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Abstract

Nine polyisobutylene (PIB) derivatives with different end groups (chlorine, vinyl, isobutenyl, 

2,2-diphenylvinyl,  and carboxyl) and molecular weights (1000 to 4500 g/mol), initiated by 

monofunctional  and aromatic  bifunctional  initiators  were studied by atmospheric  pressure 

photoionization  mass  spectrometry  (APPI-MS)  in  both  the  negative  and  the  positive  ion 

modes.  Consistent  with  previous  findings,  negative  ion  APPI-MS  revealed  end-group 

identities  through the  formation  of  PIB adducts  with chloride  ions  formed in situ  from a 

chlorinated solvent (e.g., CCl4) in the presence of a dopant (toluene). In positive ion mode, 

considerable  fragmentation  of  these  PIB  derivatives  was  observed,  rendering  end-group 

determinations  very  difficult.  The  Mn values  obtained  by  APPI(-)-MS were  considerably 

lower than those determined by SEC for PIB derivatives with Mn higher than 2000 g/mol. 

PIBs  containing  carboxyl  termini  can  undergo  collision-induced  dissociation,  yielding 

structurally  important  product  ions.  The  resulting  APPI-MS/MS intensities  were found to 

reflect the “arm-length” distribution for PIBs with bifunctional aromatic moieties. In positive 

ion mode, [M+COCl]+ adducts were observed for PIBs with an aromatic initiator moiety. The 

origin of the COCl+ species is also discussed. 
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Introduction

Low molecular weight polyisobutylenes are of great  scientific and practical interest. Due to 

the high hydrophobicity and chemical stability of polyisobutylenes, they are used as additives 

in sealants, lubricants, coatings and insulators and, due to their non-toxic nature, they are also 

used  in  food  contact  applications1.  The  hydrophobicity  and  biocompatibility  of 

polyisobutylenes  with  certain  tissues  leads  to  their  frequent  use  as  macroinitiators  in  the 
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synthesis  of  amphiphilic  block  copolymers  and/or  as  a  hydrophobic  building  block  for 

networks/conetworks2-4 and amphiphilic micelles/vesicles5-8. Moreover, the molecular weights 

and the end groups of these low molecular weight polyisobutylenes play significant roles in 

determining their properties and their further applications. For instance, for them to be used as 

a macroinitiator, i.e., for the preparation of amphiphilic block copolymers or networks, the 

identities of the end groups and the average functionality (Fn) must be known in order to 

obtain well-controlled structures and architectures. Determining the end groups and molecular 

weights  of  low molecular  weight  polyisobutylenes  is  therefore  essential  to  achieve  these 

goals, where this can be done by means of several traditional methods,  including Nuclear 

Magnetic Resonance spectroscopy (NMR) and/or Infrared spectroscopy (IR) for end-group 

and number-average functionality determinations, and Size Exclusion Chromatography (SEC) 

for molecular weight measurements. However, the above methods either provide only average 

values for these essential parameters (e.g., NMR, IR) or yield molecular weights relative to 

the calibrant (e.g., SEC).

As opposed to the these traditional methods, mass spectrometry employing soft ionization 

techniques such as Matrix-Assisted Laser Desorption/Ionization (MALDI)9,10 or ElectroSpray 

Ionization  (ESI)11 are  able  to  determine  the  number-average  molecular  weight  and 

functionality,  and may also be used to record individual polymer chains, which allows the 

identity of the end groups and the repeat units to be easily assessed.

The main drawback of the MALDI and ESI is that the polymers to be analyzed must have 

effective sites for ionization, such as is the case of polar polymers, e.g., polyethylene glycol 

(PEG) and polypropylene glycol (PPG), where ionization occurs most generally through the 

formation  of  adducts  with  metal  ions  (e.g.,  Na+,  K+,  Ag+ etc.)  or  via protonation  and/or 

deprotonation  processes.  However,  mass  spectrometric  analysis  of  highly  nonpolar 

isobutylene with a fully saturated structure by MALDI and/or ESI fails due to the lack of 

appropriate ionization sites. It has also been shown that the introduction of aromatic moieties 

(e.g.,  using aromatic initiators for the isobutylene polymerization)  and/or polar or readily 

ionisable groups into the polyisobutylene facilitates the ionization under MALDI and ESI 

conditions12-17. It is therefore evident that nonpolar polymers like polyisobutylenes are not 

amenable to MS analysis due to the lack of effective site for ionization.

Fortunately, over the past years, a new ionization method referred to as atmospheric pressure 

photoionization (APPI) has been introduced by Bruins18 and Syagen19 to broaden the range of 

analytes, especially towards compounds of low polarity. This method has been successfully 

applied to the analysis  of various  classes of non-polar  compounds,  such as polyaromatic 
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hydrocarbons20-22, lipids23,24 and steroids25-28. Very recently, we have shown that the negative 

ion  mode  of  APPI-MS  is  also  capable  of  the  analysis  of  low  molecular  weight 

polyisobutylene29 and polyethylene  derivatives30 by means of the formation of adducts of 

these polymers  with chloride ions formed “in situ” from chlorinated solvents,  e.g.,  CCl4, 

CH2Cl2, in the presence of toluene dopant. From these investigations, we have concluded that 

the chloride ion can attach to the partially positively charged H-atoms of the hydrocarbon 

chain and to those of the end groups. However, there has been no direct investigation into the 

applicability of APPI-MS for end-group determination of polyisobutylene derivatives with a 

broader range of end groups, as well to obtain the molecular weights of the polyisobutylenes 

accessible by APPI-MS.

As  an  extension  of  our  work  on  the  APPI-MS of  polyisobutylenes,  we  report  herein  a 

detailed investigation on nine polyisobutylene derivatives with different molecular weights 

and various end groups, including vinyl,  isobutenyl,  chlorine,  2,2-diphenylvinyl,  methoxy 

and carboxyl,  attached terminally  to  the chain  initiated  by aromatic  bifunctional  or  non-

aromatic monofunctional initiators.  These polyisobutylene derivatives allowed us to study 

the effects of the end groups and molecular weights on the resulting APPI-MS spectra. In 

addition,  it  will  be shown that  the chlorinated adducts of polyisobutylenes  with carboxyl 

termini  can undergo collision-induced dissociation  to  yield  structurally important  product 

ions.

Experimental

Chemicals.

The polyisobutylene (PIB) derivatives investigated in this study are compiled in Table 1.

Table 1.

All  of  the  PIB  derivatives  were  prepared  by  quasiliving/living  cationic  polymerization 

according to the method described in Refs. 31-35. The other reagents were received from 

Sigma-Aldrich (Seelze, Germany). Each solvent used was of HPLC grade. The polymers were 

characterized by 1H NMR, 13C NMR and Size Exclusion Chromatography (SEC).

Instrumentation.

Atmospheric  Pressure  Photoionization  Ionization  Quadrupole  Time-of-Flight  Mass 

Spectrometry.  Atmospheric  Pressure  Photoionization  Ionization  Quadrupole  Time-of-
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Flight  Mass  Spectrometric  (APPI-Qq-TOF  MS)  measurements  were  performed  in 

positive  and  negative  ion  modes  with  a  MicroTOF-Q  type  Qq-TOF  MS  instrument 

(Bruker  Daltonik,  Bremen,  Germany)  equipped  with  an  Atmospheric  Pressure 

Photoionization (APPI) source (PhotoMate, Kr discharge lamp, VUV photons of 10.0 and 

10.6 eV in intensity ratio of 4:1, respectively)  from Syagen Ltd. (Syagen Technology, 

Inc., Tustin, CA). The PIB samples were dissolved in toluene (dopant) at a concentration 

of  1  mg/mL.  The PIB solutions  were  delivered  directly  into  the  APPI source with a 

syringe pump (Cole-Parmer Ins. Co., Vernon Hills, IL, USA) at a flow rate of 25 µL/min 

together with a carrier flow of CCl4 at a flow rate of 200 µL/min by means of a T-piece. 

The heater of the APPI source was kept at 400  oC. The end-plate offset and capillary 

voltage were set to -500 V and 2500 V, respectively.

For MS/MS experiments, nitrogen gas was used as the collision gas and the collision 

energies were varied in the range of 5-140 eV (in the laboratory frame). The pressure in 

the collision cell was determined to be ~8x10-3 mbar. The precursor ions for MS/MS were 

selected with an isolation width of 5. All of the spectra were recorded by a digitizer at a 

sampling  rate  of  2  GHz.  The  spectra  were  calibrated  externally  with  the  APCI/APPI 

calibrant  mixture  from Bruker  in  the  m/z  range  600-1600.  The  accuracy  of  the  m/z 

determination was less than 0.01 in most cases. The mass spectra recorded were evaluated 

by the DataAnalysis 3.1 software from Bruker.

Matrix-Assisted  Laser  Desorption/Ionization  Time-of-Flight  Mass  Spectrometry (MALDI-

TOF MS). MALDI-TOF MS measurements were performed with a Bruker BIFLEX III mass 

spectrometer  equipped  with  a  time-of-flight  (TOF)  mass  analyzer.  In  all  cases,  a  19  kV 

acceleration voltage was used with pulsed ion extraction (PIE). The ions were detected in the 

reflectron mode (20 kV). A nitrogen laser (337 nm, 3 ns pulse width) operating at 4 Hz was 

used  to  produce  laser  desorption  and  100-500  shots  were  summed.  The  spectra  were 

externally calibrated with a polystyrene standard (Mn, 2200 g/mol,  Mw/Mn, 1.01) by linear 

calibration. Samples were prepared with a dithranol matrix (20 mg/mL), polymer solutions of 

3 mg/mL in tetrahydrofuran and silver trifluoroacetate in tetrahydrofuran (1 mg/mL) as the 

cationization agent. The above solutions were mixed in a 10:5:1 (v/v/v) ratio (matrix/polymer/

cationization agent). A volume of 0.5 μL of the solution was deposited onto a metal sample 

plate and allowed to air-dry.
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Size  Exclusion  Chromatography  (SEC). The  molecular  weights  (MW) and  the  molecular 

weight distributions (MWD) of the PIB samples were determined by SEC analyses. A 

Waters 515 HPLC pump and a Mixed-C column series with 103−102−101−5 nm pore 

sizes supplied by Polymer Labortories were used. The detector was a dual Viscotek 

differential  refractometer/viscometer,  operating  at  room  temperature.  THF  was  the 

mobile phase with a flow rate of 1.0 mL min-1. The collection and the analysis of the 

data were carried out with a Viscotek Trisec software, using the universal calibration 

method. The calibration curve was based on eighteen narrow MWD linear polystyrene 

standards.

Results and Discussion

APPI-MS in the negative ion mode (APPI(-)-MS)

The APPI(-)-MS spectra of all of the  polyisobutylene (PIB) samples investigated show 

the presence of PIB chains ionized with chloride ions,  i.e.,  [M+Cl]- adduct  ions were 

formed. The end groups of the PIBs and chloride ion-attachment to the PIB chains were 

further supported by accurate mass measurements and by comparing the corresponding 

experimental  and  theoretical  isotopic  distributions  calculated  using  the  elemental 

compositions for some oligomers. As a representative example, Fig. 1 shows the APPI(-)-

MS spectrum of PIB8.

Fig. 1

The APPI(-)-MS spectrum of PIB8 reveals two series of peaks. Series A ions correspond 

to the chlorinated adducts of PIB8 with two carboxyl termini. As seen in Fig. 1, the series 

A ions apperared up to m/z ~3000, which comprises  about 47 isobutylene  units.  The 

additional  low  intensity  series  B  ions  are  consistent  with  the  negatively  charged, 

deprotonated PIB8 molecules. The origin of the latter series will be discussed later.  As 

another  example for the applicability of APPI(-)-MS for the determination of the end 

groups  of  the  PIB  derivatives,  the  APPI(-)-MS  spectrum  of  PIB1  is  shown  in  the 

Supplemental Information.

The end groups of PIBs determined by APPI(-)-MS were entirely consistent with those 

given in Table 1. Observations of the formation of chlorinated adduct ions for these PIB 

derivatives when using a chlorinated solvent (CCl4) and a dopant (toluene) are in good 
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accordance with our earlier studies obtained with other polyisobutylene derivatives and 

polyethylene waxes29,30.

To study the effects of the molecular weight of the PIB samples on the APPI(-)-MS spectra, 

the Mn values determined from the corresponding APPI(-)-MS spectra were compared to 

those obtained by Size Exclusion Chromatography (SEC) and when it was possible, to those 

calculated from the MALDI-TOF MS spectra. The Mn, Mw and polydispersity (PD) data were 

calculated from the APPI(-)-MS and MALDI-TOF MS spectra according to Eqs. 1-3,
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where Ii is the MS intensity of the ith oligomer with a mass of Mi appearing in the mass 

spectrum.  Mw and  PD  are  the  weight-average  molecular  weight  and  the  polydispersity, 

respectively (the mass of the cation, i.e., silver ion or anion, i.e., chloride ion was subtracted 

prior to calculation). The Mn values determined by SEC, APPI(-)-MS and MALDI-TOF MS 

are summarized in Table 2.

Table 2.

As the data in Table 2 show, cationization of the PIB1 and PIB4 samples with silver ions 

failed under MALDI conditions. For the samples PIB2 and PIB3, although the resulting MS 

spectra were patterned by the presences of silver and matrix clusters in the low mass range, it 

was still  possible  to deduce Mn,  Mw and PD values according to Eqs.  1-3.  It  can be also 

inferred from the data in Table 2 that the Mn values determined by means of the three methods 

agree within the mass of a few isobutylene units for the PIB samples with Mn below 2000 Da. 

However,  the  deviations  between  the  Mn values  determined  by  SEC,  APPI(-)-MS,  and 

MALDI-TOF MS methods become more pronounced above 2000 Da. For example, the three 

methods give similar results for the Mn values of PIB3, however PIB4, which contains the 

same  end  group  but  has  higher  molecular  weight  than  PIB3,  APPI(-)-MS  provides  a 
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considerably  lower  Mn value  than  SEC.  On  the  other  hand,  MALDI-TOF  MS  failed  to 

generate a mass spectrum for PIB4 most probably due to poor ionization efficiency. It seems 

reasonable  that  the  relatively  low  Mn value  by  APPI(-)-MS  may  be  a  result  of  thermal 

degradation  (fragmentation)  of the longer  chains and/or  ineffective vaporization/gas  phase 

transfer processes for the higher molecular weight fraction. To gain deeper insight into the 

possible reasons for the occurrence of the “mass discrimination” effect observed in APPI(-)-

MS for the higher molecular weight PIB samples, the mass spectra for the samples PIB3 and 

PIB4  were  recorded  at  various  vaporizer  temperatures  while  keeping  all  of  the  other 

instrumental  parameters  constant.  It  is  important  to  note that  the samples  PIB3 and PIB4 

differ only in their Mn values, thereby the potential effect of the end group on the APPI(-)-MS 

spectra can be entirely excluded. In Fig. 2, the variation of the most probable mass (Mp), i.e., 

the mass of the peak having the highest intensity versus vaporizer temperature, is plotted for 

the  samples  PIB3 and PIB4 together  with  the  inset  showing the  highest  intensity  versus 

vaporizer temperature curves for these samples.

Fig. 2

Fig. 2 shows that the Mp for PIB3 increases from a vaporizer temperature of 250 oC to 300 oC, 

but that it levels off at higher temperatures. The intensity of the Mp peak reaches a maximum 

at  275  oC and then  decreases  gradually.  However,  in  the  case  of  PIB4,  the  value  of  Mp 

continuously  increases  with  the  increasing  vaporizer  temperature,  meanwhile  its  intensity 

reveals a maximum at around 375  oC. The decrease of the intensities of the Mp peaks with 

increasing  vaporizer  temperatures  may  be  attributed  to  the  decrease  of  the  ionization 

efficiencies  associated  with  the  lower  stability  of  the  chlorinated  adducts  at  these  high 

temperatures. Furthermore, these investigations indicate that the Mp for PIB3 may be accurate 

since it is no longer affected by the vaporizer temperature above 275 oC while the Mn for PIB4 

gradually increases with temperature. This is because more and more longer chains will be 

amenable to mass analysis at higher vaporizer temperatures, thus shifting the Mp to a higher 

value. Therefore, it is assumed that the increase of Mp with increasing vaporizer temperatures 

for the PIB samples  whose real  Mn values are higher than ca.  2000 Da may be due to a 

continuous increase in the efficiencies of the vaporization/gas phase transfer processes.

Tandem mass spectrometric study of PIB with carboxyl termini in the negative ion mode of  
APPI-MS
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As the results  have  shown,  all  of  the  PIB samples  investigated  in  this  study showed the 

prevalent  formation  of  adducts  with  chloride  ions  in  the  negative  ion  mode  of  APPI. 

However, when these adducts were subjected to collision-induced dissociation, considerable 

losses in the precursor signals were observed without formation of any product ions. These 

observations  are  consistent  with  our  previous  studies  obtained  for  other  polyisobutylene 

derivatives29. An increase of the collision energy resulted in the dissociation of the adducts 

into a  neutral  fragment  and a  chloride ion.  The only exception  was the PIB sample  with 

carboxyl  termini  (PIB8).  As  it  was  discussed  in  the  previous  section,  the  APPI(-)-MS 

spectrum of PIB8 shows the predominant  formation of adducts with chloride ions and an 

additional low intensity series of ions corresponding to the deprotonated PIB8 (Fig. 1). These 

two series of ions may be formed in the APPI-source as a result of the competition between 

the  chloride  attachment  and  deprotonation  processes.  Interestingly,  when  we  intended  to 

select  a  particular  deprotonated  ion by the first  quadruple,  no corresponding signals  were 

obtained.  This  observation  clearly  indicates  that  the  deprotonated  molecules  are  formed 

predominantly in the collision cell and not in the source. In the single MS-mode of operation, 

the collision energy is normally set to 5-8 eV to provide enough kinetic energy for the ions to 

be  transferred  towards  the  TOF analyzer.  However,  even  such  a  relatively  low collision 

energy  induces  fragmentation  of  the  chlorinated  adduct  ions  to  a  low  extent  to  give 

deprotonated ions by the loss of an HCl molecule. Indeed, by increasing the collision energy 

in the single MS-mode, while keeping all of the other instrumental parameters constant, a 

significant  increase  in  the  intensity  ratio  of  the  deprotonated/chlorinated  adduct  ion  was 

attained.  For  example,  the  intensity  ratio  of  deprotonated  molecules  belonging  to  the 

chlorinated adduct ion for the sample PIB8 with 20 repeat units increased from 0.17 to 1.5 

when the collision energy was elevated from 5 eV to 15 eV. It was also found that lighter 

PIB8 chains  tended to  release  HCl more  readily  than  the heavier  ones.  For  instance,  the 

intensity ratio of the deprotonated/chlorinated adduct ion at a collision energy of 11 eV is 0.16 

and 1.9 for PIB8 with 28 and 15 repeat units, respectively. This is consistent with the theory 

of gas-phase unimolecular decomposition; the higher the molecular weight, i.e., the higher the 

number  of  degrees  of  freedom,  the  lower  the  energy  imparted  to  breaking  bonds. 

Consequently, the lighter chains tended to fragment with higher rates than the heavier ones, 

i.e., producing higher deprotonated than chlorinated adduct-ion ratios within the time frame of 

the mass spectrometric experiments. In addition, the total amount of energy transferred from 
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the collision gas to the analyte ion in a single collision also decreases with the increasing mass 

of the analyte.   

In further studies, the chlorinated adduct of PIB8 was selected and then subjected to collision-

induced dissociation to gain structural information. The first-generation product ion spectrum 

(MS/MS) of the chlorinated PIB8 ([M+Cl]-) is shown in Fig. 3.

Fig. 3.

Fig. 3 shows that the precursor ion loses HCl, H2O and CO2 molecules to yield [M+Cl-HCl]- 

(deprotonated molecule), [M+Cl-HCl-H2O]- and [M+Cl-HCl-H2O-CO2]- product ions that are 

presumably formed in consecutive and parallel processes. Moreover, what is structurally more 

important is the appearance of PIB-series, i.e., series A and series B that are produced by 

cleavages  of  the  PIB  chain.  Series  A  ions  are  separated  from each  other  by  a  distance 

corresponding to a single  isobutylene  unit  and have acetate  and 2-propenyl  chain-ends as 

indicated in Fig. 3 inset (in good agreement with the expected structure for PIB8). Note that 

series  A  ions  do  not  contain  the  aromatic  initiator  moiety  and  their  intensities  decrease 

monotonically  in  the  m/z  range  of  155-999,  corresponding  to  a  number  of  repeat  units 

between 3 and 12. Similarly to series A, series B ions are produced by C-C cleavage yielding 

product ions with acetate chain-ends and with termini containing the initiator moiety. Unlike 

series A, series B also contains the initiator moiety. The product ions of series B reveal an 

intensity distribution centered at m/z 777. It is worth considering whether the resulted MS/MS 

intensity distribution for series B reflects the arm distribution in the original chains. It can be 

expected theoretically that the repeat units and the bifunctional initiator moiety are distributed 

statistically within the chain. Therefore, owing to the statistical nature of the polymerization 

reaction,  each  oligomer  with  a  particular  number  of  repeat  units  is  a  mixture  of  chains 

consisting of PIB-arms of different lengths. In our case, i.e., for an oligomer with x+y=n=22, 

it means that one can find chains with arms spanning from x=0 to 22 isobutylene units. This 

means  that  x=0  and  x=22  represent  the  cases  when  only  one  of  the  two  ends  of  the 

bifunctional  initiator  is  propagated,  while  x=11  corresponds  to  an  oligomer  having  two 

identical  arm-lengths.  To describe the arm-length distribution,  the Bernoulli-distribution is 

proposed,

k-nnqp
k)!-(nk!

n!k)Y(n, = (4)
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where Y(n,k) is the probability of finding an oligomer with an arm composed of a number of 

repeat units k, n is the total number of repeat units, p and q are the probabilities of addition of 

a monomer unit to the one or the other end of the growing chain.

The  reactivities  of  the  two  functions  of  the  symmetrical  bifunctional  initiator  used  for 

polymerization are expected to be identical. Furthermore, supposing that the growing chain-

ends react with the monomer independently of the arm-length, it is reasonable to assume that 

p=q=1/2.  Setting  these  values  into  Eq.  4,  the  theoretical  arm-length  distribution  can  be 

calculated  and  compared  with  the  experimental  MS/MS  intensity  distribution.  The 

experimental MS/MS intensity distribution for PIB8 (m/z 1603, n=22) together with the arm-

length distribution calculated by Eq. 4 for that oligomer are plotted in Fig. 4.

Fig. 4.

As seen in Fig. 4, the maximum of the experimental curve appears at approximately the same 

number of repeat units as that of the calculated one, namely at n=10-11. In addition, the trend 

of the experimental curve is similar to the theoretical one. Such a good agreement between the 

theory and experiment suggests that a closely symmetrical PIB8 with certain heterogeneity in 

the arms was formed and the bond-cleavages yielding series B predominantly occurred at the 

initiator moiety, as depicted in Fig. 4. The deviations obtained between the experimental and 

the calculated curves may arise if the reactivity of the growing chain towards the monomer 

(isobutylene) depends on the arm-length, and fragmentations leading to the formation of the 

B-series  may  occur  to  some  extent  along  the  whole  arm.  Fragmentation  preferentially 

occurring at the initiator junction can be rationalized by taking into account that these bond-

breaking reactions generate a series of product ions with unsaturated bonds conjugated with 

the aromatic ring, which ensures a relatively high stability for these product ions. 

Series A ions may be formed by parallel fragmentations along whole arms; therefore, these 

ions carry less structural information compared to the series B ions. Moreover, it is important 

to note that although the analytical importance of series A is far below that of series B, it 

allows for an observation of the arm-heterogeneity in a bifunctional system. For instance, 

series A ion signals  can be observed up to m/z  1000, i.e.,  corresponding to x=13, which 

means that oligomers with 22 repeat units must contain PIB8 molecules, and one of its two 

arms  is  composed  of  at  least  13  repeat  units.  Considering  the  fragmentation  mechanism 

leading  to  the formation  of  series  A and series  B,  whose negative  charges  are  definitely 
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located at  the ends of the fragmented chains,  it  is likely that  both series were formed by 

charge remote fragmentations (CRFs)36. Although CRFs are not commonly observed under 

low energy collision-induced dissociation (CID), they have been observed for cases when the 

charge is localized, e.g., for fatty acids37,38 and polyethylene glycol derivatives cationized with 

bivalent metal ions39.

APPI-MS in the positive ion mode (APPI(+)-MS)

In  the  positive  ion  mode,  almost  all  of  the  samples  investigated  showed  considerable 

fragmentation. This observation is consistent with our previous results obtained with other 

polyisobutylene derivatives29. Although intact polymer ions can hardly be achieved in positive 

mode,  the  APPI(+)-MS  spectra  may  offer  information  on  the  chain  and  the  end-group 

structure, therefore it is worth considering them in more detail.

In  the  APPI(+)-MS  spectra  of  the  samples  PIB1,  PIB2,  PIB3  and  PIB4,  the  intensity 

distributions  are  skewed  to  lower  masses  and  none  of  the  peaks  correspond  to  the 

polyisobutylene  derivative  with  the  expected  end  groups.  The  observations  indicate 

fragmentation of the original  PIB chains in the ion source.  The APPI(+)-MS spectrum of 

PIB2  together  with  the  proposed  structure  of  the  fragmented  chains  are  shown  in  the 

Supplemental Information. A series of H(C4H8)nCH2
+ ions were formed in the case of PIB2. 

Formation of H(C4H8)nCH2
+ ions was also observed in the APPI(+)-MS spectrum of PIB1. 

Moreover, in the case of PIB3 and PIB4, H(C4H8)n
+ ions were formed. It seems reasonable 

that, for the samples PIB1-PIB4, protonation of the end groups may take place such that the 

protonated molecules release a C3 neutral unit (propene). This release may cause formation of 

H(C4H8)nCH2
+ ions in the case of PIB2 (isobutenyl chain-end) and generation of H(C4H8)n

+ 

ions  in  the  case  of  PIB3 and PIB4 (allylic  chain-end).  For  PIB1,  elimination  of  an  HCl 

molecule might occur prior to loss of the neutral  C3 unit.  On the other hand, the positive 

charge can also migrate from the chain-end towards the interior of the chain to yield a series 

of fragment ions differing by isobutylene units.

For sample PIB5, the APPI(+)-MS spectrum reveals the dominant presence of two series with 

end groups that  do not  correspond to  the  expected  ones.  The most  intense  series  can be 

derived from the expected structure by loss of a benzene molecule and the second, less intense 

series differs by 28 Da in mass from the latter one. Therefore, it is reasonable to assume that 

the original end group may undergo protonation and subsequent fast decomposition by the 

loss  of  a  benzene  molecule,  and may further  release  CO, leading  to  the appearance  of  a 
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second series of peaks. However, this second series of peaks may be formed directly from the 

original structure by the loss of a benzaldehyde molecule, and, to support this conclusion, an 

MS/MS experiment was performed. The peak at m/z 1144 from the first series (formed by the 

loss of a benzene molecule) was selected for CID and the resulting MS/MS spectrum showed 

no loss of a CO molecule from the precursor ion. Therefore, it is likely that losses of benzene 

and benzaldehyde take place in parallel ways.

In  the  APPI(+)-MS  spectrum  of  the  sample  PIB6,  no  considerable  fragmentation  was 

observed. The intensity distribution is rather similar to that obtained in negative mode with 

the chloride ion attachment technique, but the absolute intensity was lower by about one order 

of magnitude. Interestingly, it was found that radical molecular ions were formed in this case, 

i.e., an electron withdrawal most likely from the end group (diphenylethylene) takes place to 

give  molecular  ions  with  odd  numbers  of  electrons.  This  unusual  observation  can  be 

rationalized  considering  that  electron  withdrawal  from  the  double  bonds  can  easily  be 

achieved and the formed positive charges are stabilized and localized by the two phenyl rings, 

thereby preventing charge-migrations and further fragmentations.

The most intriguing observations were obtained with the samples PIB7, PIB8 and PIB9. All 

of these samples contained an aromatic initiator moiety but with different end groups. In the 

APPI(+)-MS spectra of PIB8 and PIB9, two distinct series of peaks appeared as shown for 

PIB9 in Fig. 5.

Fig. 5

The assignment of series A in the APPI(+)-MS spectra of the three samples investigated was 

not straightforward. Based on the isotopic patterns of the series A ions, we concluded that 

each must contain one chlorine atom, and that certain additions of a unit with a mass of 28 

and a chlorine atom (or other combinations) gave the corresponding m/z values. Using the 

accurate masses, the best result was obtained when addition of COCl+ to the oligomers was 

taken into account, albeit the agreement between the measured and calculated masses for the 

corresponding  adducts  were  not  quite  good  (the  differences  between  the  measured  and 

calculated masses were 0.02 on the average). The origin of the COCl+ species may be due to 

the  reaction  of  CCl4 with  O2 and  H2O,  which  inherently  occurs  in  the  ion  source  upon 

irradiation by UV photons. It has been shown40 that the presence of O2 cannot be completely 

excluded as the appearance of various ions has been associated with its presence in the ion 

source. Interestingly, although we failed to find out other species related to COCl+ or COCl2 
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in  positive  ion mode,  the  formation  of  clusters  of  COCl2 as  (COCl2)xCl- with  x=2-4 was 

observed in negative ion mode. Despite the uncertainties associated with the observed mass 

differences,  the only rationale  we could derive for the origin of series A is  therefore the 

attachment  of  COCl+ to  the  polymer  chains.  Since  these  “mysterious”  series  occurred 

significantly for the PIB samples having an aromatic moiety inside, independent of their end 

groups,  it  seems likely  that  the  presence  of  such  a  series  is  linked predominantly  to  the 

presence of an aromatic initiator moiety. Hence, COCl+ attaches presumably to the aromatic 

initiator moiety. However, the MS/MS spectra of some [M+COCl]+ ions showed no formation 

of any product ions, and a decrease in the precursor ion signal was found as the collision 

energy was increased. This information is important from two respects; (i) dissociation of the 

adduct may take place to give a neutral fragment and a cation. Since the mass of COCl+ is 

very close to the lower mass limit of our instrument (50-60 Da), it proves that the mass of the 

cation being released has to be lower than the lower mass limit, otherwise it should have been 

observed  in  the  MS/MS  spectrum.  (ii)  Series  B  can  not  originate  from  series  A,  since 

fragmentation of the series A ions by MS/MS did not yield any series B ions. Thus, series B 

ions may be formed from their corresponding protonated oligomers by chain cleavage, which 

occurs most preferably at the initiator moiety to form the “half-armed” series B ions with the 

proposed structure as shown in Fig. 5.

Providing  that  the  fragmentations  take  place  overwhelmingly  at  the  initiator  moiety,  the 

resulting intensity distribution for the series B ions will reflect the “half-arm” distribution of 

series A. To calculate the expected APPI(+)-MS intensity distribution for the series B ions, 

the  intensity  distribution  of  series  A and the binomial  distribution  (Eq.  4)  for  a  two-arm 

initiator were combined to get Eq. 5,

kn(n)(1/2)I 
k)!-(nk!

n!C(k)I min
n

A
n

nn
B

max

min

≥= ∑
=

                    (5) 

where IA (n) is the APPI(+)-MS intensity of a series A ion with a number of repeat units n, 

IB(k) being the calculated APPI(+)-MS intensity of a series B ion with a number of repeat unit 

k,  and  C  is  a  scaling  factor  that  allows  the  calculated  intensity  to  be  scaled  up  to  the 

experimental ones. The parameters nmin and nmax are the observed lowest and highest number 

of the repeat units for series A.
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The experimental intensity distributions for series A and series B together with the intensity 

distribution calculated by Eq. 5 as a function of the number of the repeat units are shown in 

Fig. 6.

Fig. 6

As it can be seen in Fig. 6, the maximum intensity of series A is 20 repeat units, and that of 

series B appears at 10 repeat units indicating that chains with closely symmetrical arms were 

formed upon polymerization. The calculated intensity distribution for series A fits quite well 

to the experimental one. It should be noted that simply halving the number of the repeat units 

belonging to series A and calculating the intensity distribution for series B in that way gives 

narrower distribution that deviates more from the experimental one than that calculated by Eq. 

5.  Although  there  may  be  some  uncertainties  associated  with  the  dependences  of  the 

ionization  efficiency  and  the  rate  of  polymerization  on  the  chain  length,  the  mass 

discriminations by MS-sampling and the detection systems, the agreement between the theory 

and the experiment is quite good.

Conclusions

APPI(-)-MS has proven to be capable of determining the end groups of PIBs with varying 

molecular weights via the formation of adducts with chloride ions formed in situ from CCl4 in 

the presence of toluene dopant. However, large deviations in the Mn values determined by 

APPI(-)-MS  and  SEC  can  be  expected  for  PIBs  with  molecular  weights  over  2000  Da. 

Therefore,  it  is advisable to use higher vaporizing temperatures for the PIB derivatives in 

order to obtain accurate Mn values even if it sometimes comes at the expense of sensitivity. 

The  MS/MS spectra  obtained  with  the  PIB carboxy derivatives  containing  a  bifunctional 

aromatic initiator moiety can be used to estimate the “arm-length” distribution ensuring better 

insight into the mechanism of the polymerization reaction.

The resulting “half-armed” distribution appearing in the APPI(+)-MS spectra of PIBs with a 

bifunctional aromatic moiety can also be used to render the “arm-length” distribution in the 

original  polymer  molecules.  Finally,  as  it  was  demonstrated,  APPI(-)-MS  is  capable  of 

detecting  highly non-polar  polymers  with no significant  dependence  on their  end groups. 

Therefore, it is reasonable to deduce that APPI(-)-MS may be the best method when one has 

to analyze the mass of low molecular weight non-polar polymers.
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Legends for the Figures

Figure 1
Negative ion atmospheric pressure photoionization mass spectrum of the sample PIB8. The 
numbers  in  the  subscripts  represent  the  numbers  of  the  polyisobutylene  units.  The  inset 
reveals the partial mass spectrum in the m/z range of 2820-2980.

Figure 2
The  variation  of  the  most  probable  mass  (Mp)  (the  mass  of  the  peak  having  the  highest 
intensity) with the vaporizer temperature for the samples PIB3 (●) and PIB4 (■). The inset 
shows the highest Mp intensity versus vaporizer temperature curves for these samples.

Figure 3
First-generation  product  ion  spectrum (MS/MS) of  the  chlorinated  PIB8 with  isobutylene 
units  n=22  (m/z  1603).  The  numbers  in  the  subscripts  represent  the  numbers  of  the 
polyisobutylene units (n). The collision energy was 130 eV in the laboratory frame.

Figure 4
The  normalized  experimental  MS/MS intensity  distribution  and the  calculated  arm-length 
distribution for PIB8 (m/z 1603, n=22). The arm-length distribution was calculated by Eq. 4.

Figure 5
The APPI(+)-MS spectrum of PIB9. The numbers in the subscripts represent the numbers of 
the polyisobutylene units (n).

Figure 6
The experimental intensity distributions for series A and series B. The solid line shows the 
intensity distribution for series A calculated by Eq. 5.
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Table 1. Structures of the investigated polyisobutylene (PIB) derivatives.
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Table 2. The Mns determined by SEC, APPI(-)-MS and MALDI-TOF MS. The polydispersity 
values (PD) are shown in the brackets.  

PIB samples Mn (SEC) Mn (APPI-) Mn (MALDI)
PIB1 810 (1.11) 950 (1.029) -
PIB2 900 (1.11) 1010 (1.014) 720 (1.022)

PIB3 900 (1.09) 1030 (1.019) 770 (1.032)

PIB4 4500 (1.25) 1560 (1.021) -

PIB5 1160 (1.08) 1370 (1.010) 1270 (1.024)

PIB6 2220 (1.14) 1620 (1.010) 1980 (1.012)

PIB7 2120 (1.15) 1710 (1.018) 1940 (1.012)

PIB8 1900 (1.15) 1670 (1.025) 2050 (1.032)

PIB9 2410 (1.10) 1720 (1.010) 2170 (1.012)
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Fig. 2.
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Fig. 3.
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Fig. 4.
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Fig. 5.
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Fig. 6.
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	Size Exclusion Chromatography (SEC). The molecular weights (MW) and the molecular weight distributions (MWD) of the PIB samples were determined by SEC analyses. A Waters 515 HPLC pump and a Mixed-C column series with 103−102−101−5 nm pore sizes supplied by Polymer Labortories were used. The detector was a dual Viscotek differential refractometer/viscometer, operating at room temperature. THF was the mobile phase with a flow rate of 1.0 mL min-1. The collection and the analysis of the data were carried out with a Viscotek Trisec software, using the universal calibration method. The calibration curve was based on eighteen narrow MWD linear polystyrene standards.

