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Abstract. Motivated by recent investigations on norm-additive and
spectrally multiplicative maps on various spaces of functions, in this
paper we determine all bijective transformations between the positive
cones of standard operator algebras over a Hilbert space which preserve
a given symmetric norm of a given mean of elements. A result of simi-
lar spirit is also presented concerning transformations between cones of
nonnegative elements of certain algebras of continuous functions.
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1. Introduction and statement of the results

So-called norm-additive transformations and other closely related maps on
function algebras have recently been studied by several authors, see, e.g.,
[5, 6, 7, 20, 24]. A map φ from an additive subsemigroup S of a normed
linear space to an additive subsemigroup S′ of another normed linear space
is called norm-additive if it satisfies

‖φ(x) + φ(y)‖ = ‖x+ y‖, x, y ∈ S. (1)

The main point of investigating such transformations has been to find sim-
ple nonlinear characterizations of composition operators and algebra isomor-
phisms between function algebras. It is a trivial observation that dividing the
sides of the equality in (1) by 2, the so-obtained condition can be formulated
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saying that φ preserves the norm of the arithmetic mean of elements. The
study of norm-additive maps was preceded by that of so-called spectrally mul-
tiplicative maps. In the particular context of function algebras C(X), C(Y ) of
all continuous complex valued functions on compact Hausdorff spaces X,Y ,
a map φ : C(X) → C(Y ) is called spectrally multiplicative if it satisfies

σ(φ(x)φ(y)) = σ(xy), x, y ∈ C(X). (2)

Here, σ denotes the spectrum, which in the case of those function algebras
equals the range of functions. The study of these maps was initiated in [13]
by the first author and that paper influenced a number of subsequent works
(according to Google Scholar, there are presently 87 citations to [13]). For
very recent results see [4, 8, 9, 11, 23], for a survey of the topic we refer
to [6]. Observe that assuming φ sends nonnegative functions to nonnegative
functions, taking square root in (2) and then taking sup-norm, we easily

arrive at the equality ‖
√

φ(x)φ(y)‖ = ‖√xy‖ for all nonnegative x, y ∈ C(X).
That means that φ preserves the norm of the geometric mean of nonnegative
functions.

These really simple observations however put the original problems of
norm-additive and spectrally multiplicative maps into another, much wider
perspective. Recall that there are general theories of means of nonnegative
numbers and positive operators and this brings the motivation to extend
the investigations of norm-additive maps and spectrally multiplicative maps
in that direction. In this paper we study transformations on structures of
Hilbert space operators and scalar valued functions which preserve certain
norms of general means of their positive or nonnegative elements and show
how closely they are related to the isomorphisms of the underlying operator
algebras and function algebras.

We first present our results concerning transformations on structures
of positive operators that preserve a certain norm of a general mean of its
elements. We emphasize that operator means play very important roles in
several parts of mathematics with a rapidly increasing number of applica-
tions scattering from engineering sciences to quantum physics. In the papers
[15, 16, 17] the first author described the automorphisms of the set of all pos-
itive operators corresponding to means as algebraic operations. The present
investigations are of different nature, here we study transformations which
preserve certain geometrical numerical quantities attached to means, namely
their certain norms.

Before presenting our results we fix the notation and collect the neces-
sary information relating to means of positive operators. Let H be a complex
Hilbert space and denote by B(H) the algebra of all bounded linear operators
on H . We say that A ∈ B(H) is positive and write 0 ≤ A if 0 ≤ 〈Ax, x〉 holds
for every x ∈ H . We denote by B(H)+ the set of all positive elements of
B(H), this is called the positive cone of B(H). Observe that here we use the
concept of positivity in its usual operator theoretical sense which differs from
its use in matrix theory where they would term it positive semidefinitness.
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For self-adjoint operators A,B ∈ B(H) we write A ≤ B iff B − A is posi-
tive. This gives us an order (more precisely a partial order) on the space of
self-adjoint operators what we call the natural order. By a standard operator
algebra over the Hilbert space H we mean a subalgebra A of B(H) which
contains all finite rank operators in B(H) and use the notation A+ for the
cone of all positive operators in A.

The fundamentals of the famous Kubo-Ando theory of means of positive
operators what we use in this paper are the following. As in the seminal paper
[10], a binary operation σ on B(H)+ is called a connection if it satisfies the
following conditions. For any operators A,B,C,D ∈ B(H)+ and sequences
(An), (Bn) in B(H)+ we have

(O1) if A ≤ C and B ≤ D then AσB ≤ CσD;
(O2) C(AσB)C ≤ (CAC)σ(CBC);
(O3) if An ↓ A and Bn ↓ B then AnσBn ↓ AσB,

where the arrow ↓ refers to monotone decreasing convergence in the strong
operator topology. A connection σ is called a mean if it is normalized in the
sense that for the identity operator I on H we have IσI = I. Clearly, for any
connection (or mean) σ on B(H)+, its so-called transpose σt defined by

AσtB = BσA, A,B ∈ B(H)+

is a connection (or mean) again. The most simple means are the weighted
arithmetic means (which are just the fixed convex combinations); AσB =
λA+ (1− λ)B with some given λ ∈ [0, 1].

One of the most important results in the Kubo-Ando theory says that
there is an affine order-isomorphism between the class of all connections σ
on B(H)+ and the class of all nonnegative scalar valued operator monotone
functions f on ]0,∞[, see Theorem 3.2 in [10]. In fact, as seen in the proof
of that theorem, if σ is a connection then the operator monotone function f
associated with it is defined by the formula f(t) = Iσ(tI), t > 0. Conversely, if
f is a nonnegative operator monotone function on ]0,∞[ then the connection
with which it is associated satisfies

AσB = A1/2f(A−1/2BA−1/2)A1/2 (3)

for all invertible elements A,B of B(H)+. We remark that the property (O3)
implies that the above formula extends also to the case where A ∈ B(H)+
is invertible but B ∈ B(H)+ is arbitrary (to be correct, in that case the
quantity f(0) should be defined; we set f(0) = limt→0 f(t)). The case where
f(t) =

√
t, t > 0 is especially important. The corresponding mean is called

the geometric mean of positive operators which has very many applications
in different areas of science. By Corollary 4.2 in [10], if σ is a connection
with associated operator monotone function f then t 7→ tf(1/t), t > 0 is the
operator monotone function on ]0,∞[ associated with the transpose σt of σ.

By the famous Löwner theory of operator monotone functions it is well-
known that all such functions have a certain integral representation. In fact,
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the formula

f(t) =

∫

[0,∞]

t(1 + s)

t+ s
dm(s), t > 0 (4)

gives an affine order-isomorphism from the class of all positive Radon mea-
sures m on the extended interval [0,∞] onto the set of all nonnegative scalar
valued operator monotone functions f on ]0,∞[, see Lemma 3.1 in [10]. We
note that here f(0) := limt→0 f(t) = m({0}) and limt→∞ f(t)/t = m({∞}).
The integral representation (4) of operator monotone functions leads to an
integral representation of connections. Namely, Theorem 3.4 in [10] tells us
that for every connection σ there exists a unique Radon measure m on [0,∞]
such that with α = m({0}) and β = m({∞}) we have

AσB = αA+ βB +

∫

]0,∞[

1 + s

s
{sA : B}dm(s) (5)

for any A,B ∈ B(H)+. Here : denotes the so-called parallel sum of positive
operators which is the half of the so-called harmonic mean; for invertible
A,B ∈ B(H)+ we have A : B = (A−1 +B−1)−1.

In what follows we are going to describe the structure of all bijective
transformations between the positive cones of standard operator algebras
which preserve a given symmetric norm of a given Kubo-Ando mean of their
elements. According to the behavior of the representing Radon measure of
the mean we present our result in two theorems. In the first one we con-
sider those means whose representing measure vanishes on ]0,∞[. These are
exactly the weighted arithmetic means AσB = λA + (1 − λ)B with given
λ ∈ [0, 1]. Observe that in the extreme cases where λ = 0 or λ = 1, the cor-
responding preserver transformations are exactly the bijective maps which
preserve the norm of elements and clearly nothing more specific can be said
about them or about their structure (we emphasize that we do not assume
that the transformations under considerations have any linearity property in
any sense). If 0 < λ < 1, the situation is different as we see below.

Before presenting the first theorem we recall a few simple facts from
operator theory. Let 1 ≤ p < ∞ be a given number and denote by Tr the
usual trace functional. The symbol Cp(H) stands for the set of all operators
A ∈ B(H) for which Tr |A|p <∞. It is well-known that Cp(H) is an ideal of
B(H) which is a Banach space under the p-norm defined by

‖A‖p = (Tr |A|p)1/p, A ∈ Cp(H).

As for the case where p is infinite, C∞(H) denotes B(H) equipped with the
usual operator norm ‖.‖. The space Cp(H) is often called the Schatten - von
Neumann p-class of operators.

Our first result relating to the particular case of weighted arithmetic
means reads as follows.

Theorem 1. Let H be a complex Hilbert space with dimH > 1 and 1 < p ≤ ∞.
Consider standard operator algebras A and B on H which are contained in
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Cp(H). Let φ : A+ → B+ be a bijective transformation such that for a given
0 < λ < 1 we have that

‖λφ(A) + (1− λ)φ(B)‖p = ‖λA+ (1− λ)B‖p, (6)

holds for all A,B ∈ A+. Then there exists a unitary or antiunitary operator
U : H → H such that

φ(A) = UAU∗, A ∈ A+.

One may immediately ask what happens in the case p = 1. The answer
is trivial, then the condition (6) means only that φ preserves the trace of the
elements of A+ which assumption has clearly no further consequence on the
structure of φ. Moreover, in relation with the above theorem we refer to the
results in [19].

We next consider the case where the representing Radon measure m
of the given mean σ vanishes either at 0 or at ∞ and present a result con-
cerning a large class of norms. For this we need the notion of a symmetric
norm on B(H). We say that the norm N on B(H) is a symmetric norm if
N(AXB) ≤ ‖A‖N(X)‖B‖ holds for all A,B,X ∈ B(H). We point out that
there are plenty of such norms, for example, among others, the so-called (c, p)-
norms including the Ky Fan k-norms, see [3]. In the particular case where
the underlying Hilbert space H is finite-dimensional we have Cp(H) = B(H)
and the above mentioned p-norms are known to be symmetric norms, too.

In the next statement we consider bijective transformations between the
positive cones of standard operator algebras A and B of B(H) that preserve
a given symmetric norm N of a given mean σ of all pairs of elements in the
sense that φ satisfies

N(φ(A)σφ(B)) = N(AσB), A,B ∈ A+. (7)

As mentioned above, here we deal with the case where the representing Radon
measure m of σ vanishes either at 0 or at ∞. Observe that we may and do
assume that m({0}) = 0. Indeed, if m({∞}) = 0 and φ is a transformation
from A+ onto B+ which satisfies (7) for all A,B ∈ A+, then φ satisfies (7)
also for the transposed mean σt and its representing measure vanishes at 0
(this follows from the general discussion above concerning operator means).
We already know that m({0}) = 0 is equivalent to limt→0 f(t) = 0. But this
condition itself is not sufficient to obtain any reasonable result. In fact, if
f is the identity then AσB = B for all A,B ∈ B(H)+ and (7) means only
that φ preserves the N -norm of the elements which does not imply anything
more concerning the structure of the transformation φ. Fortunately, this is
the only case what we need to rule out. The precise formulation of our second
theorem reads as follows.

Theorem 2. Let H be a complex Hilbert space with dimH > 1 and N a
symmetric norm on B(H). Let A and B be standard operator algebras on H
and σ a mean on B(H)+ such that the associated operator monotone function
f satisfies limt→0 f(t) = 0 (which is equivalent to assuming that Iσ0 = 0)
and f is not the identity. If φ : A+ → B+ is a bijective transformation which
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satisfies (7) then there exists a unitary or antiunitary operator U on H such
that

φ(A) = UAU∗, A ∈ A+.

After presenting our results concerning means on operator algebras, we
now turn to the discussion of the problem concerning means on algebras of
continuous functions. As for nonnegative functions (functions with nonneg-
ative scalar values) the concept of means what we use is far more trivial
than the notion of means of positive operators. In fact, it comes from the
concept of means of nonnegative real numbers. We say that the function
M : [0,∞[×[0,∞[→ [0,∞[ of two-variables is a mean on the nonnegative real
numbers if the following hold

(N1) min{a, b} ≤M(a, b) ≤ max{a, b}, a, b ∈ [0,∞[;
(N2) for any a, b, c, d ∈ [0,∞[, if a ≤ c and b ≤ d then M(a, b) ≤M(c, d);
(N3) M(λa, λb) = λM(a, b), λ, a, b ∈ [0,∞[;
(N4) M is continuous.

Just as in the case of operator means, to any such meanM on nonnegative real
numbers we can associate a real function f : [0,∞[→ [0,∞[ by the formula
f(t) =M(1, t), t ∈ [0,∞[. It is obvious that the function f satisfies f(1) = 1,
it is continuous and monotone increasing, and the function t 7→ f(t)/t is
monotone decreasing. Denote α = f(0) and β = limt→∞ f(t)/t. The mean
M can be recovered from f in the following way

M(a, b) =







αa if b = 0,
βb if a = 0,
af

(

b
a

)

if a > 0, b > 0.
(8)

Conversely, let f : [0,∞[→ [0,∞[ be a continuous monotone increasing func-
tion such that f(1) = 1 and assume that the function t 7→ f(t)/t, t > 0 is
monotone decreasing. Then one can easily check that defining a two-variable
function M by the formula in (8), it satisfies all the conditions (N1)-(N4).

Let us remark that in the literature more general means on numbers
are also studied in great details. Especially, the homogeneity property (N3)
or the continuity (N4) may seem restrictive here but we assume them since
for operator means both of them hold.

In what follows, for a locally compact Hausdorff space X we denote
by C0(X) the algebra of all complex valued continuous functions on X that
vanish at infinity. The norm ‖.‖ what we consider on C0(X) is the usual
sup-norm. For any subalgebra A of C0(X) the symbol A+ stands for the
set of all functions in A whose values are nonnegative. Any mean M on the
nonnegative real numbers gives rise in an obvious way to a map that we call
a mean on nonnegative functions and denote by the same symbol M . In fact,
for all x, y ∈ C0(X)+ we define M(x, y)(t) :=M(x(t), y(t)), t ∈ X .

For our last result Theorem 3 we need the following. Let X be a first
countable locally compact Hausdorff space. It is known that for any point
t ∈ X there exists a function p : X → [0, 1] with the following properties

(P) p ∈ C0(X)+ has compact support, p(t) = 1 and p(s) < 1 if s 6= t.
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In this paper we call such a function p a peaking function that peaks at t.
(We mention that this is not the usual definition of peak functions what is
commonly used in the theory of function algebras but for our purposes it is
what we need.) To see that such a function exists for any t ∈ X , observe that
by the first countability of X there is a sequence (Un) of neighborhoods of t
which forms a base of neighborhoods of t. By a version of Urysohn’s lemma,
for any n ∈ N there exists a continuous function pn : X → [0, 1] with compact
support in Un such that pn(t) = 1. Now the continuous function p defined
by p =

∑∞
n=1

1
2n pn has range in [0, 1], takes the value 1 exactly at t and has

compact support. So, p is a peak function peaking at t. Furthermore, given
any neighborhood U of t one can construct a continuous function q with
values in [0, 1] such that q(t) = 1 and supp q ⊂ U . Clearly, the product pq is
a peak function again peaking at t and having compact support in the given
neighborhood U .

Our theorem on the structure of transformations on nonnegative func-
tions which preserve the norm of a given mean reads as follows. We remark
that the condition that the peak functions all belong to the algebras what
we consider in the next theorem is similar in spirit to the condition in our
previous results concerning operator algebras which requires the inclusion of
all finite rank operators.

Theorem 3. Let X,Y be first countable locally compact Hausdorff spaces and
suppose that A ⊂ C0(X), B ⊂ C0(Y ) are subalgebras which contain all peak
functions on X, respectively on Y . Let M be a mean on the nonnegative real
numbers and let f : [0,∞[→ [0,∞[ be the real function associated with M .
Assume φ : A+ → B+ is a bijective map with the property

‖M(φ(x), φ(y))‖ = ‖M(x, y)‖, x, y ∈ A+.

In either of the two cases where

(i) f(0) = 0 and the function t 7→ f(t)/t is strictly decreasing;
(ii) limt→∞ f(t) = ∞, f is strictly increasing and t 7→ f(t)/t is strictly

decreasing

there exists a homeomorphism ϕ : Y → X such that φ is of the form

φ(x)(t) = x(ϕ(t)), t ∈ Y, x ∈ A+.

For algebras of functions appearing in the statement above, one can get
examples by considering any subalgebras of C0(X) which contain the subalge-
bra of all elements with compact support. Observe that this algebra includes
the algebra generated by the collection of all peaking functions but usually
different from that (it is so even in the simplest case X = R). Therefore,
there are many more examples.

We point out that the conditions that the function t 7→ f(t)/t is strictly
decreasing, respectively that f is strictly increasing are equivalent to that the
meanM to which f is associated is strictly increasing in its first, respectively
in its second variable. Hence the geometric mean provides a trivial example
for (i). Also remark that (ii) above covers the case where M is a weighted
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arithmetic mean, i.e., M(a, b) = λa+ (1 − λ)b, a, b ∈ [0,∞[ with some fixed
0 < λ < 1.

The above results tell that the transformations under considerations all
have particular forms. In the case of operator structures they are maps of
the form A 7−→ UAU∗ with some unitary or antiunitary operator U while in
the case of structures of scalar valued continuous functions they are of the
form x 7−→ x◦ϕ with a homeomorphism ϕ between the underlying topological
spaces. Let us recall that the algebra *-automorphisms of the operator algebra
B(H) are exactly the maps of the form A 7−→ UAU∗ with some unitary
operator U on H while its algebra *-antiautomorphisms are exactly the maps
of the form A 7−→ UA∗U∗ with some antiunitary operator U on H . As for
function algebras, it is well-known that the algebra isomorphisms between
C0(X) and C0(Y ) are exactly the maps of the form x 7−→ x ◦ ϕ with some
homeomorphism ϕ : Y → X . Hence, it follows from our results that under
certain conditions the bijective transformations that preserve a given norm
of a given mean of elements in certain structures of positive Hilbert space
operators or of nonnegative scalar valued continuous functions necessarily
extend to algebra *-isomorphisms or algebra *-antiisomorphisms.

Finally, to conclude the introduction we remark that the converse state-
ments in all presented results above are valid, too. We mean that transfor-
mations of the forms that appear in the conclusions of our theorems do have
the considered preserver properties. Therefore, those results can be viewed as
certain characterizations of algebra *-isomorphisms and *-antiisomorphisms
of operator algebras and function algebras.

2. Proofs

In this section we present the proofs of our results. As for Theorem 1 we need
the following characterization of the usual order≤ between positive operators.
We denote by P1(H) the set of all rank-one projections on the Hilbert space
H . Clearly, every element Q ∈ P1(H) is of the form Q = x ⊗ x with some
unit vector x ∈ H , where this latter operator is defined by (x⊗x)z = 〈z, x〉x,
z ∈ H .

Lemma. Let 1 < p ≤ ∞ be a given number and pick positive operators A,B ∈
Cp(H). We have A ≤ B if and only if ‖A+ tQ‖p ≤ ‖B + tQ‖p holds for any
nonnegative real number t and for every Q ∈ P1(H).

Proof. Assume first that 1 < p <∞. Then the necessity part of the statement
is clear. Indeed, it follows from the monotonicity of p-norms which is a well-
known fact. (For a statement of similar spirit concerning general symmetric
norms on C∗-algebras that we shall use later, see Lemma 12 in [18].) To verify
the sufficiency part we first assert that

lim
t→∞

(‖A+ tQ‖p − t) = TrAQ. (9)
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holds for any A ∈ Cp(H) and Q ∈ P1(H). Indeed, since ‖tQ‖p = t, we
obviously have

‖A+ tQ‖p − t =
‖(1/t)A+Q‖p − ‖Q‖p

1/t
.

From Theorem 2.3 in [1] we know that the norm ‖.‖p is Fréchet differentiable
at any point of Cp(H). (We point out that this is not true for the operator
norm.) In fact, from that theorem we also learn what the derivative of ‖.‖p
is. Namely, computing that derivative at the point Q in the direction of A
we have

lim
t→∞

(‖A+ tQ‖p − t) = lim
t→∞

‖(1/t)A+Q‖p − ‖Q‖p
1/t

= Tr

( |Q|p−1U∗A

‖Q‖p−1
p

)

,

with U being the partial isometry in the polar decomposition of Q. But
clearly, U = Q, |Q|p−1 = Q and ‖Q‖p = 1 and hence we obtain (9).

Now, assume that ‖A+ tQ‖p ≤ ‖B+ tQ‖p holds for all nonnegative real
numbers t and for every rank-one projection Q on H . Then applying (9) we
deduce that

TrAQ ≤ TrBQ

is true for every Q ∈ P1(H). But this trivially implies the inequality

〈Ax, x〉 ≤ 〈Bx, x〉
for every unit vector x ∈ H from which we infer A ≤ B.

The case where p = ∞ needs to be handled in a different way. The ”only
if” part of the statement follows from the monotonicity of the operator norm.
To see the ”if” part we show that for any positive operator A ∈ B(H) and
rank-one projection Q ∈ P1(H) we again have

lim
t→∞

(‖A+ tQ‖ − t) = TrAQ. (10)

To verify this, pick a unit vector x ∈ H from the range of Q. We claim that
for any positive real number ǫ the inequality

A ≤ (〈Ax, x〉 + ǫ)Q+ tQ⊥ (11)

holds for large enough t > 0. Indeed, take an arbitrary positive real number
ǫ. Setting T = (〈Ax, x〉+ ǫ)Q+ tQ⊥, we need to show that T−1/2AT−1/2 ≤ I
holds for large enough t > 0. Obviously, we have

T−1/2AT−1/2 =
1

〈Ax, x〉+ ǫ
QAQ+

1√
t
√

〈Ax, x〉 + ǫ
QAQ⊥

+
1√

t
√

〈Ax, x〉 + ǫ
Q⊥AQ+

1

t
Q⊥AQ⊥.

The norm of QAQ = 〈Ax, x〉Q equals 〈Ax, x〉 and denoting the sum of the
last three terms in the above displayed formula by St we get that

‖T−1/2AT−1/2‖ ≤ 〈Ax, x〉
〈Ax, x〉+ ǫ

+ ‖St‖.
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Clearly, as t→ ∞ we have that St tends to 0 in the operator norm. Therefore,
for large enough t the right-hand side of the inequality above is less than
1 implying that T−1/2AT−1/2 ≤ I also holds which is equivalent to the
inequality (11). From that we infer that

‖A+ tQ‖ ≤ ‖(〈Ax, x〉+ ǫ+ t)Q+ tQ⊥‖ (12)

is valid for large enough t ≥ 0. It is obvious that the quantity 〈Ax, x〉 + t is
less than or equal to the left-hand side of the inequality (12). Moreover, the
right-hand side of (12) trivially equals max{〈Ax, x〉+ǫ+t, t} = 〈Ax, x〉+ǫ+t.
Therefore, for large enough t ≥ 0 we have

0 ≤ ‖A+ tQ‖ − 〈Ax, x〉 − t

≤ 〈Ax, x〉+ ǫ + t− 〈Ax, x〉 − t = ǫ.

This implies
lim
t→∞

(‖A+ tQ‖ − t) = 〈Ax, x〉 = TrAQ.

Now, assuming that for positive operators A,B ∈ B(H) we have ‖A+
tQ‖ ≤ ‖B + tQ‖ for all t ≥ 0 and Q ∈ P1(H), it follows from (10) that for
any unit vector x ∈ H we get

〈Ax, x〉 = lim
t→∞

(‖A+ tx⊗ x‖ − t)

≤ lim
t→∞

(‖B + tx⊗ x‖ − t) = 〈Bx, x〉 .
Therefore, we conclude that A ≤ B and the proof of the lemma is complete.

�

Observe that the lemma fails to be true in the case where p = 1.
Having proven the above characterization of the order among positive

operators we are in a position to present the proof of Theorem 1.

Proof of Theorem 1. We give the proof only for the case where λ = 1/2, the
general case can be handled in the same way, only very trivial modifications
are needed. Furthermore, we assume p = ∞, in the case where 1 < p < ∞
the argument is just the same.

So, assume that φ : A+ → B+ is a bijective transformation satisfying

‖φ(A) + φ(B)‖ = ‖A+B‖, A,B ∈ A+. (13)

We easily show that φ preserves the usual order ≤. Indeed, if for A,B ∈ A+

we have A ≤ B then the inequality ‖A + C‖ ≤ ‖B + C‖ holds for every
C ∈ A+ and hence we have ‖φ(A) + φ(C)‖ ≤ ‖φ(B) + φ(C)‖ for every
C ∈ A+. Since φ is surjective, as C ranges over the set A+ we obtain that
φ(C) ranges over the set B+. Therefore, we get that

‖φ(A) + tP‖ ≤ ‖φ(B) + tP‖
holds for every t ≥ 0 and rank-one projection P ∈ B+. By the previous
lemma it follows that φ(A) ≤ φ(B). The same argument works for φ−1, too.
Therefore, φ is an order-isomorphism between A+ and B+. In particular, we
obtain that φ(0) = 0. We next show that φ maps the rank-one elements of
A+ onto the rank-one elements of B+. In fact, this follows from the following
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easy observation. A nonzero operator A in A+ is rank-one if and only if any
two elements of the set {B ∈ A+ : 0 ≤ B ≤ A} are comparable with respect
to the order ≤. Using this characterization we get that for any A ∈ A+, the
operator A is rank-one if and only if so is φ(A). Rank-one projections are
rank-one positive operators with norm 1. Plugging A = B in (13) we obtain
that φ preserves the norm. Consequently, we deduce that φ maps the set
P1(H) of rank-one projections onto itself.

We next assert that φ(tQ) = tφ(Q) holds for every nonnegative real
number t and rank-one projection Q on H . Indeed, for example for t ≥ 1
(in the case where t < 1 one can argue in a similar way), using the order
preserving property of φ we get that φ(Q) ≤ φ(tQ). Since φ(Q) and φ(tQ)
are rank-one operators, hence it follows that φ(tQ) is a scalar multiple of
φ(Q). On the other hand, φ preserves the norm of any operator in A+ which
then implies φ(tQ) = tφ(Q). Therefore, for arbitrary rank-one projections
P,Q in A+ and nonnegative real number t we have

‖P + tQ‖ = ‖φ(P ) + φ(tQ)‖ = ‖φ(P ) + tφ(Q)‖.
By (10) we have that ‖P + tQ‖ − t → TrPQ, ‖φ(P ) + tφ(Q)‖ − t →
Trφ(P )φ(Q) as t→ ∞. Therefore, we obtain that φ has the property that

Trφ(P )φ(Q) = TrPQ, P,Q ∈ P1(H).

The structure of all such transformations on P1(H) is well-known. In fact, by
Wigner’s famous theorem on quantum mechanical symmetry transformations
(see, e.g., p. 12 in [14]) it follows that there exists either a unitary or an
antiunitary operator U on H such that

φ(P ) = UPU∗, P ∈ P1(H).

It is now easy to complete the proof showing that the above equality extends
to the whole set A+, too. Indeed, let A be an arbitrary element of A+ and
pick an arbitrary rank-one projection P ∈ P1(H). For any t ≥ 0, by the
already known properties of φ it follows that

‖U∗φ(A)U + tP‖ = ‖φ(A) + tUPU∗‖ = ‖φ(A) + tφ(P )‖ = ‖A+ tP‖.
Subtracting the number t from both sides of this equality and letting t tend
to infinity, we obtain that

TrU∗φ(A)UP = TrAP

holds for all P ∈ P1(H). This easily implies that U∗φ(A)U = A and hence
we infer that φ(A) = UAU∗ is valid for every element A ∈ A+. The proof is
complete. �

We now turn to the proof of Theorem 2. Our argument is based on
a characterization of the usual order ≤ expressed in terms of means and
symmetric norms which is be given in Lemma 4. Before that we present
the necessary preliminaries. First we compute the operator AσP for any
mean σ with representing measure vanishing at 0, arbitrary positive operator
A ∈ B(H)+ and rank-one projection P on H . To do this, we can follow the
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argument given in the proof of Lemma 2.6 in the paper [17] of the first author.
Let us introduce the concept of the strength λ(A,P ) of a positive operator
A ∈ B(H)+ along a rank-one projection P ∈ P1(H), see [2]. This is defined
by the formula

λ(A,P ) = sup{t ≥ 0 : tP ≤ A} (14)

and the function P 7−→ λ(A,P ) on P1(H) is called the strength function of
A. The first author proved in Lemma 2 in [16] that for any A ∈ B(H)+ and
P ∈ P1(H), the parallel sum A : P of A and P satisfies

A : P =
λ(A,P )

λ(A,P ) + 1
P. (15)

Now, using the integral representation (5) of σ we get that

AσP = αA+ βP +

∫

]0,∞[

1 + s

s
{sA : P}dm(s). (16)

On the other hand, let f be the operator monotone function on ]0,∞[ which
is associated with the mean σ. By the integral representation (4) of f we have
that

f(t) =

∫

[0,∞]

t(1 + s)

t+ s
dm(s) = α+ tβ +

∫

]0,∞[

t(1 + s)

t+ s
dm(s)

holds for any t > 0. Using (15), (16) and this representation, we deduce that
if t = λ(A,P ) is positive then

AσP = αA+ βP +

∫

]0,∞[

1 + s

s

st

st+ 1
dm(s)P

= αA+ βP + t

(

f

(

1

t

)

− α− β

t

)

P = αA+ tf

(

1

t

)

P − αtP.

Since the quantity α = m({0}) is supposed to be 0, it implies that AσP =
tf(1/t)P .

Define the function g :]0,∞[→ [0,∞[ by g(t) = tf(1/t), t > 0 which
is just the operator monotone function associated with the transpose of σ.
We have just learned that AσP = g(λ(A,P ))P holds whenever λ(A,P ) is
positive. Moreover, if λ(A,P ) = 0 then by (15) and (16) we have AσP = βP .
On the other hand,

g(0) := lim
t→0

g(t) = lim
t→0

tf(1/t) = lim
t→∞

f(t)/t = m({∞}) = β

also holds and therefore we obtain that

AσP = g(λ(A,P ))P (17)

is valid in all possible cases.

Now, we are in a position to prove the following characterization of the
order ≤ among positive operators.
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Lemma 4. Let N be a symmetric norm on B(H) and σ a mean on B(H)+
such that the associated operator monotone function f satisfies limt→0 f(t) =
0 and f is not the identity. For any A,B ∈ B(H)+ we have

A ≤ B ⇐⇒ N(AσC) ≤ N(BσC) for every C ∈ A+.

Proof. By Lemma 12 in [18] we know that any symmetric norm on any C∗-
algebra is monotone on the positive cone. This together with the monotonicity
property (O1) of operator means imply that if A,B in A+ and A ≤ B then
it follows that N(AσC) ≤ N(BσC) holds for every C ∈ A+. Conversely,
assume that this inequality holds true for every C ∈ A+. Substituting C = P
for an arbitrary rank-one projection P on H , the formula (17) gives us that
g(λ(A,P )) ≤ g(λ(B,P )). Observe that g is neither identically 1 nor equals
the identity which follow from the definition of g given above and from the
assumed properties of f . Since g is an operator monotone function on ]0,∞[,
by Lemma 5.1 in [10] we then infer that g is strictly increasing. Therefore we
get λ(A,P ) ≤ λ(B,P ). Since this inequality holds for all rank-one projections
P on H , hence by Theorem 1 in [2] we obtain that A ≤ B. �

We next present the proof of Theorem 2. Below we shall use the fact that
(UAU∗)σ(UBU∗) = U(AσB)U∗ holds for any A,B ∈ B(H)+ and unitary
or antiunitary operator U on H . This equality follows easily e.g. from the
formula (3) and the continuity property (O3) of connections.

Proof of Theorem 2. By the characterization given in Lemma 4, φ is an order-
isomorphism from A+ onto B+. In particular, we have φ(0) = 0. Next, just
as in the proof of Theorem 1 we can see that for any A ∈ A+ we have A is
of rank 1 if and only if φ(A) is of rank 1. Every positive rank-one operator is
a positive scalar multiple of a rank-one projection. The rank-one projections
are all unitarily equivalent and hence (since every symmetric norm is easily
seen to be unitarily invariant), they have the same N -norm. We may and
do assume in the following that this common norm-value is 1 which means
that on positive rank-one operators the symmetric norm N equals the usual
operator norm. We learn from Theorem 3.3 in [10] that every mean σ satisfies
AσA = A for every operator A ∈ B(H)+ which implies that φ preserves the
N -norm of all elements of A+. It follows that φ maps the set of rank-one
projections (i.e., the set of all rank-one elements of N -norm equal to 1) onto
itself.

In the following we show that for any A ∈ A+ we have A is a projection
if and only if so is φ(A). Let A be an element ofA+. By (17) and the preserver
properties of φ, for any rank-one projection P in A+ we have

g(λ(φ(A), φ(P ))) = N(φ(A)σφ(P )) = N(AσP ) = g(λ(A,P )).

Since g is strictly increasing (see the proof of Lemma 4), we deduce that

λ(φ(A), φ(P )) = λ(A,P ).

In particular, this means that the range of the strength function of A equals
the range of the strength function of φ(A). From Lemma 4 in [2] we learn
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that A is a projection if and only if λ(A,P ) ∈ {0, 1} holds for any rank-
one projection P on H . Using this characterization we can infer that A is a
projection if and only if so is φ(A).

Next, we assert that φ(P ) is a rank-n projection if and only if P is a
rank-n projection. Indeed, the projection P ∈ A+ has rank n if and only
if the maximal length of chains P1, ..., Pk of projections in A+ for which
0 � P1 � P2 � ... � Pk = P holds is exactly n. Since φ is an order-
isomorphism, it then follows that P is a rank-n projection if and only if so is
φ(P ).

We now prove that φ preserves the rank of any (finite rank) operator in
A+. Let P ∈ A+ be a finite rank projection and t ≥ 1 a real number. We claim
that φ(tP ) = tφ(P ). Clearly, the strength function of tP has range {0, t}.
By the already established properties of φ, the same holds for the strength
function of φ(tP ). It then follows that φ(tP ) is of the form φ(tP ) = tQ
with some projection Q ∈ B+. But we have Q = φ(P ′) for some projection
P ′ ∈ A+. Furthermore, for any projection R ∈ A+ we argue

R ≤ P ⇔ R ≤ tP ⇔ φ(R) ≤ tφ(P ′) ⇔ φ(R) ≤ φ(P ′) ⇔ R ≤ P ′

which apparently implies P = P ′ and thus proving our claim φ(tP ) = tφ(P ).
Now, for any rank-n operator A ∈ A+ we have a rank-n projection P and a
number t ≥ 1 such that A ≤ tP . It follows that φ(A) ≤ tφ(P ) from which we
infer that the rank of φ(A) is at most n. Therefore, φ is rank nonincreasing.
Since φ and φ−1 share the same preserver properties, we deduce that φ is in
fact rank preserving.

We say that an operator acts on the closed subspace H0 of H if H0

is an invariant subspace of the operator and it is zero on the orthogonal
complement of H0. Clearly, the finite rank operator A ∈ A+ acts on the
range of the finite rank projection P if and only if A ≤ tP holds for some real
number t ≥ 1. But that operator inequality is equivalent to φ(A) ≤ φ(tP ) =
tφ(P ). This implies that A ∈ A+ acts on the range of a rank-n projection P
if and only if φ(A) acts on the range of the rank-n projection φ(P ).

From this point we can literally follow the argument presented in [12] on
page 5907 from the second to the fourth paragraph and prove, by making use
of a beautiful theorem of Rothaus, that the order-isomorphism φ is necessarily
additive and positive homogeneous on the cone F (H)+ of positive elements
of the ideal F (H) of all finite rank operators in B(H). Consider the restric-
tion φ|F (H)+ of φ onto F (H)+. We can extend this map in an obvious way
first to a bijective real linear map on the space of all finite-rank self-adjoint
operators in B(H) (where we use the fact that every self-adjoint operator in
F (H) is the difference of two positive ones) and then further extend it to a
bijective complex linear map φ0 on the whole space F (H). Just as φ|F (H)+ ,
this map φ0 also sends projections to projections and hence, e.g. by the argu-
ment in Theorem A.4 in [14], it is a so-called Jordan ∗-automorphism of F (H)
(meaning that it is a linear transformation which satisfies φ0(A

2) = φ0(A)
2

and φ0(A
∗) = φ0(A)

∗ for every A ∈ F (H)). The structure of those transfor-
mations is well-known. For example, by Theorems A.7 and A.8 in [14], φ0 is
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necessarily either of the form A 7−→ UAU∗ with a unitary operator U or of
the form A 7−→ UA∗U∗ with an antiunitary operator U on H . It follows that
we have φ(A) = UAU∗ for all finite rank elements A of A+.

Recalling that any symmetric norm is unitary invariant, if A ∈ A+ is
arbitrary then for every rank-one projection P on H we can compute

g(λ(A,P )) = N(g(λ(A,P ))P ) = N(AσP )

= N(φ(A)σφ(P )) = N(φ(A)σ(UPU∗)) = N(U((U∗φ(A)U)σP )U∗)

= N((U∗φ(A)U)σP ) = g(λ(U∗φ(A)U, P )).

Therefore, we have λ(A,P ) = λ(U∗φ(A)U, P ) for all rank-one projections
P on H and applying Theorem 1 in [2] we infer that U∗φ(A)U = A. Con-
sequently, for any A ∈ A+ we have φ(A) = UAU∗ and this completes the
proof. �

We have seen above that order automorphisms of the positive cone of
the algebra of finite rank operators play an essential role in the proof of
Theorem 2. In fact, above we have followed the approach to such maps which
has originally been invented in the paper [12] of the first author. We point out
that in [21] (also see [22]) Šemrl has significantly improved the results of [12]
by making use of the very original and effective idea of employing adjacency
preserving maps.

Now, we turn to the proof of Theorem 3. We shall need the following
lemma which gives a characterization of the natural order ≤ between non-
negative functions in terms of the uniform norm of means. Here by the order
≤ between scalar valued functions we mean the pointwise order, i.e., for any
real valued functions x, y ∈ C0(X) we have x ≤ y if and only if x(t) ≤ y(t)
holds for all t ∈ X .

Lemma 5. Let A be as in Theorem 3. Let M be a mean on the nonnegative
real numbers and denote by f : [0,∞[→ [0,∞[ the real function associated
with M . Assume that the function t 7→ f(t)/t, t > 0 is strictly decreasing and
either f(0) = 0 or limt→∞ f(t) = ∞ holds. Then for any x, y ∈ A+ we have

x ≤ y ⇐⇒ ‖M(x, z)‖ ≤ ‖M(y, z))‖ for every z ∈ A+.

Proof. Since M is a mean, it is increasing in its variables and hence the
necessity part of the lemma is obvious. For the sufficiency suppose that
‖M(x, z)‖ ≤ ‖M(y, z)‖ holds for every z ∈ A+. Let t0 be any point of
X and choose an arbitrary real number ǫ > 0. By the continuity of y there
exists a neighborhood U of t0 such that y(t) ≤ y(t0) + ǫ, t ∈ U . Choose a
peaking function z on X with compact support in U that peaks at t0 (see
the discussion preceding the formulation of Theorem 3). Then z ∈ A+.

Assume first that f(0) = 0. For every t /∈ U we have

M(y(t), z(t)) =M(y(t), 0) = y(t)f(0) = 0 ≤ (y(t0) + ǫ)f(1/(y(t0) + ǫ)),

while for t ∈ U we compute

M(y(t), z(t)) ≤M(y(t0) + ǫ, 1) = (y(t0) + ǫ)f(1/(y(t0) + ǫ)).
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Therefore, if x(t0) 6= 0 then using z(t0) = 1 we deduce

x(t0)f(1/x(t0)) =M(x(t0), z(t0)) ≤ ‖M(x, z)‖
≤ ‖M(y, z)‖ ≤ (y(t0) + ǫ)f(1/(y(t0) + ǫ))

which, by the strict decreasing property of the function t 7→ f(t)/t, implies
that x(t0) ≤ y(t0) + ǫ. Clearly, this inequality holds true also in the case
where x(t0) = 0. Letting ǫ tend to 0, we infer x(t0) ≤ y(t0). Since t0 ∈ X is
arbitrary, it follows that x ≤ y.

Assume now that limt→∞ f(t) = ∞. For any positive real number r and
t ∈ U , the inequality

M(y(t), rz(t)) ≤M(y(t0) + ǫ, r) = (y(t0) + ǫ)f(r/(y(t0) + ǫ))

holds. By the boundedness of y and the unboundedness of f we can choose
r such that for all t /∈ U we also have

M(y(t), rz(t)) =M(y(t), 0) ≤ max{y(t), 0} = y(t) ≤ (y(t0)+ǫ)f(r/(y(t0)+ǫ)).

Therefore, if x(t0) 6= 0, we infer

x(t0)f(r/x(t0)) =M(x(t0), rz(t0)) ≤ ‖M(x, rz)‖
≤ ‖M(y, rz)‖ ≤ (y(t0) + ǫ)f(r/(y(t0) + ǫ))

which implies just as above that x(t0) ≤ y(t0) + ǫ. One can complete the
proof as in the former case. �

We are now in a position to prove Theorem 3.

Proof of Theorem 3. First, from ‖M(φ(x), φ(x))‖ = ‖M(x, x)‖ we deduce
that ‖φ(x)‖ = ‖x‖ holds for any x ∈ A+, i.e., φ preserves the norm. From
the previous lemma it follows that for any x, y ∈ A+ we have

x ≤ y ⇐⇒ φ(x) ≤ φ(y)

hence φ is an order-isomorphism. In particular, we get φ(0) = 0.
We next show that for any x, y ∈ A+ we have

xy = 0 ⇐⇒ φ(x)φ(y) = 0. (18)

In fact, using the order preserving property of φ, this immediately follows
from the following easy observation. For any x, y ∈ A+ we have

xy = 0 ⇐⇒ (∀z ∈ A+ : z ≤ x, y ⇒ z = 0).

The implication =⇒ is obvious. To see the converse, assume xy 6= 0. Clearly,
we can assume that the norm of x and y both equal 1. It is clear that 0 6=
v = xy ∈ A+ and v ≤ x, y. Therefore, we have the equivalence in the above
displayed formula and then (18) follows.

Next we show that for any peaking function x ∈ A+ which peaks at
a point t ∈ X , the function φ(x) is also a peaking function that peaks at
some point ϕ(t) ∈ Y . First observe that since φ preserves the norm, we have
‖φ(x)‖ = 1. We need to show that φ(x) attains its maximum value 1 at
a unique point in Y . To see this, assume that φ(x) takes this value at two
different points, say t, s ∈ Y . We can choose peaking functions u, v ∈ B+ such
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that u peaks at t and v peaks at s, uv = 0 and u + v = max{u, v} ≤ φ(x).
Since φ is an order-isomorphism, we deduce

φ−1(u) ≤ φ−1(u+ v) ≤ x and φ−1(v) ≤ φ−1(u+ v) ≤ x. (19)

On the other hand, by (18), φ preserves zero product in both directions which
implies that φ−1(u)φ−1(v) = 0. Therefore, the functions φ−1(u) and φ−1(v)
of norm 1 take the value 1 at two different points and then, by (19), the
same must be true for x. Since this is a contradiction, we obtain that φ(x)
is really a peaking function. As φ, φ−1 share similar properties, we can infer
that φ preserves peaking functions in both directions meaning that x ∈ A+

is a peaking function if and only if φ(x) ∈ B+ is a peaking function.
In the next step we show that the point ϕ(t) does not depend on the

particular choice of the peaking function x ∈ A+ that peaks at the point t.
For any x ∈ A+ (or x ∈ B+) denote by Fx the set of all peaking functions
z in A+ (or in B+) which are below x, i.e., for which z ≤ x holds. Since φ
preserves the order and peaking functions in both directions, we clearly have
φ(Fx) = Fφ(x), x ∈ A+. It is easy to check that if x, y ∈ A+ are peaking
functions, x peaks at t ∈ X , y peaks at s ∈ X , then

t 6= s⇐⇒ Fx ∩ Fy = ∅.
Indeed, the implication =⇒ is trivial. As for the converse, if t = s then
xy ∈ Fx∩Fy verifying the above equivalence. It implies that for any pair x, y
of peaking functions in A+, they peak at the same point if and only if the
same holds for the peaking functions φ(x), φ(y) in B+. It follows that ϕ(t) is
a well-defined point in Y and hence we have a map ϕ : X → Y associated to
φ. It is obvious that there is a map ψ : Y → X associated to φ−1, too, and
we clearly have that ψ ◦ ϕ, ϕ ◦ ψ are both identities. It follows that ϕ, ψ are
bijections.

In what follows we show that φ is of the desired form. Let t0 be an
arbitrary point in X . Pick y ∈ A+. Just as in the proof of Lemma 5, there
exists a neighborhood U of t0 such that y(t) ≤ y(t0) + ǫ, t ∈ U . Let z be
the peaking function in A+ which peaks at t0 and has compact support in U
that we have chosen in that proof. It follows from the argument given there
that

‖M(y, z)‖ ≤ (y(t0) + ǫ)f(1/(y(t0) + ǫ))

holds in the case where f(0) = 0 and we have

‖M(y, rz)‖ ≤ (y(t0) + ǫ)f(r/(y(t0) + ǫ))

for some positive real number r in the case where limt→∞ f(t) = ∞. Since
φ(z) is a peaking function which peaks at ϕ(t0), assuming φ(y)(ϕ(t0)) 6= 0,
in the case (i) we compute

φ(y)(ϕ(t0))f(1/(φ(y)(ϕ(t0)))) =M(φ(y)(ϕ(t0)), φ(z)(ϕ(t0)))

≤ ‖M(φ(y), φ(z))‖ = ‖M(y, z)‖ ≤ (y(t0) + ǫ)f(1/(y(t0) + ǫ)).
(20)

In the case (ii) the situation is more complicated. So, assume (ii) holds.
We claim that φ(rz)(ϕ(t0)) = r. To verify this, for any x ∈ A+ denote by
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E(x) the set of all points in X at which x attains its maximum, i.e., set
E(x) = {t ∈ X |x(t) = ‖x‖}. Using the strict monotonicity of M in its both
variables, one can easily check that for any x, u ∈ A+

E(x) ∩ E(u) 6= ∅ ⇐⇒ ‖M(x, u)‖ =M(‖x‖, ‖u‖).
This obviously implies that for any x, u ∈ A+ we have

E(x) ∩ E(u) 6= ∅ ⇐⇒ E(φ(x)) ∩ E(φ(u)) 6= ∅. (21)

Next, we show that for all x, u ∈ A+

E(x) ⊂ E(u) ⇐⇒ E(φ(x)) ⊂ E(φ(u)). (22)

Clearly, by (21), this is proven if we show that

E(x) ⊂ E(u) ⇐⇒ (∀v ∈ A+ : E(x) ∩ E(v) 6= ∅ ⇒ E(u) ∩E(v) 6= ∅).
The implication =⇒ is trivial. As for the converse, assume that there exists
an element t in E(x) which does not belong to E(u). Clearly, E(u) is a
closed set. Select a peaking function v with compact support in E(u)c which
peaks at t. It follows that v ∈ A+ and we obtain that t ∈ E(x) ∩ E(v) but
the intersection E(u) ∩ E(v) is empty. By this contradiction we obtain the
equivalence (22). It is obvious that we then also have that

E(x) = E(u) ⇐⇒ E(φ(x)) = E(φ(u))

holds for all x, u ∈ A+.
After this, considering the peaking function z ∈ A+ again which peaks

at t0 and any positive real number r, since E(z) = E(rz), it follows that
{ϕ(t0))} = E(φ(z)) = E(φ(rz)). We know that φ preserves the norm of
functions, hence we deduce φ(rz)(ϕ(t0)) = r.

Now, assuming φ(y)(ϕ(t0)) 6= 0 we compute

φ(y)(ϕ(t0))f(r/(φ(y)(ϕ(t0)))) =M(φ(y)(ϕ(t0)), φ(rz)(ϕ(t0)))

≤ ‖M(φ(y), φ(rz))‖ = ‖M(y, rz)‖ ≤ (y(t0) + ǫ)f(r/(y(t0) + ǫ))
(23)

By the strict monotonicity of the function t 7→ f(t)/t, from both equations
(20), (23) we infer that

φ(y)(ϕ(t0)) ≤ y(t0) + ǫ

holds true and hence letting ǫ converge to 0 we deduce φ(y)(ϕ(t0)) ≤ y(t0).
Since t0 ∈ X is arbitrary we obtain φ(y) ≤ y ◦ ϕ−1. Clearly, similar in-
equality holds for φ−1 and its associated map ψ = ϕ−1, too, i.e., we have
y = φ−1(φ(y)) ≤ φ(y) ◦ϕ. This implies that φ(y) = y ◦ϕ−1 is valid for every
y ∈ A+.

It remains to prove that ϕ is a homeomorphism which follows from a
well-known argument. First observe that by the similar properties of φ, φ−1

and those of the associated maps ϕ, ψ we need only to show that ϕ is con-
tinuous. Let t ∈ X , (tn) be a sequence in X which converges to t and sup-
pose that ϕ(tn) does not converge to ϕ(t). Then there exists a neighborhood
V ⊂ Y of ϕ(t) such that ϕ(tn) 6∈ V for infinitely many indices. Let x′ ∈ B+,
x′ : Y → [0, 1] be a function such that x′(ϕ(t)) = 1 and supp(x′) ⊂ V and
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pick x ∈ A+ such that φ(x) = x′. We have that x(tn) = x′(ϕ(tn)) = 0 for
infinitely many indices which contradicts x(tn) → x(t) = x′(ϕ(t)) = 1. This
completes the proof of the theorem. �

We conclude the paper with some remarks. We recall that in the first
two theorems we assumed that dimH > 1. If this dimension is 1 then we in
fact have numbers instead of operators and then our third theorem trivially
applies. Much more importantly, we mention that not all possible means
are considered in Theorems 1,2,3. For example, as for our results relating
to operator means, we do not know what happens in the case where the
representing measure m of the mean σ has the property that the values
m({0}), m({∞}) m(]0,∞[)) are all positive. However, the most important
cases represented by the arithmetic mean, geometric mean, harmonic mean
(double of the parallel sum) and many others are covered. There is room
for further considerations in other respects, too. It would be good to know if
Theorem 1 is valid also for some general classes of symmetric norms on B(H)
(not including the trace norm, of course). As for Theorem 3, it seems to be a
natural question to explore if the result is true for the algebras A = C0(X),
B = C0(Y ) when the spacesX,Y are not first countable, as well as to consider
means of functions originating from more general means on nonnegative real
numbers (e.g., nonhomogeneous means).

3. Acknowledgements

The authors express their thanks to the referee for the careful reading of the
manuscript and for pointing out some flaws in the presentation.

References

1. T.J. Abatzoglou, Norm derivatives on spaces of operators, Math. Ann. 239
(1979), 129–135.

2. P. Busch and S.P. Gudder, Effects as functions on projective Hilbert spaces,

Lett. Math. Phys., 47 (1999), 329–337.

3. J.T. Chan, C.K. Li and C.C.N. Tu, A class of unitarily invariant norms on

B(H), Proc. Amer. Math. Soc. 129 (2001), 1065-1076.
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