51 8.70 1.64 0.34 

7 F(6)A2[3]G(4)1 9.03 9.20 9.27 9.21 1.12 0.18 8.73 8.89 8.86 9.07 1.58 0.34 

8 A2BG(4)2 9.43 9.63 9.71 9.64 1.22 0.21 9.18 9.33 9.31 9.53 1.57 0.35 

9 F(6)A2G(4)2 10.16 10.39 10.40 10.30 1.05 0.14 9.76 9.90 9.87 10.07 1.28 0.31 

10 F(6)A2BG(4)2 10.42 10.66 10.72 10.65 1.22 0.22 10.10 10.26 10.23 10.45 1.40 0.35 

11 Average     1.56 0.23     2.13 0.38 
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Figure 25. Arrhenius plots of logarithmic electrophoretic mobility vs. reciprocal absolute 

temperature for (A) maltooligosaccharides of DP 7-12 and (B) the four major IgG N-glycans 

(peak 4, 6, 7 and 9). BGE: 25 mM lithium acetate (pH 4.75) with no viscosity modifier or 

polymeric additive. The solid lines illustrate the linear least-squares fit of the data (r2= 0.99, 

each). Adapted from [180].  

 

To shed light on the possible effect of separation temperature mediated electromigration 

differences on structure specific glycan migration, the Ea values were plotted against the 

hydrodynamic volumes of the analyte molecules as shown in Figure 26. To define the size of 

the branched sugar oligomers, the hydrodynamic volumes were calculated, because the simple 

DP value was not able to represent the shape of the oligosaccharides. Molecular mechanics 

optimized structures were derived from the Glycoscience.de database [181]. In order to gain 

the realistic molecular volume, a subsequent single-point calculation was accomplished by the 

Density Functional Theory (DFT)/ Conductor-like Screening Model (COSMO) [182]. Figure 

26 shows the changes in Ea requirement of the analyte molecules to migrate through the 

background electrolyte for the maltoundecaose (G11) and the F(6)A2G(4)2 glycan. The Ea 

increment was 0.4 J/mol per A3 for the linear maltooligosaccharides, in contrast to the 

biantennary branched IgG N-glycans increased by almost four times as much, i.e. 1.5 J/mol per 

A3. It can be considered that behind these differences is the change of GU values with increasing 

separation temperature during CE analysis of these structurally different oligosaccharides. In 

the 1990s, Dovichi et al. introduced a similar secondary structure change-induced difference 

theory in Ea requirement for DNA sequencing fragments, but in the case of nucleic acids the 

change was reportedly due to segment differences [183].  
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Figure 26. Ea plots as a function of the hydrodynamic volume of the linear 

maltooligosaccharides (DP 7−12) (●) and the major biannetary IgG N-glycans (peak 4, 6, 7 

and 9) (▲). Solid lines represent the linear least-squares fit of the data (maltooligosaccharides 

r2= 0.93; IgG r2= 0.99). Molecular structures of the linear maltoundecaose (DP 11, left figure) 

and branched F(6)A2G(4)2 N-glycan (right figure) represent the charge distribution on the 

surface of the molecular cavity calculated by COSMO. Adapted from [180].  

 

 

5.5.5. The Effect of Background Electrolyte Additives  

CGE-LIF separation of APTS-labeled linear and branched carbohydrates was also 

accomplished in the temperature range of 20 − 50oC using 10% EG, 2% LPA (MW 10 kDa) 

and 0.4% PEO (300 kDa) additive containing background electrolytes. The viscosity values of 

the additive containing separation buffers at 20oC and 50oC were mentioned above.  

Similar to as described above, faster migration was noticed in all three additive containing 

separation buffers with increasing separation temperature, and various temperature-dependent 

differential migration of both structures as illustrated in the respective panels in Table 9.  
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While in the presence of additive-free background electrolyte the corresponding average GU 

values shift of the branched glycans were -0.89 GU, this value changed to -0.39, +0.23 and 

+0.38 GU unit by the addition of 10% EG, 2% LPA and 0.4% PEO, respectively, in the 

temperature range of 20 − 50oC. When background electrolytes containing no or only 

monomeric (ethylene glycol) additives were used, the GU values of the branched biantennary 

IgG N-glycans decreased with increasing separation temperature, however, with background 

electrolytes containing polymeric additives the GU values increased with increasing 

temperature, probably due to possible solute-network interactions or deformations effects in 

addition to the influence of viscosity.  

To calculate the Ea values, the Arrhenius diagrams were plotted for all additive types. After 

that, the Ea vs hydrodynamic volume diagrams were plotted (not shown) and the Ea changes 

were derived for the both the linear and branched structures as 0.3 J/mol per A3 and 0.9 J/mol 

per A3, 0.4 J/mol and 1 J/mol per A3, as well as 0.06 J/mol and 0.3 J/mol per A3 for the 

background electrolytes containing EG, LPA and PEO. In the presence of the monomeric 

(ethylene glycol) additive, the Ea requirement was presumable associated with the passage of 

the increasing size analyte molecules through the higher viscosity background electrolyte. In 

the instance of polymeric additive, in addition to the viscosity component, other physical 

interactions between the analyte molecules and the polymer network and/or deformation effects 

should also be considered. 
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6. DISCUSSION 

 

Large-Scale Genomic DNA Analysis by CGE 

Currently, most bioanalytical laboratories still utilize manual slab gel based electrophoresis 

techniques, which have routinely been used for checking DNA properties [184]. However, these 

methods are time consuming and labor intensive, also requiring improvements in terms of 

resolving power and analysis throughput [184]. On the other hand, rapid analysis of ssDNA or 

dsDNA fragments is a need in most molecular biology laboratories such as restriction fragment 

mapping, PCR fragment analysis, mutation detection and DNA sequencing. Combining the 

sensitivity of fluorescence detection with the variability of replaceable polymer sieving and the 

opportunity of automation in both sample handling and data acquisition, CGE has become an 

attractive alternative to traditional slab gel electrophoresis [185]. In the first part of this study, 

the aim was to introduce a novel single-channel CGE system with LED-induced fluorescence 

detection utilizing a pen-shaped capillary cartridge for automatic separation of samples from a 

96-well plate. The separation performance of this instrument was demonstrated by rapid and 

large-scale purity analysis of a thousand gDNA samples, exhibiting excellent migration time 

reproducibility (RSD <0.75%) and detection limit of ~0.1 ng/µL in comparison to manual 

agarose slab gel electrophoresis. In addition, the instrument quickly distinguished between 

degraded and intact gDNA samples, thus provided crucial information if they could be used for 

downstream quantitative PCR processing where high-quality intact gDNA was the key.  

 

Molecular Haplotype Analysis by CGE 

Wolframin (WFS1) is a transmembrane protein in the ER, which is generated at higher levels 

in pancreatic beta cells and specific neurons in the central nervous system [152]. Genetic 

variations in the WFS1 gene have been described to be associated with the Wolfram syndrome 

or type 2 diabetes mellitus. Simultaneous study of multiple polymorphisms (i.e. haplotyping) 

is getting more and more attention in the analysis of genetic variations of complex diseases. 

Direct molecular haplotyping is of particular importance in the case of double heterozygote 

samples, since in these instances the haplotype structure cannot be constructed simply based on 

genotype data. Our group successfully reported on genotyping and haplotyping in the dopamine 

D4 receptor gene by CGE-LIF separations [80]. However, currently, there are no sensitive and 

powerful platforms in most bio-analytical laboratories for genotype and haplotype analysis by 

CGE-LEDIF system.  
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Thus in the second part of this study, the aim was to elaborate an efficient double-tube allele-

specific PCR-based approach in conjunction with ultrafast CGE-LEDIF system for direct 

haplotyping of the SNPs in two important miRNA-binding sites (rs1046322 and rs9457) in the 

WFS1 gene. In addition, the separation performance was demonstrated by ultrafast (<240 s) 

and accurate (2.4 – 9.2%) sizing analysis of multiplex PCR samples, exhibiting excellent 

detector linearity (R2=0.9997) with a dynamic quantitation range of 0.08 – 10.0 ng/µL. 

Moreover, the detection limit was 0.002 ng/µL using field amplified injection from water 

diluted samples. In conclusion, this CGE-LEDIF system offers a sensitive and easy to use bio-

analytical tool for automated haplotyping of a large number samples in clinical settings. 

 

Immune Response against Carbohydrate Antigens 

Interactions of proteins or lipids with glycans play a significant role in the antigen and/or 

pathogen recognition machinery, malignant transformation and neurological disorders, etc. 

Today, antiglycan antibody development against carbohydrate antigens is of increasing 

importance since glycosylation is recognized as a significant player in biomarker research and 

discovery [166]. Therefore, the aim was to investigate polyclonal antibody response for newly 

synthesized maltose-BSA conjugate neoglycoproteins. In the third part of this study, selective 

antibody binding was demonstrated to the synthesized carbohydrate antigens with different 

glycosylation degrees (low and high) suggesting the possible use of this approach to generate 

antiglycan antibodies. Moreover, the polyclonal antibody response was not inhibited by maltose 

or other simple carbohydrates such as glucose, isomaltose, lactose, galactose, and maltodextrin 

to confirm presence of the neoglycoprotein-specific antibodies. It remains to be determined, 

however, whether the new immunogenic epitopes included the sugar component or merely 

represented conformational changes of the core polypeptide chain induced by the sugar 

conjugation process. To the best of my knowledge there is no report suggesting that the core 

protein structure was changed by glycosylation changes or some polyclonal antibody response 

to glycans with detectable specificity directed strictly to the sugar moiety. In the future, this 

elaborated method may be utilized for conjugation of complex disease specific sugar structures 

to carriers in order to generate monoclonal antibody libraries.  
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Generation of an ANTS-labeled N-Glycan Database for CGE Analysis 

There is an increasing trend to develop therapeutic glycoproteins, such as monoclonal 

antibodies, which require sensitive and high-resolution bioanalytical techniques for 

comprehensive carbohydrate characterization. Protein derived glycans in most instance have a 

large variety of structural diversity such as positional and/or linkage isomers, which calls for 

the need of state-of-the-art instrumentation for their analysis. Thus, high-performance 

analytical techniques including CGE is a well-established tool, which plays a significant role in 

the structural elucidation of glycosylation in the biomedical and pharmaceutical fields. On the 

other hand, the time consuming carbohydrates sequencing step in most N-glycan profiling 

studies can be avoided with the use of a comprehensive glycan glucose unit (GU) database 

[186], which is specific for a given instrument and gel-buffer system. Our laboratory reported 

the successful establishment of an APTS-labeled N-glycan database released from human 

serum polyclonal IgG using LIF detection [108]. However, currently there are no well-

established, automated, and high-throughput bioanalytical platforms for CGE-LEDIF systems 

to provide rapid analysis of biopharmaceutical or biotechnology samples of interest without the 

need of additional carbohydrate sequencing steps. Therefore, the aim was to introduce an initial 

version of a novel GU database for ANTS-labeled N-glycans by CGE-LEDIF detection. 

Comparison of the normalized migration times of the peaks of interest of glycoprotein derived 

N-glycans with carbohydrate standards with known GU values in this database poses a simple 

and effective way for rapid structural assessment. This database provided 25 N-linked glycan 

structures of mostly biopharmaceutical interest such as for N-glycosylation profiling of 

therapeutic antibodies with rapid (around 200 s) CGE separation times. The validation of the 

generated GU values in the database was verified with N-glycans released from human IgG and 

bovine ribonuclease B, which showed very little differences between the database values and 

measured values (i.e. hIgG: <0.14 GU and RNase B: <0.13 GU). On the other hand, glycans 

are structurally diverse, therefore in some rare instances there are possible co-migrations of 

species, in which cases exoglycosidase enzyme array based carbohydrate sequencing can be 

applied for correct structural elucidation [187]. This novel application may provide a broadly 

applicable bio-analytical tool for rapid glycan analysis of biotechnology and clinical samples. 
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Effect of Separation Temperature and Background Electrolyte Composition on Structure 

Specific Glycan Migration in CGE 

For the physicochemical characterization of biopolymers, CGE has been extensively utilized 

using cross-linked gels and/or linear polymer sieving matrices. However, today almost 

exclusively linear polymer gels are used in CGE due to the difficulties of working with cross-

linked sieving matrices in narrow bore capillary tubings. On the other hand, with the use of 

linear polymer gels, network dynamics should be considered both below and above their 

entanglement [188]. In addition, the activation energy concept is often used to investigate 

possible temperature induced deformations affecting the analyte, the network, or both. 

Therefore, in the last part of this study, the aim was to investigate the effect of separation 

temperature on the differential electromigration shift between linear (maltooligosaccharides) 

and branched (sialylated, neutral and core fucosylated biantennary IgG glycans) carbohydrates 

in narrow bore capillaries in the range of 20 − 50 °C. To understand the structure specific 

electrophoretic migration of the different sugar oligomers, the activation energy concept was 

used in this study. In addition, viscosity modifiers (e.g., 0 − 60% ethylene glycol) and/or 

polymer additives (e.g., 0 − 3% linear polyacrylamide, 0.4% 300 kDa polyethylene oxide) were 

added to the background electrolytes in order to investigate this phenomenon. The results have 

shown that glucose unit value shift were observed with increasing temperature between the 

linear and branched sugar structures caused by the temperature-dependent activation energy 

requirement in order to migrate through the polymer network. Therefore, this emphasizes the 

high importance of tight temperature control during glycan analysis by capillary electrophoresis 

if glucose unit values form existing databases are used for structural elucidation. 
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7. SUMMARY 

 

In the first part of this study, the design of a single capillary CGE system was introduced with 

a pen-shaped compact capillary cartridge comprising a novel microball ended fiber optic-based 

LED-induced fluorescence detection setting. This automated system offered a good and easy-

to-use alternative to labor intensive slab gel electrophoresis systems, also featured excellent 

detection sensitivity, high-resolving power and rapid analysis times for quantitative or 

qualitative analysis of biopolymers. The separation performance of this instrument was 

demonstrated by rapid and large-scale purity analysis of close to a thousand gDNA samples, 

exhibiting excellent migration time reproducibility (RSD <0.75%).  

 

CGE-LEDIF-based method was also applied to the analysis of multiplex PCR amplification for 

genotyping and haplotyping of two important, adjacent miRNA-binding sites (rs1046322 and 

rs9457) in the WFS1 gene. The separation performance was also demonstrated by ultrafast 

(<240 s) and accurate (2.4 ‒ 9.2%) sizing analysis of multiplex PCR samples, exhibiting 

excellent detector linearity (R2= 0.9997) with a dynamic quantitation range of 0.08–10.0 ng/µL. 

The LOD of the system was 0.08 ng/µL for samples in buffer and 0.002 ng/µL for samples in 

water, this latter was due to the field amplified injection effect.  

 

In the third part of this study, the analysis and polyclonal antibody response for newly 

synthesized maltose-BSA conjugates was described. First of all, a simple carbohydrate, 

maltose, was linked to BSA by reductive amination. To conserve the intact annular maltose 

structure, an aglycone spacer was utilized for the synthesis of neoglycoproteins. The 

synthesized neoglycoproteins were analyzed by SDS-CGE and the number of conjugated 

maltose residues was determined by MALDI-TOF MS. The carbohydrate antigens were then 

evaluated by immunization of BALB/c mice and the polyclonal antibody response was analyzed 

by ELISA as evidence for the presence of sugar-containing epitope-specific antibodies. 

Selective antibody binding was demonstrated to the synthesized neoglycoproteins with 

different (low and high) glycosylation degrees offering the possible use of this approach to 

generate antibodies. In addition, the polyclonal antibody response to these neo-epitopes was not 

inhibitable by maltose or other simple and oligomeric sugars like glucose, isomaltose, lactose, 

galactose, and maltodextrin.  
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It should be emphasized that I found no report in the literature suggesting that the polyclonal 

antibodies response would be generated against core protein structure (BSA). 

 

In the fourth part of this study, the establishment of a novel ANTS-labeled N-glycan database 

was introduced for rapid (around 200 s) CGE analysis of complex N-linked carbohydrates. The 

validation of the generated GU values in this database was accomplished by the use of N-

glycans released from human IgG and bovine pancreatic RNase B. The corresponding database 

values were in good agreement with the results of glycoprotein derived glycans. For rapid 

assessment of N-glycan profiles, these 25 database entries will prove useful for fellow 

separationists to analyze their glycan profiles. 

  

In the final section of this study, the activation energy concept with electromigration of linear 

and branched oligosaccharides was investigated in CGE using viscosity modifier (ethylene 

glycol) or polymeric additive (linear polyacrylamide, polyethylene oxide) containing BGE in 

the temperature range of 20 ‒ 50oC. The relationship between the Ea and the DP of linear 

maltooligosaccharides in the range of 1−15 was closely scrutinized with special respect to the 

temperature-dependent GU values shift of branched N-glycans. The GU value shifts were 

probably caused by the temperature-dependent Ea requirement for the different structures 

(linear vs. branched), therefore this emphasizes the high importance of tight temperature control 

during glycan analysis by CE, if GU values form existing databases are used for structural 

elucidation.       
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8. ÖSSZEFOGLALÁS 

 

A kapilláris gélelektroforézis napjaink egyik legdinamikusabban fejlődő analitikai 

módszerének tekinthető, melyet legfőképpen nukleinsavak, fehérjék és szénhidrátok 

elválasztására használnak. Együttműködő partnereink segítségével egy új, egycsatornás, LED- 

alapú fluoreszcens detektorral felszerelt, kapilláris gél elektroforézis rendszer került 

bevezetésre a bioanalitika területére. A kapilláris elektroforetikus elválasztást rövid mérési idő, 

nagy elválasztású hatékonyság, modern detektálási technika és teljes automatizálhatóság 

jellemzi, szemben a hagyományos lap gélelektroforézissel. Ezen okokból dolgozatom első 

részében a rendszer megbízhatóságának ellenőrzésére nagy molekulasúlyú genomiális DNS 

minta (~1000 darab) tisztaságát és degradációs fokát vizsgáltam. Relatív szórása RSD <0,75% 

volt, amely kiváló reprodukálhatósági paramétereket mutatott. 

 

A dolgozatom második részében haplotipizáló módszerek validálását végeztem el a CGE 

műszeren a WFS1 gén 3’ szabályzó régiójában található rs1046322 és rs9457 mikro-RNS kötő 

SNP-k használatával. A migrációs idő reprodukálhatóság, a kimutatási határ és a detektor 

linearitás értékeket is meghatároztam összehasonlítva a hagyományos lap gélelektroforézis 

technikával. A CGE-LEDIF igen hatékony, gyors elemzést tett lehetővé, gyakran 4 percnél is 

rövidebb elválasztásokkal, valamint pontos mPCR minta bázispár értékeinek számolásával (2.4 

‒ 9.2 %). A készülék érzékenysége hígító pufferben 0,08 ng/µl és desztillált vízben 0,002 ng/µl 

volt. Fontos megjegyezni, hogy injektáláskor a vízben hígított mPCR minták sokkal nagyobb 

mintabevitelt eredményeztek, mivel a puffer-ionok nem versenyeztek a mintamolekulákkal, így 

nagyobb érzékenységet lehetett elérni. Ezzel szemben a pufferrel történt mintahígítással 

pontosabb CGE méréseket kaptam. Továbbá a detektor linearitási értékek meghatározásakor 

egyértelmű lineáris detektor választ kaptam 0,08 – 10,0 ng/µl közötti koncentráció 

tartományban, melynek értéke R2= 0.9997 volt. 

 

Dolgozatom harmadik részében a gliko-biomarker kutatás céljából neoglikoproteinek 

(szénhidrát antigén) szintézisét és azok vizsgálatát végeztem elektroforetikus és 

tömegspektrometriás módszerekkel. Annak érdekében, hogy megőrizzem a maltóz szerkezetet, 

a szénhidrátot formil-heptil [7-(1,3-dioxán-2-il)-heptán-1-ol] hídmolekulán keresztül 

kapcsoltam a hordozó fehérjéhez (BSA) reduktív aminálással. Az így előállított mesterséges 

szénhidrát antigének ellen egerekben megtermelt új cukorhoz specifikusan kötődő antitestek 

kimutatása ELISA teszttel történt.  
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Az eredmények azt mutatták, hogy immunizálást követően a magasabb szénhidrát tartalmú 

antigénekre (66 szénhidrát egység/mol) jóval nagyobb immunválasz jött létre, mint az 

alacsonyabb cukorszámú (32 szénhidrát egység/mol) glikokonjugátum ellen. Ha az antigén 

mennyiségét lecsökkentettem felező hígításban (1,25 − 0,08 µg/ml), akkor nagyobb 

immunválasz jött létre a szénhidrát antigénre, mint a hordozó fehérjére. Másrészről, nem történt 

IgG antitesttermelés maltóz és egyéb cukrok, mint például glükóz, izomaltóz, laktóz, galaktóz 

és maltodextrin hozzáadásával. Így megállapítható, hogy makromolekuláris hordozóhoz kötött 

szénhidrát molekulák olyan specifikus epitópokat tartalmaznak, amelyek egyediek és 

alkalmasak specifikus ellenanyag termelésének kiváltására. 

 

A dolgozat negyedik részében fehérjékhez kapcsolódó ANTS fluoreszcens festékkel jelölt N-

glikán szerkezeti és GU adatbázist vezettem be egy új, egycsatornás, LED- alapú kapilláris 

gélelektroforézis készülék használatához. Az adatbázis jelenleg 25 oligoszacharidot tartalmaz, 

ezek többnyire a gyógyszeripar területén használt, mint például terápiás antitestek N-

glikozilációs szerkezeti vizsgálataihoz szükségesek. Az adatbázis validálását humán 

immunglobulin G és szarvasmarha ribonukleáz B glikoproteinekről lehasított N-glikánokkal 

végeztem el. Az eredmények megmutatták az elhanyagolható különbséget a glikoproteinekből 

származó N-glikánok és a standard N-glikánok GU értékei között (hIgG: <0.14 GU és RNáz B: 

<0.13 GU). Így a rendelkezésre álló adatbázis megkönnyítheti a kutatók további munkáját, 

mivel nem szükséges nagyszámú standardot minden elemzés során megfuttatni a 

kiértékeléshez. Ugyanakkor a CGE-LEDIF igen hatékony, gyors analízist tett lehetővé, gyakran 

240 másodpercnél is rövidebb elválasztásokkal. 

 

A dolgozatom utolsó részében lineáris, glükóz egységekből felépülő maltooligoszacharid (DP1 

− 15), valamint elágazó láncú ‒ IgG glikoproteinről lehasított ‒ komplex N-glikán szerkezetek 

elektroforetikus mobilitás változásait, nevezetesen a hőmérséklet-függő GU értékek 

eltolódását, vizsgáltam kapilláris elektroforézissel. Különböző hőmérsékleten (20 – 50 oC) és 

eltérő összetételű puffer rendszerekkel (0 ‒ 60 % etilén-glikol, 0 ‒ 3 % lineáris poliakrilamid, 

0,4 % 300 kDa polietilén-oxid) tanulmányoztam az APTS fluoreszcens festékkel jelölt N-

glikánok elektroforetikus vándorlását. Az eredmények azt mutatták, hogy a GU érték eltolódása 

feltehetően a különböző mintakomponensek hőmérséklet-függő aktiválási energia eltéréseiből 

erednek, ezért hangsúlyozni kell a hőmérséklet kontrol használatát minden egyes glikán 

szerkezetének vizsgálatakor.    
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10. ABBREVIATIONS 

 

ANSA  5-amino-2-naphtalenesulfonic acid  

ANTS   8-aminonaphthalene-1,3,6-trisulfonic acid 

APTS   8-aminopyrene-1,3,6-trisulfonic acid 

ASA  allele-specific amplification 

BGE  background electrolyte   

BSA  bovine serum albumin 

CDCE   constant denaturant capillary electrophoresis 

CE  capillary electrophoresis 

CGE   capillary gel electrophoresis 

CPA   cross-linked polyacrylamide 

DAD   diode array detector 

dATP  dezoxyadenosine triphosphate 

dCTP  dezoxycitidine triphosphate 

dGTP  dezooxyguanosine triphosphate  

dITP  dezoxyinosine triphosphate 

DP  degree of polymerization  

dsDNA  double-stranded deoxyribonucleic acid 

dTTP  dezoxythymidine triphosphate 

EG  ethylene glycol 
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ELISA  enzyme-linked immunosorbent assay 

EOF   electroosmotic flow 

G2  maltose  

gDNA  genomic DNA 

GlcNAc N-acetylglucosamine 

GU  glucose unit  

hIgG  human immunoglobulin G 

HILIC  hydrophilic interaction liquid chromatography  

HPLC  high-performance liquid chromatography  

LEDIF  light-emitting diode-induced fluorescence 

LIF   laser-induced fluorescence 

LOC   lab-on-a-chip 

LOD  limit of detection 

LPA   linear polyacrylamide 

MALDI-TOF  matrix-assisted laser desorption/ionization  

mCGE  multicapillary gel electrophoresis 

ME  microchip electrophoresis 

miRNA microRNA  

mPCR  multiplex PCR 

MS  mass spectrometry  
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NMR  nuclear magnetic resonance 

PA   polyacrylamide 

PCR   polymerase chain reaction 

PEO   polyethylene oxide 

PNGase F peptide-N4-(N-acetyl--glucosaminyl)asparagine amidase  

PVP   polyvinylpyrrolidone 

RMT  relative migration time  

RNA  ribonucleic acid  

RNase B ribonuclease B 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SNP   single nucleotide polymorphism 

ssDNA  single-stranded deoxyribonucleic acid 

TFA  trifluoroacetic acid  

TLC  thin layer chromatography  

WFS1  Wolframin gene 
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