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Abstract
It is shown that phase-space Fisher information marks topological phase transitions in
2D Dirac gapped materials. The phase-space Fisher information determined for elec-
trons and holes exhibit minimum at the charge neutrality points. Topological quantum
numbers are defined to identify different phases utilizing combined information mea-
sures. Upper and lower bounds are derived for the phase-space Fisher information.

Keywords Phase-space Fisher information · Topological phase transitions · Dirac
materials

1 Introduction

Information theoretical concepts have become very important in several fields of
research. In this paper we focus on phase-space Fisher information (PSFI) [1–3] and
explore how it describes topological phase transitions (TPT). Recently, there has been
intense activity in studying Dirac materials. Here we focus on silicene, a 2D crystal of
silicon having a low-buckled honeycomb arrangement. Perpendicularly to the silicene
sheet, there is a shift in the two sublattices with a buckled height of l = 0.44 Å) due
to large interatomic distances. It has a significant spin-orbit interaction giving rise to a
small band gap opening at the Dirac point [4,5]. Silicene is a topological insulator (TI)
[6], but it changes to a band insulator (BI) [7] due to the spin-orbit interaction and a
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transverse external field. 2D TI was theoretically predicted by Kane andMelle [8] and
later was observed experimentally in mercury telluride quantum wells [9]. There is an
energy gap in a TI, however, the surface states are gapless. A typical feature of a TI-BI
transition is a band inversion, when the control parameter (e.g. electric field) attains a
critical value. We mention in passing that there are other 2D gapped Dirac materials
isostructural with graphene: germanene (Ge), tinene (Sn) or Indiene (In) [10]. There
are experimental and theoretical studies of these systems [8–27].

Information theoretical concepts have already been applied in studying quantum
phase transitions [28–34]. TPT has also been analyzed by Shannon, Rényi and relative
information and uncertainty relations [35–39]. Recently, we have shown that Rényi-
Fisher entropy product is a good marker of TPT [40]. All these previous investigations
were done in either the position or the momentum space. Here we make an extension
and broaden our analysis to the phase space. We select the phase-space Fisher infor-
mation (PSFI), a quantity that has received almost no attention [3]. It is now shown
that PSFI marks TPT since the electron-hole PSFI takes its minimum at the charge
neutrality points.We also derive bounds for PSFI and introduce a topological quantum
number.

The paper is organized as: TPT in 2D gapped Dirac crystals is summarized in the
following section. PSFI of silicene is presented in Sect. 3, while in Sect. 4 results for
the variance are shown and bounds for the PSFI are derived. The last section contains
conclusions.

2 Low energy eigenvalue problem of 2D crystals

The low energy effective Hamiltonian can be written [18] around the Dirac point as

Hξs = vF (σx px − ξσy py) − 1

2
ξs�soσz + 1

2
�zσz . (1)

Theparameter ξ is applied tomark the inequivalent corners K (ξ = 1) and K ′ (ξ = −1)
of the Brillouin zone. σ j are the Pauli matrices and vF = 106 ms−1 denotes the Fermi
velocity of the Dirac fermions. The monolayer silicene film is placed in the external
fields. The electric fields Ez produces a potential difference �z = lEz between the
sub-lattices with a separation l. The spin-orbit interaction leads to the band gap �so
and therefore the Dirac fermions possess amass [10,19–21]. Up (down) spin is marked
by s = ±1. Perpendicularly to the silicene plane a magnetic field B acts. Using the
Landau gauge, A = (−By, 0, 0) in the momentum operator p̂i → p̂i + qAi , the low
energy Hamiltonian takes the form

Ĥsξ =
(

�sξ vF [ξ( p̂x − e
c By) − i p̂y]

vF [ξ( p̂x − e
c By) + i p̂y] −�sξ

)
, (2)

where

�sξ = 1

2
(�z − sξ�so). (3)
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There is a TPT:we have the phase TI if |�z| < �so and the phase BIwhen |�z | > �so.
The effective gap |�sξ | disappears at CNP [18,24–26,35–38]. The eigenvalue equation
of the model is [10,19–21]

Ĥψ = εψ, (4)

where

ψ =
(

ψA

ψB

)
(5)

are associated with the sublattices A and B. The solution of Eq. (4) takes the form

εsξn =
{
sgn(n)

√
|n|�2ω2 + �2

sξ , n �= 0,

−ξ�sξ , n = 0,
(6)

and

|n〉sξ =
(

−i Asξ
n ||n| − ξ+〉

Bsξ
n ||n| − ξ−〉

)
. (7)

|n〉 stands for the orthonormal Fock eigenstates of the harmonical oscillator having
n = 0,±1,±2, . . . . ω = vF

√
2eB/� is the cyclotron frequency and ξ± = (1± ξ)/2.

The coefficients Asξ
n, and Bsξ

n have the form [24–26]

Asξ
n =

⎧⎨
⎩ sgn(n)

√
|Esξ

n |+sgn(n)�sξ

2|Esξ
n | , n �= 0,

ξ−, n = 0,

Bsξ
n =

⎧⎨
⎩

√
|Esξ

n |−sgn(n)�sξ

2|Esξ
n | , n �= 0,

ξ+, n = 0
. (8)

As we are interested in the density, the plane-wave eikx can be discarded and we have

〈y|n〉 = ω1/4√
2nn!√π

e−ωy2/2Hn(
√

ωy) (9)

in the position space, where Hn are the Hermite polynomials of degree n. The density
arising from (7) can be written as

ρsξ
n (y) = (Asξ

n )2|〈y||n| − ξ+〉|2 + (Bsξ
n )2|〈y||n| − ξ−〉|2. (10)

The Fock states in momentum space read as

γ sξ
n (py) = (Asξ

n )2|〈py ||n| − ξ+〉|2 + (Bsξ
n )2|〈py ||n| − ξ−〉|2, (11)
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where

〈py |n〉 = ω−1/4√
2nn!√π

e−p2y/(2ω)Hn(py/
√

ω). (12)

Note that the position and momentum space densities have almost the same form.

3 Phase-space Fisher information

Fisher information (FI) [1] is given by

I =
∫ [p′(x)]2

p(x)
dx, (13)

where the probability density function (PDF) p(x) fulfills the condition

∫
p(x)dx = 1. (14)

The Cramer-Rao inequality [2] relates FI to the variance

Var [x] ≥ I−1. (15)

That is, a narrower PDF leads to a larger FI. Therefore, FI is considered to be a
local measure, describing the ‘tightness’ of a distribution. We have equality in the
relation (15) in case of a normal distribution. As FI is a gradient functional of the PDF,
it is sensitive to local rearrangements of the density. In a phase transition we have
always a sudden change in the properties of the quantum systems. So, FI incorporates
information about the localization and shape of the density.

In the knowledge of the position (ρsξ
n (x)) and momentum (γ sξ

n (p)) PDFs, the
position-space (I

ρ
sξ
n
) and momentum-space (I

γ
sξ
n
) FI can be determined. Applying

expressions (10), (11) and (13) we can immediately derive the relation

ω−1 I
ρ
sξ
n

= ωI
γ
sξ
n

. (16)

In this paper the main emphasis is on the PSFI. Earlier it was proved that the sum of
the position and momentum space Fisher information is an upper bound of the PSFI
[3]. In the following this sum will be referred as PSFI. In our case it takes the form

I sξn = ω−1 I
ρ
sξ
n

+ ωI
γ
sξ
n

. (17)

Note that the position part is divided by ω, while the momentum part is multiplied by
ω for dimensional reasons [41]. (Unit mass for the oscillator is supposed.) Utilizing
Eq. (16) PSFI (17) can also be written as

I sξn = 2ω−1 I
ρ
sξ
n

= 2ωI
γ
sξ
n

(18)
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Fig. 1 Phase-space Fisher information I sξn against�z/�so for the Landau levels |n| = 1, 2, 3, 4 and ξ = 1.
Blue (green) curves stand for spin up (down). Solid lines for n positive and dash lines for n negative. Upper
(lower) limit is denoted by cyan dashed (red point) lines (Color figure online)

and is shown in Fig. 1. for silicene as a function of �z/�so for Landau levels |n| =
1, 2, 3, 4 for ξ = 1. We can see that electrons and holes (separately) incorporate
information about the different phases. The PSFI curves for electrons and holes cross
each other when there is a change from the TI to the BI phase, that is, we gain
information about TPT when we consider both (electrons and holes ) simultaneously.
Therefore, we calculated the sum of PSFI for electrons and holes in silicene

Î sξn = I sξn + I sξ−n (19)

and plotted in Fig. 2 versus �z/�so. There are minima at the charge neutrality points
(CPN) �z = �so (�z = −�so) for Landau levels |n| = 0, 1, 2, 3, 4 both for spin up
and down cases. One can also notice that the slopes of the curves have the same sign
in the phase BI (|�z| > �so) and have different sign in the phase TI (|�z| < �so).
Taking advantage of this fact we can construct a topological quantum number (TPQ):

C1
nsξ = sgn

(
∂ Î sξn
∂�z

∂ Î−sξ
n

∂�z

)
. (20)

This quantity can be considered a topological charge (TC)

C1
nsξ (�z) =

{
1, |�z | > �SO B I

−1, |�z | < �SO T I
(21)

which is capable to identify different phases like the Chern number.
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Fig. 2 Phase-space Fisher information for electrons and holes Î sξn against �z/�so for ξ = 1 and Landau
levels |n| = 1, 2, 3, 4. Upper (lower) limit is denoted by cyan dashed (red point) lines (Color figure online)

4 Variance and bounds for the phase-space Fisher information

The variance of the PDF ρ is given by

Var(x) = σ 2
x =

∫ +∞

−∞
(x − μ)2 ρ(x)dx = 〈(x − μ)2〉, (22)

where

μ =
∫ +∞

−∞
xρ(x)dx = 〈x〉 . (23)

It can also be written as
Var(x) = 〈x2〉 − μ2. (24)

Taking into account that the PDF studied here are even functions [see Eg. (10)] the
expectation value of x disappears: 〈x〉 = 0. Consequently, the variance takes the form

Var(x) = 〈x2〉. (25)

Recall now thewell-knownexpression for the variance of the linear harmonic oscillator

〈x2〉n = �

ω

(
n + 1

2

)
(26)

in the nth quantum state with � = 1 in the rest of the paper. (It can be found in most
textbooks on quantum mechanics or can be derived from the recursion relation on
Hermite polynomials. Unit mass for the oscillator is supposed.) Applying the virial
theorem the variance in momentum space can be written as
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〈p2〉n = ω

(
n + 1

2

)
. (27)

The variance for the PDF (10) has the form

〈x2〉sξn = 1

ω

[
(Asξ

n )2
(

|n| − ξ+ + 1

2

)
+ (Bsξ

n )2
(

|n| − ξ− + 1

2

)]
(28)

Utilizing Eqs. (10), (11), (26) and (27) we can obtain

ω〈x2〉sξn = ω−1〈p2〉sξn . (29)

If n = 0 we obtain 〈x2〉sξ0 = 1
2ω . Taking into account that (Asξ

n )2 = 1 − (Bsξ
n )2, we

are led to

〈x2〉sξn = 1

ω

[
|n| + ξ

(
(Bsξ

n )2 − 1

2

)]
. (30)

It can be seen from Eq. (8) that 0 < (Bsξ
n )2 < 1 if n �= 0. Therefore, we obtain the

relations
1

ω

(
|n| − 1

2

)
≤ 〈x2〉sξn ≤ 1

ω

(
|n| + 1

2

)
(31)

and

ω

(
|n| − 1

2

)
≤ 〈p2〉sξn ≤ ω

(
|n| + 1

2

)
. (32)

Taking into account the Cramer-Rao inequality (15) we arrive at the inequality

ω

|n| + 1
2

≤ I
ρ
sξ
n

. (33)

The corresponding inequality for the momentum space FI has the form

1

ω
(|n| + 1

2

) ≤ I
γ
sξ
n

. (34)

Turn now to Stam uncertainty principle

I
ρ
sξ
n

≤ 4σ
γ
sξ
n

(35)

in position space and
I
γ
sξ
n

≤ 4σ
ρ
sξ
n

(36)

in momentum space. Combining inequalities (31), (32), (35) and (36) we obtain upper
bounds to the FI:

I
ρ
sξ
n

≤ 4ω

(
|n| + 1

2

)
(37)
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and

I
γ
sξ
n

≤ 4

ω

(
|n| + 1

2

)
. (38)

Inequalities (33), (34), (37) and (38) can be put together as

ω

|n| + 1
2

≤ I
ρ
sξ
n

≤ 4ω

(
|n| + 1

2

)
(39)

and
1

ω
(|n| + 1

2

) ≤ I
γ
sξ
n

≤ 4

ω

(
|n| + 1

2

)
. (40)

Note that the bounds do not depend on s and ξ . If n = 0 we obtain equalities in
relations (39) and (40): I

ρ
sξ
0

= 2ω and I
γ
sξ
0

= 2/ω.

Equations (16), (17), (18), (19), (33) and (34) lead to lower and upper bounds for
PSFI

2

|n| + 1
2

≤ I sξn ≤ 8

(
|n| + 1

2

)
(41)

and
4

|n| + 1
2

≤ Î sξn ≤ 16

(
|n| + 1

2

)
. (42)

Î sξn stands for the electron plus hole PSFI sum. These limits are also presented in
Figs. 1. and 2. as horizontal lines for n = 1, 2, 3, 4.

The plot of the PSFI of electrons plus holes hints that there is a delocalization in
the vicinity of CNP-s. However, the variance sum for electrons and holes does not
support this assumption.

To obtain further knowledge on the Cramer-Rao inequality (15) define the differ-
ences

J
ρ
sξ
n

= Var
ρ
sξ
n

(x) −
(
I
ρ
sξ
n

)−1
(43)

and

J
γ
sξ
n

= Var
γ
sξ
n

(p) −
(
I
γ
sξ
n

)−1
. (44)

The phase-space differences are

J sξn = ωJ
ρ
sξ
n

+ ω−1 J
γ
sξ
n

(45)

and
Ĵ sξn = J sξn + J sξ−n . (46)

The latter expression for the combined difference for electrons and holes is shown in
Fig. 3. There are minima at CNP both for spin up and down cases. The slopes of the
curves have the same (opposite) sign in the phase BI (TI) that makes it possible to
introduce another form of TQN
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Fig. 3 Combined difference Ĵ sξn for electrons and holes against �z/�so for Landau levels |n| = 1, 2, 3, 4
for spin up (solid lines) and spin down (dashed lines) in the valley ξ = 1

C2
nsξ = sgn

(
∂ Ĵ sξn
∂�z

∂ Ĵ−sξ
n

∂�z

)
. (47)

This quantity can also be identified as the TC

C2
nsξ (�z) =

{
1, |�z | > �SO B I

−1, |�z | < �SO T I
(48)

Turn now to Stam uncertainty principle [(35) and (36)] and define the position-

Z
ρ
sξ
n

= I
ρ
sξ
n

− 4σ
γ
sξ
n

≤ 0 (49)

and momentum-space
Z

γ
sξ
n

= I
γ
sξ
n

− 4σ
ρ
sξ
n

≤ 0. (50)

differences. One can easily prove that

ω−1Z
ρ
sξ
n

= ωZ
γ
sξ
n

. (51)

The corresponding phase-space difference is defined as

Zsξ
n = ω−1Z

ρ
sξ
n

+ ωZ
γ
sξ
n

≤ 0. (52)

It is worth summing the differences of electrons and holes

Ẑ sξ
n = Zsξ

n + Zsξ
−n ≤ 0. (53)

This quantity is presented in Fig. 4 against �z/�so for Landau levels |n| = 1, 2, 3, 4
in the valley ξ = 1. The curves have minima at the CNP and the slopes of the curves
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Fig. 4 Combined difference Ẑ sξ
n for electrons and holes against �z/�so for Landau levels |n| = 1, 2, 3, 4

for spin up (solid lines) and spin down (dashed lines) in the valley ξ = 1

have the same (different) sign in the phase BI (TI). This result provides for defining
TQN in another form

C3
nsξ = sgn

(
∂ Ẑ sξ

n

∂�z

∂ Ẑ−sξ
n

∂�z

)
. (54)

TC can be now formalized as

C3
nsξ (�z) =

{
1, |�z | > �SO B I

−1, |�z | < �SO T I
(55)

5 Conclusions

We have analyzed how PSFI characterize TPT in silicene, a 2DDirac gapped material.
The PSFI of electrons plus holes exhibitminimumat theCNP�z = �so (�z = −�so)
for spin up (down) case. Moreover, a TQN capable to identify the different phases has
been defined utilizing combined PSFI in three forms. Upper and lower bounds for PSFI
have been derived. We have analyzed the difference of the variance and the inverse
Fisher measures. It has turned out that the sum of the differences exhibits minima at
CPN. TQN can be defined utilizing this quantity. Stam inequality has also turned out
to be useful in detecting TPT and defining a TQN. In summary, PSFI has been found
to be a new marker of topological phase transitions.
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