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ABSTRACT: Smart/intelligent contrast agent candidates for MRI 
based on Mn(II) ion are rare as it usually forms labile complexes 
with polyaminocarboxylate type ligands. Here, we report the first 
example of a Mn(II) complex that can be activated by changing the 
pH of its local environment. The PC2A-EA ligand with an 
ethylamine pendant arm was found to form thermodynamically 
stable (pMn=9.27) and kinetically inert complex with Mn(II) 
respect to trans-chelation with metal ion like Cu(II). The 
[MnH(PCA2-EA)] complex display relatively slow water 
exchange rate ((4.00.2)×107 s–1), but the pH-dependent 
coordination of the ethylamine moiety occurs in the pH range of 
6-8 enabling the complex to exhibit pH-sensitive relaxivity in the 
biologically relevant pH range. 

Magnetic resonance imaging (MRI) is a non-invasive imaging 
modality that can generate high resolution images of soft tissues. A 
large percentage of MR exams use a gadolinium-based contrast 
agent to enhance contrast between normal and diseased tissues. 
Newer generation agents that can report specific biomarkers or 
biochemical processes associated with certain diseases have also 
been developed.1–3 These responsive compounds are frequently 
called smart (SCAs) or intelligent CAs. A considerable amount of 
research effort has been invested into the development of SCAs 
over the past decades yielding SCA candidates (mostly Gd(III) 
based compounds) capable of reporting changes in pH,4–6 redox 
state,7–9 temperature,10–12 enzyme activity,13–15 levels of certain 
metal ions (Ca2+, Zn2+ or Cu2+),16,17 O2 saturation18–20 etc. Most of 
these agents are based on an established ligand design (i.e. DOTA) 
that is known to form kinetically inert complexes with Gd(III). 
However, this does not necessarily mean that the modified 
complexes would retain the inertness of the parent complex 
([Gd(DOTA)]).16,21 In the light of nephrogenic systemic fibrosis 
(NSF), a devastating disease associated with the toxicity of the free 
Gd(III) produced in vivo as a result of the decomplexation of 
CAs22,23 there is a definite need to improve the dissociation kinetics 
parameters of Gd(III) based CAs and SCAs. On the other hand, 
finding a plausible alternative to Gd(III)-based CAs has received 
considerable attention in the past decade. The most promising 
candidates are complexes of the essential Mn(II) ion because it has 
acceptable relaxation enhancement properties and its homeostasis 
and transport in living systems guarantees very efficient 
elimination form the living systems as it was observed for the 
[Mn(PyC3A)] chelate recently.24–26 However, Mn(II) complexes 
are in general labile, and only a few examples of inert Mn(II) 

complexes are known.27–30 The release of the Mn(II) from its labile 
complexes may interfere with the MR signal generated as a result 
of SCA activation because the uncomplexed Mn(II) ion or its 
adduct with human serum albumin (HSA) has considerably higher 
relaxivity (r1p=7.92 and 54.6 mM-1s-1 at 0.49 T and 25 oC) than the 
majority of the monohydrated low molecular weight Mn(II) 
complexes (r1p values are typically in the range of 2.0-5.4 mM-1s-

1).27,29,31 In addition, Mn(II) has a PET isotope (52Mn), which may 
offer a convenient way to follow the biodistribution of the agent 
during imaging as the local concentration of the complex can be 
determined by radioanalytical methods by using a cocktail of 
52Mn/55Mn isotopic complexes.32 Furthermore, this isotopic 
mixture offers the possibility of combining PET (52Mn) and MR 
(55Mn) imaging modalities to provide anatomical and functional 
information.33,34

In cancer diagnosis, mapping of tissue pH can potentially be used 
to recognize malignant processes at an early stage since the 
accelerated glucose metabolism of cancer cells results in a decrease 
of the extracellular and increase of the intracellular pH (Warburg 
effect).35,36 Several Gd(III)-based pH-sensitive SCA candidates 
were reported relying on the pH-dependent coordination of an 
ethylamine pendant arm.37 In our previous study we have shown 
that the parent ligand PCTA can be successfully utilized as a 
platform in the design of Mn(II)-based alternatives to Gd(III).29 By 
replacing one acetate arm in PCTA with an ethylamine pH-sensing 
moiety, we designed the heptadentate PC2A-EA chelator, which is 
expected to combine the advantageous metal binding properties of 
PCTA and the pH-responsive “on/off” coordination feature of the 
ethylamine pendant arm.38,39

N
NN

N COOH

HOOC

R

PC2A: R=H

PC2A-EA: R=-CH2-CH2-NH2

PCTA: R=-CH2-COOH

Scheme 1. Structure of the PC2A, PC2A-EA and PCTA 
ligands.

Protonation constants of the ligand were determined by pH-
potentiometric titrations (0.15 M NaCl, 25 C). The log K values 
are listed in Table 1 along with the corresponding values previously 
determined for PC2A and PCTA (see ESI for additional data). The 
log K values reveal that substitution of an ethylamine group for an 
acetate in PCTA significantly changes the basicity as well as the 
protonation sequence of the ligand. This was also confirmed by 1H 
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NMR titration performed in the pH range of 6-12 (Fig. S6 and S7 
in the ESI).40

Formation of PC2A-EA complexes with Mn(II) was studied by 
pH-potentiometry and 1H relaxometry (Table 1). Considering the 
basicity of PC2A-EA (Table 1), it is not surprising that the stability 
constant of [Mn(PC2A-EA)] was found to be higher than those of 
the chelates formed with parent ligands.
Table 1. Protonation constants of the PC2A-EA, PC2A and 
PCTA ligands and stability constants of their Mn(II) 
complexes (25 C, I=0.15 M NaCl).

PC2A[b] PC2A-EA PCTA[d]

log K1 12.25 11.34(1) 9.97

log K2 5.97 8.93(2) 6.73

log K3 3.47 6.91(3) 3.22

log K4 1.99 1.97(3) 1.40

log K2
H 18.22 18.25[c] 16.70

log KMnL 17.09 19.01(4) 16.83

log KMnL
H 2.14 6.88(2) 1.96

log KMnHL
H – 2.50(3) –

pMn[a] 8.64 9.27 9.74

[a] pMn=-log [Mn(II)free], cMn=cL=0.01 mM; [b] Ref 39 25 C, I=0.15 M 
NaCl; [c] the log K2

H for the PC2A-EA is defined as the sum of log K1
H and 

log K3
H; [d] Ref. 38, 25 C, I=1.0 M KCl

The pMn values (pMn=-log[Mn(II)free]) for the [Mn(PC2A)]), 
[Mn(PC2A-EA)]) and [Mn(PCTA)] complexes were calculated 
by using the following conditions: cMn(II)=clig=0.01 mM, pH=7.4, 
25 C (Table 1).30 Under these conditions the pMn value obtained 
for [Mn(PC2A-EA)] (pMn=9.27) is the second highest value ever 
reported for a Mn(II) chelate, after the pMn of the non-hydrated 
[Mn(PCTA)] chelate.29 This value appears to be higher than that 
of the [Mn(DOTA)]2 complex (pMn=9.02), which means that less 
than the 0.01% of total Mn(II) chelated is expected to dissociate at 
pH=7.4 at equilibrium. 

The formation of the Mn(II) complex was also monitored by 
following the T1 relaxation times as a function of pH. The relaxivity 
vs. pH profile and the species distribution curves are shown in 
Figure 1. The relaxivity of [Mn(HPC2A-EA)]+ is very similar to 
those of monoaquated Mn(II) complexes and remains nearly 
constant (3.52 mM-1s-1) in the pH range of 3.7−5.8.41 This r1p value 
suggests that q=1 for the protonated [Mn(HPC2A-EA)]+ complex. 
Below pH 3.5 r1p increases owing to the formation of a diprotonated 
chelate followed by the dissociation of the complex. Raising the pH 
above 5.8 results in a noticeable decrease of r1p, reaching a value 
of 2.07 mM-1s-1 at pH 8.4 indicating the deprotonation and 
coordination of the ethylamine pendant to the Mn(II) ion resulting 
in the formation of a q=0 complex. This increase in r1p relaxivity 
observed upon the protonation and decoordination of the amine 
moiety (as proved by 17O NMR) is more than 1.5 mM-1s-1 unit in 
pure aqueous solutions while in human blood serum (tested by 
using commercialized Seronorm) the r2p relaxivity changes even 
more notably (r2p=6.6 mM-1s-1).

Figure 1. The species distribution curves calculated for the 
[Mn(PC2A-EA)] along with the pH dependence of its relaxivity 
() (I=0.15 M NaCl, T=25 °C, 0.49 T).

It is now accepted that the inertness of the complexes intended 
for in vivo applications as potential CAs is more important than 
their thermodynamic stability.1,42 The inertness of [Mn(HPC2A-
EA)]+ was studied in reactions taking place between the complex 
and Cu(II) and Zn(II) ions acting as scavengers for the ligand (see 
ESI for more details). The transmetallation reactions were studied 
in the pH range of 2.2-3.4 under pseudo-first-order conditions by 
spectrophotometry (Cu(II)) and r2 relaxometry (Zn(II)) at pH=6.0 
as suggested by P. Caravan and coworkers.43 As seen in Figure 2, 
the rate constants (kobs) characterizing the transmetallation with 
Cu(II) increase with increasing [H+] showing “saturation” like 
behavior and they are independent of the Cu(II) concentration. This 
finding indicates that the dechelation of the complex occurs via the 
proton-assisted mechanism. The absence of positive intercept 
suggests that the spontaneous dissociation of the complex can be 
neglected. 

Taking into account the concentration of different complex 
species as well as the protonation constants (KH) of [Mn(HPC2A-
EA)] (KH=[Mn(H2PC2A-EA)]/[Mn(HPC2A-EA)]*[H+]) the rate 
equation can be given as follows:

(1)
][H1

][H

H

1
obs 






K
k

k

where k1 is the rate constant characterizing the proton-assisted 
dissociation. The value of k1 and KH were found to be 0.6±0.01 M–

1s–1 and 102±5 M–1, respectively. The k1 is an order of magnitude 
lower than the value determined for the [Mn(1,4-DO2AMMe2)]2+ 
complex28 and just one order of magnitude higher than that of 
[Mn(DOTA)]2, which are the most inert monoaquated and 
nonaquated Mn(II) chelates, respectively. Kinetic inertness of 
[Mn(HPC2A-EA)]+ was also evaluated by using the protocol 
suggested by P. Caravan and coworkers.43 The pseudo-first-order 
rate constant was found to be (3.540.04)×10-6 s-1 (t1/2=54.4 h) 
whereas under the same conditions [Mn(PyC3A)(H2O)]− (a 
compound suggested recently as CA candidate) dissociates with the 
rate of 6.76×10−4 s-1 (corresponding to t1/2=0.285 h) i.e. the 
[Mn(HPC2A-EA)(H2O)]+ is 190 times more inert than the given 
reference compound.43

Page 2 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5.0E-03 6.0E-03 7.0E-03

[H+] (M)

k
ob

s (
s-1

)

Figure 2. Dependence of the pseudo-first-order rate constants 
(kobs) on the concentration of H+ and Cu(II) ions for the 
[Mn(HPC2A-EA)] complex. The excess of the exchanging 
metal ion was 10(■), 20(●), 30(▲) and 40() folds. The lines 
correspond to the best fit of the kobs values to the Eqn. 1.

An important part of the characterization of a potential MRI CA 
is the determination of the parameters governing its relaxivity such 
as exchange rate of the bound (q) water molecule (kex). The 
presence of an inner sphere water molecule was confirmed by using 
the method proposed by Gale et al.44 while its exchange rate was 
determined by measuring the transversal 17O relaxation rates (1/T2) 
at different temperatures.45 The kex ((4.00.2)107 s–1) is nearly an 
order of magnitude lower than that of [Mn(EDTA)]2– 
(kex

298=47.1×107 s–1) and approximately 1/4th of that determined for 
[Mn(PC2A)(H2O)] (kex

298=15.2107 s–1). These differences can be 
rationalized by considering the structures of these complexes: the 
open-chain [Mn(EDTA)] 2– has a flexible structure facilitating the 
water exchange while [Mn(HPC2A-EA)(H2O)]+ has a more 
compact coordination cage than [Mn(PC2A)(H2O)] resulting in a 
slower water exchange rate (see ESI for more details).

The efficacy of the [Mn(PC2A-EA)] complex as pH-sensitive 
MRI probe was also evaluated in MR imaging experiments at 1, 1.5 
and 3 T magnetic field strength (to have an idea about the filed 
dependency of relaxivity at high fields). Phantom MR images of 
1.0 mM complex solution at different pH values were recorded at 
3 T in Seronorm (Seronorm = lyophilized human blood serum with 
no preservatives or stabilizers added) redissolved in distilled water 
are shown in Figure 3. (see ESI for more data). Analysis of the MR 
images indicate that the signal intensity of the samples depend on 
their pH (both T1 and T2 weighted images, but the latter being more 
pronounced) thereby confirming that even these small changes in 
relaxation times can be followed and visualized by using 
commercialized MRI scanners (some estimations on what signal 
change might be expected in vivo are included in ESI).

Figure 3. Representative T1- (left) and T2- weighted (right) MRI 
images (3 T) of the [Mn(PC2A-EA)] complex in human serum 
(Seronorm) at different pH values (pH=7.50 (1), 7.25 (2), 7.08 
(3), 6.81 (4) and 6.67 (5), c[Mn(PC2A-EA)] = 1 mM). The T1 
relaxation times of the samples are: 2982 (1), 2572 (2), 2322 
(3), 2332 (4), 2222(5) ms, while the T2 data are as follows 
45652(1), 20011(2), 1446(3), 1255(4) and 1134(5) ms 

(TRs=3500 ms, TE=7.45 msec, spatial 
resolution=0.481x0.417x1 mm3).

In conclusion, we have demonstrated that [Mn(PCTA)]– can be 
converted to a pH-sensitive MRI CA candidate by substituting an 
ethylamine moiety for one of the actetate sidearms of PCTA. A 
decrease in pH results in the protonation and decoordination of the 
ethylamine moiety, followed by the coordination of an inner sphere 
water molecule. The r1p relaxivity of [Mn(PC2A-EA)] increased 
from 2.04 at pH 8.4 to 3.54 mM-1s-1 at pH 6.0 (0.49 T, 25 oC) due 
to the appearance of the metal bound water molecule (these changes 
are being even more pronounced in T2 “dimension” in Seronorm 
solutions as the r2p was found to change from 1.71 (pH=7.5) to 8.34 
(pH=6.67) mM-1s-1 at 3 T). pH-potentiometric studies revealed that 
the protonation constant of the complex (log KMnL

H=6.88(2)) is 
nearly optimal for detecting pH changes in the physiologically 
relevant pH range. Thermodynamic and kinetic measurements 
showed that the thermodynamic stability (pMn=9.27) and kinetic 
inertness (t1/2=8103 h at pH=7.4) of [Mn(PC2A-EA)] is among the 
highest reported for a monohydrated Mn(II) complex. The water 
exchange rate was found to be relatively slow (kex=4.00.2107 s–

1) by variable temperature 17O NMR. In summary, the favorable 
kinetic and relaxometric properties of [Mn(PC2A-EA)] make this 
complex a promising Mn(II)-based pH-responsive CA candidate.
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