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This paper is motivated by an astonishing result of H. Alzer and S. Ruscheweyh 
published in 2001, which states that the intersection of the classes two-variable 
Gini means and Stolarsky means is equal to the class of two-variable power 
means. The two-variable Gini and Stolarsky means form two-parameter classes of 
means expressed in terms of power functions. They can naturally be generalized 
in terms of the so-called Bajraktarević and Cauchy means. Our aim is to show 
that the intersection of these two classes of functional means, under high-order 
differentiability assumptions, is equal to the class of two-variable quasiarithmetic 
means.
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1. Introduction

A notion, which subsumes the concept of arithmetic, geometric and harmonic means is the concept of 
power means. For a real number a, the two-variable ath-Hölder or ath-power mean Ha : R2

+ → R is defined 
as

Ha(x, y) :=

⎧⎪⎨
⎪⎩
(
xa + ya

2

) 1
a

if a �= 0,
√
xy if a = 0.
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Observe that, for a = 1, a = 0, and a = −1, the power mean Ha equals the arithmetic, geometric and 
harmonic means, respectively. The theory of power means is well-developed, most of the details of their 
theory can be found in the monographs [4], [5], [7], [20], and [21].

The class of two-variable power means has been extended in numerous ways in the literature. One 
early extension was introduced by C. Gini [6] in 1938 who, for two real parameters a, b, defined the mean 
Ga,b : R2

+ → R+ by

Ga,b(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xa + ya

xb + yb

) 1
a−b

if a �= b,

exp
(
xa log(x) + ya log(y)

xa + ya

)
if a = b.

(1.1)

These means are nowadays called two-variable Gini means. One can easily see that the two-variable Hölder 
means form a subclass of two-variable Gini means. Indeed, for a ∈ R, we have Ha = Ga,0 = G0,a and 
H0 = Ga,−a.

Another extension of the class of two-variable power means was discovered by K. Stolarsky [27] in 1975, 
who, for two real parameters a, b, defined Sa,b : R2

+ → R+ by

Sa,b(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b(xa − ya)
a(xb − yb)

) 1
a−b

if ab(a− b)(x− y) �= 0,

exp
(
− 1

a
+ xa log(x) − ya log(y)

xa − ya

)
if a = b, ab(x− y) �= 0,

(
xa − ya

a(log(x) − log(y))

) 1
a

if b = 0, a(x− y) �= 0,

(
xb − yb

b(log(x) − log(y))

) 1
b

if a = 0, b(x− y) �= 0,

√
xy if a = b = 0,

x if x = y.

(1.2)

We call these means Stolarsky means today. We note, that these means are sometimes called extended means
(cf. [8,9]) or difference means [22,23]. One can also see that the two-variable Hölder means form a subclass 
of Stolarsky means. Indeed, for a ∈ R, it is easy to see that Ha = S2a,a = Sa,2a, and H0 = Sa,−a hold.

Therefore, the class of two-variable Hölder means is contained in the intersection of the classes of two-
variable Gini and Stolarsky means. In 2001, H. Alzer and St. Ruscheweyh [1] established a surprising result 
which asserts that, instead of inclusion, the equality holds here, i.e., the class of two-variable Hölder means 
is equal to the intersection of the classes of two-variable Gini and Stolarsky means.

In what follows, we will recall further important classes of two-variable functional means that extend 
Hölder, Gini and Stolarsky means in a natural way. These classes are the quasiarithmetic, Bajraktarević, 
and Cauchy means. Motivated by the above-described result of Alzer and Ruscheweyh [1], our aim is to show 
that, under 8 times differentiability assumptions, the intersection of the classes of two-variable Bajraktarević 
and Cauchy means equals the class of two-variable quasiarithmetic means.

Throughout this paper let I denote a nonempty open real interval and let

CM(I) := {f : I → R | f is continuous and strictly monotone},
CP(I) := {f : I → R | f is continuous and positive}.
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For ϕ ∈ CM(I), the two-variable quasiarithmetic mean generated by ϕ is the map Aϕ : I2 → I given as

Aϕ(x, y) := ϕ−1
(
ϕ(x) + ϕ(y)

2

)
.

The comprehensive investigation of these means can be found, for instance, in the book [7]. In 1958, M. 
Bajraktarević [2], [3] created a new generalization of quasiarithmetic means essentially in the following way: 
For f, g : I → R such that f/g ∈ CM(I) and g ∈ CP(I), define Bf,g : I2 → I by

Bf,g(x, y) :=
(
f

g

)−1(
f(x) + f(y)
g(x) + g(y)

)
.

The mean Bf,g will be called a two-variable Bajraktarević mean. It is clear that Bf,g equals Af if g is a 
constant. Consequently, quasiarithmetic means form a subclass of Bajraktarević means. Assuming 6 times 
continuous differentiability, the equality problem of these means was solved by Losonczi [11,15]. A recent 
characterization of this equality in terms of eight equivalent conditions has been established in [18, Theorem 
15].

Another important generalization of quasiarithmetic means can be obtained as follows: If f, g : I → R

are continuously differentiable functions with g′ ∈ CP(I) and f ′/g′ ∈ CM(I), then define Cf,g : I2 → I by

Cf,g(x, y) :=

⎧⎪⎨
⎪⎩
(
f ′

g′

)−1(
f(x) − f(y)
g(x) − g(y)

)
if x �= y,

x if x = y.

The mean value property of this mean is a direct consequence of the Cauchy Mean Value Theorem, this is 
why this mean is called a Cauchy mean or difference mean in the literature (cf. [10], [12]). If ϕ is differentiable 
with a nonvanishing derivative, then one can easily see that Cϕ2,ϕ = Aϕ. Consequently, quasiarithmetic 
means (with a differentiable generator) form also a subclass of Cauchy means. Assuming 7 times continuous 
differentiability, the equality problem of these means was solved by Losonczi [12]. A characterization of this 
equality in terms of eight equivalent conditions has also been established in paper [18, Theorem 16].

In this paper, we recall the following generalization of quasiarithmetic means, which was introduced in 
[16] and also investigated in [17]. Given two continuous functions f, g : I → R with g ∈ CP(I), f/g ∈ CM(I)
and a probability measure μ on the Borel subsets of [0, 1], the two-variable mean Mf,g;μ : I2 → I is defined 
by

Mf,g;μ(x, y) :=
(
f

g

)−1
(∫

[0,1] f
(
tx + (1 − t)y

)
dμ(t)∫

[0,1] g
(
tx + (1 − t)y

)
dμ(t)

)
.

Means of the above form, will be called generalized quasiarithmetic means.
In what follows, let δτ denote the Dirac measure concentrated at the point τ ∈ [0, 1]. Using this notation, 

one can see that if μ = δ0+δ1
2 , then Mf,g;μ = Bf,g provided that g ∈ CP(I) and f/g ∈ CM(I). On the other 

hand, if μ is the Lebesgue measure λ restricted to [0, 1], and g′ ∈ CP(I), f ′/g′ ∈ CM(I), then, using the 
Fundamental Theorem of Calculus, one can verify the equality Mf ′,g′;μ = Cf,g. Therefore, the classes of 
two-variable Bajraktarević and Cauchy means form subclasses of generalized quasiarithmetic means.

The equality problem of means in various classes of two-variable means has been investigated and solved 
by now. We refer here to Losonczi’s works [11], [12], [13], [14], [15], where the equality of two-variable 
means is characterized in various settings. A key idea in these papers, under high order differentiability 
assumptions, is to calculate and then to compare the partial derivatives of the means at diagonal points of 
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the Cartesian product I × I. The mixed equality problem of quasiarithmetic and Lagrangian means was 
solved by Páles [24].

The equality problem of generalized quasiarithmetic means with the same probability measure μ, i.e., 
the characterization of those pairs of functions (f, g) and (h, k) such that

Mf,g;μ = Mh,k;μ

holds, was investigated and partially solved in the paper [18]. In the particular cases μ = δ0+δ1
2 and μ = λ

of these results, the equality problem of two-variable Bajraktarević and the equality problem of Cauchy 
means was solved under 6th-order differentiability assumptions.

The aim of this paper is to study the equality problem of generalized quasiarithmetic means with the 
possibly different probability measures μ and ν. In other words, we aim to characterize those pairs of 
functions (f, g) and (h, k) such that

Mf,g;μ = Mh,k;ν .

The investigation of this functional equation will require 8th-order differentiability assumptions. Our ap-
proach is to compute the higher-order directional derivatives of the two means at the diagonal points of 
I2 and then the equality of these derivatives results an 8th-order system of differential equations for the 
unknown functions f, g, h, and k. In order to be able to integrate these equations, we will assume that the 
measures are symmetric with respect to the midpoint of the interval [0, 1]. Due to this symmetry, the odd-
order directional derivatives will vanish and therefore, the information then is derived only from the equality 
of the even-order directional derivatives. In total, we have four unknown functions, therefore we need to 
obtain four differential equations. This explains why it is necessary to perform the differentiation up to the 
order 8. The final main goal is to solve the system of differential equations so obtained when μ = δ0+δ1

2
and ν = λ. This is exactly the problem of equality of two-variable Bajraktarević means to Cauchy means. 
As a consequence of this result, it will follow that the intersection of these two classes of means consists of 
quasiarithmetic means.

The paper is organized as follows. In the next section we introduce the terminology related to measures 
and their moments. Then we consider a two-parameter subclass of symmetric measures which will include 
the two basic measures μ = δ0+δ1

2 and μ = λ that are needed for the description of Bajraktarević and 
Cauchy means. In the third section, among others, we introduce the functions Φf,g and Ψf,g (in terms of 
the generalized Wronskians) which will allow us to reduce the degree of the forthcoming system of differential 
equations from 8 to 6. The recursive formula among the generalized Wronskians is also established here. In 
Section 4, for any diagonal point of I2, we introduce a single variable function related to the mean Mf,g;μ

for which we plan to compute the even-order derivatives up to the order 8. The computation involves the 
standard Leibniz Rule, the Faá di Bruno Formulas for Bell polynomials and the formulas established in 
Section 3 for the generalized Wronskian. In Section 5, we start analyzing the four differential equations 
obtained from the comparison of the 2nd, 4th, 6th, and 8th-order directional derivatives. Our main result 
is presented in Theorem 5.9, where all the pieces of the previous steps are put together and we obtain 
several equivalent characterizations of the equality of Bajraktarević and Cauchy means. Here, beyond the 
previously established auxiliary results we use the characterization of the equality of Bajraktarević and 
Cauchy means to quasiarithmetic means from the papers [26] and [19], respectively. We know that some of 
our computations cannot be checked by an easy calculation. Thus, one may use computer algebra to verify 
them, as it was also done by the authors.
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2. Auxiliary results on measures

We say that a Borel probability measure μ on [0, 1] is symmetric if μ(A) = μ(1 − A) for all Borel sets 
A ⊆ [0, 1]. The collection of all such measures on [0, 1] will be denoted by SM([0, 1]). For μ ∈ SM([0, 1]), we 
introduce its kth centralized moment as follows

μk :=
1∫

0

(t− 1
2 )kdμ(t) (k ∈ N ∪ {0}).

Obviously, μ0 = 1, and the even order centralized moments are nonnegative. On the other hand, due to the 
symmetry of the measure, the odd-order ones are equal to zero.

In what follows we define a two-parameter class of SM([0, 1]) which will be instrumental for our inves-
tigations. For two given positive parameters � and p, we define a probability measure π := π(�, p) via the 
following equalities for its centralized moments

π0 := 1, π2n−1 := 0, π2n := (2n)!
n! �np〈n〉 (n ∈ N),

where, the modified power p〈n〉 is defined by

p〈n〉 :=
n−1∏
i=0

p

1 + ip
(n ∈ N).

Clearly, p〈1〉 = p1 = p and the recursive formula p〈n+1〉 = p
1+np · p〈n〉 holds.

By a classical result related to the Hausdorff moment problem, the measure π(�, p) is uniquely determined, 
however, it may not exist for every �, p > 0. It also follows that π(�, p) has to be a symmetric measure with 
respect to the point 1

2 . The set of those parameters (�, p) for which the probability measure π(�, p) exists 
will be denoted by Π.

Lemma 2.1. For the parameter set Π, we have the following inclusion

Π ⊆ ]0, 1
16 ]× ]0, 2].

Proof. Let (�, p) ∈ Π. Then, due to the estimate |t − 1
2 | ≤

1
2 , we get

(2n)!
n! �np〈n〉 = π2n(�, p) =

∫
[0,1]

(t− 1
2 )2ndπ(�, p)(t) ≤

∫
[0,1]

1
22n dπ(�, p)(t) = 1

4n

for all n ∈ N. This inequality yields

4� ≤ n

√
n!

(2n)!p〈n〉
. (2.1)

In order to compute the limit of the right hand side, we shall use the multiplicative version of the Cesaro–
Stolz theorem. Denote by an the expression under the nth root on the right hand side of (2.1). Then, 
according to this classical result, we get

4� ≤ lim n
√
an = lim an+1 = lim (n + 1)(1 + np) = 1

,

n→∞ n→∞ an n→∞ (2n + 2)(2n + 1)p 4
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which implies the inequality � ≤ 1
16 .

To prove the inequality p ≤ 2, we apply the Cauchy–Bunyakovski–Schwartz inequality:

(
π2(�, p)

)2 =
( ∫

[0,1]

(t− 1
2)2 · 1 dπ(�, p)(t)

)2

≤
( ∫

[0,1]

(t− 1
2)4dπ(�, p)(t)

)( ∫
[0,1]

1 dπ(�, p)(t)
)

= π4(�, p),

which reduces to

(
2�p)2 ≤ 12(�p)2

1 + p
.

This simplifies to the inequality p ≤ 2. �
Lemma 2.2. Let τ ∈ [0, 12 [. Then

1
2 (δτ + δ1−τ ) = π

(
(1−2τ

4 )2, 2
)

and 1
1−2τ λ|[τ,1−τ ] = π

(
(1−2τ

4 )2, 2
3
)
,

where λ denotes the standard Lebesgue measure restricted to [0, 1].

Proof. Denote μ := 1
2 (δτ + δ1−τ ). Then, μ0 = 1, μ̂1 = 1

2 and, for n ∈ N, we have

μn =
∫

[0,1]

(t− 1
2)ndμ(t) =

(τ − 1
2 )n + (1 − τ − 1

2 )n

2 =
{

(1
2 − τ)n if n is even,

0 if n is odd.

On the other hand, if p = 2, � = (1−2τ
4 )2, then, for all n ∈ N, π2n−1((1−2τ

4 )2, 2) = 0 = μ2n−1 and

π2n((1−2τ
4 )2, 2) = (2n)!

n! �np〈n〉 = (2n)! · (2�)n
n! · 1 · 3 · · · (2n− 1) = (4�)n = (1

2 − τ)2n = μ2n.

Therefore, all the moments of μ and π((1−2τ
4 )2, 2) are the same, which proves that μ = π((1−2τ

4 )2, 2).
For the second assertion, denote ν := 1

1−2τ λ|[τ,1−τ ]. Then, μ0 = 1, μ̂1 = 1
2 and, for n ∈ N, we have

νn =
∫

[0,1]

(t− 1
2 )ndν(t) = 1

1 − 2τ

∫
[τ,1−τ ]

(t− 1
2 )ndt = 1

1 − 2τ

[ (t− 1
2 )n+1

n + 1

]t=1−τ

t=τ

=
(1 − τ − 1

2 )n+1 − (τ − 1
2 )n+1

(1 − 2τ)(n + 1) =

⎧⎨
⎩

( 1
2−τ)n

n+1 if n is even,
0 if n is odd.

On the other hand, if p = 2
3 , � = (1−2τ

4 )2, then, for all n ∈ N,

π2n((1−2τ
4 )2, 2

3) = (2n)!
n! �np〈n〉 = (2n)! · (2�)n

n! · 3 · 5 · · · (2n + 1) = (4�)n

2n + 1 =
(1
2 − τ)2n

2n + 1 = ν2n.

Therefore, all the moments of ν and π((1−2τ )2, 2 ) are the same, which proves that ν = π((1−2τ )2, 2 ). �
4 3 4 3



Zs. Páles, A. Zakaria / J. Math. Anal. Appl. 507 (2022) 125813 7
3. Auxiliary results on generalized quasiarithmetic means

We introduce the following notations:

C0(I) := {(f, g) |f, g : I → R, g ∈ CP(I), f/g ∈ CM(I)},
Cn(I) := {(f, g) |(f, g) ∈ C0(I), f ,g are n-times continuously

differentiable such that f ′g − fg′ does not vanish anywhere} (n ∈ N).

Whenever n ≥ 2 and (f, g) ∈ Cn(I) and i, j ∈ {0, . . . , n}, then we define

W i,j
f,g :=

∣∣∣∣f (i) f (j)

g(i) g(j)

∣∣∣∣ , Φf,g :=
W 2,0

f,g

W 1,0
f,g

and Ψf,g := −
W 2,1

f,g

W 1,0
f,g

.

We can now restate [18, Lemma 1]:

Lemma 3.1. Let n ≥ 2 and (f, g) ∈ Cn(I) and define (ϕ0, . . . , ϕn) and (ψ0, . . . , ψn) by

ϕ0 := 0, ϕi+1 := ϕ′
i + ϕiΦf,g + ψi (i ∈ {0, . . . , n− 1}),

ψ0 := 1, ψi+1 := ϕiΨf,g + ψ′
i (i ∈ {0, . . . , n− 1}).

(3.1)

Then

W i,j
f,g =

∣∣∣∣ϕi ϕj

ψi ψj

∣∣∣∣ ·W 1,0
f,g (i, j ∈ {0, . . . , n}). (3.2)

In particular,

W i,0
f,g = ϕiW

1,0
f,g , W i,1

f,g = −ψiW
1,0
f,g , W i,2

f,g = (ϕiΨf,g − ψiΦf,g)W 1,0
f,g (i ∈ {0, . . . , n}). (3.3)

For small i, we have:

ϕ1 = 1, ϕ2 = Φf,g, ϕ3 = Φ′
f,g + Φ2

f,g + Ψf,g,

ψ1 = 0, ψ2 = Ψf,g, ψ3 = Φf,gΨf,g + Ψ′
f,g.

The subsequent elements can easily be computed by (3.1). We shall need the following consequence of (3.1).

Lemma 3.2. Under the same assumptions as in Lemma 3.1, for the sequences (ϕi) and (ψi), we have

ϕi+2 = ϕ′′
i + 2ϕ′

iΦf,g + ϕiϕ3 + 2ψ′
i + ψiΦf,g (i ∈ {0, . . . , n− 2}),

ψi+2 = 2ϕ′
iΨf,g + ϕiψ3 + ψ′′

i + ψiΨf,g (i ∈ {0, . . . , n− 2}).
(3.4)

Proof. Applying the recursion (3.1) twice, for i ∈ {0, . . . , n − 2}, we get

ϕi+2 = ϕ′
i+1 + ϕi+1Φf,g + ψi+1

= (ϕ′
i + ϕiΦf,g + ψi)′ + (ϕ′

i + ϕiΦf,g + ψi)Φf,g + ϕiΨf,g + ψ′
i,

= ϕ′′
i + 2ϕ′

iΦf,g + ϕiϕ3 + 2ψ′
i + ψiΦf,g,

ψi+2 = ϕi+1Ψf,g + ψ′
i+1

= (ϕ′
i + ϕiΦf,g + ψi)Ψf,g + (ϕiΨf,g + ψ′

i)′

= 2ϕ′Ψ + ϕ ψ + ψ′′ + ψ Ψ ,
i f,g i 3 i i f,g
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which completes the proof of (3.4). �
The next statement is instrumental for the computation of higher-order derivatives of means.

Lemma 3.3. ([16, Lemma 1], [26, Lemma 1.1]) Let (f, g) ∈ C0(I) and μ ∈ SM([0, 1]). Then, for all x, y ∈ I, 
the unique solution z of the equation

∫
[0,1]

∣∣∣∣f
(
tx + (1 − t)y

)
f(z)

g
(
tx + (1 − t)y

)
g(z)

∣∣∣∣ dμ(t) = 0 (3.5)

equals Mf,g;μ(x, y).

We say that (f, g), (h, k) ∈ C0(I) are equivalent pairs, denoted by (f, g) ∼ (h, k) if h and k are linear 
combinations of f and g. As we have seen it in [26, Theorem 2.1], (f, g) ∼ (h, k) holds if and only if 
Φf,g = Φh,k and Ψf,g = Ψh,k. It also easily follows from Lemma 3.3 that equivalent pairs of generating 
functions determine identical means, i.e., Mf,g;μ = Mh,k;μ holds whenever (f, g) ∼ (h, k).

4. Higher-order directional derivatives of generalized quasiarithmetic means

In view of [18, Lemma 5], we have that Mf,g;μ is n-times continuously differentiable on I×I provided that 
(f, g) ∈ Cn(I) and μ ∈ SM([0, 1]). For (f, g) ∈ C0(I) and x ∈ I, we construct mx : 2(I − x) ∩ 2(x − I) → R

by

mx(u) := mx;f,g;μ(u) := Mf,g;μ
(
x + 1

2u, x− 1
2u

)
. (4.1)

The symmetry of μ yields that mx is even, that is, mx(u) = mx(−u) holds for u ∈ Ux := 2(I−x) ∩2(x − I).
In the subsequent results, the derivatives of any real function h up to the order 8 will be denoted by h(i)

for all i ∈ {0, . . . , 8}. Alternatively, h(0), h(1), h(2) and h(3), will be denoted by h, h′, h′′ and h′′′, respectively.

Proposition 4.1. Let n ∈ N, (f, g) ∈ Cn(I) and μ ∈ SM([0, 1]). Then, for all fixed x ∈ I, the function mx

defined by (4.1) is n-times differentiable at u = 0. Furthermore, mx(0) = x and, in the cases n ∈ {1, 3, 5, 7}, 
the equality m(n)

x (0) = 0 holds and, in the cases n ∈ {2, 4, 6, 8}, we have

m′′
x(0) = μ2ϕ2(x),

m(4)
x (0) = μ4ϕ4(x) − 3μ2

2(ϕ3
2 + 2ψ2ϕ2)(x),

m(6)
x (0) = μ6ϕ6(x) − 15μ4μ2(ϕ4(ϕ2

2 + ψ2) + ϕ2ψ4)(x) − 15μ3
2ϕ2(ϕ3ϕ

2
2 − 3(ϕ2

2 + ψ2)(ϕ2
2 + 2ψ2))(x),

m(8)
x (0) = μ8ϕ8(x) − 28μ6μ2(ϕ6(ϕ2

2 + ψ2) + ϕ2ψ6)(x) − 35μ2
4(ϕ2

4ϕ2 + 2ϕ4ψ4)(x)

+ 210μ4μ
2
2(ϕ4(3ϕ4

2 + ϕ2
2(7ψ2 − ϕ3) + 2ψ2

2) + 2ϕ2ψ4(ϕ2
2 + 2ψ2))(x)

− 105μ4
2(ϕ4ϕ

4
2 + 15ϕ7

2 + 2ϕ3
2(5ϕ2

2 + 6ψ2)(6ψ2 − ϕ3) + 4ϕ2(6ψ3
2 − ϕ3

2ψ3))(x),

where ϕi = ϕi;f,g (i ∈ {2, 3, 4, 6, 8}) and ψi = ψi;f,g (i ∈ {2, 3, 4, 6}) are given by (3.1).

Proof. Let x ∈ I be fixed. The equality mx(0) = x is a direct consequence of (4.1). The n-times differen-
tiability of mx at u = 0 follows from [18, Lemma 5]. By the symmetry of the mean Mf,g;μ, mx : Ux → R is 
even. This implies that all odd-order derivatives of mx vanish at the point u = 0.

For brevity, let F denote the vector valued map 
(f
g

)
: I → R2. Then, for u ∈ Ux, (3.5) can be rewritten 

as
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∫
[0,1]

∣∣∣F (x + (t− 1
2 )u) (F ◦mx)(u)

∣∣∣ dμ(t) = 0.

Performing an nth-order differentiation with respect to u the standard Leibniz Rule implies

n∑
i=0

(
n

i

) ∫
[0,1]

∣∣∣F (i)(x + (t− 1
2 )u) (F ◦mx)(n−i)(u)

∣∣∣ (t− 1
2 )idμ(t) = 0.

Now putting u = 0, we get

n∑
i=0

(
n

i

)
μi

∣∣∣F (i)(x) (F ◦mx)(n−i)(0)
∣∣∣ = 0.

Using that the odd-order centralized moments of μ are equal to zero, this equality finally simplifies to

⌊n
2
⌋∑

i=0

(
n

2i

)
μ2i

∣∣∣F (2i)(x) (F ◦mx)(n−2i)(0)
∣∣∣ = 0. (4.2)

The evenness of mx implies that F ◦mx is also even on Ux and hence all of its (existing) odd-order derivatives 
vanish at u = 0. This shows that (4.2) is nontrivial only when n is even. To elaborate the condition (4.2) in 
the cases n ∈ {2, 4, 6, 8}, we shall use Faá di Bruno’s formula to compute (F ◦mx)(N) as follows

(F ◦mx)(N)(0) :=
N∑

k=1

(F (k) ◦mx) ·BN,k

(
m′

x(0),m′′
x(0), . . . ,m(N−k+1)

x (0)
)
. (4.3)

Here BN,k : RN−k+1 → R is the incomplete Bell polynomial, which is defined by the recursive formula

BN,k(x1, . . . , xN−k+1) :=
N−k+1∑

j=1

(
N − 1
j − 1

)
xjBN−j,k−1(x1, . . . , xN−j−k+2),

such that B0,0 = 1 and BN,0 = 0 = B0,k for all k, N ∈ N. When applying the formula (4.3), we have 
that the odd-order derivatives of mx are zero at u = 0, therefore, we need to compute the Bell polynomials 
only for such arguments where the odd coordinates are equal to zero. Now, an easy calculation shows 
that, for all N ∈ {1, . . . , 8}, k ∈ {1, . . . , N} and argument xxxi := (x1, x2, . . . , xi) where x2j−1 = 0 for all 
j ∈ {1, . . . , 
 i+1

2 �},

BN,k(xxxN−k+1) = 0 if either N is odd & k ∈ {1, . . . , N} or N is even & k ∈ {N+2
2 , . . . , N},

and, for the remaining cases, we have

B2,1(xxx2) = x2,

B4,1(xxx4) = x4, B4,2(xxx3) = 3x2
2,

B6,1(xxx6) = x6, B6,2(xxx5) = 15x2x4, B6,3(xxx4) = 15x3
2,

B8,1(xxx8) = x8, B8,2(xxx7) = 28x2x6 + 35x2
4, B8,3(xxx6) = 210x2

2x4, B8,4(xxx5) = 105x4
2.

These identities, together with formula (4.3), imply that
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(F ◦mx)(0) = F (x),

(F ◦mx)′′(0) = F ′(x)m′′
x(0),

(F ◦mx)(4)(0) = F ′(x)m(4)
x (0) + 3F ′′(x)(m′′

x(0))2,

(F ◦mx)(6)(0) = F ′(x)m(6)
x (0) + 15F ′′(x)m′′

x(0)m(4)
x (0) + 15F ′′′(x)(m′′

x(0))3,

(F ◦mx)(8)(0) = F ′(x)m(8)
x (0) + F ′′(x)(28m′′

x(0)m(6)
x (0) + 35(m(4)

x (0))2)

+ 210F ′′′(x)(m′′
x(0))2m(4)

x (0) + 105F (4)(x)(m′′
x(0))4.

(4.4)

From now on, we shall use the notations ϕi and ψi which were introduced in Lemma 3.1. If n = 2, then 
equation (4.2) yields

∣∣∣F (x) (F ◦mx)′′(0)
∣∣∣ + μ2

∣∣∣F ′′(x) (F ◦mx)(0)
∣∣∣ = 0,

which, by the first formula in (4.4), simplifies to

−W 1,0
f,g (x)m′′

x(0) + μ2W
2,0
f,g (x) = 0.

This shows m′′
x(0) = μ2ϕ2(x).

If n = 4, then (4.2) states that
∣∣∣F (x) (F ◦mx)(4)(0)

∣∣∣ + 6μ2

∣∣∣F ′′(x) (F ◦mx)′′(0)
∣∣∣ + μ4

∣∣∣F (4)(x) (F ◦mx)(0)
∣∣∣ = 0,

which, by (4.4), gives

−W 1,0
f,g (x)m(4)

x (0) − 3W 2,0
f,g (x)(m′′

x(0))2 + 6μ2W
2,1
f,g (x)m′′

x(0) + μ4W
4,0
f,g (x) = 0.

Thus, applying (3.3) and the expression obtained for m′′
x(0), we get

m(4)
x (0) = −3ϕ2(x)(m′′

x(0))2 − 6μ2ψ2(x)m′′
x(0) + μ4ϕ4(x)

= −3μ2
2ϕ

3
2(x) − 6μ2

2ψ2(x)ϕ2(x) + μ4ϕ4(x).

If n = 6, then (4.2) results
∣∣∣F (x) (F ◦mx)(6)(0)

∣∣∣ + 15μ2

∣∣∣F ′′(x) (F ◦mx)(4)(0)
∣∣∣

+ 15μ4

∣∣∣F (4)(x) (F ◦mx)′′(0)
∣∣∣ + μ6

∣∣∣F (6)(x) (F ◦mx)(0)
∣∣∣ = 0,

which, by (4.4), amounts to

−W 1,0
f,g (x)m(6)

x (0) − 15W 2,0
f,g (x)m′′

x(0)m(4)
x (0) − 15W 3,0

f,g (x)(m′′
x(0))3

+ 15μ2W
2,1
f,g (x)m(4)

x (0) + 15μ4W
4,1
f,g (x)m′′

x(0) + μ6W
6,0
f,g (x) = 0.

From here, using (3.3), we arrive at

m(6)
x (0) = − 15ϕ2(x)m′′

x(0)m(4)
x (0) − 15ϕ3(x)(m′′

x(0))3

− 15μ2ψ2(x)m(4)
x (0) − 15μ4ψ4(x)m′′

x(0) + μ6ϕ6(x).

By substituting the expressions obtained for m′′
x(0) and m(4)

x (0), this equality reduces to the assertion for 
m

(6)
x (0).
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Finally, if n = 8, then (4.2) implies

∣∣∣F (x) (F ◦mx)(8)(0)
∣∣∣ + 28μ2

∣∣∣F ′′(x) (F ◦mx)(6)(0)
∣∣∣ + 70μ4

∣∣∣F (4)(x) (F ◦mx)(4)(0)
∣∣∣

+ 28μ6

∣∣∣F (6)(x) (F ◦mx)′′(0)
∣∣∣ + μ8

∣∣∣F (8)(x) (F ◦mx)(0)
∣∣∣ = 0.

Now, applying the identities (4.4), this gives

−W 1,0
f,g (x)m(8)

x (0) −W 2,0
f,g (x)(28m′′

x(0)m(6)
x (0) + 35(m(4)

x (0))2) − 210W 3,0
f,g (x)(m′′

x(0))2m(4)
x (0)

− 105W 4,0
f,g (x)(m′′

x(0))4 + 28μ2W
2,1
f,g (x)m(6)

x (0) − 420μ2W
3,2
f,g (x)(m′′

x(0))3

+ 70μ4W
4,1
f,g (x)m(4)

x (0) + 210μ4W
4,2
f,g (x)(m′′

x(0))2 + 28μ6W
6,1
f,g (x)m′′

x(0) + μ8W
8,0
f,g (x) = 0.

From here, using (3.2) and (4.4), we get

m(8)
x (0) = − ϕ2(x)(28m′′

x(0)m(6)
x (0) + 35(m(4)

x (0))2) − 210ϕ3(x)(m′′
x(0))2m(4)

x (0)

− 105ϕ4(x)(m′′
x(0))4 − 28μ2ψ2(x)m(6)

x (0) − 420μ2(ϕ3ψ2 − ψ3ϕ2)(x)(m′′
x(0))3

− 70μ4ψ4(x)m(4)
x (0) + 210μ4(ϕ4ψ2 − ψ4ϕ2)(x)(m′′

x(0))2 − 28μ6ψ6(x)m′′
x(0) + μ8ϕ8(x).

This, together with the formulae for m′′
x(0), m(4)

x (0), and m(6)
x (0), implies the required result. �

5. Necessary and sufficient conditions for the equality of generalized quasiarithmetic means

If (f, g), (h, k) ∈ C0(I) and μ, ν ∈ SM([0, 1]), then Mf,g;μ and Mh,k;ν are said to be equal near the diagonal 
Δ(I) := {(x, x) | x ∈ I} if, for some open set U ⊆ I2 containing a dense subset D of Δ(I), they are equal 
at each pair belonging to U .

Lemma 5.1. ([18, Lemma 7]) Let μ, ν ∈ SM([0, 1]), n ∈ N and (f, g), (h, k) ∈ C2n(I) and assume that Mf,g;μ
equals Mh,k;ν near Δ(I). Then, for all i ∈ {1, . . . , n} and x ∈ I,

m
(2i)
x;f,g;μ(0) = m

(2i)
x;h,k;ν(0). (5.1)

In the next statement, we consider first the particular case when μ = ν and Ψf,g = Ψh,k, and then we 
characterize the equality of the means Mf,g;μ and Mh,k;ν .

Theorem 5.2. Let μ ∈ SM([0, 1]) with μ2 > 0 and (f, g), (h, k) ∈ C2(I) such that Ψf,g = Ψh,k. Then the 
following assertions are equivalent:

(i) Mf,g;μ and Mh,k;μ are equal on I2.
(ii) Mf,g;μ and Mh,k;μ are equal near Δ(I).
(iii) m′′

x;f,g;μ(0) = m′′
x;h,k;μ(0) holds for all x ∈ I.

(iv) Φf,g = Φh,k holds on I.
(v) (f, g) ∼ (h, k) holds.

Proof. The assertion (i)⇒(ii) is clear. The assertion (ii)⇒(iii) follows from Lemma 5.1. If (iii) holds, then, by 
Proposition 4.1, we get μ2Φf,g = μ2Φh,k, which reduces to the equality Φf,g = Φh,k proving (iv). Finally, [26, 
Theorem 2.1] implies that (f, g) ∼ (h, h) which yields both of the implications (iv)⇒(v) and (v)⇒(i). �
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Due to the symmetry of the measure μ, the third-order necessary condition m′′′
x;f,g;μ(0) = m′′′

x;h,k;μ(0)
does not imply the equality Ψf,g = Ψh,k (as it is obtained in [18]). Therefore, in the sequel, we want to 
consider problems where either the measures μ and ν are different or the equality Ψf,g = Ψh,k cannot be 
established. In view of Proposition 4.1 and Lemma 3.1, without any further assumption on the measures μ
and ν, we can easily see that the ith equation in (5.1) is a nonlinear differential equation of order 2(i −1) for 
the unknown functions Φf,g, Ψf,g, Φh,k, and Ψh,k. Therefore, for the solution of the equality problem of the 
means, it seems to be enough to take these equations for i ∈ {1, 2, 3, 4} and solve the system of differential 
equations so obtained. However, the integration of this system in its full generality seems to be hopeless. 
Therefore, we take μ and ν from the two-parameter family of measures {π(�, p) : (�, p) ∈ Π} introduced in 
Section 2, for which we will be able to derive a solution method.

In the subsequent lemmas, we will take the following additional hypothesis:

(H) μ = π(�, p) and ν = π(�, q) for some (�, p), (�, q) ∈ Π.

Lemma 5.3. Assume (H), let n ≥ 2 and (f, g), (h, k) ∈ Cn(I) and define V :=
∣∣W 1,0

f,g

∣∣−p. Then V is (n − 1)-
times continuously differentiable. If, for all x ∈ I,

m′′
x;f,g;μ(0) = m′′

x;h,k;ν(0) (5.2)

holds, then

qΦh,k = pΦf,g = −V ′

V
=: Φ. (5.3)

Proof. If (f, g), (h, k) ∈ Cn(I), then W 1,0
f,g is a nowhere zero function which is (n − 1)-times continuously 

differentiable, hence so is V .
Due to the formula for the second-order derivative in Proposition 4.1 and Lemma 3.1, we have that

m′′
x;f,g;μ(0) = μ2ϕ2;f,g(x) = μ2Φf,g = 2p�Φf,g, m′′

x;h,k;ν(0) = ν2ϕ2;h,k(x) = ν2Φh,k = 2q�Φh,k.

Thus, the equality (5.2) yields the first equality in (5.3). From the definition of V , we get that

V ′ = (−p)
∣∣W 1,0

f,g

∣∣−pW
2,0
f,g

W 1,0
f,g

= (−V )pΦf,g = (−V )Φ.

This proves the second equality in (5.3). �
As an easy consequence of the equality V ′ = −V Φ, we get the following statement.

Lemma 5.4. Under the notations of the previous lemma and appropriate differentiability assumptions, we 
have

V ′ = −V Φ,

V ′′ = V (Φ2 − Φ′),

V ′′′ = V (−Φ3 + 3Φ′Φ − Φ′′),

V (4) = V (Φ4 − 6Φ′Φ2 + 4Φ′′Φ + 3Φ′ 2 − Φ′′′),

V (5) = V (−Φ5 + 10Φ′Φ3 − 15Φ′ 2Φ − 10Φ′′Φ2 + 10Φ′′Φ′ + 5Φ′′′Φ − Φ(4)).
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Proof. Using the equality V ′ = −V Φ, we recursively get

V ′′ = (−V Φ)′ = −V ′Φ − V Φ′ = V (Φ2 − Φ′),

V ′′′ = (V (Φ2 − Φ′))′ = V ′(Φ2 − Φ′) + V (Φ2 − Φ′)′ = V (−Φ3 + 3Φ′Φ − Φ′′),

V (4) = (V (−Φ3 + 3Φ′Φ − Φ′′))′ = V ′(−Φ3 + 3Φ′Φ − Φ′′) + V (−Φ3 + 3Φ′Φ − Φ′′)′

= V (Φ4 − 6Φ′Φ2 + 4Φ′′Φ + 3Φ′ 2 − Φ′′′),

V (5) = (V (Φ4 − 6Φ′Φ2 + 4Φ′′Φ + 3Φ′ 2 − Φ′′′))′

= V ′(Φ4 − 6Φ′Φ2 + 4Φ′′Φ + 3Φ′ 2 − Φ′′′) + V (Φ4 − 6Φ′Φ2 + 4Φ′′Φ + 3Φ′ 2 − Φ′′′)′

= V (−Φ5 + 10Φ′Φ3 − 15Φ′ 2Φ − 10Φ′′Φ2 + 10Φ′′Φ′ + 5Φ′′′Φ − Φ(4)). �
Lemma 5.5. Assume (H), let n ≥ 4 and (f, g), (h, k) ∈ Cn(I) and define V :=

∣∣W 1,0
f,g

∣∣−p. If, for all x ∈ I

and i ∈ {1, 2},

m
(2i)
x;f,g;μ(0) = m

(2i)
x;h,k;ν(0) (5.4)

is satisfied, then (5.3) holds and there exist a constant c ∈ R and an (n −3)-times continuously differentiable 
function B : I → R such that

Ψf,g = B + c

6p〈2〉V
− (p− 2)(Φ′ − Φ2)

6p2 and Ψh,k = B − c

6q〈2〉V
− (q − 2)(Φ′ − Φ2)

6q2 . (5.5)

Proof. It follows from Lemma 5.3 that V is (n − 1)-times, i.e., at least 3-times continuously differentiable 
and the case i = 1 in (5.4) that (5.3) holds on I. Using the recursion (3.1), we obtain

ϕ2;f,g = Φf,g = Φ
p
, ψ2;f,g = Ψf,g,

ϕ3;f,g = ϕ′
2;f,g + ϕ2;f,gΦf,g + ψ2;f,g = Φ′

p
+ Φ2

p2 + Ψf,g,

ψ3;f,g = ϕ2;f,gΨf,g + ψ′
2;f,g = − V ′

pV
Ψf,g + Ψ′

f,g,

ϕ4;f,g = ϕ′
3;f,g + ϕ3;f,gΦf,g + ψ3;f,g = Φ′′

p
+ 3Φ′Φ

p2 + Φ3

p3 − 2V ′

pV
Ψf,g + 2Ψ′

f,g.

(5.6)

These formulae, together with μ = π(�, p) and the formula for the fourth-order derivative by Proposi-
tion 4.1, give

m
(4)
x;f,g;μ(0) = μ4ϕ4;f,g(x) − 3μ2

2(ϕ3
2;f,g + 2ψ2;f,gϕ2;f,g)(x)

= 12�2
(
− p〈2〉V ′′′

pV
+ 3V ′′V ′

V 2 − 2V ′ 3

V 3 + 2p〈2〉(V Ψf,g)′

V

)
(x)

= 12�2
(

pΦ′′

1 + p
+ 3Φ′Φ

1 + p
− Φ3

1 + p
+ 2p2

1 + p

(V Ψf,g)′

V

)
(x).

Similarly, using that ν = π(�, q), we get

m
(4)
x;h,k;ν(0) = 12�2

(
qΦ′′

+ 3Φ′Φ − Φ3
+ 2q2 (V Ψh,k)′

)
(x).
1 + q 1 + q 1 + q 1 + q V
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Therefore, the case i = 2 in (5.4) reduces to

2p〈2〉(V Ψf,g)′ +
p〈2〉

p
V (Φ′′ − 3Φ′Φ + Φ3) = 2q〈2〉(V Ψh,k)′ +

q〈2〉

q
V (Φ′′ − 3Φ′Φ + Φ3),

or equivalently, using that V ′ = −V Φ,

2p〈2〉(V Ψf,g)′ +
p〈2〉

p
(V (Φ′ − Φ2))′ = 2q〈2〉(V Ψh,k)′ +

q〈2〉

q
(V (Φ′ − Φ2))′.

Hence, after integration, for some real constant c,

2p〈2〉V Ψf,g + p〈2〉

p
V (Φ′ − Φ2) − c

3 = 2q〈2〉V Ψh,k + q〈2〉

q
V (Φ′ − Φ2) + c

3 .

Denote by C the function standing on the left hand side of this equality. The regularity assumptions imply 
that C is (n − 3)-times continuously differentiable. Now defining B as B := 3C − 2V (Φ′ − Φ2), we can see 
that B is also (n − 3)-times continuously differentiable and the above equality yields (5.5). �
Lemma 5.6. Assume (H), let n ≥ 6 and (f, g), (h, k) ∈ Cn(I) and define V :=

∣∣W 1,0
f,g

∣∣−p. If, for all x ∈ I

and i ∈ {1, 2, 3}, the equality (5.4) is satisfied, then the equality (5.3) holds and the identities (5.5) are valid 
for some real constant c and an (n − 3)-times continuously differentiable function B : I → R. In addition, 
we get

(p− q)
(

5pq − p− q − 4
(1 + p)(1 + q) V (5)V + (2B′′V + B′V ′)′ + B′B

)
= c(4pq + 3p + 3q + 2)B′. (5.7)

In particular, if p = q, then cB is a constant and if p �= q and either 5pq = p + q + 4 or V is an at most 
4-degree polynomial, then there exist real constants d, e such that

(B′)2V = −B3

6 + c(4pq + 3p + 3q + 2)
2(p− q) B2 + dB + e. (5.8)

Proof. The equalities (5.3) and (5.5) are consequences of Lemma 5.3 and Lemma 5.5, respectively. Using 
the recursive formulas (3.1), (3.4), the formulas from (5.6), and the first identity in (5.5), we get

ψ4;f,g = ϕ3;f,gΨf,g + ψ′
3;f,g

=
(

2Φ′

p
+ Φ2

p2

)
Ψf,g + Ψ2

f,g + Φ
p

Ψ′
f,g + Ψ′′

f,g,

ϕ6;f,g = ϕ′′
4;f,g + 2ϕ′

4;f,gΦf,g + ϕ4;f,gϕ3;f,g + 2ψ′
4;f,g + ψ4;f,gΦf,g

= Φ(4)

p
+ 5Φ′′′Φ

p2 + 10Φ′′Φ′

p2 + 10Φ′′Φ2

p3 + 15Φ′ 2Φ
p3 + 10Φ′Φ3

p4 + Φ5

p5 + 3Φ
p

Ψ2
f,g

+
(

7Φ′′

p
+ 15Φ′Φ

p2 + 4Φ3

p3

)
Ψf,g +

(
12Φ′

p
+ 9Φ2

p2

)
Ψ′

f,g + 6Ψ′
f,gΨf,g + 9Φ

p
Ψ′′

f,g + 4Ψ′′′
f,g.

(5.9)

Combining these identities with μ = π(�, p) and the formula for the sixth-order derivative by Proposition 4.1
yields
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m
(6)
x;f,g;μ(0) = μ6ϕ6;f,g(x) − 15μ4μ2(ϕ4;f,g(ϕ2

2;f,g + ψ2;f,g) + ϕ2;f,gψ4;f,g)(x)

− 15μ3
2ϕ2;f,g(ϕ3;f,gϕ

2
2;f,g − 3(ϕ2

2;f,g + ψ2;f,g)(ϕ2
2;f,g + 2ψ2;f,g))(x)

= 120�3p〈3〉
(Φ(4)

p
+ 5Φ′′′Φ

p2 + 10Φ′′Φ′

p2 + (7 − 6p)Φ′′Φ2

p3 + 15Φ′ 2Φ
p3 − (2p + 21)Φ′Φ3

p3 + 4Φ5

p3

+ 12pΦΨ2
f,g + 2Ψf,g

p
((2 − 3p)Φ′′ − 15Φ′Φ + 8Φ3) +

6Ψ′
f,g

p
(2Φ′ − 3Φ2) − 12pΨ′

f,gΨf,g

+
6(1 − p)Ψ′′

f,g

p
Φ + 4Ψ′′′

f,g

)
(x).

(5.10)
Using the first identity in (5.5) and V ′ = −V Φ, we recursively get

Ψ′
f,g = −p− 2

6p2 (Φ′′ − 2Φ′Φ) + B′ + (B + c)Φ
6p〈2〉V

,

Ψ′′
f,g = −p− 2

6p2 (Φ′′′ − 2Φ′′Φ − 2Φ′ 2) + B′′ + 2B′Φ + (B + c)(Φ′ + Φ2)
6p〈2〉V

,

Ψ′′′
f,g = −p− 2

6p2 (Φ(4) − 2Φ′′′Φ − 6Φ′′Φ′) + B′′′ + 3B′′Φ + 3B′(Φ′ + Φ2) + (B + c)(Φ′′ + 3Φ′Φ + Φ3)
6p〈2〉V

.

(5.11)
Now, substituting these identities into (5.10), we arrive at

m
(6)
x;f,g;μ(0) = 40�3

(1 + p)(1 + 2p)

(
p(p + 4)(Φ(4) + Φ5) + (7p2 − 2p + 6)(Φ(3)Φ + 2Φ′′Φ′)

− (8p2 − 13p + 9)Φ′′Φ2 − 3(p2 − 11p + 3)Φ′ 2Φ − (4p2 + 31p− 3)Φ′Φ3

+ (p + 1)
V

(
2pB′′′ + (7p + 4)B′Φ′

)
+ (p + 1)2

V

(
3B′′Φ −B′Φ2 − B′(B + c)

V

))
(x).

Similar argument applies to the case ν = π(�, q), we have

m
(6)
x;h,k;ν(0) = 40�3

(1 + q)(1 + 2q)

(
q(q + 4)(Φ(4) + Φ5) + (7q2 − 2q + 6)(Φ(3)Φ + 2Φ′′Φ′)

− (8q2 − 13q + 9)Φ′′Φ2 − 3(q2 − 11q + 3)Φ′ 2Φ − (4q2 + 31q − 3)Φ′Φ3

+ (q + 1)
V

(
2qB′′′ + (7q + 4)B′Φ′

)
+ (q + 1)2

V

(
3B′′Φ −B′Φ2 − B′(B − c)

V

))
(x).

Now the case i = 3 in (5.4) simplifies to

(p− q)
(

(5pq − p− q − 4)
(p + 1)(q + 1) V 2

(
− (Φ(4) + Φ5) + 5(Φ(3)Φ + 2Φ′′Φ′) − 10Φ′′Φ2 − 15Φ′ 2Φ + 10Φ′Φ3

)

+ 2B′′′ − 3B′′Φ + B′(Φ2 − Φ′) + B′B

)
= c(4pq + 3p + 3q + 2)B′.

Using the first, second and last identities from Lemma 5.4, we can easily see that this equality is exactly 
equivalent to (5.7).

It is easily seen that the case p = q implies that cB is a constant. On the other hand, if either 5pq = p +q+4
or V is an at most 4-degree polynomial, then identity (5.7) reduces to

(2B′′V + B′V ′)′ + B′B = c(4pq + 3p + 3q + 2)B′
.
(p− q)
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Thus, after integration for some real constant d, we get the following first-order inhomogeneous linear 
differential equation for the function V :

2B′′V + B′V ′ + B2

2 = c(4pq + 3p + 3q + 2)B
(p− q) + d. (5.12)

Multiplying this equality by B′ side by side, the equation so obtained is again integrable, therefore there 
exists a constant e such that formula (5.8) holds. �
Lemma 5.7. Under the same assumptions of the previous lemma provided that the function B : I → R is 
5-times continuously differentiable and if p �= q and either 5pq = p + q + 4 or V is an at most 4-degree 
polynomial. Then we have

B′′V = B′V Φ
2 + R ◦B,

B′′′V = B′V

4 (2Φ′ + Φ2) + 3Φ
2 (R ◦B) + B′(R′ ◦B),

B(4)V = B′V

8
(
4Φ′′ + 6Φ′Φ + Φ3) +

(7Φ2

4 + 2Φ′
)
(R ◦B) + 3B′Φ(R′ ◦B) + 1

V
((R′R) ◦B)

+ B′ 2(R′′ ◦B),

B(5)V = B′V

16
(
8Φ′′′ + 16Φ′′Φ + 12Φ′ 2 + 12Φ′Φ2 + Φ4) + 1

8(20Φ′′ + 50Φ′Φ + 15Φ3)(R ◦B)

+ B′

4
(
25Φ2 + 20Φ′)(R′ ◦B) + 5Φ

V
((R′R) ◦B) + B′

V
(R′ 2 ◦B)

+ 3B′

V
(R′′R ◦B) + 5B′ 2Φ(R′′ ◦B),

where R of at most second degree polynomial which takes the form

R(u) := −u2

4 + c(4pq + 3p + 3q + 2)u
2(p− q) + d

2 .

Proof. Using Lemma 5.6, we get that identity (5.12) is valid. Thus, using V ′ = −V Φ, we obtain

B′′V = B′V Φ
2 − B2

4 − c(4pq + 3p + 3q + 2)B
2(p− q) + d

2 = B′V Φ
2 + R ◦B,

B′′′V = −B′′V ′ + B′′V Φ
2 + B′V ′Φ

2 + B′V Φ′

2 + (R′ ◦B)B′

= B′V

4 (2Φ′ + Φ2) + 3Φ
2 (R ◦B) + B′(R′ ◦B),

B(4)V = −B′′′V ′ + B′′V

4 (2Φ′ + Φ2) + B′V ′

4 (2Φ′ + Φ2) + B′V

4 (2Φ′′ + 2ΦΦ′)

+ 3Φ′

2 (R ◦B) + 3Φ
2 (R′ ◦B)B′ + (R′′ ◦B)B′ 2 + (R′ ◦B)B′′

=
(B′V

4 (2Φ′ + Φ2) + 3Φ
2 (R ◦B) + (R′ ◦B)B′

)
Φ

+
(B′V Φ

8 + R ◦B
4

)
(2Φ′ + Φ2) − B′V Φ

4 (2Φ′ + Φ2) + B′V

4 (2Φ′′ + 2ΦΦ′)

+ 3Φ′
(R ◦B) + 3Φ(R′ ◦B)B′ + (R′′ ◦B)B′ 2 + R′ ◦B(B′V Φ + R ◦B

)

2 2 V 2
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= B′V

8
(
4Φ′′ + 6Φ′Φ + Φ3) +

(7Φ2

4 + 2Φ′
)
(R ◦B) + 3B′Φ(R′ ◦B) + 1

V
((R′R) ◦B)

+ B′ 2(R′′ ◦B),

and

B(5)V = −B(4)V ′ + B′′V + B′V ′

8
(
4Φ′′ + 6Φ′Φ + Φ3) + B′V

8
(
4Φ′′′ + 6Φ′′Φ + 6Φ′ 2 + 3Φ′Φ2)

+
(7Φ′Φ

2 + 2Φ′′
)
(R ◦B) +

(7Φ2

4 + 2Φ′
)
(R′ ◦B)B′ + 3(B′′Φ + B′Φ′)(R′ ◦B)

+ 3B′Φ(R′′ ◦B)B′ − V ′

V 2 ((R′R) ◦B) + 1
V

((R′′R + R′ 2) ◦B)B′ + 2B′′B′(R′′ ◦B)

=
(B′V

8
(
4Φ′′ + 6Φ′Φ + Φ3) +

(7Φ2

4 + 2Φ′
)
(R ◦B) + 3B′Φ(R′ ◦B) + 1

V
((R′R) ◦B)

+ B′ 2(R′′ ◦B)
)
Φ + 2R ◦B −B′V Φ

16
(
4Φ′′ + 6Φ′Φ + Φ3) + B′V

8
(
4Φ′′′ + 6Φ′′Φ + 6Φ′ 2 + 3Φ′Φ2)

+
(7Φ′Φ

2 + 2Φ′′
)
(R ◦B) +

(7Φ2

4 + 2Φ′
)
(R′ ◦B)B′ + 3

(Φ
V

(B′V Φ
2 + R ◦B

)
+ B′Φ′

)
(R′ ◦B)

+ 3B′Φ(R′′ ◦B)B′ + Φ
V

((R′R) ◦B) + B′

V
((R′′R + R′ 2) ◦B) + 2B′

V

(B′V Φ
2 + R ◦B

)
(R′′ ◦B)

= B′V

16
(
8Φ′′′ + 16Φ′′Φ + 12Φ′ 2 + 12Φ′Φ2 + Φ4) + 1

8(20Φ′′ + 50Φ′Φ + 15Φ3)(R ◦B)

+ B′

4
(
25Φ2 + 20Φ′)(R′ ◦B) + 5Φ

V
((R′R) ◦B) + B′

V
(R′ 2 ◦B) + 3B′

V
(R′′R ◦B)

+ 5B′ 2Φ(R′′ ◦B). �
Lemma 5.8. Assume (H) with (p, q) = (2, 23 ), let (f, g), (h, k) ∈ C8(I). If, for all x ∈ I and i ∈ {1, 2, 3, 4}, 
the equality (5.4) is satisfied, then Φh,k = 3Φf,g holds and there exist real constants a, b such that

Ψf,g = a
(
W 1,0

f,g

)2
and Ψh,k = b

(
W 1,0

h,k

) 2
3 + 1

3Φ′
h,k − 2

9Φ2
h,k. (5.13)

Proof. The equality Φh,k = 3Φf,g follows from Lemma 5.3 and we also have (5.3) with V :=
(
W 1,0

f,g

)−2. 
Then V is seven times differentiable and hence Φ is six times differentiable. The validity of (5.4) for i = 2
and Lemma 5.5 imply the existence of a constant c and a five times differentiable function B : I → R such 
that the equalities in (5.5) hold. The parameters p = 2 and q = 2

3 also satisfy the condition 5pq = p + q+4, 
hence validity of (5.4) for i = 3 yields that we have the conclusions of Lemma 5.7 with

R(u) = −u2

4 + 23cu
4 + d

2 .
(5.14)

Using the two-step recursion (3.4) for i ∈ {4, 6}, we arrive at

ψ6;f,g = 2ϕ′
4;f,gΨf,g + ϕ4;f,gψ3;f,g + ψ′′

4;f,g + ψ4;f,gΨf,g

= Ψ(4)
f,g + Ψ′′′

f,g

Φ
p

+ 7Ψ′′
f,gΨf,g + Ψ′′

f,g

(
Φ2

p2 + 4Φ′

p

)
+ Ψ′

f,g

(
6Φ′′

p
+ 7Φ′Φ

p2 + Φ3

p3

)
+ 4Ψ′ 2

f,g

+ Ψ′
f,gΨf,g

9Φ
p

+ Ψf,g

(
4Φ′′′

p
+ 9Φ′′Φ

p2 + 8Φ′ 2

p2 + 9Φ′Φ2

p3 + Φ4

p4

)
+ Ψ2

f,g

(
6Φ′

p
+ 3Φ2

p2

)
+ Ψ3

f,g,

and
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ϕ8;f,g = ϕ′′
6;f,g + 2ϕ′

6;f,gΦf,g + ϕ6;f,gϕ3;f,g + 2ψ′
6;f,g + ψ6;f,gΦf,g

= Φ(6)

p
+ 7Φ(5)Φ

p2 + Φ(4)
(

12Φ′

p2 + 21Φ2

p3

)
+ 35Φ′′′

(
Φ′′

p2 + 3Φ′Φ
p3 + Φ3

p4

)
+ 70Φ′′ 2Φ

p3

+ 35Φ′′
(

3Φ′ 2

p3 + 6Φ′Φ2

p4 + Φ4

p5

)
+ 105Φ′ 3Φ

p4 + 105Φ′ 2Φ3

p5 + 21Φ′Φ5

p6 + Φ7

p7 +
4ΦΨ3

f,g

p

+
(

22Φ′′

p
+ 42Φ′Φ

p2 + 10Φ3

p3

)
Ψ2

f,g +
(

16Φ(4)

p
+ 56Φ′′′Φ

p2 + 86Φ′′Φ2

p3 + 112Φ′′Φ′

p2 + 128Φ′ 2Φ
p3

+ 70Φ′Φ3

p4 + 6Φ5

p5

)
Ψf,g +

(
46Φ′′′

p
+ 124Φ′′Φ

p2 + 90Φ′ 2

p2 + 142Φ′Φ2

p3 + 20Φ4

p4

)
Ψ′

f,g

+ 40Φ
p

Ψ′ 2
f,g +

(
72Φ′

p
+ 48Φ2

p2

)
Ψ′

f,gΨf,g +
(

60Φ′′

p
+ 124Φ′Φ

p2 + 34Φ3

p3

)
Ψ′′

f,g + 52Φ
p

Ψ′′
f,gΨf,g

+
(

44Φ′

p
+ 34Φ2

p2

)
Ψ′′′

f,g + 20Φ
p

Ψ(4)
f,g + 12Ψ′

f,gΨ2
f,g + 48Ψ′′

f,gΨ′
f,g + 24Ψ′′′

f,gΨf,g + 6Ψ(5)
f,g.

These identities, together with the formulas from (5.6) and (5.9), μ = π(�, 2), and the formula for the 
eighth-order derivative by Proposition 4.1, imply that

m
(8)
x;f,g;μ(0) = 256�4

(
ϕ8;f,g(x) − 28(ϕ6;f,g(ϕ2

2;f,g + ψ2;f,g) + ϕ2;f,gψ6;f,g)(x) − 35(ϕ2
4;f,gϕ2;f,g

+ 2ϕ4;f,gψ4;f,g)(x) + 210(ϕ4;f,g(3ϕ4
2;f,g + ϕ2

2;f,g(7ψ2;f,g − ϕ3;f,g) + 2ψ2
2;f,g)

+ 2ϕ2;f,gψ4;f,g(ϕ2
2;f,g + 2ψ2;f,g))(x) − 105(ϕ4;f,gϕ

4
2;f,g + 15ϕ7

2;f,g

+ 2ϕ3
2;f,g(5ϕ2

2;f,g + 6ψ2;f,g)(6ψ2;f,g − ϕ3;f,g) + 4ϕ2;f,g(6ψ3
2;f,g − ϕ3

2;f,gψ3;f,g))(x)
)

= 16�4
(
8Φ(6) + 28Φ(5)Φ + 14Φ(4)(6Φ′ − Φ2) + 35Φ′′′(4Φ′′ + 6Φ′Φ − 3Φ3) + 70Φ′′ 2Φ

+ 70Φ′′Φ′(3Φ′ − 7Φ2) + 105Φ′ 3Φ − 630Φ′ 2Φ3 + 329Φ′Φ5 − 34Φ7 − 8704ΦΨ3
f,g

+ 64(22Φ′′ + 119Φ′Φ − 85Φ3)Ψ2
f,g − 16(6Φ(4) + 49Φ′′′Φ + 77Φ′′Φ′ − 51Φ′′Φ2 + 117Φ′ 2Φ

− 238Φ′Φ3 + 51Φ5)Ψf,g + 8(46Φ′′′ − 127Φ′′Φ + 45Φ′ 2 + 360Φ′Φ2 + 125Φ4)Ψ′
f,g

− 4352(Φ′ − 2Φ2)Ψ′
f,gΨf,g − 2816ΦΨ′ 2

f,g + 2432ΦΨ′′
f,gΨf,g − 8(10Φ′′ + 99Φ′Φ − 26Φ3)Ψ′′

f,g

+ 8(44Φ′ − 53Φ2)Ψ′′′
f,g − 64ΦΨ(4)

f,g + 32((272Ψ2
f,g − 46Ψ′′

f,g)Ψ′
f,g − 44Ψ′′′

f,gΨf,g + 3Ψ(5)
f,g)

)
(x).

(5.15)
Using the identities (5.11) and V ′ = −V Φ, we get

Ψ(4)
f,g = −p− 2

6p2 (Φ(5) − 2Φ(4)Φ − 8Φ′′′Φ′ − 6Φ′′ 2) + 1
6p〈2〉V

(
B(4) + 4B′′′Φ + 6B′′(Φ′ + Φ2)

+ 3B′(Φ′′ + 3Φ′Φ + Φ3) + (B + c)(Φ′′′ + 4Φ′′Φ + 6Φ′Φ2 + 3Φ′ 2 + Φ4)
)
,

Ψ(5)
f,g = −p− 2

6p2 (Φ(6) − 2Φ(5)Φ − 10Φ(4)Φ′ − 20Φ′′′Φ′′) + 1
6p〈2〉V

(
B(5) + 4B(4)Φ + 10B′′′(Φ′ + Φ2)

+ 9B′′(Φ′′ + 3Φ′Φ + Φ3) + B′(4Φ′′′ + 16Φ′′Φ + 12Φ′ 2 + 21Φ′Φ2 + 4Φ4)

+ (B + c)(Φ(4) + 5Φ′′′Φ + 10Φ′′Φ′ + 10Φ′′Φ2 + 15Φ′ 2Φ + 10Φ′Φ3 + Φ5)
)
.

Substituting these identities and (5.11) into (5.15), we have
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m
(8)
x;f,g;μ(0) = 16�4

(
8Φ(6) + 28Φ(5)Φ + 14Φ(4)(6Φ′ − Φ2) + 35Φ′′′(4Φ′′ + 6Φ′Φ − 3Φ3) + 70Φ′′ 2Φ

+ 70Φ′′Φ′(3Φ′ − 7Φ2) + 105Φ′ 3Φ − 630Φ′ 2Φ3 + 329Φ′Φ5 − 34Φ7 + B′′′(164Φ′ + 35Φ2)
V

+ 1
V

(
B′′(110Φ′′ + 345Φ′Φ − 61Φ3) + B′(106Φ′′′ + 61Φ′′Φ + 357Φ′ 2 − 321Φ′Φ2 + 46Φ4)

)

− B + c

V 2

(
22B′′′ + 51B′′Φ + B′(157Φ′ + 11Φ2) − 17B′(B + c)

V

)
+ Φ

V

(
52B(4) − 90B′ 2

V

)

+ 1
V

(
12B(5) − 23B′′B′

V

))
(x).

Similarly, using that ν = π(�, 23 ), we arrive at

m
(8)
x;h,k;ν(0) = 16�4

(
8Φ(6) + 28Φ(5)Φ + 14Φ(4)(6Φ′ − Φ2) + 35Φ′′′(4Φ′′ + 6Φ′Φ − 3Φ3) + 70Φ′′ 2Φ

+ 70Φ′′Φ′(3Φ′ − 7Φ2) + 105Φ′ 3Φ − 630Φ′ 2Φ3 + 329Φ′Φ5 − 34Φ7 + B′′′(205Φ′ + 380Φ2)
3V

+ 1
3V

(
5B′′(74Φ′′ + 267Φ′Φ − 55Φ3) + B′(326Φ′′′ + 187Φ′′Φ + 1139Φ′ 2

− 1111Φ′Φ2 + 162Φ4)
)
− B − c

3V 2

(
50B′′′ + 225B′′Φ + B′(575Φ′ + 25Φ2) − 75B′(B − c)

V

)

+ 70Φ
3V

(
2B(4) − 5B′ 2

V

)
+ 5

3V

(
4B(5) − B′′B′

V

))
(x).

Therefore, the case i = 4 in (5.4) reduces to

16B(5)V + 16B(4)V Φ − 4B′′′(4B + 29c) − 64B′′B′ − 12B′(2B2 − 21Bc + 2c2)
V

+ 80B′ 2Φ

+ B′
(
B(104Φ′ − 8Φ2) − c(1046Φ′ + 58Φ2)

)
+ B′′(72B − 378c)Φ + B′′′

(
112Φ′ − 100Φ2

)
V

−B′′
(
40Φ′′ + 300Φ′Φ − 92Φ3

)
V −B′

(
8Φ′′′ + 4Φ′′Φ + 68Φ′ 2 − 148Φ′Φ2 + 24Φ4

)
V = 0.

Using Lemma 5.7, this identity simplifies to
(
− 16B′ + 6Φ(2B − 23c)

)
(R ◦B) + B′

(
12V (4Φ′ + Φ2) − (4B + 29c)

)
(R′ ◦B)

+ 24Φ((R′R) ◦B) + 4B′(R′ 2 ◦B) + 12B′(R′′R ◦B) + 12B′ 2V Φ
(
2(R′′ ◦B) + 1

)
− 3B′(2B2 − 21Bc + 2c2) + 3B′V (2B − 23c)(4Φ′ + Φ2) = 0.

(5.16)

Now, by (5.14), we get

R ◦B = −B2

4 + 23cB
4 + d

2 , R′ ◦B = −B

2 + 23c
4 and R′′ ◦B = −1

2 .

Using these identities, then (5.16) reduces to

B′(5B2 − 190cB − 81c2 − 22d
)

= 0. (5.17)
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(

We show that this equality implies that B is constant on I. To the contrary, assume that B is nonconstant 
on I. Then B′ is not identically zero, and hence B′(x0) �= 0 for some x0 ∈ I. By the continuity of B′, there 
exists an open subinterval J of I containing x0 such that B′(x) �= 0 for all x ∈ J . Then, for all x ∈ J , the 
equality (5.17) yields that

5B2(x) − 190cB(x) − 81c2 − 22d = 0.

That is, for all x ∈ J , the value B(x) is equal to one of the roots of the second degree polynomial 5u2 −
190cu −81c2 −22d. By the continuity of B, now it follows that B is constant on J , which yields B′(x0) = 0, 
contradicting the choice of x0. Therefore, B has to be a constant function. Then denoting B+c

6p〈2〉 by a and 
B−c
6q〈2〉 by b, the equalities in (5.5) simplify to (5.13). �

Now we are ready to present and prove our main result. We shall need a further notation. For a ∈ R, 
define Sa, Ca : R → R as follows

Sa(x) :=

⎧⎪⎪⎨
⎪⎪⎩

sin(
√
−ax) if a < 0,

x if a = 0,
sinh(

√
ax) if a > 0,

and Ca(x) :=

⎧⎪⎪⎨
⎪⎪⎩

cos(
√
−ax) if a < 0,

1 if a = 0,
cosh(

√
ax) if a > 0.

Theorem 5.9. Assume (H) with (p, q) = (2, 23 ) and let (f, g), (h, k) ∈ C8(I). Then the following assertions 
are equivalent:

(i) Mf,g;μ = Mh,k;ν .
(ii) Mf,g;μ and Mh,k;ν are equal near Δ(I).
(iii) m

(2i)
x;f,g;μ(0) = m

(2i)
x;h,k;ν(0) hold for all x ∈ I and i ∈ {1, 2, 3, 4}.

(iv) Φh,k = 3Φf,g and, for some a, b ∈ R, the equalities in (5.13) hold.
(v) For some α, β, γ, δ, ε, ζ, η ∈ R,

αf2 + βfg + γg2 = 1 and δh2 + εhk + ζk2 =
(
W 1,0

h,k

) 2
3 (5.18)

and W 1,0
h,k = η

(
W 1,0

f,g

)3
.

(vi) For some polynomials P and Q of at most second degree which are positive on the range of f/g and 
h/k, respectively, and for some η, ρ ∈ R,

g = 1√
P

◦ f

g
, k =

∣∣∣∣
(
h

k

)′∣∣∣∣
(

1√
Q3

◦ h

k

)
, and

(∫ 1
Q

)
◦ h

k
= η

1
3

(∫ 1
P

)
◦ f

g
+ ρ. (5.19)

(vii) Mf,g;μ = Aϕ = Mh,k;ν holds with ϕ :=
∫
W 1,0

f,g .
viii) Mf,g;μ = Aϕ = Mh,k;ν holds for some ϕ ∈ CM(I).
(ix) For some differentiable function ϕ ∈ CM(I) and a, b ∈ R,

(f, g) ∼ (Sa ◦ ϕ,Ca ◦ ϕ) and (h, k) ∼ (ϕ′ · Sb ◦ ϕ,ϕ′ · Cb ◦ ϕ).

Proof. The assertion (i)⇒(ii) is trivial. The assertions (ii)⇒(iii) and (iii)⇒(iv) are consequences of 
Lemma 5.1 and Lemma 5.8, respectively.

Suppose that (iv) is valid for some a, b ∈ R. Then, the integration of the identity Φh,k = 3Φf,g implies

W 1,0 = η
(
W 1,0

)3
(5.20)
h,k f,g
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for some real constant η. Now the first identity in (5.13) and implication (iv)⇒(ii) of [25, Theorem 10] yield 
that there exist real constants α, β, γ such that the first equality in (5.18) holds. An easy computation, 
using the second identity in (5.13), implies that the expression

3W 3,0
h,k + 12W 2,1

h,k(
W 1,0

h,k

) 5
3

− 5

(
W 2,0

h,k

)2

(
W 1,0

h,k

) 8
3

is constant. Applying implication (vii)⇒(iv) of [19, Theorem 7], then there exist real constants δ, ε, ζ such 
that the second equality in (5.18) is valid. Thus, we have proved that assertion (v) holds.

To prove (v)⇒(vi), assume that (v) is valid for some real constants α, β, γ, δ, ε, ζ, η and define

P (u) := αu2 + βu + γ and Q(u) := δu2 + εu + ζ (u ∈ R).

It is easily seen that the two identities in (5.18) are equivalent to the following two identities

P ◦ f

g
= 1

g2 and Q ◦ h

k
=

(
W 1,0

h,k

) 2
3

k2 ,
(5.21)

respectively. Thus, P and Q are positive real polynomials on the range of the ratio functions f/g and h/k, 
respectively. The first equality in (5.19) is a result of the first identity in (5.21). The second equality in
(5.19) is a consequence of W 1,0

h,k = k2(h/k)′ and the second identity in (5.21). Furthermore, using (5.21), we 
have that

((∫ 1
P

)
◦ f

g

)′
=

(
1
P

◦ f

g

)
·
(
f

g

)′
= g2 ·

W 1,0
f,g

g2 = W 1,0
f,g .

This identity, together with (5.21) and (5.20), implies

((∫ 1
Q

)
◦ h

k

)′
=

(
1
Q

◦ h

k

)
·
(
h

k

)′
= k2(

W 1,0
h,k

) 2
3
·
W 1,0

h,k

k2 =
(
W 1,0

h,k

) 1
3 = η

1
3W 1,0

f,g

= η
1
3

((∫ 1
P

)
◦ f

g

)′
.

Integrating both sides, then we arrive at the last equality in (5.19) for some real constant ρ. Therefore, 
assertion (vi) is valid. The implication (vi)⇒(v) is obvious by reversing all the implications in the previous 
calculation. Thus (vi) and (v) are shown to be equivalent.

To prove that (v) implies (vii). Assume that (v) holds for some real constants α, β, γ, δ, ε, ζ, η. Then 
implication (ii)⇒(iii) of [25, Theorem 10] and implication (iv)⇒(vi) of [19, Theorem 7] imply that

Mf,g;μ = Aϕ and Mh,k;ν = Aψ,

respectively, hold on I2 with ϕ =
∫
W 1,0

f,g and ψ =
∫ (

W 1,0
h,k

) 1
3 . The identity (5.20) gives ψ = η

1
3ϕ, from 

which we get that Aϕ = Aψ is valid on I2. Consequently, (vii) holds.
The implications (vii)⇒(viii) and (viii)⇒(i) are straightforward. Therefore, all the assertions from (i) to 

(viii) are equivalent. Finally, the equivalence of (viii) and (ix) is a direct consequence of [25, Corollary 9]
and [19], respectively. �
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For the proof of the equivalence of the nine conditions of the theorem, we essentially needed the eight 
times differentiability of the generating functions f, g, h, k. On the other hand, one can observe that some 
particular implications can be verified under weaker regularity assumptions. The assertion (i) trivially follows 
from (viii) in the case (f, g), (h, h) ∈ C0(I). It is an open problem whether the reversed implication is also 
true with this natural regularity assumption.

Finally, we can answer the question formulated in the introduction about two-variable means that are 
equal to a Bajraktarević mean and to a Cauchy mean at the same time.

Corollary 5.10. Assume (H) with (p, q) = (2, 23 ). Then the intersection of the classes of means

{Mf,g;μ | (f, g) ∈ C8(I)} ∩ {Mh,k;ν | (h, k) ∈ C8(I)} (5.22)

consists of the symmetric two-variable quasiarithmetic means. In other words, if a two-variable mean is 
simultaneously is a Bajraktarević mean and a Cauchy mean with eight times differentiable generators, then 
it has to be a quasiarithmetic mean.

Proof. Assume that a two-variable mean M : I2 → I belongs to both of the classes of means. Then there 
exist (f, g) ∈ C8(I) and (h, k) ∈ C8(I) such that M = Mf,g;μ and M = Mh,k;ν . Hence, assertion (i) of The-
orem 5.9 holds. Then, by this theorem assertion (viii) is also valid, hence M has to be quasiarithmetic. �

As an application of this corollary, we can deduce the result of Alzer and Ruscheweyh.

Corollary 5.11. Assume that a two-variable mean M : R2
+ → R+ is simultaneously equal to a Gini mean 

and to a Stolarsky mean. Then M has to be a power mean.

Proof. If M equals to a Gini mean, then there exist real constants a, b such that M = Ga,b, where Ga,b

was defined by (1.1). This shows that M is homogeneous and it also equals a Bajraktarević mean with 
generators f and g defined by f(x) := xa and g(x) := xb if a �= b and f(x) := xa log(x) if a = b.

If M also equals to a Stolarsky mean, then there exist real constants c, d such that M = Sc,d, where Sc,d
was defined by (1.2). Then M equals a Cauchy mean with obviously chosen generators. Thus, M belongs to 
the intersection (5.22) and hence it has to be a quasiarithmetic mean. Being also homogeneous, it follows 
that it has to be a power mean. �
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