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1 Introduction
The fields of clinical research, healthcare, and medicine have experi-
enced a major change in the last years. Devices capable of performing
high-quality image acquisition became wide-spread across the world,
with more and more hospitals investing in modern imaging equipments
in an effort to increase the standard of clinical workflows. This gave
birth to the widespread application of different imaging modalities,
like positron emission tomography (PET), X-rays, computed tomog-
raphy (CT), and magnetic resonance imaging (MRI). These imaging
techniques, however, result in huge amounts of image data being gen-
erated for each patient and medical examination. This has led to
never-before-seen amounts of data being generated each passing day,
which clinicians struggle to handle, resulting in slower clinical trials,
longer patient queues, and a significantly overworked hospital staff.

To counter these issues, several revolutionary methods have been
proposed in the last decades, which attempted to automatize the most
time-consuming parts of the clinicians’ workflow. The earlier versions
of these systems applied traditional image processing methods, such as
thresholding [1, 2, 3] and bandpass filters [4, 5] among other techniques.
Thresholding-based approaches relied on calculating a given threshold
value T to generate a binary mask of the input image. They achieved
this by organizing the pixels of the image into the desired groups (e.g., a
pixel belonging to a tumor versus a pixel containing other information)
by checking if the intensity of the given pixel was higher than the
threshold T . Methods using a bandpass filter followed a rather similar
approach, where only the desired frequencies were kept from the input
image, while others were filtered out. Traditional systems relying on
similar techniques often combined multiple of these approaches and
hence usually required cumbersome and time-consuming fine-tuning
from the clinical experts, e.g., to configure the parameters for the given
system to work optimally.

Ultimately, the rise of novel artificial intelligence-based techniques,
and the integration of neural networks in particular, made it possible to
overcome these issues. These solutions required little to no fine-tuning
or interaction from the clinicians due to the considerably lower number
of input parameters and the more robust operation with better gener-
alization capabilities. Most of these improvements could be attributed
to the appearance of a new type of neural network architecture, called
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the convolutional neural network (CNN). As the name implies, this
family of algorithms used a technique called convolution, which ex-
tracts important local features from a pre-defined patch of the image.
The size of this area depends on a tunable hyperparameter, called a
kernel, which is used to perform matrix multiplication between said
kernel and the patch of the image. This operation gets executed for
each patch of the image for a given kernel, which a modern CNN can
have several of. The role of a given kernel is to specialize for the de-
tection of a given feature present in the image or in the outputs of the
previous layer. Therefore, a kernel (in the first layer of a CNN) can
essentially be thought of as the equivalent of a given traditional image
processing method, such as edge detection. Modern CNNs also have
multiple layers, making it possible for the model to learn more com-
plex patterns as well. Since the kernels get their values assigned during
the training process, there is no longer a need for clinicians to care-
fully fine-tune them depending on the given clinical problem. Instead,
these architectures can learn to extract the most meaningful and most
important features from the perspective of the given problem, drasti-
cally reducing the complexity of developing Computer Aided Diagnosis
(CAD) systems. As a result, highly advanced CAD systems, capable
of automated and reliable clinical diagnosis, have been proposed which
helped in tackling some of the most common clinical tasks. These tasks
included the detection of multiple types of cancer [6, 7, 8, 9], vari-
ous disorders, such as attention deficit hyperactivity disorder (ADHD)
[10, 11] or autism spectrum disorder (ASD) [12], and diseases, such as
Alzheimer’s [13, 14] or chronic kidney disease (CKD) [15, 16].

A subset of the experiments focused on further increasing the over-
all reliability and accuracy of the developed systems by merging multi-
ple distinct models into one single model, called an ensemble. Ensemble
models have the theoretical advantage of having better generalization
capabilities when compared to regular machine- or deep learning mod-
els. This is due to the fact that when building ensembles, multiple
distinct models are considered, that, in theory, should work and op-
erate in vastly different and diverse ways. Given that all the models
inside the ensemble are sufficiently good, meaning that they can solve
the task to a sufficiently good degree, the ensemble should have a bet-
ter generalization capability than any of its member models. This is
due to the fact that by incorporating more and more models that oper-
ate in different ways, and that all perform sufficiently well on the given
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task, the chances of all of these good-performing models misclassify-
ing a given input or making a bad prediction at the same time should
drastically decrease. Moreover, combining the outputs of multiple dif-
ferent models should, in theory, also result in a better ability to detect
outliers, i.e., inputs that are vastly different than those in the training
dataset used to train the models. This is because with more models
the probability of any of these models detecting such abnormalities
also increases.

Traditional ensemble models are constructed using already trained
models. That is, each member model needs to be trained on the given
dataset before the ensemble is constructed. Then, the individual mod-
els can be merged into one singular ensemble model by using a wide
range of possible approaches. One of the most popular techniques in
the current literature for combining the outputs of the individual clas-
sifier models is called majority voting. This approach simply takes the
outputs of each model and outputs the one with the most votes, which
is the prediction that most of the models predicted. In spite of its
simple nature, this technique has been used with great success in the
field of clinical diagnosis [17, 18, 19]. Another approach for building a
traditional ensemble model is to combine the probabilities predicted by
each model by calculating their average or weighted average for each
class [20, 21, 22]. Then, the final output of the ensemble will be the
class with the highest average probability.

The main reason behind the popularity of these traditional ensem-
ble methods is that they generally result in an increased performance
due to the statistical foundation, while still being fairly easy to im-
plement. However, the biggest problem with these approaches is also
rooted in their simplicity: when using these techniques, the overall
quality of the member models constructing the ensemble is usually not
checked. That is, it is generally not examined how different the mod-
els are. This is a serious short-coming, as it has been shown multiple
times [23, 24] that diversity, in other words, if the models constructing
the ensemble are different enough, is a vital metric to consider in order
to build accurate and performant ensemble models. Moreover, using
models that are similar, or in worse cases, almost identical to each
other will also lead to sub-par results. The reason behind this is that
the generalization capability of the ensemble will also be lacking due
to the similarity between the member models, as similar models will
also produce similar predictions.
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In our research, we focused on developing novel solutions to in-
crease the performance of neural network models by using the pre-
viously discussed traditional techniques and proposing new methods
for constructing and training ensemble architectures. The objective of
this dissertation is to develop novel neural network-based algorithms to
further facilitate the implementation and integration of solutions using
artificial intelligence into the clinical workflow. To this end, multiple
neural network-based solutions and techniques are presented that make
it possible to solve the given clinical task with sufficient accuracy, and
reliability.

The approaches detailed in this dissertation can be divided into
two groups: i) techniques that combine traditional methods with neu-
ral networks, and ii) techniques that combine various neural network
models in the form of an ensemble. The first group of techniques
discussed in the dissertation deal with the effective combination of
traditional and neural network-based solutions, showing that combin-
ing these two paradigms can lead to a more accurate, and also more
robust model. This dissertation presents two different architectures
to solve this problem. The first one, used for the efficient and accu-
rate prediction of COVID-19 and influenza cases in various countries,
shows that it is possible to approximate a given traditional model with
a neural network and then use that as a starting point for further
training the network on real data. It is shown that this results in an
overall better model that can be used even when the training data is
small. The network can learn the most important aspects of the given
phenomenon using the traditional model, which can generate almost
unlimited training data, and then we can use the real, small dataset
to fine-tune the network. The other method proposed in this disserta-
tion examines the possibility of using hand-crafted features, extracted
by traditional methods, in conjunction with neural networks. We show
that we can encapsulate the hand-crafted features with those extracted
by the network to reach even better performance.

The second group of methods deal with the practical and efficient
combination of multiple models into one single ensemble model. The
first proposed technique shows a way of re-using a fully convolutional
neural network (FCN) [25] as the base of combining the outputs of
several other FCN models previously trained on the given dataset in
an effort to improve performance. We show that this way, the en-
semble can take into account both the original input image and the
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outputs of the pre-trained models as well, and process every related
information jointly, from layer to layer. The other method presents
two novel frameworks for training performant ensembles, that directly
include the diversity of the member models as a metric during training.
We show that these frameworks have several advantages as compared
to other traditional ensemble architectures, and achieve great results
when used for classifying different types of brain tumors on MRI im-
ages.

The main contributions of this dissertation are therefore as follows:

• a novel two-step architecture that combines traditional theoreti-
cal models with neural networks;
we propose a two-step architecture for training reliable time-
series models that can accurately predict the total number of
people affected by influenza and COVID-19. The two-step ar-
chitecture first fits a traditional epidemic model, such as an SIR
model [26, 27], to the data and trains a neural network model
to mimic the operation of said traditional model. Then, as the
second step, the architecture trains the neural network model
further on additional data to further increase the accuracy of
the model. For influenza, we used data published by the World
Health Organization (WHO), while for COVID-19, we used data
available on the Humanitarian Data Exchange (HDX) platform.
Related publication: [28].

• multiple novel approaches for the effective combination of hand-
crafted features with features extracted by convolutional neural
networks;
we present multiple novel methods for combining the traditional,
hand-crafted features with those extracted by neural networks.
We show that there are multiple ways to accomplish this: by
using the outputs of the linear layer before the output layer, the
last convolutional layer, and building a mini-ensemble model,
which combines the outputs of a simple model receiving the hand-
crafted features with that of the neural network. We apply these
solutions to accurately and reliably classify some of the most
common diabetic eye disases, diabetic macular edema and dia-
betic retinopathy.
Related publication: [29].
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• a hybrid ensemble framework for accurate cell segmentation;
we present a unique ensemble framework that processes the gen-
erated probability masks of several pre-trained FCNs and the
input image at the same time, from convolutional layer to con-
volutional layer. We introduce several variants of the framework
and use it on a dataset of manually annotated cell images, orga-
nized and created at the University of Debrecen. We then show
that the resulting models surpass the performance of the original
FCNs and other state-of-the-art approaches as well for the task
of cell segmentation.
Related publications: [30, 31].

• a novel ensemble architecture for the accurate classification of
brain tumors;
we propose a novel way of measuring diversity inside an ensemble
during the training process and use it as a form of regularization
to build robust and performant ensemble models to accurately
classify some of the most common types of brain tumors. We
show that it is possible to use the feature vector extracted by the
last convolutional layer and directly measure the similarity be-
tween the vectors produced by each member model inside the en-
semble to facilitate the training of diverse ensemble models. We
propose multiple variants of the architecture, one that uses the
cosine similarity function, and another that uses the histogram
loss [32].
Related publications: [33, 34].

In this dissertation, we will declare claims based on simple theo-
retical considerations and our observed experimental results. We will
denote such claims as Claim in the text of the dissertation. Our mo-
tivations behind introducing this notation are to make identifying our
main contributions easier and to improve the structuring of the dis-
sertation. We will also use claims instead of theorems in cases when
the justification or reasoning behind the given statement is simple and
therefore does not warrant any in-depth proof. In the event that a
short explanation would be beneficial, we will use the term Reasoning
instead of Proof to give a short justification for the given Claim.

The rest of the dissertation is organized in the following structure.
In section 2, the basic concepts and notations used in the dissertation
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are introduced and the most crucial elements of the theoretical back-
ground are covered. In section 3, we present our two-step architecture
that combines traditional theoretical models and neural networks, and
showcase its performance for the prediction of influenza and COVID-
19 cases. In section 4, we focus on the usage of hand-crafted features,
which have been mostly neglected since the rise of deep learning-based
solutions. Then, we introduce multiple architectures for the effective
combination of hand-crafted features with those extracted by convolu-
tional neural networks. In section 5, we introduce the custom dataset
which was created at the University of Debrecen, and give an overview
of its characteristics, including the methodology used during the digiti-
zation and annotation steps. Then, we present our ensemble framework
which combines the outputs of multiple pre-trained FCN networks [25]
with the given input image using one single architecture by utilizing
an FCN as its backbone. In section 6, we investigate possible ways
of building more effective ensembles by measuring the diversity of the
member models. We present multiple frameworks to achieve this and
contrast them with traditional ensemble methods such as majority vot-
ing and weighted averaging. Finally, in sections 7 and 8, we give a
summary of the dissertation.
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2 Background
This chapter aims to precisely define the basic concepts and notations
used in this dissertation, as well as to provide the necessary theoretical
background that will be the base of subsequent chapters. For the
latter, first an overview of the common definitions and optimization
techniques is given. Then, we extend the traditional deep learning
training procedure to the area of ensemble models by introducing the
most commonly used ensemble building techniques and detailing how
they operate. We also summarize the most important key aspects of
traditional methods that are relevant to the dissertation.

2.1 Basic concepts and notations
Machine- and deep learning-based algorithms need a dataset, contain-
ing examples of the problem at hand, to learn from. The methods
covered in this dissertation all belong to the supervised algorithms,
therefore, only datasets containing both the inputs and outputs will be
considered. Throughout the dissertation, we will denote such datasets,
containing the inputs and outputs as D. For the effective training and
evaluation of machine- and deep-learning-based approaches, it is also
preferred to split the original dataset D into training, validation, and
test parts, that will be used to train, fine-tune, and evaluate the final
performance of the model. In this dissertation, we will refer to these
datasets as Dtrain, Dval, and Dtest, respectively.

We will refer to the i-th elements inside a dataset as x(i) for the
inputs, and as y(i) for the outputs for i = 1, . . . , m where m ∈ N
is the number of training samples. Therefore, we define a dataset
of m examples as a set of the input-output pairs, denoted as D :=
{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}. We will denote the dimension,
in other words, the length of the input x(i) as dim(x(i)) and that of
the output y(i) as dim(y(i)), respectively. For regression models, in
other words, for models predicting a continuous value, unless otherwise
specified, we will define each y(i) ∈ R as a real number, while for
classification models, i.e., models that predict a discrete output, we will
define each y(i) ∈ {1, 2, ..., nc} as discrete numbers, where nc denotes
the total number of classes.

For cases when a concatenation of any two vectors (e.g., several
inputs or outputs) is needed, we will use < a, b > to denote the
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usage of said operation for any two vectors a = [a1, ..., ada ]⊤, and
b = [b1, ..., bdb

]⊤, where da := dim(a) and db := dim(b). The result-
ing vector will be defined as < a, b >:= [a1, a2, ..., ada , b1, b2, ..., bdb

]⊤.
Similarly, we define the depth-wise concatenation of two matrices A ∈
Rm×n×k and B ∈ Rm×n×l using the same operator "<>" as < A, B >∈
Rm×n×k+l where < A, B >i,j,q:= Ai,j,q for each q ≤ k and < A, B >i,j,q:=
Bi,j,q−k for each q > k. We also define the depth-wise concatenation op-
erator for multiple matrices. Let A1, A2, ..., AN denote some arbitrary
matrices. The depth-wise concatenation of these matrices is defined as
< A1, A2, ..., AN > :=< ... << A1, A2 >, A3 > ..., AN >.

For the models, we will refer to any learnable parameters, in other
words weights, of any – traditional, machine-, or deep learning – model
as θ ∈ Rdθ , and will use Mθ to refer to the model itself. In this dis-
sertation, we will incorporate the bias in the definition of the weights
θ. In other words, throughout this dissertation, the equation dθ =
dim(θ) = dim(x) + 1 will hold. However, for the sake of brevity, we
will still denote multiplying the input x(i) by the weights θ as θ⊤x(i)

instead of writing out the full form θ⊤([1, x
(i)
1 , x

(i)
2 , . . . , x

(i)
dx

]⊤), where
dx = dim(x). In some cases, where θ is not specifically relevant from
the perspective of the given formula, we may also use the shorthand
notation M to refer to Mθ, to keep the formulae shorter and more con-
cise. Furthermore, we use σ to denote any activation function. Thus,
a forward pass of a model M with weights θ and activation function
σ for any given input x(i) will be denoted as Mθ(x(i)) := σ(θ⊤x(i)).
Lastly, for a particular neural network model M with k hidden layers
and their corresponding weights θ1, θ2, ..., θk and activation functions
σ1, σ2, ..., σk, we may also use the shorthand notations Mθ(x(i)) to make
the given formula more compact and concise.

The goal of supervised machine- and deep learning models is to
minimize a cost function J(θ) that measures the performance of the
given model Mθ: a better set of weights θ will have a lower J(θ), while
a worse set of parameters will have a higher J(θ). The cost function
is calculated for a batch of samples at once and is usually defined as
the mean of the loss values calculated for each element of the given
batch, computed between the ground truth labels and the predictions
of the given model. For the latter, we will denote the predictions of
a given model M for a particular input x(i) as ŷi := M(x(i)). In this
dissertation, we will refer to the loss function, calculated for each y(i)

and ŷi during the training process of a particular model Mθ as Li(θ).
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The goal of the optimization procedure will be to minimize the cost
function

J(θ) := 1
m

m∑
i=1

Li(θ) (1)

on the given dataset D and for the given model Mθ, usually achieved
by calculating the gradient ∇θJ(θ) := [ ∂J

∂θ1
, ∂J

∂θ2
, ..., ∂J

∂θdθ

]⊤.
This dissertation focuses on two main areas of machine- and deep

learning: i) time series prediction, and ii) image processing. For time
series prediction-related tasks, we will expand upon the previously in-
troduced notation system to handle both multi-dimensional inputs and
outputs. We will use the terms dimension and time window inter-
changeably to refer to the number of data points in the input data
(tin) and in the outputs (tout), respectively. Consequently, for time
series-related algorithms, we define each input x(i) and output y(i) as
x(i) ∈ Rtin and y(i) ∈ Rtout .

When dealing with image processing-related problems, each ele-
ment x(i) will be an image in our dataset D. In this case, we define the
input image x(i) ∈ Rh×w×d as an element in the Rh×w×d vector space,
where h denotes the height, w the width, and d the depth (i.e., num-
ber of channels) of the images originating from this space. We will use
the notation x(i)

px,py to refer to a given pixel at the (px, py) coordinates,
where 1 ≤ px ≤ w and 1 ≤ py ≤ h. Although there are many different
ways to encode and store digital images depending on the device, pro-
cedure, format, and imaging modality (e.g., PET, MRI, etc.) that are
used to record and store the images, in this dissertation, we will focus
on images where the pixel values are in the 0, . . . , 255 range. We will
also use this same notation when the pixel values of the input image
have been standardised or normalized to the [0, 1] interval. We will
also refer to x(i) ∈ Rh×w×1 images as grayscale, and use the phrase
colored (RGB) image when referring to any image x(i) ∈ Rh×w×3. For
segmentation problems, where the outputs are also images, we will de-
fine the outputs y(i) ∈ Rh×w×nc as images as well, where nc represents
the number of possible classes for each pixel of the output image y(i).

Furthermore, in this dissertation, we will refer to any kind of ensem-
ble model as Ens. Accordingly, let M1, M2, ..., Mn (n ∈ {2, 3, 4, ...})
be any traditional, machine-, or deep learning models following our
previously introduced notation system. An ensemble constructed of
these models will be defined as Ens := {M1, M2, ..., Mn}.
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2.2 Theoretical background
The goal of any supervised machine-, and deep learning model Mθ is
to minimize a given cost function J(θ) by minimizing the loss function
Li(θ) for each sample (x(i), y(i)). To achieve this, a robust optimizer,
such as Stochastic Gradient Descent (SGD) [35], RMSProp [36], or
Adam [37] should be used. The common objective of these optimizers
is to reduce the value of J(θ) incrementally, usually from batch to batch
in practice. This is because, although considering all training samples
at once may be more beneficial from a convergence standpoint, keeping
all of the samples in the memory is usually unfeasible and impractical
due to the sheer amount of memory required by each x(i). Due to this,
the value of J(θ) and the gradient ∇θJ(θ) is usually approximated by
using only a smaller number of training samples, called a mini-batch to
update the weights θ for each batch of samples. Moreover, the batches
are chosen from the dataset D in a randomly shuffled manner to reduce
any intrinsic dependencies or correlations between the samples inside
each batch. This process of gradually lowering the total cost is then
repeated for a number of steps, called epochs. An overview of an SGD
optimizer for a simple machine learning model Mθ with weights θ can
be seen in Algorithm 1.

Algorithm 1 Stochastic gradient descent
Inputs:
D ← Dataset
m ← Number of elements inside D
N ← Number of epochs
α ← Learning rate
B ← Batch size

Output:
The trained model Mθ

1: Initialize the weights θ randomly
2: for epoch← 1 to N do
3: batches← Get non-overlapping, randomly shuffled batches from D
4: for b in batches do
5: for i in b do
6: ŷ(i) ←Mθ(x(i))
7: J(θ)← 1

B

∑
i∈b Li(θ)

8: θ ← θ − α∇θJ(θ)
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The following is an in-depth overview of Algorithm 1:

• Input – D: the dataset of training inputs x(i) and their corre-
sponding outputs y(i),

• Input – m: the total number of input-output pairs inside the
dataset D,

• Input – N : the total number of epochs during the optimization
process,

• Input – B: the number of training input and output pairs con-
sidered for one single update of the weights of the model,

• Input – Mθ: the machine learning model, parameterized by the
randomly initialized weights θ,

• Output – Mθ: the machine learning model with the learned
parameters θ after the optimization process has ended,

• Line 1 : the weights of the model Mθ are initialized as follows:
θi := rand(R), where the rand(A) function returns a random
element from the set A,

• Line 7 : calculate the cost function by taking the mean of the loss
Li(θ), calculated for every output y(i) and their corresponding
predictions ŷ(i) in the given batch,

• Line 8 : update the weights θ by taking a step along the steepest
decrease in the weight space Rdθ , by calculating the negative
gradient −∇θJ(θ).

When constructing traditional ensembles with n arbitrary mod-
els, each model Mj (j ∈ 1, 2, ..., n) is trained individually with no
interaction between the different models. After each model Mj has
been trained, they are constructed into an Ens := {M1, M2, ..., Mn}
ensemble. For inference, i.e., for using the ensemble for performing
predictions on real or test data, the outputs of the different models are
combined and aggregated in a fixed and pre-defined manner. Some of
the most common techniques for performing this aggregation are: i)
majority voting, and ii) weighted averaging. In this dissertation, we
will use EnsM to denote a majority voting ensemble, and EnsW to
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denote weighted averaging. For majority voting, the outputs of each
model Mj are taken, and the class label with the highest count (i.e.,
the mode of the outputs) is considered as the final prediction of the
ensemble:

EnsM(x(i)) := majority(M1(x(i)), M2(x(i)), ..., Mn(x(i))), (2)

where majority() returns the class label with the most occurrences, if
any, otherwise, if the outputs do not differ, a default value is returned.
In this dissertation, we will use the default value of zero, signaling
that the ensemble could not produce any outputs if all of the mem-
bers predicted different classes. When two or more classes receive the
same number of votes, one of them is selected randomly. In the case of
weighted averaging, a coefficient βj ∈ [0, 1] is computed for each model
Mj where ∑n

j=1 βj = 1. The coefficients are computed by first evaluat-
ing each model according to a chosen metric, then assigning higher βj

values to models achieving better results from the perspective of the
given metric, and assigning lower coefficients to worse models. Then,
the final output of the ensemble is calculated as the weighted average
of the output of each model, formalized as:

EnsW (x(i)) := β1M1(x(i)) + β2M2(x(i)) + ... + βnMn(x(i)). (3)

For segmentation tasks, i.e., when both the inputs and the outputs
are images, we apply formulae 2 and 3 to each pixel in the generated
segmentation masks, defined as

EnsM (x(i))px,py := majority(M1(x(i))px,py, M2(x(i))px,py, ..., Mn(x(i))px,py) (4)

and

EnsW (x(i))px,py := β1M1(x(i))px,py + β2M2(x(i))px,py + ... + βnMn(x(i))px,py (5)

for EnsM and EnsW , respectively.
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3 Designing a two-step architecture for
the accurate prediction of diseases

3.1 Introduction
In this chapter, we outline a simple architectural solution regarding a
two-step framework for training accurate and data-efficient time series
models. Although we use the proposed method for the prediction of
influenza and COVID-19 cases, the framework is applicable to any
other time series-related problems as well due to its general formulation
and simple-to-implement nature. The two-step architecture first trains
a neural network to approximate the operation of a given theoretical
model. Then, as the second step, the model is trained on real data to
further improve its performance.

This architecture aims to combine the biggest advantages of tradi-
tional and deep learning algorithms by showing that theoretical models
can be applied during the training of neural network models as a pre-
training step, resulting in a more accurate model. We will show that if
we train a neural network first on a theoretical model, then train it fur-
ther on real data, it is possible to build solutions that outperform not
only the original theoretical model, but also a neural network trained
only on real data. We conclude that this is because this way the neu-
ral network not only has more time to learn the intrinsic properties of
the given problem, but the initial training phase (approximating the
theoretical model) is mathematically well-defined and the data points
are not noisy, unlike the real data. This way, the neural network will
have a solid set of weights, that are roughly equivalent to a theoretical
model, before being trained on real data. This makes the second part
of the training much smoother, easier, and more effective.

The structure of this chapter is as follows. In section 3.2, we explain
our motivations behind building the proposed architecture, detailing
the advantages and disadvantages of the traditional and deep learning
algorithms and explain why combining the two approaches may be a
good choice in certain circumstances. Then, in section 3.3, we give
an overview of the datasets that were used during our research. In
section 3.4, we introduce our proposed framework and in section 3.5
we detail our experimental setup and findings. Finally, in section 3.6,
we provide our conclusions and list our key contributions.
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The universal two-step architecture introduced in this chapter and
the corresponding experimental results were published in [28].

3.2 Motivation
Researchers often use theoretical models, which provide a relatively
simple, yet concise and effective way of modelling various phenomena.
However, it is a well-known fact that the more complex the model, the
more complex the mathematical description is. For this reason, theo-
retical models generally avoid large complexity and aim for the simplest
possible definition, which although makes the model mathematically
more manageable, in practice it also often leads to sub-optimal per-
formance. This is mainly because even after this simplification step,
theoretical models are usually still too rigid due to their sophisticated
nature and therefore cannot really deal with sudden changes in the en-
vironment. Furthermore, the data collected during the observations
usually contain confounding factors, for which a simple theoretical
model cannot be prepared. The application of artificial intelligence
provides a good opportunity to develop complex models that can com-
bine the basic capabilities of the theoretical models with the ability
to learn more complex relationships. It has been shown [38, 39] that
with neural networks, we can build such models that can approximate
mathematical functions. Trained artificial neural networks are thus
able to behave like theoretical models, while still retaining their over-
all flexibility. This, in turn, guarantees an overall better performance
in a complex real-world environment.

The aim of our study was to show our notion that we can create a
framework that is able to combine the main benefits of both the the-
oretical and deep learning methods, resulting in a solution that is i)
applicable even if only a small amount of training data is available, ii)
is mathematically founded, and iii) achieves good performance. Our
solution relies on using neural networks, which are able to approximate
a given theoretical model [38, 39], and then further improve the model
with the help of real data to suit the real world and its various aspects
better. In order to validate the functionality of the architecture we
developed, we have selected a simple theoretical model, namely the
Kermack-McKendrick model [26] as the base of our research. This is
an SIR [27] model, which is a relatively simple compartmental epi-
demic model, based on differential equations that can be used well for
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infections that spread very similar to influenza or COVID-19.
SIR is a general virus spread model that can be interpreted easily.

The model can be described with an ordinary differential equation and
has only a few parameters. Furthermore, in terms of behaviour it is a
non-linear system. It is primarily recommended to be used for viruses
where infected individuals cannot develop long-lasting immunity af-
ter recovery. This theoretical approach with regard to the spread of
viruses was first described by William Ogilvy Kermack and Ander-
son Gray McKendrick and became generally known as the Kermack –
McKendrick theory [26]. We used this model in our research because
currently, for both influenza and COVID-19, the scientific consensus is
that, based on the behavioral characteristics of the virus, individuals
cannot get sustained immunity after recovering. A classic SIR model
considers the following parameters:

• t – a given moment in time,

• N – total population,

• S(t) – number of susceptible individuals at time step t,

• I(t) – number of infectious individuals at time step t,

• R(t) – number of recovered individuals at time step t,

• β – potential exposure rate per capita, i.e., how many additional
individuals a particular infected can infect at a given point in
time,

• γ – rate of recovery, which is practically the recovery/death rate
and 1/γ is the infectious period.

Definition 3.1. According to the Kermack-McKendrick model [26],
given the functions S : N0 → R, I : N0 → R, R : N0 → R defined
for each time step t ∈ N0, and parameters β ∈ R and γ ∈ R, the
classic SIR model is considered as a system determined by the following
differential equations:
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dS

dt
= −βIS

N
,

dI

dt
= βIS

N
− γI,

dR

dt
= γI,

dS

dt
+ dI

dt
+ dR

dt
= 0. (6)

By definition, for any given problem, the total number of suscepti-
ble (S), infectious (I), and recovered individuals (R) at any given time
step t ∈ N0 constitutes the total population N . In other words, the
equation

S(t) + I(t) + R(t) = N (7)

holds true for each time step t. Furthermore, in the case of a SIR
model, the number of recovered individuals (R) at the first moment in
time is related to the potential exposure rate β and the rate of recovery
γ, resulting in the following formula:

R(0) = β

γ
. (8)

The main disadvantage of using the SIR model, however, is that
it relies too heavily on its parameters, with slight changes in them
leading to drastic overall changes of the S, I, and R curves. Moreover,
the simplicity of the SIR model distorts its accuracy in many cases as
the underlying theoretical model is too rigid. By using the SIR model,
we have shown that the two-step framework described in the coming
sections can be a valid approach for modeling the spread of diseases
such as influenza or COVID-19.

3.3 Datasets
The datasets used during our research were obtained from the Flunet
database [40] published by the World Health Organization (WHO),
and the Humanitarian Data Exchange (HDX) platform [41] for in-
fluenza and COVID-19, respectively. All population-related data was
obtained from the World Bank [42]. For influenza, the dataset we used
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contained the weekly number of newly infected people for any given
time step. For our research, we used the influenza data of Germany,
Hungary and Romania for the influenza season 2019 (starting from the
winter of 2018 and ending in the spring of 2019). We chose these par-
ticular countries because each of them had data roughly resembling
the bell shape of an SIR curve, making them more suitable for our
experiment. In the case of COVID-19, the dataset that we used con-
tained the number of newly infected people for any given time step.
The available data was aggregated at a daily level, meaning that each
data point in the dataset corresponded to the number of COVID-19
cases on a given day in a particular country. During our research, we
considered the data available for a wide range of countries, which were
the following: Austria, Croatia, Germany, Hungary, Japan, Romania,
Slovakia, Slovenia, and Switzerland.

3.4 Two-step architecture
For approximating the spread of infectious diseases, we apply a two-
step architecture. We split the original training dataset Dtrain into two
subsets Dtrain,1 and Dtrain,2. Let MSIR denote the theoretical model
predicting the number of infectious individuals for any given time step.
In other words, let us define it as MSIR(t) := I(t) for each time step t.
We use Dtrain,1 for optimizing the parameters of the theoretical model
MSIR, and use Dtrain,2 for fine-tuning our neural network Mθ. We first
fit the neural network Mθ to the infected curve of the SIR model, in
other words, the outputs of the model MSIR. For this, we construct a
synthesized dataset DSynth by applying the theoretical model MSIR for
a range of synthesized inputs x̂i, where each x̂i is a randomly sampled
point from the possible range of input values.

Definition 3.2. Let x̂1, x̂2, ..., x̂m denote some arbitrary synthesized
(e.g., randomly sampled) inputs and MSIR the theoretical model. The
synthesized dataset DSynth is defined as

DSynth := {(x̂1, MSIR(x̂1), (x̂2, MSIR(x̂2), ..., (x̂m, MSIR(x̂m)}. (9)

Claim 3.1. Given a SIR model MSIR, we can generate an infinite
number of synthesized samples to construct DSynth.

Reasoning. By definition, the model MSIR : N0 → R can produce an
output for any given synthethised input x̂i ∈ N0. Therefore, given

18



an infinite set of synthesized inputs {x̂1, x̂2, ...}, we can generate an
infinite number of data points DSynth = {(x̂1, MSIR(x̂1), (x̂2, MSIR(x̂2),
..., (x̂m, MSIR(x̂m)}. □

After training the neural network model Mθ, we measure how close
its predictions to the theoretical model MSIR are by calculating the
mean squared error (MSE) using each MSIR(x(i)) and Mθ(x(i)) as

MSE(MSIR, Mθ) := 1
m

m∑
i=1

(MSIR(x(i))−Mθ(x(i)))2. (10)

Theorem 3.1. Let m denote the number of samples in the dataset
DSynth, generated by using the model MSIR and synthesized inputs
x̂1, x̂2, ..., x̂m. Given that the number of samples m is sufficiently large
and that the neural network Mθ has the sufficient computational ca-
pacity, we can train Mθ such that it is able to approximate the origi-
nal model MSIR. Moreover, with a sufficient capacity and weights θ,
MSE(MSIR, Mθ) 7→ 0 as m 7→ ∞.

Proof. It has been shown in [39] that neural networks with at least
one hidden layer can approximate any continuous function. Therefore,
given the SIR model MSIR, the neural network Mθ, and the dataset
DSynth with m elements, the only thing influencing the quality of the
trained model Mθ is m. If the size of the dataset D is too small, that
means that Mθ cannot get a comprehensive description of the nature of
the data. However, we have shown previously that we can generate an
infinite number of synthesized samples to construct DSynth using the
SIR model MSIR. Since we have a dataset of adequate size, according
to [39], as long as the neural network has the sufficient capacity, it
can approximate the continuous function MSIR. In this case, (10) falls
below a given threshold. Moreover, as m 7→ ∞, 1

m
7→ 0, resulting in

(10) converging to 0.

When the neural network model possesses the ability to approx-
imate the theoretical model with a sufficiently small MSE, the next
step of the framework starts. During this step, the neural network
gets access to the second part of the original training data, denoted as
Dtrain,2 and the second round of training begins. The objective of this
second step is to provide more data to the model in the form of the
real, observed values, so that the model can become more accurate.
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During this step, the neural network model is given the chance to de-
viate from the theoretical model in cases when the latter would make
undesirable predictions by making adjustments to its own weights. If
this deviation is not too significant, the resulting model should both
be able to simulate the operation of the original theoretical model to
a high degree and be more accurate as well, due to learning from real
data. A detailed description of the proposed two-step architecture is
given in Algorithm 2.

Algorithm 2 The proposed two-step model
Input:
D ← Dataset
m ← The number of samples to synthesize
NSIR ← Number of epochs to approximate the SIR model
NF T ← Number of epochs to fine-tune the neural network
α ← Learning rate used for the synthesized dataset
αF T ← Learning rate used during the fine-tuning step
B ← Batch size

Output:
The trained model Mθ

1: Dtrain,1,Dtrain,2 ← SPLIT (D)
2: β, γ ← CONFIGURE(Dtrain,1)
3: MSIR ← MAKE_SIR(β, γ)
4: x̂1, x̂2, ..., x̂m ← SAMPLE(Rdx)
5: DSynth ← {(x̂1, MSIR(x̂1), (x̂2, MSIR(x̂2), ..., (x̂m, MSIR(x̂m)}
6: Initialize the weights θ randomly
7: for epoch← 1 to NSIR do
8: batches← Get non-overlapping, randomly shuffled batches from DSynth

9: for b in batches do
10: for i in b do
11: ŷi ←Mθ(x(i))
12: J(θ)← 1

B

∑
i∈b Li(θ)

13: Update θ using the gradient ∇θJ(θ) and learning rate α

14: for epoch← 1 to NF T do
15: batches← Get non-overlapping, randomly shuffled batches from Dtrain,2
16: for b in batches do
17: for i in b do
18: ŷ(i) ←Mθ(x(i))
19: J(θ)← 1

B

∑
i∈b Li(θ)

20: Update θ using the gradient ∇θJ(θ) and learning rate αF T
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The following is an in-depth overview of Algorithm 2:

• Line 1 : the SPLIT () function splits the original D dataset into
two parts Dtrain,1 and Dtrain,2.

• Line 2 : the CONFIGURE() function is used to fit the param-
eters β and γ of the SIR model to the given dataset Dtrain,1.

• Line 3 : using the configured parameters β and γ, we define the
theoretical model MSIR.

• Line 4 : the SAMPLE() function is used to sample m synthe-
sized inputs. The sampling process can follow any reasonable
strategy, such as random sampling or by dividing the input space
into even parts. In our work [28], we followed the latter strategy.

• Lines 7 to 13 : train the neural network on the synthesized
dataset DSynth using SGD (from Algorithm 1).

• Lines 14 to 20 : fine-tune the trained neural network Mθ on the
real dataset Dtrain,2 using SGD (from Algorithm 1).

3.5 Experimental setup and results
During our experiments, we used a simple dense network with three
hidden layers of 20, 40, 20 neurons and the rectified linear unit (ReLU)
activation function in each layer. We focused on this simpler archi-
tecture instead of using more sophisticated ones like recurrent neural
network (RNN), long short-term memory (LSTM) or gated recurrent
unit (GRU) to show that the proposed architecture can be used for a
variety of problems. This time, we made the model function similar to
a simple RNN by feeding it data containing several time steps as input
but this is not required; the framework itself can be used for non-time
series data as well. Additionally, for handling time series data, we have
considered using a neural network that does not only receive the data
for the previous day and predicts the next day, but receives a sequence
of tin days as input, and makes predictions regarding a sequence of tout

days. We hand-picked the potential values for tin and tout, respectively,
according to public forecasts that focus on the recent past and near
future, as well as filtering out impractical settings during an initial
prototyping phase. We noticed that predicting more days than what
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the network has information on is impractical, since the network has
access to less information than what it needs to generate. Accord-
ingly, we observed a stark decline in performance even for the plain
networks when using tout values that were greater than tin. This would
have made comparing them to our architecture impossible. Therefore,
during our experiments, we kept tout smaller than tin.

3.5.1 Influenza

To demonstrate the basic idea behind the architecture, we first ex-
perimented with diseases that are simpler in their nature. Our first
objective was therefore to show that the architecture can be used for
known diseases, like influenza. For these diseases, there are already
some mathematically defined models, which are used heavily in prac-
tice due to their simplicity and good overall performances. We exper-
imented with the SIR model and observed how it performs on data
for a few selected countries and how we can further improve the per-
formance by using our proposed two-step architecture. To measure
the efficiency of these models, we used the available data of Germany,
Hungary and Romania for the influenza season 2019. We chose these
countries specifically from a bigger pool of countries by selecting those
that had a data roughly resembling an SIR curve (see Figure 1). That
is, we deliberately selected countries that had data which especially
favored the SIR model. This is because our aim was to show that
our proposed architecture can improve the overall performance of the
original theoretical model even in cases where the theoretical model
performs relatively well.

Since the data was aggregated at a weekly level, we used the config-
uration tin ∈ {2, 4}, tout = 1 for the neural network model. This way,
it could process some relatively recent information (the last 2 or 4
weeks) without relying too much on older information (where tin > 4),
while keeping the model relatively simple (tout = 1) and suitable for
showcasing the potential of the model. The predictions were evaluated
by calculating the mean square error (MSE) and root mean square
error (RMSE) metrics. Furthermore, for every country and configura-
tion, we trained five different neural networks to calculate the spread
of the errors. Table 1 shows the summarized results of both the SIR
and the two-step architecture considering a confidence level of 95%
(p = 0.05, n = 5, using t-statistics).
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Country Model tin tout MSE RMSE
Germany SIR - - 603.88 24.57
Germany Two-step 2 1 176.66± 49.96 13.23± 1.79
Germany Two-step 4 1 170.67± 29.50 13.04± 1.14
Hungary SIR - - 276.92 16.64
Hungary Two-step 2 1 184.58± 21.57 13.57± 0.79
Hungary Two-step 4 1 127.41± 15.36 11.28± 0.67
Romania SIR - - 1452.93 38.12
Romania Two-step 2 1 877.12± 124.16 29.58± 2.05
Romania Two-step 4 1 1178.39± 175.33 34.28± 2.54

Table 1: The results of the SIR and the two-step architecture on the
influenza dataset.

Figure 1: A comparison between the original SIR model (top) and one
of the t = 4, T = 1 models (bottom) for Germany.
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It can be seen that by using our proposed two-step neural network
architecture, we were able to drastically decrease the overall error in our
predictions. The improvements were the most drastic for the German
and Romanian data. This is because, while the SIR model fit relatively
well to the real data, there were still a number of data points that were
far away from the curves produced by the models (see Figure 1). This
shows that using our proposed architecture can further increase the
overall performance even in cases where the original theoretical model
performs well. Thus, it can be a plausible solution for tackling the
spread of some diseases to achieve state-of-the-art results.

3.5.2 COVID-19

To fully demonstrate the capabilities of the proposed architecture, we
ran some experiments on COVID-19 data. We think that choosing
this disease can better showcase the performance and reliability of
our architecture, since due to the nature of the disease, there are no
theoretical models that can perform really well on COVID-19 data.
As outlined previously, there are several factors, such as the numer-
ous waves, noise in the data, and regulations that make predicting
COVID-19 hard or impossible for a single simple theoretical model.
Moreover, these factors make training a neural network harder, too,
since the noise present in the dataset may mislead the networks during
the training phase.

We used different values for tin and tout, respectively, to find out
how many days’ worth of data can better describe the disease, as well
as to improve the overall performance. Namely, we used the configu-
rations {(tin, tout) | tin ∈ {14, 7, 3} and tout ∈ {7, 3, 1} and tout < tin},
since the available data was aggregated at a daily level. This way, we
experimented with how many days the model should take into account
when making predictions and find out whether increasing the size of
the input resulted in any substantial performance gains. We also tried
changing the output size to experiment with whether doing so could
make the model more reliable by having it constantly focus on a series
of next days. Since due to the nature of the model, there will be mul-
tiple predictions for a given day when using tout > 1, we also outline
an aggregated solution that combines the outputs of a single model for
a given day by taking the mean of the predicted values.

We found that using tin > 14 made the training of the model much
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harder and resulted in models that performed worse. This made the
model more complex, which focused too much on days that were too
far away, therefore not contributing to the current number of infected
people. For a similar reason, we observed that when tout was closer
to tin, the overall performance plummeted, since the model simply did
not have enough information to make accurate long-term predictions.
Moreover, we found that when using the setting tout > 3, the quality of
the predictions regarding the future started to deteriorate, suggesting
that predictions with a larger output window size for the COVID-19
dataset were not feasible. Therefore, we suggest that it is better to use
smaller tout values instead of trying to make long-term predictions (see
Figure 2).

Figure 2: A model with the configuration tin = 14, tout = 1 and its
predictions (red) for Hungary.

After the experiments, we concluded that our approach led to
shorter training times and better convergence. After the neural net-
work obtained a set of weights that was roughly equivalent to the given
SIR model (the predictions were close to the curve I of the SIR model),
we decreased the learning rate and trained the neural network on real
data. This step is applied to make sure that the weights of the neural
network do not change substantially, which could have resulted in a
model that no longer resembles the original SIR model. Another ad-
vantage of the decreased learning rate is that the impact of the noise
present in real data can be reduced in this way.
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We trained all the models on the first wave of COVID-19 for any
given country. This means that we first fit a SIR model to the data
of the first wave, then approximated the SIR model with a neural net-
work, then trained it further on the real data of the first wave. For the
first wave, the data was also split into training and test parts. After
evaluating the networks on the test part of the first wave, we tested
the models on the second wave of COVID-19 for the given country. To
test the overall reliability and performance of our proposed architec-
ture, we compared its results with a plain neural network that was not
initialized with weights similar to an SIR model but simply trained on
the available COVID-19 data. These plain neural networks were also
trained in the exact same way: first they were fitted to the first wave
of the real data and then tested on the second wave. We repeated each
experiment for a given (tin, tout) pair a total of n times to measure how
the results fluctuated. During our research, we considered multiple val-
ues when choosing n. We found the number 10 to be the best for our
purpose: the samples gathered by training each model 10 times proved
to be representative enough to reliably calculate the overall error while
the time required to train the models was still manageable.

Figure 3: The basic workflow of the two-step architecture.

This approach (see Figure 3) has quite a few benefits compared
to training a neural network directly on real data. First of all, the
amount of noise generated throughout the training phase is consider-
ably reduced. This is thanks to the model being taught on a much
smoother and mathematically well-defined function, which is the out-
put of the SIR model. The shape of the infected curve (I) for a given
SIR model is bell-shaped, with no irregularities and noise. Hence, it
is easier for neural networks to be trained on this simpler data. More-
over, since the network has a solid set of weights after the first phase is
finished and the learning rate is smaller during the second phase, the
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irregularities present in the real data do not affect the training as much
as they would normally. This fact, along with the ability of an SIR
model to approximate the original data fairly well, leads to a more
controlled training process. This way, the network can first extract
meaningful information about the nature of the disease, and then it
has access to a more irregular dataset for further training.

Another huge advantage of this framework is the increased amount
of data available during the learning phase. This is beneficial when
the available dataset contains only a handful of records; as in the case
of the influenza dataset in our study. However, by pre-training on a
theoretical model that behaves roughly the same, we can generate the
necessary data points to obtain such a starting set of weights that only
needs to be further refined on real data. This ultimately leads to a
smoother and more controlled training process. Tables 2, 3, 4, and 5
contain our experimental results for Hungary and Germany. All values
shown in these tables were rounded to the nearest whole number to
make the interpretation of the results easier. We have also included
additional results for other countries in Appendix A.

Table 2: Hungary - first wave errors.

tin–tout Model
First wave errors

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 87 ± 20 - 9 ± 1 -
Plain 272 ± 53 - 16 ± 2 -

7–1 Two-step 108 ± 19 - 10 ± 1 -
Plain 186 ± 32 - 14 ± 1 -

3–1 Two-step 99 ± 12 - 10 ± 1 -
Plain 141 ± 16 - 12 ± 1 -

14–7 Two-step 99 ± 31 79 ± 25 10 ± 1 9 ± 1
Plain 302 ± 70 210 ± 58 17 ± 2 14 ± 2

14–3 Two-step 85 ± 12 67 ± 15 9 ± 1 8 ± 1
Plain 291 ± 41 272 ± 104 17 ± 1 16 ± 3

7–3 Two-step 93 ± 20 81 ± 25 10 ± 1 9 ± 1
Plain 214 ± 70 169 ± 74 14 ± 2 12 ± 3

It can easily be seen that the results of the proposed architecture are
generally way better than that of a simple, randomly initialized neural
network. This shows that having the model learn a less complex and
theoretically defined function that roughly resembles the target data
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Table 3: Hungary - second wave errors.

tin–tout Model
Second wave errors

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 17249 ± 5150 - 129 ± 17 -
Plain 31268 ± 7438 - 175 ± 21 -

7–1 Two-step 17882 ± 2884 - 133 ± 11 -
Plain 25712 ± 5262 - 159 ± 16 -

3–1 Two-step 12987 ± 448 - 114 ± 2 -
Plain 27127 ± 3578 - 164 ± 11 -

14–7 Two-step 12826 ± 1247 30126 ± 9607 113 ± 5 170 ± 27
Plain 37160 ± 27294 51982 ± 5450 181 ± 51 227 ± 12

14–3 Two-step 14273 ± 2688 36985 ± 18003 119 ± 11 182 ± 46
Plain 54496 ± 43076 42304 ± 11570 211 ± 75 202 ± 28

7–3 Two-step 13117 ± 2039 25896 ± 9038 114 ± 9 157 ± 28
Plain 76712 ± 51466 53238 ± 23835 247 ± 94 221 ± 49

Table 4: Germany - first wave errors.

tin–tout Model
First wave errors (Germany)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 153053 ± 58837 - 380 ± 72 -
Plain 207112 ± 60990 - 446 ± 68 -

7–1 Two-step 129619 ± 35072 - 354 ± 49 -
Plain 204516 ± 43125 - 447 ± 48 -

3–1 Two-step 112976 ± 13019 - 335 ± 20 -
Plain 156238 ± 44880 - 387 ± 57 -

14–7 Two-step 111460 ± 39019 73770 ± 24834 325 ± 59 265 ± 44
Plain 151080 ± 46847 218403 ± 112174 379 ± 66 441 ± 116

14–3 Two-step 113580 ± 29820 105878 ± 41615 332 ± 42 316 ± 59
Plain 250274 ± 97146 243238 ± 132332 485 ± 92 460 ± 134

7–3 Two-step 116271 ± 26964 138752 ± 56923 337 ± 40 358 ± 77
Plain 165840 ± 64845 184525 ± 85200 394 ± 79 413 ± 89

may be a beneficial pre-training step and could yield potentially better
results when trained further on real data compared to models that are
trained only on the latter. Another important note is that the target
mathematical function does not need to match precisely with the real
data, as it was the case for our research regarding COVID-19. The
only important part is that it should contain some key information
(in this case the bell-shape curve hinting that the number of diseases
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Table 5: Germany - second wave errors.

tin–tout Model
Second wave errors (Germany)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 386211 ± 55594 - 619 ± 44 -
Plain 350296 ± 59203 - 588 ± 50 -

7–1 Two-step 373298 ± 40520 - 609 ± 32 -
Plain 378416 ± 36601 - 614 ± 30 -

3–1 Two-step 396793 ± 23701 - 629 ± 19 -
Plain 538980 ± 393801 - 685 ± 84 -

14–7 Two-step 244445 ± 55773 268252 ± 90832 489 ± 54 508 ± 75
Plain 595381 ± 453948 268209 ± 66891 680 ± 274 511 ± 65

14–3 Two-step 284439 ± 34150 365277 ± 121480 532 ± 32.42 593 ± 88
Plain 336348 ± 60559 404303 ± 128238 576 ± 52 625 ± 89

7–3 Two-step 286050 ± 27532 352900 ± 38206 534 ± 26 592 ± 33
Plain 593034 ± 519253 326211 ± 56222 677 ± 276 567 ± 50

should keep increasing until a certain point and then start decreasing
from then on) that can provide a strong foundation for the network
to build upon in the second phase of the training. This approach also
makes it harder for the model to focus on dispensable features due to
the first step containing the differential equations in its loss function.
Another interesting point is that training the network on a SIR model
for the first wave has proved to be really beneficial for predicting even
the second wave. The network surpassed the original theoretical model,
which also proves that the network can learn important features present
in the theoretical model, which it can use to recognize similar patterns
in future data and remarkably surpass the performance of plain neural
networks.

Overall, this two-step approach made the training of the model
easier and more manageable, since it is always easier to fine-tune a
network to fit to a mathematically well-defined function. This also
reduced the amount of noise the networks faced during training thanks
to first being trained on a theoretical model and then switching to the
real data with a smaller learning rate and an already robust set of
weights instead of random ones. Moreover, we did not need any pre-
configured network even though we basically pre-train the model, since
the theoretical model can be relatively easily defined. This in turn
provided a fast and cheap, yet effective way of using transfer learning.
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3.6 Conclusions
In this chapter, we have introduced a two-step framework for training
performant models for time series prediction. We explained that there
are certain scenarios, e.g., when the dataset is small, when training
a neural network model on the data may lead to sub-optimal perfor-
mance. We also highlighted the fact that theoretical models, due their
rigid nature, may not perform optimally either, if the operation of said
model does not fully reflect the nature of the observed data. To over-
come these issues, we trained neural networks to first approximate the
given theoretical model and then trained them further on real data.
We showed that following this approach, the models could first grasp
the most important aspects of the data (spread, nature, bell-like shape
etc.) without being affected by the outliers and noise present in the
real data. Once their set of weights was solid enough, they could learn
further on real data.

We evaluated the proposed framework using influenza and COVID-
19 data. We summarized the results of the architecture for a number
of countries and various configurations by changing the input and out-
put size of the model. We showed that the proposed approach per-
formed better than theoretical models for predicting the weekly num-
ber of influenza patients. We also tested how this approach fares with
much noisier COVID-19 data, which currently no theoretical models
can predict reliably. Our experimental results show that the proposed
architecture performs better than simple neural networks that are only
trained on real data. We also highlighted how this approach can com-
bine the benefits of the two main pillars, which were the theoretical
models and the neural networks. Namely, we showed how one model
trained using this architecture can not only surpass plain neural net-
works that are initialized randomly but how the features regarding the
spread of the disease extracted from the first wave can help with mak-
ing predictions for the second wave, surpassing the original theoretical
model, too, which could only predict a single wave.
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4 Combining hand-crafted features with
features extracted by CNNs

4.1 Introduction
Eye diseases such as diabetic retinopathy and diabetic macular edema
pose a major threat in today’s world as they affect a significant por-
tion of the global population. Therefore, it is of utmost importance
to develop robust solutions that can accurately detect these diseases,
especially in their early stages. However, current methods, based on
hand-crafted features devised by experts, are not sufficiently accurate.
Several solutions have been proposed that use deep learning techniques
to improve the performance of such systems. However, they usually
ignore the highly valuable hand-crafted features, that could contribute
to more accurate predictions.

This chapter presents a novel way of combining the hand-crafted
features with those extracted by a CNN. We detail the main motivation
behind the solution, showing the potential limitations and drawbacks
of traditional methods relying purely on hand-crafted features, and
highlight the potential benefits of our method. We introduce multiple
variants of our proposed framework and show that all of them can
solve the problem of detecting various diabetes-related eye diseases
using digital fundus images as input. We systematically study several
state-of-the-art neural networks and methods, and propose a number of
ways to integrate them into our framework. We show that it is possible
to achieve significantly better results and outperform networks that do
not consider hand-crafted features using the proposed methods.

The structure of this chapter is as follows. In section 4.2, we explain
the main motivations and reasoning behind the proposed architecture.
We introduce the main idea and detail the biggest advantages of incor-
porating the use of hand-crafted features during the training procedure.
In section 4.3, we give an overview of the dataset that was used dur-
ing our research. In section 4.4, we present our proposed framework
and introduce different variants, highlighting their advantages and dis-
advantages. In section 4.6, we detail our experimental setup, and in
section 4.7, we summarize our experimental results. Lastly, in section
4.8, we provide our conclusions and list our most notable contributions.
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The architecture described in this chapter and all corresponding ex-
perimental results were published in [29].

4.2 Motivation
Nowadays, diabetic retinopathy (DR) is the most common cause of
blindness in developed countries. It is an eye disease caused by long-
standing diabetes. Moreover, about 1 in 15 people with diabetes will
develop diabetic macular edema (DME). DME occurs when blood ves-
sels of the retina leak fluid into the macula which causes blurry vi-
sion. In 2019, an estimated 1.5 million deaths were directly caused
by diabetes and the World Health Organization estimates that 422
million people worldwide have the disease [43]. Progression to vision
impairment can be slowed down if DR/DME is detected at an early
stage. DR is a diabetes complication, with possible consequences rang-
ing from mild visual impairment to blindness. Currently, detecting the
signs of DR/DME is a time-consuming and manual process that re-
quires a trained clinician to examine and evaluate digital color fundus
photographs of the retina. During the annual screening, a large num-
ber of digital images are taken and evaluated by an ophthalmologist.
Only in the UK, the screening programs result in around two million
retinal images for evaluation each year [44]. Repeated screening of DR
is therefore not only costly but also exhausting, so there is a significant
need to automate this process.

Expectations for trustworthy automated screening systems are high
in the case of DR and DME. Recently, deep learning has been in-
creasingly used in the field of medical image analysis, and many such
methods have been proposed that use CNNs to detect microaneurysms
(MAs), hemorrhages (HEs), hard exudates (EXs), or soft exudates
(SEs). [45] proposed a solution in which the entire fundus image was
divided into patches that were considered as input without any further
preprocessing steps. Then, the applied Stacked Sparse Autoencoder
automatically extracted the distinguishing features to classify these
patches. [46] showed how the authors used a single CNN to automat-
ically segment and discriminate lesions in fundus images. They also
divided the input image into 51× 51 pixel patches and used their con-
volutional neural network to classify them as background, EXs, HEs,
or MAs. In addition to the publications mentioned above, there are
many other papers in which the relevant features are extracted using
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conventional digital image processing tools. [47] used morphological
processes and kernel density estimation to segment MAs and evalu-
ated the input images based on the number of detected lesions. [48]
adapted optimal wavelet transform and template matching to perform
automatic segmentation of MAs in retinal images. [49] proposed the
use of multiscale amplitude modulation-frequency modulation (AM-
FM) as a feature extraction method to discriminate between normal
and pathological retinal images.

[50] proposed a solution that combines the powerful, self-extracted,
CNN-based features with traditional, hand-crafted ones into a single
framework to enhance classification performance. The idea derived
from [51], where the authors claimed that a CNN can automatically
extract many important local, textual features from images by con-
volving with a sliding window and forming a filter. However, besides
the local features, the global image descriptors also have played an
important role in many image processing tasks. While the local fea-
tures can be called textural features, the global features usually mean
contour features and structural ones. In the case of DR and DME, the
presence of diseases is characterized by detecting one or more retinal
lesions like MAs, HEs, EXs, and SEs. These signs can be described
well by their contour feature and we can successfully apply them to
improve the final accuracy of a CNN-based screening system.

In this chapter, we extend the solutions proposed in [50] by in-
vestigating the applicability of some additional state-of-the-art neural
networks. We show that our experimental results support our former
statement, namely, that we can improve the final classification results
of a CNN-based solution by using hand-crafted features besides deep
learning ones. Moreover, we investigate the advantages of the proposed
methodology and also its limitations by a comprehensive comparison,
where we test different ways to concatenate the automatically extracted
textural features with the hand-crafted ones.

4.3 Dataset
In this section, we give a brief description of the publicly available
datasets that were used to train and evaluate the methods described
in this chapter. The Kaggle DR and Messidor datasets and the training
part of the Indian Diabetic Retinopathy Image Dataset (IDRiD) were
used for training, while all evaluations were performed using the test
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part of the IDRiD dataset.

4.3.1 Indian Diabetic Retinopathy Image Dataset

The IDRiD dataset [52] consists of 516 color fundus images divided into
a training and test part with 413 and 103 images, respectively. The
images have a resolution of 4 288 × 2 848 pixels and a 50◦ field of view.
Each image is categorized according to the severity of DR (5 classes)
and the risk of DME (3 classes). Regarding DR, the following classes
are defined: no DR (DR0), mild DR (DR1), moderate DR (DR2),
severe DR (DR3), and proliferative DR (DR4). The training and test
sets contain 134, 20, 136, 74, 49, 33, and 33, 5, 32, 19, 13 images for
DR0, DR1, DR2, DR3, and DR4, respectively. Concerning DME, the
classes are defined based on the presence of hard exudates near the
macular center. These classes are: no risk of macular edema (DME0),
moderate risk of macular edema (DME1), and high risk of macular
edema (DME2). The training set includes 177 DME0, 41 DME1, and
195 DME2 images, while the test set contains 44 DME0, 10 DME1,
and 48 DME2 images.

4.3.2 Kaggle DR dataset

The Kaggle DR dataset is the training portion of the dataset provided
by EyePACS for a DR grading challenge [53] held by Kaggle. It con-
tains 35 126 color fundus images with resolutions ranging from 400 ×
315 to 5 184 × 3 456 pixels and different fields of view. For each image,
a DR grading score is provided: 25 810 of these images are categorized
as DR0, 2443 as DR1, 5292 as DR2, 873 as DR3, and 708 as DR4. In
addition, 7 806 of the images in this dataset were labeled by an expe-
rienced local ophthalmologist for the risk of DME: 5 949 of the images
are categorized as DME0, 1 033 as DME1, and 824 as DME2. It is
important to note that several images in this dataset are affected by
imaging artifacts, blurring, under- or overexposure.

4.3.3 Messidor dataset

The Messidor dataset [54] comprises 1 200 color fundus images with
three different resolutions (1 440 × 960, 2 240 × 1 488, and 2 304 ×
1 536 pixels) and a 45◦ field of view. Both DR and DME grading scores
are available for the images of this dataset. However, DR scoring differs
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slightly from the method used for the other two datasets. Using the
DR severity classes of IDRiD and Kaggle DR, 546 of the images in this
dataset are categorized as DR0, 153 as DR1, 247 as DR2, and 254 as
DR4. Regarding DME, 974 images are categorized as DME0, 75 as
DME1, and 151 as DME2.

4.4 Extracting the hand-crafted features
The image-level and lesion-specific approaches used to extract the tra-
ditional features considered in our methods are described in this sec-
tion.

4.4.1 Image-level feature extraction

For image-level feature extraction, we employed an amplitude and fre-
quency modulation-based approach [49], which extracts various fea-
tures from a retinal image by decomposing its green channel into AM-
FM components at different scales [55]. A collection of twenty-five
bandpass channel filters, coupled with four frequency scales, is used
to generate the different scales for feature extraction. After the image
features are extracted, the information is clustered into 30 groups using
k-means clustering. As a result, a 30-element feature vector is gener-
ated that reflects the intensity, shape, and texture of the structures of
the image.

4.4.2 Lesion-specific feature extraction

We used two detector ensembles consisting of ⟨preprocessing method,
candidate extractor⟩ pairs (⟨PP, CE⟩ for short) organized into a vot-
ing system to extract lesion-specific features associated with microa-
neurysms (MAs) and exudates (EXs). By applying a PP to the input
retinal image and a CE to the PP output, a ⟨PP, CE⟩ pair is formed. A
⟨PP, CE⟩ pair extracts a set of candidate lesions from the input image
and functions as a single detector method in this way.

Number of MAs Because MAs are the earliest manifestations of
DR and indicators of its progression, their number is an important
factor in DR classification. MAs are capillary swellings that appear
as tiny red dots; however, their similarity to vascular fragments makes
them difficult to detect.
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The combined output of the MA detector ensemble is obtained
in the following way: if the Euclidean distances of the candidates in
the result sets of ⟨PP, CE⟩ pairs are smaller than a given value, they
are merged. The ratio of the number of ⟨PP, CE⟩ pairs suggesting this
candidate to the total number of pairs in the ensemble is used to assign
a confidence value to each common candidate in the ensemble.

We used the results of [56] to form the ⟨PP, CE⟩ pairs of the en-
semble. Five PPs (contrast-limited adaptive histogram equalization
(CLAHE) [57], illumination equalization (IE) [58], vessel removal with
inpainting (VR) [59], Walter-Klein contrast enhancement (WK) [60],
and "no preprocessing" (NP) for formal reasons) and three CEs (the
methods of [61], [62], and [63]) were selected. Table 6 (a) lists the ⟨PP,
CE⟩ pairs in our MA detector ensemble. After the MA candidate set
of the ensemble is obtained, it is thresholded at six confidence levels
and the number of candidates at each level is counted to obtain six
features.

EX-specific features EXs have properties useful in determining the
severity of nonproliferative DR and the risk of DME. EXs are lipid
residues of serous leakage from injured capillaries that appear as bright
spots of various shapes in retinal images.

The combined output of the EX detector ensemble is obtained as
follows: each ⟨PP, CE⟩ pair produces a binary mask containing EX
candidates. The probability that a pixel belongs to an EX is deter-
mined by the ratio of the number of pairs that marked the pixel as
EX to the total number of pairs, which is then used to construct a
probability map using the output of the different pairs.

The results of [64] were used to create the ensemble described above.
Four PPs (gray-world normalization (GN) [65], illumination equaliza-
tion (IE) [58], morphological contrast enhancement (MC) [66], and
vessel removal with inpainting (VR) [59]) and three CEs (the method
of [67], [68], and [69]) were selected. Table 6 (b) lists the eight ⟨PP, CE⟩
pairs that were used in the ensemble. As the last step, the result set
of the EX ensemble is thresholded at eight different confidence levels,
resulting in a total of 32 features: the ratio of all EX pixels to region of
interest (ROI) pixels, the number of EXs (8-connected components),
the ratio of the largest EX (8-connected component) to ROI, and the
average EX size to ROI.
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Table 6: The ⟨PP, CE⟩ pairs of the (a) MA, and (b) EX detector
ensembles.

(a)
PP CE

1 NP Lazar et al.
2 CLAHE Lazar et al.
3 IE Lazar et al.
4 WK Lazar et al.
5 NP Walter et al.
6 CLAHE Walter et al.
7 NP Zhang et al.
8 VR Zhang et al.
9 WK Zhang et al.

(b)
PP CE

1 GN Sopharak et al.
2 MC Sopharak et al.
3 VR Sopharak et al.
4 IE Walter et al.
5 MC Walter et al.
6 VR Walter et al.
7 IE Welfer et al.
8 MC Welfer et al.

4.5 Combining the hand-crafted features with deep
learning techniques

[50] showed that state-of-the-art accuracy could be attained for this
problem by merging the hand-crafted features with the features ex-
tracted by a CNN. To achieve this, [50] extended the last fully con-
nected (FC) layer (4 096 neurons) with additional neurons (68 in total)
and then reduced the weights to the given class probabilities. More
precisely, for any given image x(i), the feature vectors extracted by an
AlexNet [70] model and the traditional extractors were calculated. The
hand-crafted features were normalized to bring them to the same scale
as the features extracted by AlexNet. Then, these two feature vectors
were concatenated and passed through an additional fully connected
layer.

In subsequent sections, we present three different versions for im-
proving the effectiveness and performance of the described method.
We will denote each version as V1, V2, and V3, respectively.

4.5.1 Extending the original method by using other archi-
tectures

It can be seen how optimizing for more descriptive y
(i)
1 , in other words,

choosing the architecture, can affect performance. This is why we ex-
tended the original idea to several commonly used networks other than
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AlexNet [71] and objectively compared the results of those networks
and their variants that use the hand-crafted features to demonstrate
that our solution greatly improves the classification accuracy. All the
architectures received the input images in the shape that the original
networks operated on. This meant that each RGB input image x(i)

was resized to the size of 224× 224× 3 before being given to the given
network. During the research, we chose AlexNet as our baseline net-
work and tried to improve its accuracy. To this end, we used several
state-of-the-art networks, such as MobileNetv2 [72] and Resnet-50 [73]
and compared their results to that of the baseline – both with and
without the hand-crafted features. In the case of the first one, for any
given input image x(i) the hand-crafted features were calculated and
then concatenated with the extracted CNN features of the given net-
work. For the latter, only the input image was given to the algorithm.
For this version V1 of the algorithm, we kept the original structure
[50] but swapped the feature extracting part with the given network
(AlexNet, MobileNetv2, and Resnet-50, respectively), as can be seen
in Figure 4.

Figure 4: Fusing the hand-crafted features with those extracted by a
CNN in the last layer of the given neural network.

Definition 4.1. For any given input image x(i), features y
(i)
1 extracted

by a CNN and y
(i)
2 normalized vector extracted by traditional extractors,

the output of the architecture V1 considering both features is defined as
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ŷ(i) = σ
(
θ⊤y(i)

c

)
(11)

where y(i)
c represents the concatenated feature vector computed as y(i)

c :=
< y

(i)
1 , y

(i)
2 > and σ is the softmax function.

While by substituting AlexNet with the other variants we could
greatly increase the computational capacity of the architecture, this
method had some shortcomings. Namely, we can clearly see that
although we take into account both the hand-crafted and CNN fea-
tures, we only pass them through one set of weights θ after calculating
ŷ(i) = σ(θ⊤y(i)

c ), where y(i)
c =< y

(i)
1 , y

(i)
2 >. This makes combining y

(i)
1

and y
(i)
2 hard since we need to do that with only the weights θ.

Theorem 4.1. Given the weights θ, features y
(i)
1 extracted by a CNN

and y
(i)
2 normalized vector extracted by traditional extractors, the for-

mula introduced in (11) for the V1 architecture is not guaranteed to be
able to approximate the real outputs y(i) if the relationship between y(i)

c

and y(i) is non-linear.

Proof. Let θ denote the weights of the V1 architecture, and let y
(i)
1

and y
(i)
2 denote the CNN and normalized hand-crafted features, re-

spectively. Furthermore, let us indirectly assume that Theorem 4.1 is
false, meaning that the V1 architecture is in fact guaranteed to be able
to approximate the real outputs y(i) even if the relationship between
y(i)

c and y(i) is non-linear.
Let us construct a theoretical example, where the output is the

square of the first element of the concatenated feature vector, meaning
that y(i) = y(i)

c

2
1. This would require the algorithm to find weights θ

such that

y(i) = y(i)
c

2
1 = σ(θ⊤y(i)

c ) (12)

holds true. From this equation, θ⊤y(i)
c is by definition a linear transfor-

mation, as applying the transformation v := θ⊤y(i)
c can only produce

vectors v that are linearly dependent on y(i)
c . Therefore, the only way

for this equation to be true is if the activation function σ is a quadratic
function. However, the activation function used in Definition 4.1 is the
softmax function. Ultimately, we arrive at a contradiction, meaning
that our initial assumption is false, showing that there is no guarantee
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that the V1 architecture is able to approximate the real outputs y(i) if
the relationship between y(i)

c and y(i) is non-linear.

For this reason, we also explore new architectural solutions that
may more effectively combine the information extracted by these hand-
crafted features with that of the features extracted by a neural network.

4.5.2 Learning the features in parallel

One reasonable solution is to divide the computational graph of the
network into two branches as can be seen in Figure 5. One branch
can be responsible for processing hand-crafted features and another
one can process the input image. These parts would calculate their
predictions separately and we could merge the results to get our final
predictions. Namely, instead of calculating the feature vectors y

(i)
1 and

y
(i)
2 , we could calculate the approximate predictions ȳ

(i)
1 and ȳ

(i)
2 for

each part and then average the outputs.

Figure 5: Fusing the hand-crafted features with those extracted by a
CNN by learning in two separate paths.
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Definition 4.2. Given the feature vectors y
(i)
1 extracted by a CNN,

y
(i)
2 normalized vector extracted by traditional extractors, two sets of

weights θ1
1, θ2

1, ..., θk
1 and θ1

2, θ2
2, ..., θl

2, two sets of activation functions
σ1

1, σ2
1, ..., σk−1

1 and σ1
2, σ2

2, ..., σl−1
2 for the CNN and hand-crafted fea-

tures, respectively, and the softmax function σ, a more complex com-
bination of the feature vectors is defined as

ȳ
(i)
1 = θk

1
⊤

...σ2
1(θ2

1
⊤

σ1
1(θ1

1
⊤

y
(i)
1 )),

ȳ
(i)
2 = θl

2
⊤

...σ2
2(θ2

2
⊤

σ1
2(θ1

2
⊤

y
(i)
2 )),

ŷ(i) = σ

 ȳ
(i)
1 + ȳ

(i)
2

2

 . (13)

This would in fact act like a “mini” ensemble network that uses av-
eraging, but where each path of the computational graph is trained at
the same time. This is possible since the backpropagation of the pre-
dicted error is executed with one step from the calculated predictions
in 13.

This approach has many strong points. First of all, the features
are processed separately and undergo more steps, making it possible
to derive more high-level information. Moreover, we could benefit from
the advantages of using an ensemble solution, which often yields better
and more stable results. Finally, the network could also potentially
learn when it should emphasize the hand-crafted features y

(i)
1 and when

the CNN features y
(i)
2 , depending on the input image x(i) by adjusting

its weights accordingly. This can be especially important if sometimes
the first one and sometimes the latter one is more accurate, and when
thus having the ability to weight these predictions depending on the
input image x(i) could result in more stable predictions.

4.5.3 A deeper combination of the hand-crafted and CNN
features

The method described in section 4.5.2 guarantees that both the fea-
tures extracted by the CNN and the hand-crafted ones undergo a longer
processing step due to the increased number of fully connected layers.
However, in the long run, it may not always be beneficial to entirely
separate the processing of the hand-crafted and CNN features. This is
because doing so may make the learning process much harder due to the
increased number of parameters and by having the network concentrate
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on essentially two different things: making sense of the hand-crafted
features and making sense of the input image. This could disrupt the
learning process, leading to poor results in some cases.
Claim 4.1. Using two completely separate sets of weights θ1

1, θ2
1, ..., θk

1
and θ1

2, θ2
2, ..., θl

2 to combine the features y
(i)
1 extracted by a CNN and

y
(i)
2 normalized vector extracted by traditional extractors may lead to

sub-optimal performance, as the two branches of the architecture can
only focus on one feature set at any given time and completely ignore
the features extracted by the other branch.
Reasoning. During the forward pass, each of the branches of the al-
gorithm starts by calculating the features y

(i)
1 and y

(i)
2 for the given

input image x(i). Denoting the branch extracting the CNN features as
b1 and the one extracting the hand-crafted features as b2, this means
that any weight inside b1 only has access to features extracted by b1,
but not to any features from b2. The same constraint applies to b2
as well, meaning that it is trivial to see that until the calculation of
the features y

(i)
1 and y

(i)
2 , the two branches b1 and b2 cannot share any

information with each other. Then, following (13), each branch utilizes
its own sets of weights to calculate ȳ

(i)
1 and ȳ

(i)
2 , respectively, resulting

in the complete isolation between b1 and b2 still standing. □

Instead, we could move the concatenation step y(i)
c =< y

(i)
1 , y

(i)
2 >

up in the architecture to merge the features y
(i)
1 that have been ex-

tracted by purely the convolutional layers with the hand-crafted ones,
denoted as y

(i)
2 . Then, we can use more FC layers to process the joint

features y(i)
c . With this approach, we could get the benefits of both

worlds: the network would have more capabilities to process the fea-
ture vectors thanks to the increased number of dense layers, and both
the features extracted by the convolutional layers and the hand-crafted
ones would be processed at the same time, layer by layer. This process
can be observed in Figure 6.
Definition 4.3. Given the feature vectors y

(i)
1 extracted by a CNN and

y
(i)
2 normalized vector extracted by traditional extractors and weights

θ1, θ2, ..., θk, another possible combination of the feature vectors, de-
noted as the V3 architecture, is defined as

y(i)
c = < y

(i)
1 , y

(i)
2 >

ŷ(i) = σk(θk⊤
...σ2(θ2⊤

σ1(θ1⊤
y(i)

c ))). (14)
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Figure 6: Fusing the hand-crafted features with those extracted by a
CNN by moving the concatenation step up in the architecture.

Claim 4.2. Using the same set of weights θ1, θ2, ..., θk to process the
combined feature vector y(i)

c constructed from y
(i)
1 , the features extracted

by a CNN and y
(i)
2 , the normalized vector extracted by traditional ex-

tractors, gives the V3 architecture the ability to process every piece of
information at the exact same time. This makes it possible to learn
and recognize more complex patterns that would require the simultane-
ous presence of both kinds of features.

Reasoning. Let θ1, θ2, ..., θk denote the weights, and y
(i)
1 and y

(i)
2 the

feature vectors. Following Definition 4.3, it is easy to see that both
of the feature vectors are being processed at the same time, as after
the concatenation step y(i)

c =< y
(i)
1 , y

(i)
2 >, the step θ1⊤

y(i)
c achieves, by

definition, a linear combination of the two vectors, by having weights
corresponding to each and every element of the feature vectors and
summing the elements. Therefore, from this point on, each multiplica-
tion using the subsequent weights θ2, θ3, ..., θk has access to all of the
feature information in both of the vectors. □
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4.6 Experimental setup
As noted in section 4.3, we used a total of 36 739 images for training
(413 from IDRiD, 35 126 from the Kaggle and 1 200 from the Messidor
dataset) and the test part of the IDRiD dataset for testing. To get a
better understanding of the results, we divided the dataset into smaller
cross-validation sets. For each set and problem type (DME or DR),
we divided the original data into training and validation parts in the
ratio of 4:1 (80% training, 20% validation), while keeping the relative
frequencies of the different classes the same. With the latter, we tried
to mitigate the distribution shift between the training and validation
set. Furthermore, there was no overlap between the cross-validation
sets, meaning that the validation sets were disjoint. This meant that
if an image appeared in the validation set of one cross-validation set,
then it could no longer appear in the validation set of any subsequent
cross-validation set. As for the classes themselves, we made sure that
all annotations followed the same grading procedure. The manual an-
notations of the images were made by ophthalmologists according to
the International Clinical Diabetic Retinopathy (ICDR) disease sever-
ity scale [74] for all three of the original image datasets (Messidor [54],
Kaggle [53], and IDRiD [52] datasets) that we used. The ICDR scale is
one of the most commonly used clinical scales and consists of a 5-point
grade for DR: no, mild, moderate, severe, and proliferative.

We thoroughly searched the optimal hyperparameters for each al-
gorithm. This search included looking for the optimal batch size, opti-
mizer, learning rate, and the number of epochs. The hyperparameter
search was naturally carried out purely on the training set. In the
case of optimizers, we experimented with Stochastic Gradient Descent
(SGD) [35] (both with and without momentum) and Adam [37] and
looked for the one that made the loss decrease in the smoothest way
possible, with minimal oscillations and continuous decreases over the
epochs. For the batch size, we looked for the value that made the
learning process the most stable and led to the smallest oscillation in
the training loss. In the case of the learning rate, we used learning rate
scheduling and examined the change of the loss. Then, we picked the
learning rate α that had the lowest observed loss value and had a suffi-
ciently large environment [α− ε, α + ε] (where ε ∈ (0, 1)) in which the
loss values did not oscillate and did not increase rapidly. Finally, we
chose the number of epochs so that training was terminated when the
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validation loss started to continuously increase. We found the batch
size of 32 and the Adam optimizer to be the best for every algorithm,
while the optimal learning rate and the number of epochs varied from
network to network. Tables 7 and 8 summarize the best hyperparame-
ter settings for each network and problem type (DR and DME). These
were the ones that we used for evaluating the different algorithms.

Table 7: The list of optimal hyperparameters for the DR problem.

Network Type Optimizer Batch size Learning rate Epochs
AlexNet original Adam 32 0.0001 100

MobileNetv2 original Adam 32 0.001 150
ResNet-50 original Adam 32 0.001 100
AlexNet V1 Adam 32 0.0001 100

MobileNetv2 V1 Adam 32 0.001 150
ResNet-50 V1 Adam 32 0.0001 100
AlexNet V2 Adam 32 0.001 150

MobileNetv2 V2 Adam 32 0.001 200
ResNet-50 V2 Adam 32 0.001 150
AlexNet V3 Adam 32 0.0001 150

MobileNetv2 V3 Adam 32 0.0003 200
ResNet-50 V3 Adam 32 0.0001 100

All of the algorithms were evaluated on the test part of the IDRiD
dataset. Each image x(i) had its corresponding DR and DME labels,
as well as the hand-crafted features associated with the given image.
As the test set that we had access to was heavily imbalanced and
skewed towards certain classes, we took several metrics into account
during the evaluation process to make it fairer. Additionally, since
a standard accuracy value would give biased results in our case, we
used a weighted average of the accuracies calculated at the class level,
where each weight represented how many times a given class occurred
in the test set. Accordingly, we calculated a number of metrics regard-
ing the performance of the algorithms and their ability to differenti-
ate healthy and non-healthy images, such as positive predictive value
(PPV ), sensitivity (SE), specificity (SP ), F1-score, and weighted ac-
curacy (ACCw). To calculate these, we considered the following quan-
tities for every prediction: true positives (TP ), true negatives (TN),
false positives (FP ), and false negatives (FN). In our case TP meant
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Table 8: The list of optimal hyperparameters for the DME problem.

Network Type Optimizer Batch size Learning rate Epochs
AlexNet original Adam 32 0.0001 150

MobileNetv2 original Adam 32 0.0001 200
ResNet-50 original Adam 32 0.001 200
AlexNet V1 Adam 32 0.0003 150

MobileNetv2 V1 Adam 32 0.0001 200
ResNet-50 V1 Adam 32 0.001 200
AlexNet V2 Adam 32 0.001 150

MobileNetv2 V2 Adam 32 0.001 200
ResNet-50 V2 Adam 32 0.001 150
AlexNet V3 Adam 32 0.0003 200

MobileNetv2 V3 Adam 32 0.0003 200
ResNet-50 V3 Adam 32 0.001 200

that both the prediction and the ground truth said the given image
x(i) belonged to a non-healthy specimen, while TN meant the same
but with healthy specimens. The number of FP s indicated how many
times the algorithm predicted the non-healthy label, while the ground
truth was healthy, and the number of FNs showed the exact opposite.
The exact formulas of the used metrics are given as

PPV = TP

TP + FP
, (15)

SE = TP

TP + FN
, SP = TN

TN + FP
, (16)

F1-score = 2TP

2TP + FP + FN
, (17)

ACC = TP + TN

TP + FP + FN + TN
, (18)

ACCw =
∑

c∈classes

wc ∗ ACC(c), (19)

where wc is the ratio of the samples in the class c to the total number
of samples.
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The experiments were carried out on a computer with an Nvidia
RTX 3080 video card and a total of 128 GB RAM. The codebase
was written purely in Python and we used the PyTorch framework for
writing the experiment code.

4.7 Experimental results
As noted in section 4.6, we used a variety of metrics to reliably evalu-
ate the performance of the different algorithms, which is why we have
included multiple tables for each problem type (DR and DME). Fur-
thermore, as previously discussed, we divided the dataset into cross-
validation sets. Consequently, all the tables in this section show the
results of the different algorithms measured after being trained on these
cross-validation sets. The results shown are calculated at 95% confi-
dence levels and are sorted by network and algorithm type. For the
original networks, we refer to as original, while the proposed architec-
tures are noted as V1, V2, and V3, respectively. We would also like
to note that since the ResNet-50 architecture only had a total of one
fully connected layer, the V3 version of the network is fully equivalent
to the V1 version. Therefore, the tables presented contain the same
results for these two versions of the ResNet-50 architecture.

We have also trained several baselines that only used the hand-
crafted features y

(i)
2 but did not use the input images to measure the

predictive capabilities of the hand-crafted features alone. We have con-
sidered three different approaches for this task. In the first approach,
we optimized directly for the best weights θ to calculate ȳ(i) = θ⊤y

(i)
2 ,

then, we used the softmax function to calculate the predicted class
probabilities ŷ(i). We will refer to this approach as Softmax in the sub-
sequent tables. In the second and third approaches, we used a support
vector machine (SVM) and a neural network (MLP) respectively to
calculate ŷ(i). For the SVM, we used the Radial Basis Function (RBF)
kernel, while for the MLP, we used two hidden layers with 64 and 32
units respectively. Furthermore, we have also considered another set
of architectures from [75] as additional baselines to compare our re-
sults with. We will refer to this last approach as LightCNN in all the
subsequent tables while also specifying the type of architecture used
as discussed in the original paper [75] by abbreviating random forest
as RF and decision tree as DT.
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4.7.1 Diabetic retinopathy

First, we measured the ability of the networks to differentiate between
healthy and non-healthy images as a starting point. While the net-
works that used only the hand-crafted features performed surprisingly
well, they achieved substantially worse results in terms of SE and
F1-score than the original networks that received only the images as
inputs. In other words, – according to the formulas (15) and (16) – the
number of FNs was substantially greater than the number of FP s for
the networks that only used the hand-crafted features. This increase
in FNs resulted in the model misclassifying numerous ill specimens as
healthy. The architectures proposed in [75] achieved really good results
similar to that of the original ResNet-50 model but were still outper-
formed by the networks that used the hand-crafted features. While
all of the original networks were able to more or less determine these
classes without the hand-crafted features, as can be seen in Table 9,
the usage of hand-crafted features improved the performance greatly
in all cases. The improvements were the most substantial for networks
derived from the AlexNet architecture, while the best-performing al-
gorithms were the V2 versions of the two newer networks.

Table 9: A summary of the metrics measured on the DR dataset.

Network Type PPV SE SP F1-score
LightCNN [75] SVM 0.905 ± 0.044 0.804 ± 0.128 0.824 ± 0.115 0.849 ± 0.052
LightCNN [75] RF 0.858 ± 0.017 0.826 ± 0.142 0.721 ± 0.086 0.840 ± 0.066
LightCNN [75] MLP 0.909 ± 0.038 0.790 ± 0.071 0.838 ± 0.087 0.845 ± 0.025
LightCNN [75] DT 0.801 ± 0.003 0.848 ± 0.043 0.574 ± 0.029 0.824 ± 0.019
Hand-crafted Softmax 0.780 ± 0.012 0.616 ± 0.043 0.647 ± 0.001 0.688 ± 0.031
Hand-crafted SVM 0.793 ± 0.042 0.638 ± 0.001 0.662 ± 0.086 0.707 ± 0.017
Hand-crafted MLP 0.888 ± 0.017 0.746 ± 0.014 0.809 ± 0.029 0.811 ± 0.015

AlexNet original 0.746 ± 0.053 0.783 ± 0.142 0.412 ± 0.173 0.774 ± 0.016
MobileNetv3 original 0.820 ± 0.017 0.855 ± 0.028 0.544 ± 0.086 0.828 ± 0.012
ResNet-50 original 0.908 ± 0.108 0.797 ± 0.085 0.824 ± 0.231 0.846 ± 0.001
AlexNet V1 0.741 ± 0.005 0.833 ± 0.014 0.662 ± 0.087 0.800 ± 0.021

MobileNetv3 V1 0.893 ± 0.054 0.841 ± 0.000 0.794 ± 0.115 0.866 ± 0.025
ResNet-50 V1 0.932 ± 0.029 0.783 ± 0.028 0.882 ± 0.058 0.850 ± 0.005
AlexNet V2 0.880 ± 0.030 0.783 ± 0.028 0.794 ± 0.058 0.809 ± 0.001

MobileNetv3 V2 0.876 ± 0.056 0.877 ± 0.099 0.750 ± 0.140 0.873 ± 0.019
ResNet-50 V2 0.938 ± 0.013 0.797 ± 0.028 0.897 ± 0.029 0.840 ± 0.021
AlexNet V3 0.835 ± 0.013 0.848 ± 0.071 0.691 ± 0.029 0.824 ± 0.024

MobileNetv3 V3 0.924 ± 0.047 0.783 ± 0.000 0.868 ± 0.087 0.847 ± 0.020
ResNet-50 V3 0.932 ± 0.029 0.783 ± 0.028 0.882 ± 0.058 0.850 ± 0.005
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Since all of the networks were able to differentiate between healthy
and non-healthy specimens, we measured their performance with re-
gard to their accuracies per class. These class-level accuracies can be
seen in Table 10.

Table 10: A summary of the class-level accuracies measured on the DR
dataset.

Network Type DR0 DR1 DR2 DR3 DR4
LightCNN [75] SVM 0.811 ± 0.048 0.951 ± 0.001 0.651 ± 0.057 0.835 ± 0.019 0.859 ± 0.029
LightCNN [75] RF 0.791 ± 0.067 0.918 ± 0.048 0.675 ± 0.086 0.835 ± 0.019 0.869 ± 0.010
LightCNN [75] MLP 0.806 ± 0.019 0.947 ± 0.010 0.694 ± 0.029 0.835 ± 0.057 0.874 ± 0.019
LightCNN [75] DT 0.757 ± 0.019 0.850 ± 0.048 0.617 ± 0.029 0.777 ± 0.019 0.835 ± 0.001
Hand-crafted Softmax 0.626 ± 0.029 0.951 ± 0.001 0.452 ± 0.010 0.816 ± 0.001 0.874 ± 0.001
Hand-crafted SVM 0.646 ± 0.029 0.951 ± 0.001 0.495 ± 0.095 0.840 ± 0.010 0.874 ± 0.001
Hand-crafted MLP 0.767 ± 0.019 0.951 ± 0.001 0.612 ± 0.019 0.835 ± 0.001 0.864 ± 0.001

AlexNet original 0.695 ± 0.028 0.947 ± 0.009 0.534 ± 0.020 0.753 ± 0.105 0.762 ± 0.086
MobileNetv3 original 0.763 ± 0.028 0.937 ± 0.028 0.631 ± 0.057 0.840 ± 0.028 0.830 ± 0.010
ResNet-50 original 0.806 ± 0.020 0.942 ± 0.019 0.709 ± 0.095 0.884 ± 0.019 0.855 ± 0.019
AlexNet V1 0.777 ± 0.038 0.951 ± 0.000 0.549 ± 0.085 0.840 ± 0.028 0.850 ± 0.009

MobileNetv3 V1 0.796 ± 0.020 0.947 ± 0.009 0.641 ± 0.019 0.850 ± 0.028 0.869 ± 0.010
ResNet-50 V1 0.806 ± 0.020 0.947 ± 0.009 0.728 ± 0.114 0.864 ± 0.020 0.859 ± 0.010
AlexNet V2 0.738 ± 0.020 0.947 ± 0.009 0.622 ± 0.019 0.869 ± 0.028 0.753 ± 0.008

MobileNetv3 V2 0.830 ± 0.010 0.956 ± 0.010 0.612 ± 0.095 0.821 ± 0.028 0.845 ± 0.019
ResNet-50 V2 0.806 ± 0.020 0.956 ± 0.010 0.675 ± 0.048 0.879 ± 0.028 0.788 ± 0.002
AlexNet V3 0.758 ± 0.019 0.932 ± 0.037 0.622 ± 0.038 0.826 ± 0.019 0.731 ± 0.008

MobileNetv3 V3 0.811 ± 0.028 0.937 ± 0.028 0.743 ± 0.028 0.869 ± 0.010 0.831 ± 0.028
ResNet-50 V3 0.806 ± 0.020 0.947 ± 0.009 0.728 ± 0.114 0.864 ± 0.020 0.859 ± 0.010

The networks that used only the hand-crafted features performed
surprisingly well yet again for some classes (DR1, DR3 and DR4) but
performed really poorly for other classes (DR2). The reason behind
their remarkably good results for DR4 was that they did not predict
DR4 for any given sample; meaning that they only predicted 0 values
for this class. Since the total number of DR4 specimens was really
low compared to other classes, this resulted in only a handful of DR4
cases, leading to a great number of 0 values and only a few 1 values
in the ground truth. This, combined with the fact that the networks
predicted 0 values for each sample, resulted in a high accuracy value
for this class. The architectures proposed in [75] delivered much better
results, surpassing several networks that only used the input images
but they were still outperformed by the networks that used both the
hand-crafted features and image inputs. For these networks, while the
same ones (the V2 version of MobileNetv2 and Resnet-50) seemed to
perform the best for DR0 and DR1 as in Table 9, for the other classes,
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there were better performing alternatives. Three out of five of these
used hand-crafted features with DR4 being an exception due to its low
cardinality, and even in the case of DR3 and DR4, the difference be-
tween the best and second-best network (which used the hand-crafted
features) was negligible (0.005 and 0.005). On the other hand, in the
case of the other classes, the difference between networks without and
with the hand-crafted features was quite substantial, in favor of the
latter. This demonstrates again that using the hand-crafted features
is beneficial for any of these networks and can drastically increase the
accuracy.

To get a general overview of how the different networks performed
on the test set, we also measured their weighted accuracies. For
this purpose, we calculated the accuracies on the class level and then
weighted the results depending on the number of samples per class in
the test set. The results are enclosed in Table 11.

Table 11: The weighted accuracies measured on the DR dataset.

Network Type ACCw

LightCNN [75] SVM 0.778 ± 0.002
LightCNN [75] RF 0.779 ± 0.007
LightCNN [75] MLP 0.792 ± 0.016
LightCNN [75] DT 0.731 ± 0.014
Hand-crafted Softmax 0.654 ± 0.012
Hand-crafted SVM 0.678 ± 0.041
Hand-crafted MLP 0.752 ± 0.001

AlexNet original 0.687 ± 0.011
MobileNetv2 original 0.771 ± 0.022
ResNet-50 original 0.807 ± 0.030
AlexNet V1 0.723 ± 0.025

MobileNetv2 V1 0.799 ± 0.007
ResNet-50 V1 0.805 ± 0.048
AlexNet V2 0.725 ± 0.004

MobileNetv2 V2 0.763 ± 0.021
ResNet-50 V2 0.788 ± 0.002
AlexNet V3 0.731 ± 0.008

MobileNetv2 V3 0.803 ± 0.034
ResNet-50 V3 0.805 ± 0.048

It can be seen that although the networks that only used the hand-
crafted features performed well for some classes as we noted for Table
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10, the overall accuracy of these networks was substantially lower than
that of the networks that used the input images as well. The architec-
tures proposed in [75] performed considerably better but were yet again
outperformed by some of the networks that used both the hand-crafted
features and the input images. We can once again see that by using
the hand-crafted features, the overall accuracy has greatly improved
for all of the networks. The best-performing networks were once again
the ones based on the MobileNetv2 and Resnet-50 architectures, but
even the ones using AlexNet benefitted greatly from the usage of the
hand-crafted features.

4.7.2 Diabetic macular edema

For DME, we followed the exact same steps as outlined previously in
section 4.7.1. First, we measured how reliably the various algorithms
could differentiate the healthy specimens from the non-healthy ones
using the PPV , SE, SP , and F1-score metrics. As it can be seen in
Table 12, all the networks were able to achieve this task.

Table 12: A summary of the metrics measured on the DME dataset.

Network Type PPV SE SP F1-score
LightCNN [75] SVM 0.913 ± 0.001 0.724 ± 0.001 0.911 ± 0.001 0.808 ± 0.001
LightCNN [75] RF 0.897 ± 0.002 0.750 ± 0.017 0.889 ± 0.001 0.817 ± 0.011
LightCNN [75] MLP 0.922 ± 0.020 0.707 ± 0.001 0.922 ± 0.022 0.800 ± 0.008
LightCNN [75] DT 0.898 ± 0.04 0.759 ± 0.034 0.889 ± 0.044 0.822 ± 0.037
Hand-crafted Softmax 0.786 ± 0.027 0.285 ± 0.017 0.900 ± 0.022 0.418 ± 0.015
Hand-crafted SVM 0.781 ± 0.142 0.595 ± 0.017 0.778 ± 0.174 0.674 ± 0.064
Hand-crafted MLP 0.859 ± 0.003 0.733 ± 0.017 0.844 ± 0.001 0.791 ± 0.011

AlexNet original 0.815 ± 0.023 0.681 ± 0.085 0.789 ± 0.022 0.757 ± 0.048
MobileNetv2 original 0.848 ± 0.007 0.785 ± 0.017 0.811 ± 0.022 0.831 ± 0.019
ResNet-50 original 0.938 ± 0.001 0.785 ± 0.017 0.956 ± 0.044 0.855 ± 0.011
AlexNet V1 0.851 ± 0.078 0.724 ± 0.034 0.833 ± 0.109 0.782 ± 0.013

MobileNetv2 V1 0.900 ± 0.039 0.810 ± 0.034 0.889 ± 0.044 0.833 ± 0.036
ResNet-50 V1 0.940 ± 0.002 0.836 ± 0.017 0.922 ± 0.022 0.878 ± 0.006
AlexNet V2 0.897 ± 0.068 0.724 ± 0.068 0.889 ± 0.087 0.806 ± 0.003

MobileNetv2 V2 0.859 ± 0.109 0.750 ± 0.017 0.845 ± 0.131 0.787 ± 0.069
ResNet-50 V2 0.832 ± 0.010 0.724 ± 0.034 0.811 ± 0.022 0.774 ± 0.015
AlexNet V3 0.797 ± 0.014 0.802 ± 0.017 0.745 ± 0.022 0.786 ± 0.007

MobileNetv2 V3 0.951 ± 0.019 0.836 ± 0.017 0.945 ± 0.022 0.890 ± 0.018
ResNet-50 V3 0.940 ± 0.002 0.836 ± 0.017 0.922 ± 0.022 0.878 ± 0.006

The networks that only used the hand-crafted features had the
exact same problem that we discussed previously: their SE scores
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were substantially lower than that of the other networks, except for
the network that used the two-layer neural network (MLP). As for
the architectures proposed in [75], they achieved really good results,
surpassing most (but not all) of the original networks but were still
outperformed by the networks that used both the hand-crafted features
and the input images. As for AlexNet, MobileNetv2 and ResNet-50,
comparing the solutions that did not use the hand-crafted features
with those that did, it is clearly visible that the results of the latter
were substantially better. The network with the most notable and
drastic improvements was MobileNetv2, which turned out to be the
best-performing solution regarding these metrics.

Next, we measured how accurately the networks could classify the
specimens into different classes. In the case of DME, there were a
total of three classes: DME0, DME1, and DME2. Table 13 shows the
measured class-level accuracies.

Table 13: A summary of the class-level accuracies measured on the
DME dataset.

Network Type DME0 DME1 DME2
LightCNN [75] SVM 0.806 ± 0.001 0.816 ± 0.019 0.777 ± 0.057
LightCNN [75] RF 0.811 ± 0.010 0.806 ± 0.001 0.772 ± 0.086
LightCNN [75] MLP 0.801 ± 0.010 0.816 ± 0.019 0.782 ± 0.067
LightCNN [75] DT 0.816 ± 0.038 0.825 ± 0.001 0.786 ± 0.057
Hand-crafted Softmax 0.553 ± 0.001 0.903 ± 0.001 0.563 ± 0.019
Hand-crafted SVM 0.675 ± 0.085 0.903 ± 0.001 0.675 ± 0.085
Hand-crafted MLP 0.782 ± 0.010 0.893 ± 0.001 0.752 ± 0.010

AlexNet original 0.753 ± 0.028 0.859 ± 0.047 0.801 ± 0.029
MobileNetv2 original 0.816 ± 0.019 0.879 ± 0.009 0.869 ± 0.010
ResNet-50 original 0.850 ± 0.009 0.874 ± 0.038 0.840 ± 0.047
AlexNet V1 0.772 ± 0.028 0.893 ± 0.020 0.762 ± 0.047

MobileNetv2 V1 0.826 ± 0.038 0.893 ± 0.020 0.840 ± 0.047
ResNet-50 V1 0.869 ± 0.010 0.913 ± 0.019 0.869 ± 0.010
AlexNet V2 0.801 ± 0.010 0.908 ± 0.010 0.797 ± 0.038

MobileNetv2 V2 0.777 ± 0.076 0.893 ± 0.020 0.782 ± 0.105
ResNet-50 V2 0.762 ± 0.010 0.884 ± 0.019 0.748 ± 0.038
AlexNet V3 0.762 ± 0.010 0.898 ± 0.029 0.719 ± 0.038

MobileNetv2 V3 0.884 ± 0.019 0.888 ± 0.010 0.864 ± 0.037
ResNet-50 V3 0.869 ± 0.010 0.913 ± 0.019 0.869 ± 0.010
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Among the networks that only used the hand-crafted features, the
Softmax and SVM versions performed substantially worse than the
other networks in the case of DME0 and DME2. The version that used
the MLP as its backbone performed remarkably well, almost surpass-
ing the original AlexNet network in all aspects but was outperformed
by both the other original networks and the ones that used the hand-
crafted features as well as the input images. The LightCNN variants
performed quite uniformly, meaning that the accuracy values were al-
most the same for each architecture but were now outperformed by not
only the networks that used the hand-crafted features and the input
images but also by the original networks as well. It can be also seen
that the networks using the hand-crafted features performed substan-
tially better than the networks that did not use these features. Only
the MobileNetv2 architecture was a slight exception since it achieved
good results for the DME2 class. However, the results of this network
without the hand-crafted features were significantly lower in the case
of the other classes. The best-performing network was the ResNet-50
network and its V1 and V3 versions, which achieved top 1 scores for
two out of the three classes.

Finally, we measured the weighted accuracies (ACCw) of the net-
works on the test set. As it can be seen in Table 14, we can once again
confirm that the usage of the hand-crafted features led to significant
improvements. The networks that only used the hand-crafted fea-
tures performed significantly worse yet again. The only exception was
the MLP variant which performed almost comparably to the AlexNet
original network. The results of the LightCNN architectures were once
again really uniform but they were outperformed by both the majority
of the original networks and the ones that used both the hand-crafted
features and the input images. The best-performing networks were the
MobileNetv2 (V3) and ResNet-50 (V1 and V3) architectures, which
corresponds to Tables 12 and 13 and other metrics as well.
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Table 14: The weighted accuracies measured on the DME dataset.

Network Type ACCw

LightCNN [75] SVM 0.793 ± 0.029
LightCNN [75] RF 0.792 ± 0.044
LightCNN [75] MLP 0.793 ± 0.029
LightCNN [75] DT 0.803 ± 0.043

Hand-crafted Softmax 0.592 ± 0.009
Hand-crafted SVM 0.697 ± 0.077
Hand-crafted MLP 0.779 ± 0.009

AlexNet original 0.783 ± 0.026
MobileNetv2 original 0.847 ± 0.012
ResNet-50 original 0.852 ± 0.022

AlexNet V1 0.779 ± 0.037
MobileNetv2 V1 0.837 ± 0.043
ResNet-50 V1 0.874 ± 0.007

AlexNet V2 0.809 ± 0.024
MobileNetv2 V2 0.789 ± 0.082
ResNet-50 V2 0.764 ± 0.018

AlexNet V3 0.754 ± 0.028
MobileNetv2 V3 0.875 ± 0.011
ResNet-50 V3 0.874 ± 0.007
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4.8 Conclusions
In this chapter, we presented a novel deep learning-based framework
for the accurate and reliable detection of diabetes-related eye diseases,
such as diabetic macular edema and diabetic retinopathy using digital
fundus images. We emphasized the importance of the hand-crafted
features, which, with the rise of AI, less and less research focus on and
have shown that they may still hold value from the perspective of the
overall performance of any CAD system. We showed that, by using
the proposed framework, it is possible to combine the hand-crafted
features with features extracted by convolutional neural networks.

We introduced several variants of the framework. We showed that
all variants use the main idea of concatenating the hand-crafted and
CNN features and then performing a transformation on them. The
main difference between them is how they achieve this. The first
variant that we presented simply fed the concatenated feature vector
through a single weight and then applied the softmax function to get
the outputs, while the second and third variants used more elaborate
techniques. For the second variant, we separated the computational
graph into two distinct paths: one that processes only the hand-crafted
features and one that processes those extracted by the neural network.
We noted that this separation may not always be optimal, as it totally
isolates these features. To overcome this issue, we proposed the third
variant, where both kinds of features are processed at the same time,
making it possible for the framework to detect more complex patterns.

We have shown that each of the proposed versions has advantages
and disadvantages, which makes choosing the best architecture a really
difficult task. We measured the performance of all of these algorithms,
as well as their original networks on our test set. We also compared
these results to several baselines that only used the hand-crafted fea-
tures as well as different architectures proposed in [75]. For this com-
parison, a variety of metrics were used to make the evaluation more
precise and fair. We have shown that all of the algorithms that used
the hand-crafted features achieved substantially better results than the
networks that did not use them and outperformed the aforementioned
baselines and architectures as well. We concluded that while the over-
all performance of the different versions of the proposed algorithm were
close to each other, for our problem the V3 version of MobileNetv2 and
the V1 version of ResNet 50 architectures performed the best.
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5 Fully convolutional ensemble model for
automatic cell segmentation

5.1 Introduction
This chapter presents a method for building accurate and reliable en-
semble models that could be used as a part of an automatic screening
system for cell segmentation. The proposed method utilizes a fully
convolutional neural network (FCN) [76] architecture to build an en-
semble model that, contrary to traditional ensembles, can automati-
cally change the importance and weighting of each member model on
its own. Our final goal during this research was the early detection of
cervical cancer using digitized Pap smear images. Therefore, we car-
ried out multiple experiments geared towards the proper and accurate
segmentation of cells in an attempt to improve the overall reliability of
the system. During the development of this segmentation subsystem,
we have considered state-of-the-art machine learning methodologies to
reach high segmentation accuracy.

The presented ensemble approach uses the segmentation predic-
tions produced by other fully convolutional networks in addition to
the original scanned image as its input. During training, the architec-
ture therefore has the ability to derive features and patterns both in
the input image and in the predictions of the member models. Based
on these, it can automatically decide what weight to assign to each
member. The main benefit of our approach is that the ensemble can
not only aggregate the results of the member models, but also correct
them for an input image where the prediction masks are not deemed
correct. We show that our proposed method outperforms several other
state-of-the-art segmentation algorithms and produces good quality
segmentation masks that could be incorporated into our screening sys-
tem.

The structure of this chapter is as follows. In section 5.2, we explain
our motivations behind building the proposed architecture, focusing
on why there may be a need for considering the outputs of multiple
networks for a given image. For this, we show that aggregating the
outputs of several base networks is not trivial and what disadvantages
traditional ensemble methods may have. Then, in section 5.3, we give
a detailed overview of the dataset used during our research, which was
organized and manually annotated at the University of Debrecen. In
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section 5.4, we introduce our proposed framework. In section 5.5, we
include an overview of our experimental setup, while in section 5.6 we
detail our results. Finally, in section 5.7, we provide our conclusions
and list our most important contributions.

The ensemble architecture introduced in this chapter and all the
corresponding experimental results were published in [30]. The newly
created dataset established during our experiments was submitted for
publication in [31].

5.2 Motivation
At the beginning of the 21st century, a few automated screening sys-
tems are available with limited applicability in the field of cytology.
They are based on computer image analysis techniques for screening
and try to exclude the surely negative samples from the consequent
investigation procedure to decrease the number of specimens. To the
best of our knowledge, the most widely used automatic solutions as of
now are the Hologic ThinPrep Imaging System [77] and the Focal Point
Slide Profiler [78]. These have been approved by the U.S. Food and
Drug Administration (FDA) and operate in high-volume reference lab-
oratories under human supervision. Unfortunately, unlike our system,
the Hologic ThinPrep Imaging System can only analyze ThinPrep Pap
Test slides which have much higher costs than the most commonly
applied Papanicolaou smear test [79]. The other solution, the Focal
Point Slide Profiler also has some notable drawbacks, as it can elim-
inate only up to 25% of the lowest-risk slides to allow the cytologists
to focus on the highest-risk slides. Our automatic system could over-
come the limitations of these two solutions, as it could process the
most commonly applied Pap smear test images and could also rank
the slides by the level of risk more accurately. The official procedure
of taking the Papanicolaou smear test begins by opening the vaginal
canal with a speculum and collecting cells at the outer opening of the
cervix. After that, the collected cells are fixed on the glass slide and
this specimen is placed into a large capacity whole slide scanner which
can digitize it by generating a digital color image with a resolution of
100 000 × 220 000 pixels. The resulting image can contain more than
10 000 cells at a 40× magnification as it can be seen in Figure 7.

Our final goal during our research was the creation of a fully auto-
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Figure 7: A sample scanned image about cytological specimen, where
the red box shows cells with 40× magnification.

mated system that can recognize cancerous cells in digitized cytological
specimens with sufficiently high reliability and is suitable for clinical
applications. The final software is aimed to be able to automatically
rank the smear images, thus allowing the practicing clinicians to al-
ways focus on patients with the most severe conditions, making the
treatment process faster and more efficient. By using a similar auto-
matic screening system, the governments could save money and human
efforts besides the developments of its outpatient services. Our auto-
matic screening system aims to localize and segment each cell from
this high-resolution image with high sensitivity and specificity. The
workflow of this type of system can be formed by the following steps:
the proper segmentation of the individual cells; a pre-trained deep
learning-based algorithm that classifies all of the segmented cells as
healthy or unhealthy. In the case that any of the cells is considered
pathologically diseased, the whole test will be investigated by a cytolo-
gist, as well. The high sensitivity is crucial because of the mortality of
the Human Papillomavirus (HPV) and other cervical cancers. Based
on the statistics, 2-3 million abnormal Pap smear results are found
each year [80] in the United States.
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5.3 Datasets
For our experiments, we constructed a new dataset in a collaboration
with the Clinical Center of the University of Debrecen, Department of
Pathology. The manual annotation of the cytological smears was car-
ried out by a team of three annotators coordinated by a team leader.
The concrete annotation work was preceded by an IT and cytology
training. During the latter, annotators were trained by a medical ex-
pert (cytopathologist). Our dataset contains digital images derived
from scanned results of the Pap smear tests. Every entry in the anno-
tated dataset is thus made up of two elements: the scanned image x(i)

and the manual segmentation y(i) corresponding to it (see Figure 8).

Figure 8: A sample input image (left) and its corresponding ground
truth (right).

Pap test slides were digitized by a laboratory analyst trained for this
task by the scanner vendor using a 3DHistech Pannoramic 1000 digital
slide scanner [81] equipped with an Adimec Q-12A-180Fc brightfield
camera. The laboratory analyst has properly prepared and cleaned the
slides before digitizing them. The scanner was equipped with 3 dif-
ferent objectives (20× Plan-Apochromat, 40× Plan-Apochromat, and
40×w C-Apochromat) [81] , resulting in pixel sizes 0.25 µm, 0.12 µm,
and 0.12 µm, respectively. A total magnification of 200× (20× objec-
tive with 10× eyepiece) was used during the scan. We have chosen
this specific setting as a 200× total magnification is commonly used
in digital pathology for scanning because it balances resolution and
field of view, making it suitable for various diagnostic purposes. The
digitized slides were saved in MRXS format, a proprietary WSI format
with multiple resolution levels for faster navigation. The dimensions of
the acquired digital slides are approximately 100 000 × 200 000 pixels,
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and the size of a digitized slide is approximately 5 GB using JPEG
compression.

To extract fields of view (FOVs) from the digital slides, the region
of interest was first identified using the intensity features of the slide at
the lowest resolution level. Then, non-overlapping FOVs with 2 000×
2 000 pixels were extracted from the 200× magnification level (approx-
imately 0.25 µm/pixels) of the slide as PNG files using the libvips [82]
library. This resolution and FOV size allow for examining the patterns
at the cellular level, the context of a cell, and the arrangement of cells.
The scanning analyst recorded and anonymized the non-personal clin-
ical data (age, Bethesda classification scoring category, smear serial
number) required for subsequent processing.

Due to the time-consuming nature of the manual annotation pro-
cess, the creation of the dataset required a long time. Hence, each of
our experiments could only use the most recent version of the dataset
that was available and validated at the time of the research. The
dataset introduced in [30] contained a total of 3 157 images with the
size of 500×500 pixels, which were divided into three parts. We trained
the FCN algorithms on the first part, our proposed combined network
on the second one, and evaluated their respective performances on the
third part. The three parts consisted of 1 284, 416 and 557 images,
respectively, of size 500 × 500 pixels. This way, we have avoided ex-
cessive training of the combined network on the same data that the
individual FCN algorithms were trained on.

In [31], we introduced the finalized and most comprehensive version
of our dataset of 3 565 images, each containing 2 000×2 000 pixels. Im-
age slices from 3 smears were included in the training data set (2 227
images), and image slices from 2 smears made up the test data set
(1 338 images). Considering the number of cells, the training dataset
contains circa 30 000 cells, while the test dataset contains nearly 7 000
cells. Therefore, the full downloadable dataset published in [31] in-
cludes a training and a test part as seen in Table 15. We have split the
images into a training and a test set to ensure appropriate tools for
training and evaluating the algorithms for the automated segmentation
task. This clear splitting aims to be used in any further development
related to the field for an official evaluation as a benchmark. Here,
we retained 1 505 images as a private set, which can be used later to
organize an international challenge to make a reliable evaluation and
performance measurement for the participants.
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Training part Test part
Number of different Pap smears 3 2
Number of cells 30 000 7 000
Inputs (RGB images) 2 227 1 338
Ground Truths (binary masks) 2 227 1 338

Table 15: Details of the dataset published in [31].

5.4 The fusion-based ensemble architecture
In this section, we introduce our fusion-based fully convolutional net-
work denoted as EnsF usion for cell segmentation. Instead of taking
solely the image x(i) as the input, the network receives both the orig-
inal three-channel (RGB) image and the outputs of other FCN [76]
algorithms, denoted as MF CN -32, MF CN -16, and MF CN -8 for the FCN-
32, FCN-16, and FCN-8 models, respectively. The reason behind this
lies in our observation that there are many cases when even though the
different FCN algorithms provided very different and disjoint outputs,
these outputs could still be aggregated in such a way that the combined
result would have had a higher accuracy. Such a common scenario oc-
curred when the various algorithms found their distinct group of cells
on a given smear image. This phenomenon can be observed in Figure 9.

Figure 9: (a) a sample input image, and the outputs of the (b) FCN-
32, (c) FCN-16, and (d) FCN-8 algorithms.

It can easily be seen that a standard aggregation model (e.g., ma-
jority voting, statistical combination) would have problems in cases
where each algorithm finds different parts of the cells or cell groups.
This is because traditional ensemble models do not have the ability to
dynamically put more emphasis on their member models M1, ..., Mn

depending on the input image x(i). Therefore, we aim to provide an
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efficient solution for the combination of the segmentation outputs, or
in other words, we propose a fusion-based ensemble system EnsF usion.

Claim 5.1. Using the traditional ensembles EnsM and EnsW leads
to sub-optimal results if the segmentation masks M1(x(i)), ..., Mn(x(i))
produced by the member models M1, ..., Mn contain non-overlapping
areas for a given input image x(i).

Reasoning. Let EnsM and EnsW denote traditional ensembles using
majority voting and weighted averaging, respectively, constructed of
member models M1, M2, ..., Mn. If the outputs do not overlap, that
means that Mj(x(i))px,py ̸= Mk(x(i))px,py for each model j, k = 1, ..., n,
j ̸= k and pixel at the (px, py) coordinates.

In the case of majority voting, following (4), the output of the en-
semble becomes zero (the default value) for each pixel at the (px, py)
coordinates, as there are no overlapping parts (i.e., parts where a ma-
jority of the models "agree on"). This means that each segment is
predicted only once, thus no majority of the outputs can be defined.

It is also easy to see that in this special case there is no merit in
applying weighted averaging. If the outputs do not overlap, then for
each pixel at the coordinates (px, py) Mj(x(i))px,py > 0.5 will only be
true if Mk(x(i))px,py < 0.5 for each model k = 1, ..., n, j ̸= k. This will
result in

EnsW (x(i))px,py = β1M1(x(i))px,py + β2M2(x(i))px,py + ...

+ βnMn(x(i))px,py

= M1(x(i))px,py

n
+ M2(x(i))px,py

n
+ ... + Mn(x(i))px,py

n

= 0 + 0 + ... + Mj(x(i))px,py

n
+ ... + 0

= Mj(x(i))px,py

n
. (20)

Since each model can only predict the presence of a given class for
any given pixel with a maximum probability of 1, (20) will be zero
if n > 2. If n = 2, then the output will be the same as the output
of the Mj model if Mj(x(i))px,py = 1, otherwise it will be zero. This
is also undesired, as in this case, the ensemble model loses all of its
advantages compared to the single model Mj.

□
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Let us denote the given input image as x (i.e., omit the index) for
the sake of brevity. In this case, the member algorithms assign prob-
abilities MF CN -i(xpx,py) ∈ [0,1] (where i ∈ {8, 16, 32}) to each xpx,py

pixel of the input image x to indicate their confidence whether the
given pixel belongs to a cell (plasm or nucleus) or not. Instead of
using pixel-wise combination after thresholding, like an element-wise
multiplication or majority voting, we consider region-based combina-
tion. Consequently, our method uses the information gathered by the
individual segmentation algorithms, while still being able to make its
own decision by involving the original image as well. To achieve this,
first, we train some FCN algorithms, namely the MF CN -32, MF CN -16
and MF CN -8 networks. As pointed out in [76], these algorithms differ
in their main architectures and the amount of upsampling they use.
The FCN-8 architecture is based on AlexNet [70], while the other two
use the architecture of the VGG-16 [83] network. The numbers in the
names of these models represent the amount of upsampling used for
each respective network.

After training the FCN networks, we combine their outputs. To
avoid using only their (sometimes) improper segmentation results, we
also use the original image as input. In this way, the final ensemble
model could consider the original input image and the segmentation re-
sults together and learn how it should combine them to reach the most
accurate output. This was achieved by implementing EnsF usion as a
regular FCN-32 architecture, where we increased the number of input
channels. Thus both the outputs of the FCN algorithms and the input
image can pass through each convolutional and transposed convolu-
tional layer at the same time. This ensures region-based combination
by using convolutional operators instead of pixel-wise ones.
Definition 5.1. Given the models MF CN-32, MF CN-16, and MF CN-8,
we define the concatenated matrix C as

C =< x(i), MF CN-32(x(i)), MF CN-16(x(i)), MF CN-8(x(i)) >, (21)
where each element Cpx,py of the matrix contains the input image and
the outputs of each FCN model, concatenated into a single vector, and
where x(i)

px,py ∈ [0, 1]× [0, 1]× [0, 1] is a given pixel of the input image,
treated as a 3D vector that contains the normalized intensity values of
the original input image regarding the red, green and blue channels.

C is provided as an input to the ensemble EnsF usion (see Figure 10)
which results in the required region-based combination by applying the
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appropriate convolutional filters with weights found during the second
stage of the training.

Figure 10: Our fusion-based system receives the heatmaps of the in-
dividual pre-trained FCN algorithms and the original RGB image as
input (top) to generate the segmented output image (bottom).
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Definition 5.2. Given the models MF CN-32, MF CN-16, and MF CN-8
trained on a given dataset D and their corresponding weights θF CN-32,
θF CN-16, and θF CN-8, respectively, we define the output of the fusion-
based ensemble model EnsF usion with weights θ1, ..., θk and activation
functions σ1, ..., σk as

EnsF usion(x(i)) := σk(θk
⊤...σ2(θ2

⊤σ1(θ1
⊤C))), (22)

where the concatenated matrix C is calculated according to (21) for the
given input image x(i).

It can be seen how our algorithm can receive the outputs of mul-
tiple pre-trained models with the original input image to determine
the final segmentation output, meaning that based on the formula-
tion of the concatenated matrix C, multiple different variants of the
architecture can be derived. In [30], we showcased the results of sev-
eral actual implementations of the proposed algorithm. One difference
between these is the number of pre-trained models that the variants
use to construct C. Our reasoning for trying out multiple variants is
that we wanted to experiment with minimizing the amount of extra
information that is being given to the model and how this reduction
affects performance. Consequently, we use the abbreviation EnsF usion

to refer to our combined network with some suffixes, which denote the
extra inputs used. For example, EnsF usion-16-8 means that the com-
bined network receives the input image, as well as the outputs of the
trained FCN-16 and FCN-8 algorithms, respectively.

5.5 Experimental setup
To evaluate the trained networks, we used the indicators true posi-
tive (TP ), false positive (FP ), true negative (TN) and false negative
(FN) that were previously introduced in section 4.6. These indicators
were this time calculated at the pixel level. Based on their values, we
have calculated the accuracy (ACC) following (18), as well as the in-
tersection over union (IoU) and dice score (DSC) metrics, which were
calculated as

IoU = TP

TP + FP + FN
, (23)

DSC = 2TP

2TP + FP + FN
. (24)
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During the experiments, our dataset had a total of 3 157 images
with a size of 500 × 500 pixels, which were grouped into training,
validation and test sets, with 1 284, 416, and 557 images, respectively.
To evaluate the algorithms, we used cross-validation, during which we
shuffled the previously mentioned three parts of the data around so
that we could evaluate the performance of the networks on different
test sets. We systematically searched for the optimal hyperparameters
for each algorithm: both the baselines and the proposed one. During
this process, we explored a number of different combinations and ranges
by running several manual experiments and noted the best-performing
variations. For the batch size, we could only use a maximum of 4
due to hardware limitations as we carrioud out the experiments on a
computer with a GTX 1070 graphics card. In the case of our proposed
model, we found that using lower learning rates enabled us to reduce
the oscillation of the learning loss and make the learning more stable.
For learning rate, the oscillation became noticably smaller under 0.001,
and in the end, 0.0001 produced the best results, which we used to
train the proposed models. To compensate for this low learning rate,
we had to increase the number of epochs. We found that 200 epochs
worked best for our experiments. For the other parameters, such as
stride, padding, etc. we mostly used the ones recommended by [76].
The parameters of the first convolutional layer were however changed
to compensate for the bigger input images.

5.6 Experimental results
After carefully tuning the hyperparameters of each architecture and
splitting up the dataset as described in section 5.5, we evaluated and
recorded the performance of each model following the methodology
described in section 5.5. Table 16 shows the overall results at 95%
confidence level. It can be seen that the combined networks yielded
better results than any of the member FCN architectures which were
used originally as a cell segmentation algorithm in [89]. They also out-
performed other state-of-the-art re-implemented methods based on [84]
and [86] for the most important metrics of segmentation, namely IoU
and DSC. For example, a 5% improvement can be observed when com-
pared to even the best-performing FCN algorithm (FCN-8) for IoU and
4% for DSC. The reason for our focus on these two metrics is that
the manually annotated dataset used to train the algorithms contained
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Table 16: Results on the test dataset.

Algorithm ACC IoU DSC
FCN-32 [76] 0.915 ± 0.054 0.497 ± 0.161 0.660 ± 0.144
FCN-16 [76] 0.913 ± 0.063 0.503 ± 0.143 0.666 ± 0.127
FCN-8 [76] 0.919 ± 0.037 0.507 ± 0.180 0.668 ± 0.158
sota [84] 0.775 0.343
Ens1 [85] 0.923 ± 0.022 0.534 ± 0.239 0.688 ± 0.205
Ens2 [85] 0.923 ± 0.020 0.534 ± 0.243 0.688 ± 0.208
DeepLabv3[86] 0.889 ± 0.117 0.487 ± 0.039 0.655 ± 0.035
U-Net [87] 0.917 ± 0.063 0.504 ± 0.224 0.662 ± 0.199
GSCNN [88] 0.909 ± 0.091 0.514 ± 0.185 0.674 ± 0.162
EnsF usion-32-8 0.926 ± 0.034 0.530 ± 0.195 0.688 ± 0.168
EnsF usion-32-16 0.928 ± 0.036 0.534 ± 0.191 0.691 ± 0.163
EnsF usion-16-8 0.928 ± 0.031 0.537 ± 0.203 0.693 ± 0.173
EnsF usion-32-16-8 0.927 ± 0.040 0.531 ± 0.175 0.687 ± 0.147

some imperfect annotations, meaning that in some cases the outlines
of the cells were bigger and rougher than needed. Consequently, there
were cases when the algorithms produced even more accurate masks
than the ground truth, resulting in a higher number of FNs instead of
TNs when comparing them. This phenomenon motivated us to focus
on measures that do not take into account the TNs. It is also impera-
tive to note that as our test set contained 557 images of size 500×500,
the total number of pixels in the test set was 139 250 000. By this logic,
e.g., in terms of accuracy even a 1% improvement leads to an increase
of 1 392 500 correctly labeled pixels. It is also important to note that
the accuracies of the baseline models were all well over 90%, making
these improvements even more substantial and valuable (since in this
range even tiny improvements require a lot of effort, engineering and
extra computation). Some comparisons regarding the outputs of the
standard FCN models and our proposed architecture can be seen in
Figure 11.
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Figure 11: A comparison between the performances of the individual
FCN algorithms and the combined architectures.

68



5.7 Conclusions
In this chapter, we have proposed an ensemble-based cell segmentation
approach to combine multiple trained fully convolutional networks to
obtain a model that exceeds the performances of all of these individ-
ual models. We worked on the problem of segmentation of cells on
digitized Pap smear images, and compared the results of the tradi-
tional FCN algorithms with several different implementations of our
proposed method. We also introduced our own dataset developed and
constructed as a foundation for our research. We emphasized that there
are currently no other cell segmentation datasets that we are aware of
with these many specimens and images that are publicly available.

Regarding the proposed architecture, we showed that we can con-
catenate the input image and the outputs of some pre-trained FCN
networks and use our proposed method as an ensemble model that
can not only aggregate the outputs of the member models but also
override their predictions. By doing so, the ensemble can derive its
own conclusions to further improve the segmentation accuracy. We
introduced multiple variants of our solution, and used different combi-
nations of pre-trained FCNs. We showed that any combination proved
to be more accurate than any of these standard algorithms and yielded
better segmentation results. Moreover, we also noted that giving both
the outputs of these FCN algorithms and the input to the combined
networks can be a usable solution to achieve higher segmentation ac-
curacy. Using our proposed method not only can the model combine
the different outputs, but it can also come up with its own decisions
on how to combine the different segments of these outputs (e.g., link
them assuming that cells are connecting them), thus further improving
the preciseness of the model. This improvement could be seen from
the increase in the number of cells found and from the more accurate
extraction of the cells when compared to the traditional methods.
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6 Building diverse ensemble models by
penalizing the similarity between the
member models

6.1 Introduction
This chapter presents a novel method for constructing diverse ensem-
ble models. We first give an overview of traditional ensemble solu-
tions, such as majority voting and weighted averaging, and highlight
their biggest drawbacks. Then, we introduce our proposed framework,
which, contrary to traditional ensemble methods, directly measures the
diversity of the member models during the training process. We show
that the presented framework can be used for a wide range of tasks
due to its flexible and generic nature. We also showcase that using
the proposed method, we can re-use the exact same neural network
architecture and build diverse ensembles that surpass the performance
of the original architectures.

We show that the main idea of our method is to treat the features
extracted by the convolutional layers of each CNN as a low-dimensional
vector representation of the original input image. Then, we can mea-
sure the similarity between the generated latent vectors and force them
to be dissimilar. By doing so, we can sufficiently isolate the vector
spaces of each model that generate these vectors, resulting in models
that generate diverse feature vectors and hence use different sets of
features to solve the given task. In this chapter, we also present our
experimental results for detecting some of the most common types of
brain tumors (meningioma, glioma, and pituitary tumors). Moreover,
we introduce two distinct similarity measures that can be integrated
into the framework, such as cosine similarity and histogram loss.

This chapter is structured as follows. In section 6.2, we showcase
the biggest drawbacks of traditional ensemble models and introduce
the main idea behind our proposed framework. In section 6.3, we
include an overview of the dataset that we used during our research.
In section 6.4, we present our proposed frameworks, highlighting their
advantages and disadvantages from a practical and theoretical aspect.
In section 6.5, we detail our experimental setup, and in section 6.6, we
present our experimental results. Lastly, in section 6.7, we provide our
conclusions and list our contributions.
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The preliminary research results for the architecture were published
in [33]. The final research material and results were submitted for
publication in [34].

6.2 Motivation
Deep learning and CNN-based approaches provided very efficient solu-
tions for several challenging and crucial tasks in the medical workflows,
like in breast cancer [90, 91] and brain tumor [92, 93] detection and
also in automatically identifying skin cancer [94]. Nevertheless, the
performance of these deep learning-based techniques is rather volatile;
it may vary from application to application. We can easily experience
that a specific model is very efficient in one task while its performance
falls back in another scenario. We can fuse the different models relying
on various architectures into an ensemble as a remedy for such cases.
In this way, we can raise the overall performance since member mod-
els with weak performance for a given input can be compensated with
others performing better there. Naturally, we can expect improve-
ment only if the better-performing models are in a majority within
the ensemble. To address this issue, there is strong ongoing research
on organizing the individual member models into an efficient ensemble
[95, 96, 97]. Applying ensemble-based systems has numerous advan-
tages in the clinical domain. A major benefit is that they can increase
the overall stability and performance of the model since their statis-
tically more robust internal mechanisms make them more resistant to
outliers or irregularities in the inputs. This feature leads to a more
efficient solution and better generalization characteristics.

This chapter presents a novel ensemble-based method for the re-
liable and accurate classification of brain tumors from T1-weighted
contrast-enhanced MRI images. The improved methods we introduce
can benefit routine healthcare by reducing the time needed to diagnose
patients and raising the quality of the clinical workflow. Our approach
can be taken into consideration to integrate it in a (semi-)automated
CAD system to provide better healthcare services, reduce the burden
on clinical experts, accelerate routine jobs, and, perhaps most impor-
tantly, enable the detection of brain tumors at an early stage. For
building the ensemble models, we use some of the most commonly
used state-of-the-art CNN architectures as the member models of the
ensembles, such as AlexNet [98, 99], MobileNetv2 [72, 100, 101], Effi-
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cientNet [102, 103], and ShuffleNet v2 [101, 104].
We present multiple versions of our framework: one that uses the

cosine similarity and another that uses the histogram loss [32]. We also
show that the latter is a natural and logical extension of our original
framework with a theoretically better-founded formalization. We also
describe the theoretical uncertainty when using the cosine similarity
function to compare the features extracted by the ensemble members
used in our previous framework. To this end, we present a novel so-
lution using the histogram loss that further extends our previously
proposed framework while being more robust and theoretically better
founded. We also expand on using a weighted loss function and show
its effect on our framework. We conclude that using such a weighted
loss function does not hinder the optimization of diversity and show
that our framework can still converge to a local minimum.

Cancer poses a serious threat in our modern society, affecting a
significant portion of the population. Recent research has shown that
it affects even the younger population [105] and that the incidence and
mortality rates increase drastically with aging [105]. The same phe-
nomenon – the increased risk of being diagnosed with said tumors with
age – has been observed in the case of brain or central nervous system
(CNS) tumors[106]. Brain tumors can develop when the brain’s cells
grow irregularly and abnormally, forming a mass inside the patient’s
skull. This results in various symptoms, including nausea, headaches,
seizures, altered mental status, and even death [107], since the skull
only has limited space. The work [108] reported approximately 300 000
global cases of brain and CNS cancer in 2019, which, according to [108],
meant a total of 94.35% increase since 1990. The Central Brain Tumor
Registry of the United States (CBTRUS) [109] reported 84 264 cases of
death between 2015 and 2019, where the cause of death was a malig-
nant brain or CNS tumor. CBTRUS also reported [109] an estimated
amount of 93 470 new cases of malignant and non-malignant (benign)
brain and CNS tumors for 2022, only in the U.S. alone. According
to the latest reports, brain and other nervous system-related cancers
resulted in more than 18 000 estimated cases of death in the U.S. in
2023 [110], while the number of new cases was estimated to be more
than 24 000 [110]. These statistics all highlight the importance of de-
veloping tools that could help with the accurate and reliable detection
of these tumors.

The problem, however, lies in the fact that these new cases and
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the sheer number of patients currently being treated, coupled with the
newly diagnosed patients, generate an increasing amount of image data
that the limited number of clinicians struggle to handle. An automatic
Computer-Aided Diagnosis (CAD) system could help not only process
and evaluate this image data but could potentially discover tumors in
their earlier stages due to the increased speed of the clinical workflows.
To this end, we present two deep-learning-based frameworks that can
process MRI images and automatically classify different types of brain
tumors with high accuracy and reliability. We primarily focus on three
of the most commonly occurring types of brain tumors [109]: menin-
gioma, glioma, and pituitary tumors.

6.3 Dataset
We used the brain tumor dataset published by Jun Cheng [111] for our
research to devise solutions capable of automatically detecting and
classifying brain tumors. We considered this dataset a good choice for
a pragmatic examination and evaluation of the overall performance of
our proposed solutions and to test whether they are robust enough
for the following reasons. First, the dataset contains more than 3 000
images, which can be sufficient to train deep learning-based solutions
that need huge amounts of data. It has also been tested and verified in
the clinical setting, and was used as the foundation of much research in
the last few years [112, 113, 114, 115, 116]. Moreover, it contains five
pre-defined cross-validation splits, making it straightforward to com-
pare our results with that of other research since the data we used for
training and testing is the same as what was used in other works. Due
to this, we can directly take the metrics reported by other works and
use them as baselines during the evaluation phase. The five pre-defined
cross-validation splits make drawing statistically significant and valid
conclusions easier, making it harder for the evaluation process to be
affected or swayed by outliers or models that only perform well on a
few of these splits.

The dataset [111] contains a total of 3 064 T1-weighted contrast-
enhanced MRI images, which are divided into the previously mentioned
five cross-validation splits. The images were obtained from 233 patients
who suffered from one of the three brain tumors meningioma, glioma,
or pituitary tumor. Although there were some differences in terms
of the total number of images for each category, at first glance, it
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Figure 12: Input images sampled from the three classes present in the
dataset: (a) meningioma, (b) glioma, and (c) pituitary tumor. Images
in the same column belong to the same class, while the red boxes
indicate the locations of the tumors.

did not seem to warrant any up- or downsampling before training the
models. Due to this, we first experimented with non-weighted loss
functions, but later we expanded our experiments by using a weighted
loss function to test the robustness of our proposed framework. All
images in the dataset originate from one of the three anatomical planes:
the axial, coronal, and sagittal. The exact number of images for each
type of tumor and anatomical plane in the dataset can be seen in
Table 17, while Figure 12 shows some images sampled randomly from
the dataset.

74



Table 17: The total number of images in the original dataset [111]
grouped by (a) tumor type, and (b) anatomical plane.

(a)
Tumor type Number of images
Meningioma 708

Glioma 1,426
Pituitary tumor 930

(b)
Anatomical plane Number of images

Axial 994
Coronal 1,025
Sagittal 1,045

6.4 The ensemble framework
In this section, we present the various frameworks for training diverse
ensemble models. We start by introducing the cosine similarity-based
framework, which we will denote as Enscos. Then, we showcase some
potential disadvantages and scenarios in which Enscos may perform
sub-optimally. Finally, we introduce our extended version of the frame-
work using the histogram loss, which we will denote as Enshist.

6.4.1 Using the cosine similarity

The framework presented in [33] for training diverse ensembles was
based on the cosine similarity function. The core idea of our method
is that instead of considering the direct outputs of the member mod-
els, we can use the features extracted by the models to measure their
similarity. This is a viable option to measure similarity as models op-
erating on different sets of features should behave differently; hence,
it is worth combining them in an ensemble. Our proposed framework
Enscos, therefore, uses the features extracted by each model and di-
rectly optimizes diversity as a function of similarity among the member
models of the ensemble during the training process. This, in practice,
means a completely different internal operation compared to regular
methods like majority voting or weighted average ensembles. In the
case of traditional methods, each member model of the ensemble is
trained individually first, without any interaction between them, and
the ensemble is only built after all the models have been trained al-
ready. In contrast, our method trains all the members simultaneously,
where the same inputs are fed to all the different models, batch by
batch. This makes it possible for the member models to interact with
each other while they are being trained, resulting in highly abstract
information, like the similarity of the features extracted, to be able
to flow between the members during the training process. In [33], we
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showed that our solution can be applied to all CNN-based architec-
tures. We proposed a general method that breaks down any given
CNN into two main blocks, denoted by E and D.

Definition 6.1. For any given CNN model M that uses convolutional
and dense layers, we define the forward pass of the model for a given
input image x(i) as

M(x(i)) := D(E(x(i))), (25)
where E is constructed from convolutional layers and D from dense
ones.

In (25), E is responsible for extracting some abstract, high-level
features from the input image xi, while D is responsible for transform-
ing the features extracted by E into probability scores, or in other
words, predictions.

We make the following claims and use the following notations to
generalize our solution. Let us enclose n ∈ N members M1, M2, . . . , Mn

in our ensemble with corresponding sets of weights θ1, θ2, . . . , θn. Let
our training set Dtrain contain a total of m elements, with x(1), x(2), . . . ,
x(m) denoting the inputs (images), and y(1), y(2), . . . , y(m) denoting the
ground truth labels. Furthermore, let the cost function to be optimized
be denoted as J(θ1, θ2, . . . , θn), or J(θ) for short. Moreover, let Ej and
Dj denote the feature extraction (convolutional layers) and prediction
(dense layers) steps for each model Mj for j = 1, . . . , n in our ensemble,
respectively. Using these notations, we can declare that Ej is respon-
sible for extracting the most important features from the input image,
and then Dj uses these highly abstract features, represented by the
extracted feature vector, and apply some non-linear transformations
to it to get the predictions. Therefore, we can treat each Ej(x(i)) as
a compact, low-dimensional representation of the original input image
x(i). This representation holds all the crucial information regarding
the most important features extracted by Mj about the image x(i)

that may be important for the classification procedure. Therefore, if
our objective is measuring the similarity between any two models Mj

and Mk inside our ensemble, we can determine the similarity between
Ej(x(i)), and Ek(x(i)). These two vectors will be highly similar if the
models have extracted similar features and will be dissimilar otherwise.

The main benefit of this solution can be easily seen in the following
scenario. Suppose that we are dealing with brain tumor classification,
and one of the models only extracts information regarding the tumor’s
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shape while not considering the texture at all, while the other model
only extracts information regarding the tumor’s texture but does not
consider its shape. Then, we can consider them to work differently, as
they operate on different sets of features. Furthermore, their predic-
tions will change independently, resulting in less statistical dependence
between the models (i.e., their outputs are not correlated) and an over-
all more robust ensemble that may resist outliers better.

The last important building block of our proposed solution is the
similarity function that measures how similar the encoded latent vec-
tors of the different member models are. For this, we can use any
given S function that is suitable for measuring the similarity between
any two arbitrary vectors in a high-dimensional latent vector space.
In [33], we focused on the cosine similarity measure, which is not only
widely used to compare high-dimensional vectors in natural language
processing [117, 118, 119], but very recent research has also shown that
it can be used with great success for CNNs as well [120, 121, 122]. We
will treat Ej(xi) and Ek(xi) as some arbitrary vectors in a latent vec-
tor space and use the cosine similarity function to measure the overall
similarities between the encoded latent vectors produced by the mem-
ber models. There are two smaller technical problems with the cosine
similarity for our specific use case. The first one is that it cannot di-
rectly be built into the cost function J as a simple addition, as the
output values can fall anywhere in the [−1, 1] range. The second prob-
lem is that the cosine similarity of two vectors at an angle of 180◦ is
−1. This is a particularly undesired property in our case, as Ej(x(i))
and −Ej(x(i)) carry the same information from the perspective of D
despite the two vectors pointing to opposing directions.
Definition 6.2. Given an input image x(i) and two feature vectors u
and v extracted by the models M1 and M2, respectively, the similarity
of the two models is defined as

S(u, v) =
(

u · v
∥u∥∥v∥

)2

. (26)

By using the similarity function (26), we can eliminate both of the
previously mentioned problems: S(u, v) ∈ [0, 1] for all vectors u and
v, and S(u, v) = 1 if u = −v. S(u, v) will be minimal if the two
vectors are orthogonal. For our use case, this is only possible when the
members use different sets of features, which inherently means they
are dissimilar and make up a diverse ensemble.
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Definition 6.3. Given E1, E2, ..., En feature extractors, the loss func-
tion Li, and λ ∈ R the cost function for the framework Enscos is defined
as

Jcos(θ) = 1
m

m∑
i=1

 n∑
j=1

Li(θj) + λ
n−1∑
j=1

n∑
k=j+1

S(Ej(x(i)), Ek(x(i)))
 . (27)

The first part of (27) focuses on minimizing the original loss func-
tion Li. The second part of the addition is a regularization term that
penalizes members that have extracted similar features and hence have
constructed similar latent vectors for any input x(i). This second part
calculates the similarity between Mj and the other members and adds
the sum of the similarities to the loss function multiplied by a λ ∈ R.
λ acts as a controlling parameter: smaller λ values result in a weaker
regularization effect, while the larger its value is, the stronger the regu-
larization effect becomes. Hence, λ adjusts how much emphasis we put
on the diversity of the members during the optimization process. As we
will see in section 6.6, λ plays a crucial role in the overall performance
of the ensemble. Figure 13 shows an overview of our framework.

Figure 13: An overview of our framework that calculates the similarity
of the members to measure the diversity of the ensemble. The frame-
work considers both the original optimization objective (blue arrows),
as well as the similarity loss (red arrows) to update the weights of the
members of the ensemble model.
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Definition 6.4. Given the ensemble Enscos = {M1, M2, ..., Mn} and
the input image x(i), the output of the ensemble is defined as

Enscos(x(i)) := majority(M1(x(i)), M2(x(i)), ..., Mn(x(i))). (28)

Corollary 6.1. The framework presented in Definitions 6.3 and 6.4
defaults to simple majority voting behaviour when using λ = 0, result-
ing in an ensemble that does not measure diversity at all.

Proof. Given E1, E2, ..., En for the models M1, M2, ..., Mn, respectively,
the loss function Li, and λ = 0, the cost function becomes

Jcos(θ) = 1
m

m∑
i=1

 n∑
j=1

Li(θj) + 0
n−1∑
j=1

n∑
k=j+1

S(Ej(x(i)), Ek(x(i)))


= 1
m

m∑
i=1

n∑
j=1

Li(θj). (29)

By (29), there is no interaction between the member models during
the optimization process, resulting in models trained in complete isola-
tion. Furthermore, there is no metric defined that would measure the
diversity of the models. After combining these models into an ensemble
Ens = {M1, M2, ..., Mn}, the output of the ensemble will be exactly
the same as that of an ensemble using majority voting according to
(28).

Based on Corollary 6.1, we will refer to majority voting as λ = 0
in the subsequent parts. On the other hand, using λ = 1 means that
diversity is just as important as the original optimization objective,
which is to minimize the cross-entropy loss. As we will show later,
in some cases using this setting may also hinder the solution’s overall
performance. This is because diversity should usually be a secondary
objective, with the primary objective of the optimization process being
the minimization of the cross-entropy loss. The reason is that diver-
sity, while playing an important role in the overall performance of the
ensemble, can only lead to better results if the member models can
solve the original optimization task. If the members cannot solve that,
there is usually no merit in maximizing the diversity between them.
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6.4.2 Problems with the cosine similarity

Although [33] showed that the proposed framework performs quite well,
there are still some theoretical limitations that, depending on the area
where the framework is being applied, may hinder the training process
or make the proposed solution work in a sub-optimal fashion. We
show that such problems are not only theoretical but may also arise in
practice and should be addressed directly. We use the MNIST [123] and
Medical MNIST [124] datasets as simple yet expressive examples and
show that different models, even when using different architectures,
may extract highly similar sets of features and hence work in a really
similar way. We chose these specific datasets because they contain
enough images to train neural networks and have been used extensively
as benchmarks in the literature [125, 126, 127, 128, 129]. Moreover,
the Medical MNIST dataset contains medical images with a diverse
set of classes (abdomen CT, breast MRI, chest CT, chest X-ray, hand
CT, and head CT).

For our first experiments, we used the MNIST [123] and Medical
MNIST [130] datasets, as well as a very basic neural network architec-
ture as simple examples to show that the problem of not recognizing
permutations in the feature vectors does happen in practice. We used
a very basic neural network architecture with only two convolutional
and three linear layers (shown in Figure 14) to avoid overfitting to the
relatively simple datasets. In the case of the MNIST dataset, we used
the original train and test splits proposed in [123] for training and eval-
uating the models. For the Medical MNIST dataset, there are no such
splits defined. Therefore, we split the original dataset into training,
validation, and test splits in a 3:1:1 ratio for each class, respectively,
resulting in 60% of the original data being used for training, 20% for
validating, and 20% for testing purposes.

For the MNIST dataset, each model was trained for 10 epochs. In
the case of the Medical MNIST dataset, the models were trained for
5 epochs due to the lower number of classes. We used the standard
learning rate of 0.001 for both datasets, an SGD optimizer with a
momentum of 0.9, and the cross-entropy loss. Each model converged
to a (local) minimum by the end of the training, achieving at least 98%
accuracy on the training and test sets for the MNIST, and 99% in the
case of the Medical MNIST dataset, respectively. For a more in-depth
summary of the results of each model, see Table 18.
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Figure 14: An overview of the simple architecture used in our experi-
ments for the (a) MNIST and (b) Medical MNIST datasets.
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Table 18: A summary of the results of the different models trained on
the MNIST and Medical MNIST datasets.

Dataset Model Loss (train) ACC (train) Loss (test) ACC (test)
MNIST M1 0.038 0.988 0.005 0.986
MNIST M2 0.037 0.988 0.003 0.989
MNIST M3 0.038 0.989 0.037 0.986
MNIST M4 0.039 0.988 0.129 0.987
MNIST M5 0.039 0.988 0.003 0.987

Medical MNIST M1 0.006 0.998 0.000 0.998
Medical MNIST M2 0.014 0.996 0.003 1.000
Medical MNIST M3 0.012 0.996 0.001 0.998
Medical MNIST M4 0.012 0.996 0.001 1.000
Medical MNIST M5 0.010 0.997 0.001 1.000

Our goal with this experiment was to see how likely it is for differ-
ent models sharing the same architecture to rely on highly similar sets
of features after being trained and observe how the cosine similarity
handles these cases. For this, we trained five different versions of the
previously mentioned basic architecture on the MNIST dataset. Each
version of the model Mj (j = 1, . . . , 5) was trained independently from
any of the other models, using weights θj that were randomly initial-
ized. After each model Mj was trained, we compared the outputs of
their last convolutional layers on a set of test images, which outputs
correspond to Ej(x(i)) for our framework. Then, we compared these
extracted latent vectors directly by examining their values and com-
paring their heatmap representations between the different models Mj.
Our goal was to observe how random the activations (i.e., the higher
values) and their positions inside the latent vectors uj are in practice.

As seen in Figure 15, the results may seem relatively random and
not correlated at first glance. That is, the extracted latent vectors’
heatmap representations seem diverse enough. However, when looking
at the histogram representations of these same vectors, some slight
similarities can be seen, which may indicate similarities between the
extracted feature vectors. For example, the histograms of the first,
second, and third models and those of the fourth and fifth ones seem
similar. If we measure the means and standard deviations of these
models (shown in Table 19), then we can see that indeed this is the
case; models M1, M2, and M3, as well as models M4, and M5 seem
to produce feature vectors with highly similar means and standard
deviations. The results of this experiment, therefore, seem to support
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our previous claim that there may be cases when simply aggregating
some already trained networks may result in a sub-optimal ensemble,
as there may be some similarities between the member models. This,
in turn, could lower the overall robustness and decrease the abilities of
the ensemble to generalize well.

Figure 15: A heatmap representation of the latent vectors (right) gen-
erated by each model for a given input image (left).

Even though the cosine similarity has been used with great results
both for the area of natural language processing [117, 118, 119] and
computer vision as well [120, 121, 122], it inherently has some theo-
retical drawbacks that may result in sub-optimal performance in some
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Table 19: The means and standard deviations of the latent vectors
extracted by each model Mj for the test images shown in Figures 15
and 17, respectively.

Dataset Model Mean Std. dev.
MNIST M1 2.4837 3.0861
MNIST M2 2.4214 2.8950
MNIST M3 2.4739 3.0619
MNIST M4 2.2324 2.6339
MNIST M5 2.2031 2.5594

Medical MNIST M1 0.7732 1.4526
Medical MNIST M2 0.7141 0.9595
Medical MNIST M3 0.8317 0.8939
Medical MNIST M4 0.6305 0.6060
Medical MNIST M5 0.7386 0.9838

cases using the Enscos framework. One of the biggest drawbacks of
the cosine similarity is its inability to take spatial relationships into
account. This is highly problematic for our use case, where we would
like to notice any similarities between two latent vectors extracted by
different model. In this case, the order of the features is not guaranteed
to be the same for every model.

For example, let us take two hypothetical feature vectors u and
v. Let u := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and v := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
In this setup, the extracted feature vectors coincide; therefore, the
similarity metric defined in section 6.4.1 will return

S(u, v) =
(

u · v
∥u∥∥v∥

)2

= 1, (30)

meaning that the framework recognizes that the latent vectors are
the same. However, if we randomly shuffle the elements of any of
these vectors, the result will be vastly different. For example, for u :=
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and u′ := [9, 4, 8, 10, 1, 6, 7, 3, 5, 2], the result
will be

S(u, u′) =
(

u · u′

∥u∥∥u′∥

)2

= 0.4561, (31)

which would signal a significantly lower relationship between u and u′.
However, that is not the case, as the feature vectors u and u′ encode
the exact same features, just in different order. [131] has also drawn
attention to the possibility of such permutations for CNNs.
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For a more in-depth comparison, we ran many experiments examin-
ing how much this may affect the calculation of the similarities between
the two vectors. During these experiments, we considered vectors with
varying dimensions, ranging from 10 to 10 000. This range, according
to the current literature [72, 98, 102, 104], seems to cover the dimension
of the possibly extracted feature vectors of all of the most commonly
used CNNs. Then, we ran multiple tests for each setting, calculating
the squared cosine similarity between the original randomly generated
latent vector u and its permutated version u′. To observe the variance
of the similarities, we repeated these experiments several times, with
different repetitions ranging from 10 to 1 000 000. Our motivation be-
hind using different repetitions was that by increasing the sample size,
we should get statistically more accurate results. Therefore, by con-
ducting these experiments, we should be able to observe the overall
trend indicated by the orange line in Figure 16.

Figure 16: The squared cosine similarities measured between a latent
vector u and its randomly shuffled variant u′, calculated for various
sample sizes (horizontal axis) and varying vector dimensions.

85



It can be observed that the average cosine similarity for any ran-
domly permutated vector u′ and the original vector u tends to be close
to 0.6 for low-dimensional feature vectors (dim(u) = dim(u′) < 100).
However, as we increase the dimensions of these feature vectors, the
effectiveness of the cosine similarity for recognizing permutated vectors
decreases. Current state-of-the-art CNN architectures [72, 98, 102, 104]
tend to use feature vectors with dimensions falling between 1 024 and
4 096. In this range (1 000 to 10 000, the bottom row of Figure 16),
we can see that usually only roughly 56% of the similarity is being
recognized, although both vectors contain the same sets of features.
This is highly problematic due to the random nature of the training
process of neural networks and the randomized weight initialization
procedure. In theory, this randomness can lead to two models that
learn to extract the same sets of features in a slightly different order,
i.e., the activations are the same, but their order is different. In this
case, the framework proposed in [33] will fail to recognize these similar-
ities and will, therefore, not perform optimally. As we have shown, this
can lead to simply failing to recognize roughly 50% of the similarities,
ultimately leading to an ensemble less diverse than possible.

We show that the problem of failing to recognize the similarity be-
tween a vector and its permutated version shown in the first part of this
section may also occur in practice. We use again the simple MNIST and
Medical MNIST datasets to show that when training multiple models
of the same architecture, we may end up with similar, slightly permu-
tated feature vectors. We used the already trained models M1, . . . , M5
and extracted their corresponding feature vectors u1, . . . , u5 for a test
image (see Figure 17).

Figure 17: A sample input image from the Medical MNIST dataset
(right) and an overview of the distribution of the extracted features by
different models (left). The horizontal axis represents the values inside
the feature vectors, and the vertical one shows their corresponding
frequencies inside the vector on a logarithmic scale.
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As the next step, we measured the cosine similarity between the
extracted uj vectors. Even though, in this case, the similarity could
be easily seen with the naked eye in Figure 17, the extracted cosine
similarity values shown in Figure 18 are really low and fail to capture
this. This is highly problematic, as even though we can observe a
clear and indistinguishable correlation between the histograms of the
uj vectors, these similarities will be lost when we optimize our cost
function J as introduced in section 6.4.1. To solve this issue, we can
use a similarity metric that is not sensitive to the order of the elements
when comparing the two feature vectors. Earlier, we showed that one
intuitive way of measuring similarity is by comparing the distributions
of the two latent vectors. One theoretically founded way of measuring
this is to use a histogram representation of the similarities and then
compare these higher-level representations to penalize vectors that are
similar but come from different sources.

Figure 18: The correlations measured between the (a) cosine, and (b)
histogram similarities calculated between the feature vectors extracted
by the five models trained on the Medical MNIST dataset for the
sample image shown in Figure 17.

There are a variety of possible solutions for measuring this similar-
ity, ranging from calculating the intersection between the histograms,
calculating their correlation, or using a chi-square test. The main idea,
however, is that a larger overlap between two histograms indicates a
higher degree of similarity, while a small overlap means a lower degree
of similarity. By measuring using histograms instead of the similari-
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ties between the latent feature vectors directly, we lose all information
regarding the order of the elements that could negatively affect the
similarity calculation, as the improved measure only considers the ag-
gregated, higher-level representation. In Figure 18, we can see that
despite having no information about the order of the elements, we can
get better and more realistic similarity values for the correlation met-
ric when we only consider the histogram representation of the latent
feature vectors. We can also see that using the histogram similarities,
we could still retain the most important and striking similarities (e.g.,
between models M1 and M4, or M4 and M5) while recognizing that
models M2 and M4 are not similar (which were deemed as similar by
the cosine similarity).

6.4.3 Histogram-based similarity

In section 6.4.2, we have shown that the cosine similarity measure fails
to capture some intricate similarities in the following cases: a) when
the same feature vector is permutated, and b) when even though the
order of the feature vectors is not the same, their distributions are
similar. To solve these shortcomings, we proposed a new, improved
version of our framework denoted as Enshist that uses the histogram
loss [32] instead of the original cosine similarity when calculating the
S(u, v) similarity between any two latent vectors u and v. We use a
modified version of the histogram loss which is differentiable and can
be used with neural networks as the base of our solution to measure
the similarities between the histogram representations of the extracted
latent vectors of the member models in the ensemble. This way, the
similarity metric does not rely on the order of the elements of the
feature vectors, resulting in an overall more robust and theoretically
founded solution.

For the framework Enshist, instead of measuring the similarities
between any two pairs of latent vectors directly, we reformulate our
previous problem as measuring the probability preverse [32] that any
two random latent vectors uj and uk extracted by two different models
Mj and Mk (negative pair) are more similar to each other than latent
vectors extracted by the same models (positive pair). We will use this
probability as a form of regularization when training the models, pe-
nalizing those that produce latent vectors more similar to other models
than those produced by the same model. This should, in theory, result
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in a more efficient and "tighter" distribution of the latent vectors gener-
ated by each model inside the ensemble, since we penalize any overlap
between said distributions. Due to the fewer overlaps, we should also
be able to reduce the variance of the distributions, as the models are
forced to generate latent vectors with more compact and concentrated
distributions (see Figure 19).

Figure 19: By using the histogram representation, we can directly
penalize any overlap (orange) between two histograms H1 (green) and
H2 (red).

The benefit of this approach is that the overall distribution of the
similarities is taken into account during training. This holds more in-
formation than simply relying on the individual similarities of some
arbitrarily sampled latent vector pairs. This is because, for each sim-
ilarity measuring step, a larger batch of latent vectors uj originating
from all of the ensemble models and their similarities are considered by
calculating the inner products. During the optimization process, each
model Mj is forced to generate latent vectors with a higher probability
of being sampled from the distribution of the similarities belonging to
the same model Mj than any other model Mk. To calculate this prob-
ability, which the authors of [32] refer to as "the probability of reverse"
preverse, we need to approximate the two probability distributions p+

and p−. These refer to the estimate of the probability distributions of
the similarities of latent vectors produced by the same model Mj and
by a distinct model Mk, respectively.

For our proposed framework Enshist, we feed the same batch of size
b of inputs {x1, x2, . . . , xb} into the different models Mj of the ensemble
to extract the latent vectors Ej(x(i)). For the proposed framework to
work, the member models’ outputs must also be normalized due to the
limitations discussed in [32]. For this, we follow the recommendations
of [32] and apply the L2 norm to each latent vector as E∗(j)(xi) =
||E(j)(xi)||. For estimating p+ and p−, following the conventions of
[32], we construct sample sets denoted by S+ and S− that contain the
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similarity of the sample latent vector pairs, calculated using the inner
product, produced by the same models (S+) and by different models
(S−). We construct the sample sets S+ and S− by defining each sample
sj,k using the normalized latent vectors extracted by each member Mj.

Definition 6.5. Given E∗
1 , E∗

2 , ..., E∗
n, we formulate the sample sets S+

and S− using the following formulae:

S+ =
{
sk,k = u · v : u = E∗

k(x(i)), v = E∗
k(x(j)), i ̸= j

}
,

S− =
{
sk,l = u · v : u = E∗

k(x(i)), v = E∗
l (x(i)), k ̸= l

}
. (32)

At this point, it can be observed that this method is a natural and
logical extension of our framework Enscos [33], as it also builds on the
core idea of using the inner product to measure the similarities of the
sample latent vector pairs. However, instead of using these similar-
ities directly, it generates a histogram representation using multiple
observed similarities to approximate their distributions. For calcu-
lating the similarity between any two models inside the ensemble, we
approximate the p+ and p− distributions with histograms H+ and H−,
each with R bins, respectively, following the workflow described in [32],
with some slightly modified formulae.

Definition 6.6. Given the sample sets S+ and S−, we define the
histograms H+ and H− with uniformly spaced bins, with their nodes
−1 = t1, . . . , tR = 1 filling the [−1, 1] interval and with the step size
∆ = 2

R−1 , according to the following formulae

H+ =
h+

r = 1
|S+|

n∑
j=1

δj,j,r : r = 1, . . . , R

 ,

H− =

h−
r = 1

|S−|

n∑
j=1

n∑
k=1
k ̸=j

δj,k,r : r = 1, . . . , R

 , (33)

where each weight deltaj,k,r is defined as

δj,k,r =


(sj,k − tr−1)/∆, if sj,k ∈ [tr−1; tr] ,

(tr+1 − sj,k)/∆, if sj,k ∈ [tr; tr+1] ,

0, otherwise.

(34)
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As seen in (33), when calculating H+, we only consider the simi-
larities between the same model, while when calculating H−, we only
consider the similarities between distinct models. The histograms H+

and H− approximate the real distributions p+ and p− of the similari-
ties between the latent vectors extracted by each model. Using them,
we can directly look for any overlap (see Figure 19) between the sim-
ilarities of the latent vectors extracted by each model Mj inside the
ensemble.

Definition 6.7. Given H+ = [h+
1 , ..., h+

R] and H− = [h−
1 , ..., h−

R], we
define their similarities using the following formula introduced in [32]

S(H+, H−) =
R∑

r=1

h−
r

r∑
q=1

h+
q

 . (35)

Since both the forward pass and the histogram loss depend on the
normalized E∗

j vectors as well as the histograms H+ and H−, the cost
function also needs to be slightly modified.

Definition 6.8. Given the histograms H+ and H−, we define the cost
function Jhist(θ) for the framework Enshist as

Jhist(θ) = 1
m

m∑
i=1

 n∑
j=1

Li(θj) + λS(H+, H−)
 . (36)

6.4.4 Using a weighted cost function

In this section, we extend both the Enscos and the Enshist frameworks
to handle imbalanced datasets where there is a significant disparity
between the total occurrences of the labels. In such cases, some labels
appear disproportionally more often in the dataset than others. This is
especially common in the medical field, where there are usually orders
of magnitude more healthy medical records than records containing any
lesion, further increasing the difficulty of training solutions that can
recognize chronic lesions or diseases. A common technique for training
efficient solutions for such imbalanced datasets is using a weighted loss
function that weights the loss calculated for the given class in inverse
proportion to its frequency in the dataset. This ultimately makes the
training process smoother, providing models that can recognize rare
classes.
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When using a weighted cost function, the weights βi ∈ R are calcu-
lated for all inputs x(i) in the dataset D to increase the influence of the
label y(i) on the overall cost during the training procedure. To define a
weighted configuration for our framework, it is imperative to note that
our cost functions (27) and (36) are constructed of two parts: the first
part optimizes the original loss Li and the second part optimizes the
similarity S. This is extremely important because, using a weighted
cost function, the objective is to weight each Li depending on the rarity
of the class y(i). However, the second part of the cost function measures
the similarity between the ensemble members, which is independent of
the labels y(i). Since only the second part of the frameworks depend
on the latent vectors Ej(x(i))) derived by each model Mj for the cor-
responding input x(i), it is only necessary to change the first parts of
formulae (27) and (36).

Claim 6.1. Let β1, β2, ..., βm denote the weights corresponding to each
sample in the dataset Dtrain = {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}.
Furthermore, let Li denote the original loss to be optimized. For the
frameworks Enscos and Enshist, the weights β1, β2, ..., βm are responsi-
ble for weighting the original loss Li but not the similarities computed
between the different models of the ensemble.

Reasoning. Given the weights β1, β2, ..., βm for the dataset Dtrain =
{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}, the objective of a weighted cost
function is to weight each sample based on the rarity of the sample’s
label, resulting in rare classes having higher weights and more frequent
classes having lower weights.

For the framework Enscos, it can be seen that in (27), only the
first part depends on the outputs ŷ(i), which can be used to calculate
the frequency of the given class. The second part, however, only relies
on the similarities of the extracted feature vectors between different
models. It can be seen that each model Mj is compared to every other
model Mk where k = j + 1, ..., n. This part does not rely on the
class labels y(i) in any way, and its purpose is to compare the features
Ej(x(i)) and Ek(x(i)) for each model Mj and Mk, irrespective of the
class labels, treating each model as equal. Therefore, not only does
this second part not need to be adjusted by the weights β1, β2, ..., βm,
if we were to do so, that would mean that the diversity of models with
higher βj coefficients are more important, which is not the case for this
framework.
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Following the same logic, the same statements are true for the
Enshist framework as well. In (36), similarly to Enscos, only the first
part depends on the class labels y(i). The second part only measures
the similarities between the calculated histograms based on the ex-
tracted feature vectors of the different ensemble members. This part
hence only relies on the extracted (normalized) feature vectors and not
on the original class labels y(i).

□

Definition 6.9. Given the frameworks Enscos and Enshist and the
original loss function Li, their corresponding weighted cost function
using the weights β1, β2, . . . , βm ∈ R is defined as

J∗
cos(θ) = 1

m

m∑
i=1

 n∑
j=1

βiLi(θj) + λ
n−1∑
j=1

n∑
k=j+1

S(Ej(x(i)), Ek(x(i)))

 ,

J∗
hist(θ) = 1

m

m∑
i=1

 n∑
j=1

βiLi(θj) + λS(H+, H−)

 (37)

for Enscos and Enshist, respectively.

Although no change would directly affect the calculation of the
similarities, the overall behavior and the outputs of the new weighted
cost functions shown in (37) changed due to the introduced weights
βi. Therefore, in section 6.6, we also examine the effect of using a
weighted cost function for our frameworks using the dataset published
by Jun Cheng [111]. In section 6.3 and Table 17, we have shown a slight
imbalance between the different classes. Namely, there were almost as
many images belonging to the glioma class as in the other two classes
(meningioma and pituitary tumor), combined. Therefore, this dataset
presents a good opportunity to study the effects of using a weighted
loss function following our proposed frameworks.

6.4.5 Using different architectures inside the ensemble

This section extends the Enscos and Enshist frameworks to function
with different architectures. So far, we have only discussed re-using the
exact same architecture, which was a limitation. It stemmed from for-
mulae (27) and (36), which both relied on calculating the similarity S of
the two feature vectors produced by the models Mj and Mk. During the
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similarity calculation (see (26) and (32) for Enscos and Enshist, respec-
tively), both methods utilized the inner product to calculate the simi-
larity. Since the inner product can only be used for two vectors u and
v of the same dimension dim(u) = dim(v), this limits the usage of our
framework to neural networks and members Mj and Mk that have the
exact same feature vector dimension dim(Ej(x(i))) = dim(Ek(x(i))).

To solve this problem, it is required to bring the feature vectors to
a common dimension before measuring the similarity between them.
This is not a trivial problem to solve, as reducing the dimension to
the value of the smallest feature vector may result in losing important
features in longer feature vectors. It is also unclear which compo-
nents to drop from longer feature vectors, as some of them encode
special features and are activated only when these particular features
are present in the input image. In this case, dropping such a compo-
nent, which usually contains 0 values, may decrease the performance.
Another approach can be to expand all feature vectors to be of the
same dimension as the one with the maximum length. During our ex-
periments, we found that this does not lead to either worse results or
instabilities. Therefore, in [34], we propose a simple way to address
this issue by applying zero padding to the feature vectors Ek(x(i)) to
bring them to the same dimension as the ones produced by the model
Mj that has the largest dimension. An overview of this method can
be seen in Figure 20.

Definition 6.10. Given the frameworks Enscos and Enshist construct-
ed from the member models M1, M2, ..., Mn, with their corresponding
E1, ..., En feature extracting parts, we define the maximum feature vec-
tor length dEmax for any given input image x(i) as

dEmax := max(dim(E1(x(i))), dim(E2(x(i))), , ..., dim(En(x(i)))) (38)

and apply zero-padding to all of the feature vectors E1, E2, ..., En, such
that

Ej(x(i))q :=
0, if q > dim(Ej(x(i))) ,

Ej(x(i))q, otherwise
(39)

for every j = 1, ..., n and q = 1, ..., dEmax, where Ej(x(i))q denotes the
q-th element of the feature vector Ej(x(i)).
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Figure 20: We can bring latent vectors u and v of different dimensions
to a common dimension by applying zero padding on the vector with
fewer elements. The resulting u′ vector will have the same dimension
as v, with the last elements being zero.
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6.5 Experimental setup
Before training the models, we tuned the hyperparameters of each ar-
chitecture separately. During this process, except for the total number
of epochs, we only used the training set to configure the hyperparame-
ters to avoid any possible bias towards the validation sets. We searched
for the optimal value of the batch size, learning rate, and number of
epochs and looked for the best optimizer. When searching for the
optimal batch size, we considered multiple factors, such as substan-
tial oscillations in the loss – from batch to batch and from epoch to
epoch – that would make the learning process unstable. For finding
the optimal learning rate α ∈ (0, 1), we followed a similar approach as
in section 4.6. Namely, we used a schedule for a total of 100 epochs
on the training set, evaluated the effectiveness and performance of a
wide range of learning rates, and picked the one that i) had the lowest
loss value and ii) had a sufficiently large environment [α − ε, α + ε]
with ε ∈ (0, 1), where the loss values neither excessively oscillated nor
increased substantially. The number of epochs was determined using
the validation set; each model was trained until the observed valida-
tion loss started increasing rapidly. During the training process, the
weights with the lowest validation loss were saved, which were used in
the testing phase to evaluate the performance of each model.

After the hyperparameter tuning phase, we found that the batch
size of 32 gave the best results for all models, leading to minimal oscil-
lations and smooth decreases in the loss values. For the optimizer, we
found Adam [37] to be the most efficient, while for the learning rate,
the value of 0.0001 yielded the best overall performance for each ar-
chitecture: it led to continuous and smooth decreases in the loss value
while also being relatively fast, compared to lower learning rates. Fur-
thermore, it did not seem to get stuck in bad-performing local optima
during our experiments. For the Enshist framework, we also considered
multiple settings when determining the optimal number of bins. After
evaluating multiple different options for R ranging from 65 to 257 (due
to ∆ relying on R − 1) following the findings of [32] and considering
the change of training loss, as well as validation loss, we determined
that R = 129 was the most suitable option for the number of bins in
our use case, resulting in ∆ = 0.015625. This was also in line with the
findings of the original paper [32], which also showed ∆ = 0.02 (where
∆ was rounded to two decimal places) as a suitable choice, balancing
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the level of detail (i.e., number of bins) and performance.
During the evaluation procedure, we considered several of the most

important metrics to give an in-depth overview of the performance
of the different methodologies and architectures. Namely, we calcu-
lated the overall accuracy (ACC), as well as the per class accuracy
(ACCclass_name), sensitivity (SE), and F1-score for each architecture
following the equations from section 4.6. We also evaluated each model
using the precision (PREC) metric, defined as

PREC = T P
T P +F P

. (40)

Additionally, our datasets contained multiple classes, three in total.
Since the metrics introduced so far are calculated at the class level, it
was also important to decide how to calculate a unified metric that
merged the results for the different classes into one metric. For this,
we calculated the macro- and weighted average of each metric.

As previously mentioned, we used the original folds and splits pro-
vided by the authors of the dataset [111] to train and test our models.
The official splits divide the dataset of 3 064 MRI images into training
and test parts and contain five folds. One drawback of the official splits
is that they only contain the training and test parts. To measure and
detect the degree of over- and underfitting in our models during train-
ing and to monitor the behavior of the models, i.e., to stop the training
procedure if the validation loss keeps increasing while the training loss
decreases in case of overfitting, we defined a custom validation split
using the training data from the five original folds. During this proce-
dure, we split the original training part of the five folds into training
and validation parts in a 4:1 ratio, respectively. After this, each model
was trained using the training parts of the five newly generated folds,
validated using the validation part of the current fold, and then tested
using the official test part of the given fold defined in [111].

The experiments were conducted in the cloud using the Azure Ma-
chine Learning service. The training took place on a virtual machine
with 6 cores, a total of 112GB RAM, and a Tesla V100 GPU. All the
related code was written in the Python programming language and the
PyTorch framework.
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6.6 Experimental results
In this section, we give an exhaustive and in-depth overview of the
performance of the various algorithms and report our experimental
results. We calculated various metrics using the pre-defined folds and
splits to evaluate the overall performance of each model. All models
were trained on each of the five training folds and were then evaluated
using the original test sets defined by the authors of [111]. We have also
compared our results with several other state-of-the-art approaches
and standard techniques, such as majority voting, which we used as
baselines to evaluate and compare with our results. With the λ = 0
setup, both our original and improved frameworks apply the standard
majority voting, as discussed in section 6.4. Therefore, our tables refer
to the standard majority voting approach as λ = 0. We also considered
several other works that used the same dataset, both traditional [115]
and deep learning-based ones [113, 114, 116], and used them as simple
baselines and compared their reported results with the performance of
our frameworks. Cells containing a "-" symbol in one of the columns
belonging to a metric contain values that were not reported in the
corresponding original study. For columns corresponding to a given
setting, the same "-" symbol indicates a setting that does not apply to
the given architecture.

We calculated the macro- and weighted average for each previously
introduced metric during testing and provided dedicated tables for each
setting. Macro average calculates the class-level metrics and then aver-
ages them without taking the imbalance into account. For the weighted
average, the weights reflect how often a given class occurs in the test
set. The results shown are calculated at 95% confidence levels and
sorted by the type of model and training methodology in the follow-
ing order: state-of-the-art baseline approaches and weighted averaging
(WeightedAvg.), followed by our previous and new frameworks, eval-
uated using different values of λ. We also included the results of the
hybrid ensemble architecture presented in section 6.4.5, where we se-
lected the best-performing base networks MobileNetv2, EfficientNet,
and ShuffleNet v2. Using the aforementioned three models, for the
sake of brevity, we refer to these approaches as Ens in our tables. For
the other methods that used the same member models, we refer to
them using the name of the given architecture in the tables. First,
we measured how Ens and Enshist compares with Enscos. In Table
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20, we compare our newly proposed approaches’ accuracy – global and
class-level – with our previous framework based on the cosine similarity
and several state-of-the-art baselines. ACC indicates the overall global
accuracy, while the columns ACCG, ACCM , and ACCP T correspond
to the class-level accuracies belonging to the glioma, meningioma, and
pituitary tumor classes, respectively.

Table 20: A summary of the measured global and class-level accuracies
(values are shown in %).

Algorithm Type λ ACC ACCM ACCG ACCP T

Afshar et al. [113] - - 90.9 - - -
Abiwinanda et al. [114] - - 84.2 - - -

Fasihi et al. [115] - - 84.1 - - -
MIXCAPS-BoxCaps [116] - - 91.3 - - -

Weighted Avg. - - 91.2 ± 1.7 92.9 ± 1.2 94.0 ± 1.7 95.6 ± 1.7
AlexNet base - 86.8 ± 4.2 89.4 ± 3.7 91.0 ± 1.3 93.2 ± 4.0

MobileNetv2 base - 89.3 ± 3.2 91.9 ± 1.6 92.2 ± 2.6 94.5 ± 2.7
ShuffleNet v2 base - 86.5 ± 2.9 88.7 ± 2.5 90.5 ± 2.7 93.9 ± 2.0
EfficientNet base - 89.8 ± 1.8 91.7 ± 1.4 93.3 ± 1.6 94.5 ± 1.3

AlexNet cosine 0.0 87.5 ± 3.6 90.2 ± 2.7 90.9 ± 1.7 93.9 ± 3.2
MobileNetv2 cosine 0.0 88.8 ± 2.6 91.1 ± 1.8 92.0 ± 1.8 94.5 ± 2.7
ShuffleNet v2 cosine 0.0 87.7 ± 3.8 89.7 ± 2.8 91.3 ± 2.7 94.5 ± 2.5
EfficientNet cosine 0.0 89.6 ± 2.2 91.6 ± 1.8 92.9 ± 1.2 94.8 ± 2.3

Ens cosine 0.0 90.3 ± 1.9 91.6 ± 1.2 93.9 ± 1.5 95.2 ± 1.9
AlexNet histogram 0.0 87.5 ± 3.6 90.2 ± 2.7 90.9 ± 1.7 93.9 ± 3.2

MobileNetv2 histogram 0.0 88.8 ± 2.6 91.1 ± 1.8 92.0 ± 1.8 94.5 ± 2.7
ShuffleNet v2 histogram 0.0 87.7 ± 3.8 89.7 ± 2.8 91.3 ± 2.7 94.5 ± 2.5
EfficientNet histogram 0.0 89.6 ± 2.2 91.6 ± 1.8 92.9 ± 1.2 94.8 ± 2.3

Ens histogram 0.0 90.3 ± 1.9 91.6 ± 1.2 93.9 ± 1.5 95.2 ± 1.9
AlexNet cosine 0.5 88.2 ± 3.1 90.3 ± 2.6 92.2 ± 1.3 93.8 ± 3.1

MobileNetv2 cosine 0.5 91.5 ± 1.8 93.1 ± 1.4 94.5 ± 1.2 95.4 ± 1.9
ShuffleNet v2 cosine 0.5 89.2 ± 3.0 90.7 ± 2.5 92.8 ± 1.8 94.9 ± 2.4
EfficientNet cosine 0.5 90.4 ± 2.3 92.0 ± 1.4 94.0 ± 1.3 94.9 ± 2.6

Ens cosine 0.5 90.8 ± 1.9 92.2 ± 1.5 94.2 ± 1.0 95.2 ± 1.9
AlexNet histogram 0.5 88.7 ± 3.4 90.9 ± 3.0 91.9 ± 1.3 94.6 ± 3.1

MobileNetv2 histogram 0.5 90.8 ± 1.3 92.9 ± 0.9 93.5 ± 0.9 95.3 ± 1.7
ShuffleNet v2 histogram 0.5 89.5 ± 2.1 91.2 ± 1.4 92.9 ± 1.4 94.9 ± 1.9
EfficientNet histogram 0.5 90.9 ± 1.5 92.3 ± 1.3 94.2 ± 0.9 95.4 ± 2.0

Ens histogram 0.5 90.1 ± 1.7 91.7 ± 1.2 93.7 ± 0.7 94.8 ± 2.2
AlexNet cosine 1.0 88.1 ± 4.5 90.9 ± 2.9 91.7 ± 2.2 93.7 ± 4.1

MobileNetv2 cosine 1.0 90.4 ± 2.7 92.2 ± 2.0 93.6 ± 1.7 95.1 ± 2.3
ShuffleNet v2 cosine 1.0 89.3 ± 2.8 90.1 ± 1.9 91.8 ± 2.6 94.4 ± 2.5
EfficientNet cosine 1.0 90.5 ± 2.1 91.9 ± 1.4 93.7 ± 1.0 95.3 ± 3.0

Ens cosine 1.0 90.1 ± 3.2 91.7 ± 2.9 93.9 ± 1.5 94.5 ± 2.7
AlexNet histogram 1.0 87.7 ± 4.2 90.2 ± 2.7 91.3 ± 2.2 93.9 ± 4.0

MobileNetv2 histogram 1.0 92.1 ± 0.5 93.5 ± 0.5 94.5 ± 1.1 96.3 ± 1.7
ShuffleNet v2 histogram 1.0 90.2 ± 1.9 92.3 ± 1.4 92.8 ± 1.7 95.2 ± 2.2
EfficientNet histogram 1.0 90.4 ± 2.4 92.1 ± 2.2 93.9 ± 0.4 94.7 ± 2.4

Ens histogram 1.0 90.6 ± 1.8 91.6 ± 1.8 94.3 ± 0.5 95.2 ± 2.0

After getting an overview of the overall accuracy of each model,
we evaluated them using the sensitivity (SE), precision (PREC), and
F1-score. For our first set of experiments, we used the macro averaging
method when aggregating the per-class results of each metric (see Table
21). In other words, during these experiments, we treated each class
equally during the evaluation procedure and calculated the results for
all metrics. As seen in Table 21, Enshist achieved results similar to
Enscos for the λ = 0.5 setup; however, it greatly outperformed it
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with a larger value of λ = 1.0. The best-performing model was the
same that achieved the highest accuracies in Table 20: the ensemble
that was constructed using three MobileNetv2 models. This model
achieved over 90% for each metric: 90.5% sensitivity, 92.1% precision,
and 91.1% F1-score.

Table 21: A summary of the measured sensitivity, precision, and F1-
scores using macro averaging (values are shown in %).

Algorithm Type λ SE PREC F1
Weighted Avg. - - 89.8 ± 1.5 91.0 ± 1.7 90.2 ± 1.7

AlexNet base - 85.7 ± 3.7 87.1 ± 4.3 85.6 ± 4.5
MobileNetv2 base - 87.6 ± 3.2 89.4 ± 2.7 88.1 ± 3.3
ShuffleNet v2 base - 84.4 ± 3.1 86.3 ± 2.8 85.0 ± 3.0
EfficientNet base - 88.5 ± 1.8 89.3 ± 1.8 88.6 ± 1.8

AlexNet cosine 0.0 85.4 ± 4.0 87.4 ± 3.7 86.1 ± 4.0
MobileNetv2 cosine 0.0 86.9 ± 2.6 89.0 ± 2.8 87.5 ± 2.9
ShuffleNet v2 cosine 0.0 85.9 ± 4.3 87.5 ± 3.3 86.4 ± 4.1
EfficientNet cosine 0.0 88.5 ± 3.0 89.0 ± 2.2 88.5 ± 2.8

Ens cosine 0.0 88.8 ± 1.5 89.8 ± 1.9 89.1 ± 1.9
AlexNet histogram 0.0 85.4 ± 4.0 87.4 ± 3.7 86.1 ± 4.0

MobileNetv2 histogram 0.0 86.9 ± 2.6 89.0 ± 2.8 87.5 ± 2.9
ShuffleNet v2 histogram 0.0 85.9 ± 4.3 87.5 ± 3.3 86.4 ± 4.1
EfficientNet histogram 0.0 88.5 ± 3.0 89.0 ± 2.2 88.5 ± 2.8

Ens histogram 0.0 88.8 ± 1.5 89.8 ± 1.9 89.1 ± 1.9
AlexNet cosine 0.5 86.6 ± 3.3 87.9 ± 3.3 86.9 ± 3.5

MobileNetv2 cosine 0.5 90.2 ± 1.9 91.0 ± 1.7 90.5 ± 1.9
ShuffleNet v2 cosine 0.5 87.2 ± 3.8 88.8 ± 2.9 87.7 ± 3.5
EfficientNet cosine 0.5 89.1 ± 2.0 90.1 ± 2.3 89.3 ± 2.5

Ens cosine 0.5 89.6 ± 1.8 90.2 ± 1.8 89.7 ± 1.9
AlexNet histogram 0.5 87.1 ± 3.6 88.6 ± 3.6 87.5 ± 3.7

MobileNetv2 histogram 0.5 89.3 ± 1.0 90.8 ± 1.4 89.8 ± 1.3
ShuffleNet v2 histogram 0.5 87.7 ± 2.1 89.2 ± 2.3 88.2 ± 2.3
EfficientNet histogram 0.5 89.4 ± 1.3 90.7 ± 1.9 89.8 ± 1.7

Ens histogram 0.5 88.6 ± 1.4 89.8 ± 1.8 88.8 ± 1.8
AlexNet cosine 1.0 86.2 ± 4.8 88.4 ± 4.3 86.7 ± 4.9

MobileNetv2 cosine 1.0 88.4 ± 2.8 90.4 ± 3.0 89.2 ± 3.0
ShuffleNet v2 cosine 1.0 88.0 ± 3.3 88.8 ± 2.5 88.0 ± 3.1
EfficientNet cosine 1.0 88.8 ± 1.5 90.4 ± 2.5 89.2 ± 2.2

Ens cosine 1.0 88.7 ± 3.5 89.7 ± 3.4 88.9 ± 3.6
AlexNet histogram 1.0 86.0 ± 3.8 87.8 ± 3.9 86.3 ± 4.5

MobileNetv2 histogram 1.0 90.5 ± 1.1 92.1 ± 0.9 91.1 ± 0.8
ShuffleNet v2 histogram 1.0 88.6 ± 1.8 90.1 ± 1.8 89.1 ± 1.9
EfficientNet histogram 1.0 89.2 ± 2.2 90.0 ± 2.7 89.3 ± 2.7

Ens histogram 1.0 89.1 ± 1.9 90.0 ± 2.2 89.4 ± 2.0

To get a better overview of the performance of the different mod-
els, we calculated the weighted sensitivity, precision, and F1-score (see
Table 22). During this evaluation, each weight was calculated using
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the support value of the given class, meaning that classes that ap-
pear more often would get assigned higher weights. As seen in Table
22, the previously top-performing MobileNetv2 ensemble architecture
that used our newly proposed histogram-based framework achieved the
best overall results. It achieved over 92% for each of the three metrics.

Table 22: A summary of the measured sensitivity, precision, and F1-
scores using weighted averaging (values are shown in %).

Algorithm Type λ SE PREC F1
Weighted Avg. - - 91.2 ± 1.7 91.6 ± 1.4 91.2 ± 1.7

AlexNet base - 86.8 ± 4.2 88.2 ± 3.0 86.8 ± 4.1
MobileNetv2 base - 89.3 ± 3.2 89.9 ± 2.5 89.2 ± 3.2
ShuffleNet v2 base - 86.5 ± 2.9 87.2 ± 2.7 86.5 ± 2.9
EfficientNet base - 89.8 ± 1.8 90.3 ± 1.7 89.8 ± 1.8

AlexNet cosine 0.0 87.5 ± 3.6 88.0 ± 3.3 87.4 ± 3.7
MobileNetv2 cosine 0.0 88.8 ± 2.6 89.5 ± 2.0 88.7 ± 2.7
ShuffleNet v2 cosine 0.0 87.7 ± 3.8 88.4 ± 3.3 87.7 ± 3.8
EfficientNet cosine 0.0 89.6 ± 2.2 90.2 ± 1.8 89.6 ± 2.3

Ens cosine 0.0 90.3 ± 1.9 90.8 ± 1.4 90.3 ± 1.8
AlexNet histogram 0.0 87.5 ± 3.6 88.0 ± 3.3 87.4 ± 3.7

MobileNetv2 histogram 0.0 88.8 ± 2.6 89.5 ± 2.0 88.7 ± 2.7
ShuffleNet v2 histogram 0.0 87.7 ± 3.8 88.4 ± 3.3 87.7 ± 3.8
EfficientNet histogram 0.0 89.6 ± 2.2 90.2 ± 1.8 89.6 ± 2.3

Ens histogram 0.0 90.3 ± 1.9 90.8 ± 1.4 90.3 ± 1.8
AlexNet cosine 0.5 88.2 ± 3.1 89.0 ± 2.6 88.2 ± 3.1

MobileNetv2 cosine 0.5 91.5 ± 1.8 91.8 ± 1.7 91.5 ± 1.9
ShuffleNet v2 cosine 0.5 89.2 ± 3.0 89.6 ± 2.8 89.1 ± 3.2
EfficientNet cosine 0.5 90.4 ± 2.3 91.1 ± 1.6 90.4 ± 2.3

Ens cosine 0.5 90.8 ± 1.9 91.2 ± 1.7 90.8 ± 1.9
AlexNet histogram 0.5 88.7 ± 3.4 89.3 ± 3.2 88.7 ± 3.5

MobileNetv2 histogram 0.5 90.8 ± 1.3 91.2 ± 1.2 90.8 ± 1.3
ShuffleNet v2 histogram 0.5 89.5 ± 2.1 90.0 ± 1.8 89.5 ± 2.1
EfficientNet histogram 0.5 90.9 ± 1.5 91.4 ± 1.2 90.9 ± 1.5

Ens histogram 0.5 90.1 ± 1.7 90.7 ± 1.2 90.1 ± 1.7
AlexNet cosine 1.0 88.1 ± 4.5 88.9 ± 3.9 88.0 ± 4.6

MobileNetv2 cosine 1.0 90.4 ± 2.7 90.8 ± 2.4 90.4 ± 2.7
ShuffleNet v2 cosine 1.0 88.1 ± 3.1 89.0 ± 2.6 88.2 ± 3.1
EfficientNet cosine 1.0 90.5 ± 2.1 91.0 ± 1.7 90.4 ± 2.1

Ens cosine 1.0 90.1 ± 3.2 90.7 ± 2.8 90.1 ± 3.2
AlexNet histogram 1.0 87.7 ± 4.2 88.7 ± 3.2 87.6 ± 4.3

MobileNetv2 histogram 1.0 92.1 ± 0.5 92.3 ± 0.4 92.1 ± 0.5
ShuffleNet v2 histogram 1.0 90.2 ± 1.9 90.5 ± 1.6 90.1 ± 1.9
EfficientNet histogram 1.0 90.4 ± 2.4 91.0 ± 1.8 90.4 ± 2.3

Ens histogram 1.0 90.6 ± 1.8 90.7 ± 2.0 90.5 ± 1.9

Next, we examined if using a weighted cost function led to any
significant changes or problems during the training procedure. During
training, each sample was weighted based on the frequency of its label.
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We calculated the weights βG, βM , βP T corresponding to the given
class before training the given architecture. We assigned lower weights
to classes with larger cardinalities and higher weights to classes with
smaller cardinalities in the training set. As seen in Table 23, we can
state that using a weighted cost function did not lead to any instabil-
ities or problems regarding convergence for the examined methods.

Table 23: A summary of the measured global and class-level accuracies
using a weighted cost function (values are shown in %).

Algorithm Type λ ACC ACCM ACCG ACCP T

Afshar et al. [113] - - 90.9 - - -
Abiwinanda et al. [114] - - 84.2 - - -

Fasihi et al. [115] - - 84.1 - - -
MIXCAPS-BoxCaps [116] - - 91.3 - - -

Weighted Avg. - - 91.5 ± 1.9 92.5 ± 1.5 94.9 ± 0.6 95.6 ± 2.3
AlexNet base - 87.9 ± 3.8 89.8 ± 3.2 91.2 ± 1.8 94.7 ± 3.3

MobileNetv2 base - 88.9 ± 2.6 90.3 ± 2.1 92.7 ± 1.6 94.8 ± 2.1
ShuffleNet v2 base - 88.1 ± 1.4 89.0 ± 1.8 92.8 ± 1.5 94.3 ± 2.2
EfficientNet base - 89.8 ± 2.3 91.1 ± 1.8 94.0 ± 1.0 94.4 ± 2.3

AlexNet cosine 0.0 88.4 ± 4.3 90.7 ± 2.4 91.6 ± 3.0 94.4 ± 3.4
MobileNetv2 cosine 0.0 90.2 ± 2.3 92.2 ± 1.2 92.9 ± 2.0 95.4 ± 2.4
ShuffleNet v2 cosine 0.0 89.0 ± 2.5 90.6 ± 2.0 93.0 ± 1.9 94.5 ± 2.3
EfficientNet cosine 0.0 89.7 ± 1.9 91.2 ± 1.4 93.5 ± 0.8 94.7 ± 2.9

Ens cosine 0.0 91.2 ± 2.1 92.1 ± 1.8 94.7 ± 0.4 95.6 ± 2.4
AlexNet histogram 0.0 88.4 ± 4.3 90.7 ± 2.4 91.6 ± 3.0 94.4 ± 3.4

MobileNetv2 histogram 0.0 90.2 ± 2.3 92.2 ± 1.2 92.9 ± 2.0 95.4 ± 2.4
ShuffleNet v2 histogram 0.0 89.0 ± 2.5 90.6 ± 2.0 93.0 ± 1.9 94.5 ± 2.3
EfficientNet histogram 0.0 89.7 ± 1.9 91.2 ± 1.4 93.5 ± 0.8 94.7 ± 2.9

Ens cosine 0.0 91.2 ± 2.1 92.1 ± 1.8 94.7 ± 0.4 95.6 ± 2.4
AlexNet cosine 0.5 89.2 ± 3.2 91.4 ± 2.2 92.0 ± 2.1 95.0 ± 2.7

MobileNetv2 cosine 0.5 91.2 ± 1.7 92.8 ± 1.2 94.3 ± 1.1 95.4 ± 1.7
ShuffleNet v2 cosine 0.5 90.4 ± 3.3 91.9 ± 2.6 93.7 ± 1.6 95.1 ± 2.9
EfficientNet cosine 0.5 91.8 ± 2.3 93.2 ± 2.0 95.0 ± 0.7 95.5 ± 2.2

Ens cosine 0.5 92.1 ± 1.6 93.2 ± 1.0 95.0 ± 0.9 95.9 ± 1.7
AlexNet histogram 0.5 89.0 ± 2.8 90.7 ± 2.0 92.2 ± 1.6 95.1 ± 2.9

MobileNetv2 histogram 0.5 90.9 ± 2.2 92.6 ± 1.3 94.1 ± 1.0 95.2 ± 2.6
ShuffleNet v2 histogram 0.5 91.3 ± 2.3 92.7 ± 1.4 94.1 ± 1.3 95.7 ± 2.4
EfficientNet histogram 0.5 91.2 ± 2.0 92.4 ± 1.8 94.3 ± 1.4 95.6 ± 2.1

Ens histogram 0.5 90.6 ± 2.6 92.2 ± 1.7 94.3 ± 1.6 94.8 ± 2.5
AlexNet cosine 1.0 88.6 ± 3.2 90.8 ± 2.2 92.1 ± 1.6 94.3 ± 3.2

MobileNetv2 cosine 1.0 90.2 ± 1.7 91.9 ± 1.4 93.5 ± 1.4 95.0 ± 1.7
ShuffleNet v2 cosine 1.0 89.6 ± 3.1 91.3 ± 2.3 93.4 ± 2.3 94.5 ± 2.6
EfficientNet cosine 1.0 91.9 ± 1.6 92.9 ± 1.4 95.2 ± 0.8 95.6 ± 1.8

Ens cosine 1.0 91.4 ± 1.8 92.7 ± 1.9 94.5 ± 1.3 95.6 ± 2.0
AlexNet histogram 1.0 89.6 ± 2.7 91.3 ± 2.7 92.8 ± 0.4 95.2 ± 2.7

MobileNetv2 histogram 1.0 90.9 ± 2.4 92.4 ± 1.9 94.1 ± 1.7 95.3 ± 2.0
ShuffleNet v2 histogram 1.0 90.7 ± 2.6 91.9 ± 2.0 94.0 ± 2.0 95.6 ± 2.2
EfficientNet histogram 1.0 91.4 ± 2.3 92.8 ± 2.1 94.6 ± 0.9 95.5 ± 2.2

Ens histogram 1.0 90.2 ± 2.0 91.5 ± 1.5 93.8 ± 1.4 95.1 ± 2.2

Although using this approach did not lead to better results as com-
pared with the MobileNetv2 architecture in Table 20, we can observe a
drastic improvement for the EfficientNet architecture, which achieved
1.5% higher accuracy as compared to the reported results in Table 20.
These results highlight the importance of the framework being able
to handle a weighted cost function, as, depending on the architecture,
some models, like EfficientNet, may respond exceptionally well to in-
troducing class weights in the loss function, leading to better results
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for the given architecture.
We also evaluated the effect of using a weighted cost function on

each architecture using the macro average of the sensitivity, precision,
and F1-scores; the results can be seen in Table 24. Similarly to the
previous results, the EfficientNet-based ensemble architecture achieved
good results, while the hybrid method using three different architec-
tures (denoted by Ens) had the best results.

Table 24: A summary of the measured sensitivity, precision, and F1-
scores using macro averaging and a weighted cost function (values are
shown in %).

Algorithm Type λ SE PREC F1
Weighted Avg. - - 90.9 ± 1.9 90.7 ± 2.0 90.5 ± 2.2

AlexNet base - 86.8 ± 4.0 87.4 ± 3.6 86.7 ± 4.0
MobileNetv2 base - 87.9 ± 2.0 88.4 ± 2.5 87.7 ± 2.6
ShuffleNet v2 base - 87.6 ± 0.6 87.4 ± 1.4 86.9 ± 1.3
EfficientNet base - 88.8 ± 2.8 88.8 ± 2.2 88.5 ± 2.6

AlexNet cosine 0.0 87.2 ± 4.3 88.1 ± 3.7 87.2 ± 4.5
MobileNetv2 cosine 0.0 89.0 ± 2.3 90.0 ± 2.0 89.3 ± 2.3
ShuffleNet v2 cosine 0.0 88.3 ± 2.5 88.4 ± 2.2 88.0 ± 2.5
EfficientNet cosine 0.0 88.2 ± 1.8 89.3 ± 2.1 88.4 ± 2.1

Ens cosine 0.0 90.6 ± 1.9 90.4 ± 2.2 90.1 ± 2.4
AlexNet histogram 0.0 87.2 ± 4.3 88.1 ± 3.7 87.2 ± 4.5

MobileNetv2 histogram 0.0 89.0 ± 2.3 90.0 ± 2.0 89.3 ± 2.3
ShuffleNet v2 histogram 0.0 88.3 ± 2.5 88.4 ± 2.2 88.0 ± 2.5
EfficientNet histogram 0.0 88.2 ± 1.8 89.3 ± 2.1 88.4 ± 2.1

Ens histogram 0.0 90.6 ± 1.9 90.4 ± 2.2 90.1 ± 2.4
AlexNet cosine 0.5 87.7 ± 3.4 89.1 ± 2.9 88.1 ± 3.4

MobileNetv2 cosine 0.5 90.1 ± 1.8 90.9 ± 1.7 90.2 ± 1.9
ShuffleNet v2 cosine 0.5 89.3 ± 3.3 90.1 ± 3.2 89.3 ± 3.7
EfficientNet cosine 0.5 90.5 ± 2.6 91.4 ± 2.5 90.8 ± 2.6

Ens cosine 0.5 91.0 ± 1.6 91.6 ± 1.7 91.1 ± 1.7
AlexNet histogram 0.5 87.6 ± 2.7 88.5 ± 2.8 87.8 ± 3.0

MobileNetv2 histogram 0.5 90.0 ± 2.0 90.5 ± 2.0 89.9 ± 2.4
ShuffleNet v2 histogram 0.5 90.2 ± 2.5 90.7 ± 2.1 90.2 ± 2.6
EfficientNet histogram 0.5 90.1 ± 1.8 90.9 ± 2.2 90.2 ± 2.1

Ens histogram 0.5 89.3 ± 2.4 90.2 ± 2.5 89.4 ± 2.8
AlexNet cosine 1.0 88.9 ± 1.4 89.7 ± 1.7 89.1 ± 1.6

MobileNetv2 cosine 1.0 88.9 ± 1.4 89.7 ± 1.7 89.1 ± 1.6
ShuffleNet v2 cosine 1.0 88.3 ± 3.6 89.1 ± 2.7 88.4 ± 3.4
EfficientNet cosine 1.0 90.6 ± 1.4 91.5 ± 2.2 90.8 ± 1.7

Ens cosine 1.0 90.3 ± 1.7 90.9 ± 2.0 90.4 ± 1.9
AlexNet histogram 1.0 88.3 ± 2.8 89.2 ± 3.1 88.5 ± 3.1

MobileNetv2 histogram 1.0 89.6 ± 2.1 90.6 ± 2.6 89.9 ± 2.4
ShuffleNet v2 histogram 1.0 89.7 ± 2.7 90.1 ± 2.4 89.7 ± 2.7
EfficientNet histogram 1.0 90.3 ± 2.5 91.0 ± 2.5 90.4 ± 2.6

Ens histogram 1.0 89.0 ± 1.8 89.7 ± 2.0 89.0 ± 2.1
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Finally, we used the weighted averaging method to measure the
same metrics SE, PREC, and F1-score for the models trained using
a weighted cost function. As shown in Table 25, the best-performing
architectures were the ones using the EfficientNet network, achieving
close to 92% sensitivity, precision, and F1-score, and the hybrid archi-
tecture denoted by Ens, which achieved the best results with 92.1%
sensitivity, 92.5% precision, and 92.1% F1-score, respectively.

Table 25: A summary of the measured sensitivity, precision, and F1-
scores using weighted averaging and a weighted cost function (values
are shown in %).

Algorithm Type λ SE PREC F1
Weighted Avg. - - 91.5 ± 1.9 92.2 ± 1.4 91.6 ± 1.8

AlexNet base - 87.9 ± 3.8 88.6 ± 3.4 87.9 ± 3.8
MobileNetv2 base - 88.9 ± 2.6 89.8 ± 1.7 89.0 ± 2.4
ShuffleNet v2 base - 88.1 ± 1.4 89.5 ± 1.0 88.3 ± 1.3
EfficientNet base - 89.8 ± 2.3 90.5 ± 2.4 89.8 ± 2.4

AlexNet cosine 0.0 88.4 ± 4.3 89.2 ± 3.3 88.4 ± 4.2
MobileNetv2 cosine 0.0 90.2 ± 2.3 90.7 ± 1.9 90.2 ± 2.3
ShuffleNet v2 cosine 0.0 89.0 ± 2.5 89.9 ± 2.2 89.1 ± 2.5
EfficientNet cosine 0.0 89.7 ± 1.9 90.4 ± 1.6 89.7 ± 1.8

Ens cosine 0.0 91.2 ± 2.1 91.9 ± 1.5 91.3 ± 2.0
AlexNet histogram 0.0 88.4 ± 4.3 89.2 ± 3.3 88.4 ± 4.2

MobileNetv2 histogram 0.0 90.2 ± 2.3 90.7 ± 1.9 90.2 ± 2.3
ShuffleNet v2 histogram 0.0 89.0 ± 2.5 89.9 ± 2.2 89.1 ± 2.5
EfficientNet histogram 0.0 89.7 ± 1.9 90.4 ± 1.6 89.7 ± 1.8

Ens cosine 0.0 91.2 ± 2.1 91.9 ± 1.5 91.3 ± 2.0
AlexNet cosine 0.5 89.2 ± 3.2 89.8 ± 2.7 89.2 ± 3.3

MobileNetv2 cosine 0.5 91.2 ± 1.7 91.7 ± 1.4 91.2 ± 1.7
ShuffleNet v2 cosine 0.5 90.4 ± 3.3 91.1 ± 2.4 90.4 ± 3.3
EfficientNet cosine 0.5 91.8 ± 2.3 92.2 ± 2.3 91.8 ± 2.3

Ens cosine 0.5 92.1 ± 1.6 92.5 ± 1.3 92.1 ± 1.6
AlexNet histogram 0.5 89.0 ± 2.8 89.5 ± 2.3 89.0 ± 2.8

MobileNetv2 histogram 0.5 90.9 ± 2.2 91.5 ± 1.5 90.9 ± 2.2
ShuffleNet v2 histogram 0.5 91.3 ± 2.3 91.7 ± 2.0 91.3 ± 2.4
EfficientNet histogram 0.5 91.2 ± 2.0 91.8 ± 1.7 91.2 ± 2.0

Ens histogram 0.5 90.6 ± 2.6 91.2 ± 2.1 90.6 ± 2.6
AlexNet cosine 1.0 88.6 ± 3.2 89.2 ± 2.8 88.5 ± 3.4

MobileNetv2 cosine 1.0 90.2 ± 1.7 90.6 ± 1.6 90.2 ± 1.7
ShuffleNet v2 cosine 1.0 89.6 ± 3.1 90.3 ± 2.7 89.6 ± 3.1
EfficientNet cosine 1.0 91.9 ± 1.6 92.3 ± 1.6 91.8 ± 1.6

Ens cosine 1.0 91.4 ± 1.8 91.7 ± 1.8 91.4 ± 1.8
AlexNet histogram 1.0 89.6 ± 2.7 90.1 ± 2.6 89.7 ± 2.7

MobileNetv2 histogram 1.0 90.9 ± 2.4 91.4 ± 2.1 90.9 ± 2.4
ShuffleNet v2 histogram 1.0 90.7 ± 2.6 91.2 ± 2.3 90.8 ± 2.6
EfficientNet histogram 1.0 91.4 ± 2.3 91.9 ± 2.1 91.5 ± 2.3

Ens histogram 1.0 90.2 ± 2.0 90.9 ± 1.4 90.3 ± 1.9
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6.7 Conclusions
In this chapter, we proposed multiple frameworks for building diverse
ensemble architectures, which penalize the similarities between the fea-
ture vectors extracted by the last convolutional layers of the member
models. First, we introduced a framework that used the cosine sim-
ilarity as a metric of diversity inside the ensemble. Even though the
framework achieved significantly better results than other approaches,
we showed that there can be instances when it may perform sub-
optimally. We noted that these relate to the cosine similarity not
recognizing out-of-order sequences or permutations inside the feature
vectors. According to our experimental findings, this may lead to the
framework failing to perceive roughly 50% of the similarities between
two vectors. Therefore, we introduced a modified framework that used
the histogram loss. We showed that, due to its more robust theoretical
background, this version does not rely on the order of the elements in-
side the feature vectors, ultimately solving the issues of the framework
that uses the cosine similarity.

We evaluated both of the proposed frameworks on a dataset con-
taining brain MRI images with some of the most common brain tumors:
glioma, meningioma, and pituitary tumor. We compared our proposed
frameworks not only with the original architectures that were used as
member models inside the frameworks, but with other state-of-the-art
models and methods as well. Moreover, we also compared our exper-
imental results with traditional ensemble methods, such as majority
voting and weighted average ensembles. During these investigations,
we utilized several of the most common metrics, such as accuracy, sen-
sitivity, precision and F1-score. In all of our experiments, we showed
that our proposed methods greatly outperformed all of these solutions.
Our findings therefore highlight the importance of diversity in ensem-
ble models.
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7 Summary
In this dissertation, we presented numerous novel solutions for increas-
ing the reliability and accuracy of neural network-based algorithms and
used them to solve various problems in the clinical domain. We showed
that the solutions included in this dissertation could be divided into
two groups: i) combining traditional methods with neural networks,
and ii) building performant ensembles. The objective of both groups
was to further improve the performance of currently available state-of-
the-art approaches.

For the first group, the first presented method aimed to combine the
benefits of traditional theoretical models with those of modern neural
network approaches. To achieve this, we introduced a novel two-step
architecture. The architecture first trains a neural network model to
approximate a given theoretical model by sampling synthetic training
data using the original theoretical model, and then the model is trained
further on the real dataset. We showed that by utilizing this two-
step framework, neural network models can be trained even for small
datasets, since a huge amount of synthetic data can be generated using
the given theoretical model. We also noted that after this first round of
training, the neural network can not only retain the positive properties
of the theoretical model, but it can also fine-tune its own weights on
the real dataset. This makes the neural network models more accurate
than the original theoretical model for the given dataset.

Next, we introduced the idea of combining the hand-crafted feature
vectors with the features extracted by a wide range of convolutional
neural networks. We detailed the problems of hand-crafted features,
namely that they require time-consuming fine-tuning and their individ-
ual usage often leads to sub-optimal results. Then, we showed that by
using these features in conjunction with the features extracted by con-
volutional neural networks, we could develop algorithms that surpassed
not only the original CNN networks, but also other state-of-the-art ap-
proaches. Finally, we detailed that the combination of the two types
of features is not straightforward, and hence presented three different
variants. Each variant utilized a different strategy for the combina-
tion, such as shallow (one layer), deeper (multi-layer) combination and
processing the features individually before a final aggregation step.

Regarding the second group of the solutions presented in this dis-
sertation, we first focused on the task of cell segmentation on digitized
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Pap smear images. We explained that a reliable CAD system, respon-
sible for the segmentation of cells from any other noise on the given
smear, could potentially help in the early detection of cervical can-
cer. To this end, we presented our own dataset, containing a total
of 3 565 image-annotation pairs. Then, we introduced our novel en-
semble approach, which, utilizing an FCN-32 as its backbone, receives
the generated segmentation masks of some pre-trained FCN models in
addition to the original input. We discussed that the main benefit of
this approach lies in the fact that it can not only aggregate the indi-
vidual predictions, but it can even override them using the ensemble’s
own weights, ultimately coming up with its own predictions. We also
showed that by using this approach, the ensemble was able to surpass
any of the FCN networks and other state-of-the-art approaches as well.

Lastly, we focused on the problem of diversity in ensemble models.
We discussed that traditional ensemble methods, such as majority vot-
ing and weighted averaging do not consider the diversity of the member
models, which, according to recent literature, would be greatly benefi-
cial and should considerably improve the performance of the ensemble.
To this end, we presented multiple novel frameworks that directly opti-
mize the diversity of the base models during the training of said models
by using the similarity of the feature vectors generated by the models
for each input image as a form of regularization. We presented two
versions of our framework: one using the cosine similarity and one us-
ing the histogram loss to measure the previously mentioned similarity
between the feature vectors. Next, we extended both of these frame-
works so that using a weighted cost function and integrating different
architectures with feature vectors of different dimensions become pos-
sible. Finally, we compared our solutions with other state-of-the-art
approaches, the member models, and traditional ensemble methods as
well by using a comprehensive list of different metrics, and have shown
that our framework can greatly outperform all of them.
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8 Összefoglaló
A disszertációban számos újszerű megoldást mutattunk be a neurális
háló alapú algoritmusok megbízhatóságának, valamint pontosságának
növelésére és alkalmaztuk azokat problémák megoldására a klinikai te-
rületen. Megmutattuk, hogy a disszertációban szereplő megoldások két
csoportba sorolhatók: i) a hagyományos módszerek neurális hálókkal
való kombinálása, és ii) a hatékony és megbízható együttes (ensemble)
modellek építése. Mindkét csoport legfőbb célja az volt, hogy tovább
javítsuk a jelenleg elérhető megközelítések, módszerek teljesítményét.

Az első csoport esetében az elsőként bemutatott módszer az elmé-
leti modellek és a modern neurális háló alapú megközelítések előnyeit
kívánta ötvözni. Ennek érdekében egy újszerű, kétlépcsős architektú-
rát vezettünk be. Az architektúra először egy neurális hálót tanít be
egy adott elméleti modell közelítésére az eredeti elméleti modell fel-
használásával mintavételezett szintetikus tanító adatok használatával,
majd a modellt tovább tanítjuk a valós adathalmazon. Megmutattuk,
hogy e kétlépcsős keretrendszer alkalmazásával a neurális háló alapú
modellek kis adathalmazokra is betaníthatók, mivel hatalmas mennyi-
ségű szintetikus adat generálható az adott elméleti modell segítségével.
Továbbá megjegyeztük, hogy a neurális háló az első betanítási kör után
nemcsak az elméleti modell pozitív tulajdonságait képes megtartani,
hanem saját súlyait is finomhangolni tudja a valós adathalmazon. A
megközelítést alkalmazva így a neurális háló alapú modellek pontosab-
bak lehetnek, mint az eredeti elméleti modell az adott adathalmazt
tekintve.

Ezután bemutattuk a hagyományos képfeldolgozással és a különféle
konvolúciós neurális hálók által kinyert jellemzők kombinálásának öt-
letét. Kitértünk a hagyományos módszerekkel kinyert jellemzők prob-
lémáira, nevezetesen, hogy időigényes finomhangolást igényelnek, és
egyedi használatuk gyakran nem optimális eredményekhez vezet. Ez-
után megmutattuk, hogy e jellemzőknek a konvolúciós neurális hálók
által kinyert jellemzőkkel együtt történő használatával olyan algorit-
musokat tudtunk kifejleszteni, amelyek nemcsak az eredeti CNN há-
lókat, hanem más, korszerűbb megközelítéseket is felülmúltak. Végül
részleteztük, hogy a kétféle jellemző megfelelő kombinációja egyáltalán
nem triviális kérdés, ezért három különböző változatot mutattunk be.
Mindegyik változat más stratégiát alkalmazott a kombináció kivitelezé-
sére, úgymint a sekély (egy réteg), mélyebb (többrétegű) kombinációt
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és a jellemzők egyenkénti, külön feldolgozását egy végső aggregációs
lépés előtt.

A disszertációban bemutatott algoritmusok második csoportjából
először a sejtek szegmentálásának feladatával foglalkoztunk digitali-
zált Pap-keneteken. Megemlítettük, hogy egy megbízható CAD rend-
szer, amely képes a sejtek szegmentálására és azok egyéb zajtól történő
elkülönítésére az adott keneten, potenciálisan segíthet a méhnyakrák
korai felismerésében. Ebből a célból bemutattuk a saját adathalma-
zunkat, amely összesen 3 565 kép-annotáció párt tartalmazott. Ezután
bemutattuk az újszerű ensemble megközelítésünket, amely egy FCN-
32 architektúrát használt gerinceként, és amely az eredeti bemenet-
tel együtt megkapja több előre betanított FCN modell által generált
szegmentációs maszkokat is. Megvitattuk, hogy ennek a megközelítés-
nek a fő előnye abban rejlik, hogy nem csak aggregálni tudja az egyes
előrejelzéseket, hanem az architektúra képes azokat felül is írni saját
súlyainak felhasználásával, így pedig végül saját előrejelzésekkel állhat
elő. Azt is megmutattuk, hogy ennek a megközelítésnek a használa-
tával az ensemble képes volt felülmúlni bármelyik FCN hálózatot és
egyéb korszerű megközelítéseket is.

Zárásként az együttes modellek diverzitásának problémájával fog-
lalkoztunk. Részleteztük, hogy a hagyományos ensemble módszerek,
mint például a többségi szavazás és a súlyozott átlagolás nem veszik
figyelembe az együttes tagjainak diverzitását, ami az aktuális szakiro-
dalom szerint kifejezetten hasznos lenne és jelentősen javítaná az en-
semble teljesítményét. Ebből a célból több olyan újszerű keretrendszert
mutattunk be, amelyek közvetlenül optimalizálják a tagmodellek sok-
féleségét az említett modellek tanítása során azáltal, hogy a modellek
által az egyes bemeneti képekre generált jellemzővektorok hasonlóságát
használják egyfajta regularizációként. Keretrendszerünk két változa-
tát mutattuk be: az egyik a koszinusz hasonlóságot, a másik pedig a
hisztogram veszteséget használja a jellemzővektorok közötti hasonló-
ság mérésére. Ezt követően mindkét keretrendszert kibővítettük, így
lehetővé vált a súlyozott költségfüggvény használata és különböző ar-
chitektúrák integrálása különböző dimenziójú jellemzővektorok esetén
is. Végül a megoldásainkat összehasonlítottuk más korszerű megközelí-
tésekkel, a tagmodellekkel és a hagyományos ensemble módszerekkel is,
különböző metrikák átfogó listáját használva, és megmutattuk, hogy a
keretrendszerünk képes mindegyiket jelentősen felülmúlni.
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Appendix A: Experimental results for the
prediction of COVID-19 cases
This section contains additional experimental results for the proposed
two-step architecture mentioned in section 3 for predicting the total
number of COVID-19 cases for additional countries. For these tables,
we used n = 3, meaning that we ran the experiments a total of 3
times, unlike for Germany and Hungary, where we used n = 10. This
is because while we mainly focused on those countries, we still exper-
imented with others. The summarized results were calculated with a
confidence level of 95% (p = 0.05, n = 3, using t-statistics) and were
rounded to the nearest whole number to allow for easier interpretation.

tin–tout Model
First wave errors (Austria)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 1515 ± 1319 - 39 ± 17 -
Plain 12726 ± 11505 - 112 ± 49 -

7–1 Two-step 2295 ± 1322 - 48 ± 14 -
Plain 8658 ± 11595 - 91 ± 61 -

3–1 Two-step 1599 ± 760 - 40 ± 9 -
Plain 2746 ± 2390 - 52 ± 22 -

14–7 Two-step 2048 ± 578 2661 ± 1620 45 ± 7 51 ± 16
Plain 15399 ± 33313 13125 ± 23691 114 ± 146 106 ± 130

14–3 Two-step 2321 ± 2669 1035 ± 1041 47 ± 27 32 ± 17
Plain 11627 ± 8161 12458 ± 8198 107 ± 39 111 ± 36

7–3 Two-step 1321 ± 1098 2027 ± 1670 36 ± 15 45 ± 18
Plain 3613 ± 1323 3141 ± 8950 60 ± 11 50 ± 80

tin–tout Model
Second wave errors (Austria)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 18279 ± 20982 - 132 ± 85 -
Plain 24285 ± 13590 - 155 ± 43 -

7–1 Two-step 12567 ± 5289 - 112 ± 24 -
Plain 19281 ± 14585 - 138 ± 51 -

3–1 Two-step 8441 ± 1662 - 91.82 ± 9.00 -
Plain 9971 ± 1728 - 100 ± 9 -

14–7 Two-step 19226 ± 13849 36166 ± 9576 138 ± 48 190 ± 25
Plain 54092 ± 102160 44141 ± 19431 221 ± 216 210 ± 45

14–3 Two-step 18191 ± 16938 49582 ± 41319 133 ± 61 221 ± 90
Plain 22559 ± 7546 27781 ± 15107 150 ± 25 166 ± 47

7–3 Two-step 13648 ± 5141 16498 ± 531 117 ± 22 128 ± 2
Plain 50651 ± 161764 40733 ± 78861 194 ± 345 192 ± 86
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tin–tout Model
First wave errors (Croatia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 221 ± 106 - 15 ± 4 -
Plain 393 ± 243 - 20 ± 6 -

7–1 Two-step 225 ± 50 - 15 ± 2 -
Plain 473 ± 436 - 22 ± 10 -

3–1 Two-step 190 ± 30 - 14 ± 1 -
Plain 342 ± 211 - 18 ± 6 -

14–7 Two-step 196 ± 65 177 ± 6 14 ± 2 13 ± 0
Plain 544 ± 796 486 ± 572 23 ± 19 22 ± 12

14–3 Two-step 171 ± 75 159 ± 60 13 ± 3 13 ± 2
Plain 687 ± 476 393 ± 342 26 ± 10 20 ± 9

7–3 Two-step 197 ± 120 186 ± 55 14 ± 4 14 ± 2
Plain 655 ± 521 288 ± 174 25 ± 11 17 ± 5

tin–tout Model
Second wave errors (Croatia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 4975 ± 5811 - 69 ± 43 -
Plain 4166 ± 301 - 65 ± 2 -

7–1 Two-step 4749 ± 2851 - 69 ± 20 -
Plain 3324 ± 1122 - 58 ± 10 -

3–1 Two-step 3577 ± 421 - 60 ± 4 -
Plain 3999 ± 1064 - 63 ± 8 -

14–7 Two-step 4858 ± 1388 7928 ± 2046 70 ± 10 89 ± 12
Plain 9508 ± 19872 4748 ± 3964 91 ± 108 68 ± 31

14–3 Two-step 4142 ± 2596 5817 ± 3388 64 ± 20 76 ± 22
Plain 15894 ± 25961 6649 ± 5852 119 ± 124 81 ± 37

7–3 Two-step 3484 ± 986 5307 ± 2669 59 ± 8 73 ± 18
Plain 15098 ± 26632 8455 ± 6992 115 ± 134 91 ± 37

tin–tout Model
First wave errors (Japan)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 31174 ± 12836 - 176 ± 37 -
Plain 26445 ± 7112 - 162 ± 22 -

7–1 Two-step 2173 ± 2016 - 46 ± 23 -
Plain 3967 ± 2946 - 63 ± 23 -

3–1 Two-step 1163 ± 903 - 34 ± 14 -
Plain 1789 ± 940 - 42 ± 12 -

14–7 Two-step 1135 ± 984 1175 ± 415 33 ± 15 34 ± 6
Plain 3862 ± 9162 5228 ± 6190 58 ± 71 71 ± 42

14–3 Two-step 1846 ± 2940 1679 ± 2506 42 ± 32 40 ± 31
Plain 5591 ± 6236 4202 ± 10618 74 ± 40 59 ± 79

7–3 Two-step 2215 ± 359 3049 ± 681 47 ± 4 55 ± 6
Plain 2938 ± 4028 3394 ± 3026 52 ± 42 58 ± 25

tin–tout Model
Second wave errors (Japan)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 31174 ± 12836 - 176 ± 37 -
Plain 26445 ± 7112 - 162 ± 22 -

7–1 Two-step 36346 ± 14877 - 190 ± 38 -
Plain 27978 ± 11085 - 167 ± 34 -

3–1 Two-step 30484 ± 3488 - 175 ± 10 -
Plain 28975 ± 5630 - 170 ± 17 -

14–7 Two-step 34384 ± 11578 97623 ± 257667 185 ± 31 285 ± 392
Plain 174278 ± 577843 104793 ± 185062 352 ± 683 311 ± 272

14–3 Two-step 43934 ± 16623 149252 ± 46095 209 ± 40 386 ± 60
Plain 46122 ± 13903 59817 ± 37494 215 ± 32 243 ± 77

7–3 Two-step 37621 ± 9176 44685 ± 5813 194 ± 24 211 ± 14
Plain 170817 ± 583602 41983 ± 30684 346 ± 686 204 ± 72
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tin–tout Model
First wave errors (Romania)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 2003 ± 1241 - 45 ± 14 -
Plain 2855 ± 2958 - 53 ± 27 -

7–1 Two-step 1892 ± 1361 - 43 ± 16 -
Plain 3562 ± 1737 - 60 ± 14 -

3–1 Two-step 2335 ± 751 - 48 ± 8 -
Plain 2831 ± 1388 - 53 ± 13 -

14–7 Two-step 2094 ± 1347 4507 ± 4763 45 ± 5 66 ± 39
Plain 2778 ± 2285 2596 ± 1951 52 ± 21 51 ± 20

14–3 Two-step 2121 ± 741 9233 ± 14948 46 ± 8 91 ± 93
Plain 5256 ± 2532 4891 ± 3756 72 ± 17 69 ± 27

7–3 Two-step 1877 ± 1313 2117 ± 1139 43 ± 15 46 ± 13
Plain 4089 ± 1796 3371 ± 2518 64 ± 14 58 ± 23

tin–tout Model
Second wave errors (Romania)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 71878 ± 45012 - 267 ± 86 -
Plain 98789 ± 96282 - 311 ± 148 -

7–1 Two-step 85973 ± 45136 - 292 ± 77 -
Plain 110135 ± 55831 - 331 ± 86 -

3–1 Two-step 76013 ± 22300 - 275 ± 40 -
Plain 111524 ± 45812 - 333.22 ± 67.23 -

14–7 Two-step 47787 ± 31708 235030 ± 303607.15 217 ± 73 471 ± 352
Plain 57212 ± 8566 190334 ± 274742 239 ± 18 425 ± 299

14–3 Two-step 70061 ± 21365 437849 ± 772868 264 ± 40 617 ± 724
Plain 118355 ± 92843 128156 ± 64753 341 ± 133 357 ± 88

7–3 Two-step 92618 ± 59595 162631 ± 270817 303 ± 95 390 ± 318
Plain 109022 ± 48828 175689 ± 294939 329 ± 73 404 ± 334

tin–tout Model
First wave errors (Slovakia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 364 ± 364 - 19 ± 10 -
Plain 850 ± 277 - 29 ± 5 -

7–1 Two-step 254 ± 106 - 16 ± 3 -
Plain 418 ± 232 - 20 ± 6 -

3–1 Two-step 245 ± 43 - 16 ± 1 -
Plain 273 ± 75 - 17 ± 2 -

14–7 Two-step 365 ± 513 420 ± 208 19 ± 13 20 ± 5
Plain 910 ± 693 753 ± 723 30 ± 12 27 ± 14

14–3 Two-step 356 ± 381 372 ± 569 19 ± 10 18 ± 17
Plain 918 ± 334 1429 ± 244 30 ± 5 38 ± 3

7–3 Two-step 359 ± 102 333 ± 262 19 ± 3 18 ± 7
Plain 391 ± 252 322 ± 302 20 ± 6 18 ± 9

tin–tout Model
Second wave errors (Slovakia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 14913 ± 7673 - 122 ± 32 -
Plain 16968 ± 14892 - 129 ± 56 -

7–1 Two-step 17242 ± 6597 - 131 ± 25 -
Plain 19466 ± 10696 - 139 ± 38 -

3–1 Two-step 16636 ± 1603 - 129 ± 6 -
Plain 26667 ± 8118 - 163 ± 25 -

14–7 Two-step 4511 ± 1665 9543 ± 6423 67 ± 13 97 ± 33
Plain 6347 ± 3010 12430 ± 5152 79 ± 19 111 ± 23

14–3 Two-step 12988 ± 3376 17976 ± 13028 114 ± 15 133 ± 47
Plain 16989 ± 6788 17756 ± 6476 130 ± 26 133 ± 24

7–3 Two-step 13406 ± 951 19663 ± 12020 116 ± 4 140 ± 42
Plain 30501 ± 60495 25223 ± 15568 166 ± 164 158 ± 49
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tin–tout Model
First wave errors (Slovenia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 78 ± 26 - 9 ± 1 -
Plain 195 ± 190 - 14 ± 7 -

7–1 Two-step 95 ± 35 - 10 ± 2 -
Plain 164 ± 142 - 13 ± 6 -

3–1 Two-step 70 ± 6 - 8 ± 0 -
Plain 120 ± 37 - 11 ± 2 -

14–7 Two-step 84 ± 41 84 ± 36 9 ± 2 9 ± 2
Plain 169 ± 140 125 ± 140 13 ± 5 11 ± 6

14–3 Two-step 67 ± 38 65 ± 44 8 ± 2 8 ± 3
Plain 247 ± 106 148 ± 132 16 ± 3 12 ± 6

7–3 Two-step 85 ± 41 93 ± 32 9 ± 2 10 ± 2
Plain 116 ± 51 133 ± 71 11 ± 2 11 ± 3

tin–tout Model
Second wave errors (Slovenia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 1022 ± 930 - 32 ± 15 -
Plain 1248 ± 457 - 35 ± 7 -

7–1 Two-step 1267 ± 701 - 35 ± 10 -
Plain 1350 ± 894 - 37 ± 12 -

3–1 Two-step 1107 ± 194 - 33 ± 3 -
Plain 1506 ± 601 - 39 ± 8 -

14–7 Two-step 543 ± 221 1123 ± 974 23 ± 5 33 ± 14
Plain 527 ± 137 1117 ± 832 23 ± 3 33 ± 13

14–3 Two-step 786 ± 32 1328 ± 1376 28 ± 1 36 ± 18
Plain 1202 ± 524 2295 ± 3309 35 ± 8 47 ± 35

7–3 Two-step 1165 ± 829 1303 ± 445 34 ± 12 36 ± 6
Plain 1545 ± 935 1536 ± 172 39 ± 12 39 ± 2

tin–tout Model
First wave errors (Switzerland)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 1650 ± 1237 - 40 ± 16 -
Plain 26768 ± 31289 - 160 ± 25 -

7–1 Two-step 1751 ± 1830 - 41 ± 24 -
Plain 3134 ± 3334 - 55 ± 29 -

3–1 Two-step 1434 ± 1916 - 37 ± 28 -
Plain 1830 ± 184 - 43 ± 2 -

14–7 Two-step 10433 ± 28717 19846 ± 30025 91 ± 142 135 ± 121
Plain 38317 ± 37304 81279 ± 58801 193 ± 101 283 ± 103

14–3 Two-step 4861 ± 3698 8565 ± 6612 69 ± 27 92 ± 37
Plain 15490 ± 34452 23939 ± 68420 109 ± 181 137 ± 221

7–3 Two-step 2204 ± 1266 1480 ± 1492 47 ± 14 38 ± 21
Plain 2454 ± 4001 6122 ± 12600 47 ± 45 69 ± 111

tin–tout Model
Second wave errors (Switzerland)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14–1 Two-step 114979 ± 33096 - 339 ± 49 -
Plain 127892 ± 13207 - 358 ± 19 -

7–1 Two-step 128959 ± 59863 - 358 ± 81 -
Plain 118014 ± 4629 - 344 ± 7 -

3–1 Two-step 143138 ± 17756 - 378 ± 23 -
Plain 128063 ± 15330 - 358 ± 21 -

14–7 Two-step 33776 ± 18394 35901 ± 19553 183 ± 49 189 ± 53
Plain 46882 ± 19284 70863 ± 43875 216 ± 45 265 ± 82

14–3 Two-step 43197 ± 23294 45180 ± 10374 207 ± 56 212 ± 24
Plain 65517 ± 73767 56636 ± 30540 252 ± 138 237 ± 67

7–3 Two-step 47442 ± 12858 45677 ± 9910 218 ± 30 214 ± 24
Plain 58207 ± 89426 47090 ± 39493 234 ± 176 215 ± 88
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