1 Insulin-like growth factor 1 induces oxidative damage, but

2 does not affect survival in a songbird

- 3 Ádám Z. Lendvai¹, Zsófia Tóth¹, Janka Pénzes², Sarah Vogel-Kindgen³, Bruno
- 4 A. Gander³ and Csongor I. Vágási^{1,2}
- ⁵ ¹ Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
- 6 ² Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai
- 7 University, Cluj-Napoca, Romania
- 8 ³ Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
- 9 ORCID: ÁZL, 0000-0002-8953-920X; CIV, 0000-0002-8736-2391
- 10 Authors for correspondence:
- 11 Ádám Z. Lendvai
- 12 e-mail: az.lendvai@gmail.com
- 13 Csongor I. Vágási
- 14 e-mail: csvagasi@gmail.com

15 Abstract

16	Lifespan evolves as a compromise between antagonistic selection forces. Insulin-like growth
17	factor 1 (IGF-1) is a pleiotropic hormone that regulates several life-history traits. High levels
18	of IGF-1 have been linked to increased mortality, partly by causing oxidative stress.
19	However, these effects have no experimental evidence in wild animals. We implanted
20	microspheres loaded with exogenous IGF-1 into bearded reedlings, a common short-lived
21	Eurasian songbird. The treatment elevated plasma IGF-1 levels for at least 24 h. Oxidative
22	damage to lipids significantly increased the day after the manipulation in treated birds, but
23	returned to baseline levels four days post-treatment. The treatment had no effect on survival
24	over 16 months; however, birds with higher pre-treatment (baseline) IGF-1 levels had better
25	survival prospects. These results suggest that, although high IGF-1 levels may induce
26	oxidative damage, natural variation in this hormone's level may reflect the outcome of
27	individual optimization.

28

29 Keywords:

30 IGF-1, oxidative stress, mortality, fitness, *Panurus biarmicus*

31 Subject Areas:

32 physiology, life history

33 1. Introduction

34 Understanding the regulation of physiological, behavioural, and life-history traits is a central 35 scope of biological research. The ligands of the insulin/insulin-like growth factor 1 (IGF-1) 36 signalling (IIS) pathway stand out as key regulators, because this evolutionarily conserved 37 pathway is present in the whole animal kingdom, and IGF-1 has an antagonistic pleiotropic 38 effect on different fitness components: at high levels, it stimulates growth and reproduction, 39 but impedes self-maintenance processes [1]. 40 Repressed activity of the IIS pathway augment self-maintenance or survival functions 41 resulting in extended lifespan from roundworms and flies to mice and humans [2]. Silencing 42 of the IIS activity extends lifespan in part via increased resistance to oxidative stress ([3]; 43 reviewed by [1,2,4]). However, studies investigating the role of IGF-1 in coordinating fitness 44 and oxidative stress in wild animals are surprisingly scarce [1]. It is still contentious whether 45 a high IGF-1 titre triggers oxidative damage, and this assumption has never been explored in 46 any wild organism [1].

We carried out an experimental study with 40 young bearded reedlings (*Panurus biarmicus*). Our aim was to achieve a sustained increase in plasma IGF-1 levels over a prolonged period (up to four days). We either injected dispersions of IGF-1 loaded microspheres (treated group) or the dispersion medium (control group). We assessed the effect of IGF-1 treatment by measuring oxidative damage to lipids and by monitoring the mortality of individual reedlings in captivity over 16 months.

53

54 2. Material and methods

55 (a) Study species, experimental setup, mortality

56 Forty juvenile bearded reedlings were caught at Hortobágy-Halastó (N47.6211, E21.0757) 57 and taken into captivity between July 28 and 30, 2017. Birds were initially housed in groups 58 of four individuals in cages measuring $100 \times 30 \times 50$ cm (L × W × H) placed in an outdoor 59 aviary. After at least 10 days of acclimation, birds in each cage were randomly assigned to 60 either IGF-1 or control treatment. Treatments were started in a staggered manner over two 61 weeks to minimize handling times. On the morning of the treatment (day 0), we removed the 62 birds from their cage and took a baseline blood sample within 3 min (time measured from 63 entering the aviary). Then, we injected subcutaneously 100 μ L dispersion containing either 64 microspheres loaded with recombinant human IGF-1 (treatment; 2.2 mg microspheres 65 containing 272 ng/mg IGF-1) or only the dispersion medium (control). Dispersion medium 66 consisted of 1.5% (m/m) carboxymethyl cellulose, 5% mannitol, 0.02% and polysorbate 80 in 67 sterile saline solution. Microspheres had been designed to release IGF-1 over several days 68 [5]. Birds were then replaced into their cages. Blood samples were taken after 24 h and 96 h 69 (day 1 and day 4 post-treatment) to assess the short-term physiological effects of the 70 treatment. At three months post-treatment, between November 20 and 22, 2017, all birds 71 were recaptured to take another blood sample for testing long-term repeatability of circulating 72 IGF-1 levels. Birds were then released back into the aviary for additional 13 months (i.e. 16 73 months in total). Bearded reedlings are short-lived passerines with high juvenile mortality [6]. 74 Therefore, the study period was sufficiently long to detect enough mortality events for 75 statistical analyses. Food and water was provided *ad libitum* and refreshed daily throughout 76 the study [7]. Mortality events were recorded on a daily basis. After 16 months in captivity, 77 on December 8, 2018, all surviving birds (n = 12) were released at the site of capture.

78

79 (b) Physiological measurements

80 Plasma IGF-1 levels were measured by an in-house ELISA assay, as described elsewhere [7].

- 81 Plasma malondialdehyde (MDA) concentration reflects the level of peroxidative damage to
- 82 cell membrane lipids and is a toxic oxidant itself [8]. MDA was measured by high

83 performance liquid chromatography, as detailed elsewhere [8].

84

85 (c) Statistical analyses

86 All statistical analyses were carried out in R 3.6.2 [9]. We analysed treatment effects on

87 circulating IGF-1 and MDA levels by generalized mixed-effects models (GLMMs) with

treatment and sampling time (days 0, 1, and 4) as fixed factors, and individual as the random

89 effect as implemented in package 'lme4'. We then compared treatment and control groups at

90 each time point by specifying contrasts by the function 'pairs' in package 'emmeans'.

91 Repeatability of IGF-1 level was estimated using the package 'rptR'. Survival analyses were

92 carried out by Aalen's regression (function 'aareg' in package 'survival') that allows for

93 additive effects on the cumulative hazard function. Individuals alive at the end of the study,

and one individual that escaped from captivity were right-censored in the models.

95

96 3. Results

97 IGF-1 treatment resulted in a transient increase in IGF-1 levels and a corresponding increase

98 in oxidative damage (Fig. 1). IGF-1 levels were similar in the two groups before the

99 manipulation (p = 0.8), but higher in the treated group than in controls (p < 0.001) on the day

100 after injection of the IGF-1 loaded microspheres. By day 4, this difference between the two

101 groups disappeared (p = 0.9). Inter-individual variation in IGF-1 levels remained consistent

- 102 throughout the study period, resulting in significant repeatability over three months (R = 0.30,
- 103 p = 0.029). Similar to IGF-1, MDA levels did not differ between treatment and control
- 104 groups before the treatment (p = 0.2). However, IGF-1-injected birds had higher oxidative
- 105 damage on day 1 (p = 0.021), but this difference disappeared by day 4 (p = 0.5, Fig. 1).

106

Figure 1. Subcutaneous injection with IGF-1-loaded microspheres resulted in a significant
increase in circulating IGF-1 and oxidative damage (MDA) levels measured 24 h later (day 1)
in captive bearded reedlings, but these effects disappeared by day 4. Mean ± s.e.m. are

111 shown, asterisks denote significant differences between the treatment and control groups.

- 114 groups (p = 0.8, Fig. 2); thus, IGF-1 levels on day 1 post-treatment did not affect
- survivorship. However, birds having higher pre-treatment (day 0) IGF-1 levels were slightly

116 more likely to survive (Table 1). Neither pre-treatment (day 0) nor peak (day 1) MDA levels

118

120 Figure 2. IGF-1 treatment did not affect survivorship in bearded reedlings. The solid lines

121 represent the Kaplan-Meier survival curves, shaded areas denote the corresponding 95%

122 confidence intervals. Cross symbols show censored values.

124 **Table 1.** Survival model predicts that the likelihood of mortality increases over time, but

125 higher pre-treatment (day 0) IGF-1 levels reduce mortality, while post-treatment IGF-1 (day

126 1) levels do not affect it.

127

fixed effects	estimate \pm s.e.m.	Z.	р
baseline hazard	$3.97e-02 \pm 0.014$	2.88	0.003
IGF-1 at day 0	$-4.19\text{e-}04 \pm 0.001$	1.95	0.050
IGF-1 at day 1	$9.85e-05 \pm 0.001$	0.74	0.458
5			

128

129 4. Discussion

130 IGF-1 is a pleiotropic hormone having antagonistic effects on life-history traits [1], but the 131 adaptive value of variation in its plasma levels remains unknown. Higher IGF-1 titres might 132 be associated with increased mortality in garter snakes, mice, spotted hyenas, and humans, though effect sizes differ between studies and according to the sex and age of individuals 133 134 [3,10–14]. Although the exact mechanism of such increased mortality remains uncertain, 135 several studies suggested oxidative stress as a mediatory agent ([3]; reviewed by [1,2,4]). 136 Here, we showed for the first time that the experimental elevation of circulating IGF-1 137 level caused increased levels of oxidative damage at short-term in individuals originating

138 from a wild population. This result is consistent with a previous correlational study where

139 circulating baseline levels of IGF-1 were found to be positively associated with MDA in adult

- 140 house sparrows [15]. Another study on nestling pied flycatchers found that daily IGF-1
- 141 injections increased the levels of the antioxidant enzyme glutathione peroxidase [16], which

142 might either reflect lowered oxidative stress or up-regulated antioxidant activity in response143 to oxidative stress.

144 As IGF-1 concentration returned to pre-treatment levels at day 4, the difference in 145 oxidative damage also disappeared between the groups. Microspheres were found to release 146 encapsulated IGF-1 over several days in mice (e.g. [17]), whereas treatment effects disappeared by day 4 in our avian model, which indicates either a fast biodegradation of the 147 148 microspheres or a strong negative feedback in reedlings (birds). This parallels findings of 149 steady release hormone pellets that also have faster depletion in birds than in mammals [18]. 150 The experimental increase in IGF-1 and MDA levels had no effect on long-term 151 survival. This is probably due to the transient nature of the hormone peak. Although the 152 experimentally elevated activity of the IIS pathway resulted in measurable increase in cellular 153 oxidative damage, this short-term effect was probably too weak to affect survival on the long 154 run. Remarkably, higher baseline IGF-1 (but not MDA) levels measured before the treatment 155 were associated with lower mortality, not higher mortality as expected (see above); 156 nonetheless, this association was weak and at the boundary of statistical significance. This 157 result suggests that natural variation in IGF-1 levels may be the result of individual 158 optimization (recently coined as the Optimal Endocrine Phenotype Hypothesis; [19]). In this 159 context, high-quality individuals may afford to bear the costs of elevated IGF-1 levels (e.g. 160 oxidative damage) while benefiting from its fitness-enhancing effects (e.g. boosting fecundity 161 or being anti-inflammatory [20]).

We measured survival in a semi-natural environment under *ad libitum* diet regime and shelter from predators. Fluctuations in environmental conditions and stress stimuli may substantially reorganize the physiological network and, therefore, alter the adaptive value of a given endocrine phenotype [15]. IGF-1 levels showed high inter-individual variability and significant repeatability over three months indicating that the circulating levels of this

- 167 hormone may be a consistent individual phenotypic marker. Whether individuals with
- 168 naturally high IGF-1 levels also realize fitness advantages under more challenging natural
- 169 conditions remains to be investigated.
- 170
- 171 Ethics. The study was licensed by the local authorities.
- 172 Data accessibility. All data supporting the results will be deposited at Dryad upon
- acceptance.
- 174 Authors' contributions. ÁZL and ZT conceived and conducted the experiment, ÁZL and ZT
- 175 collected the samples and the data, ÁZL, ZT, JP and CIV measured the samples, SMK and
- 176 BAG contributed reagents, ÁZL analysed the data, ÁZL and CIV wrote the article, all
- 177 authors approved the final version.
- 178 Competing interests. We declare we have no competing interests.
- 179 Funding. The study was financed by the Hungarian National Research, Development and
- 180 Innovation Office (#K113108 to ÁZL and #PD121166 to CIV), by the János Bolyai
- 181 Fellowship of the Hungarian Academy of Sciences (to CIV) and by the European Union and
- 182 the European Social Fund (EFOP-3.6.1-16-2016-00022).
- 183

184 References

- Dantzer B, Swanson EM. 2012 Mediation of vertebrate life histories via insulin-like
 growth factor-1. *Biological Reviews* 87, 414–429. (doi:10.1111/j.1469-185X.2011.00204.x)
- 188 2. Kenyon CJ. 2010 The genetics of ageing. *Nature* 467, 622–622.
 (doi:10.1038/nature09047)
- Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le
 Bouc Y. 2003 IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice.
 Nature 421, 182–187. (doi:10.1038/nature01298)

- Tatar M, Bartke A, Antebi A. 2003 The endocrine regulation of aging by insulin-like
 signals. *Science* 299, 1346–1351. (doi:10.1126/science.1081447)
- Meinel L, Illi OE, Zapf J, Malfanti M, Peter Merkle H, Gander B. 2001 Stabilizing
 insulin-like growth factor-I in poly(d,l-lactide-co-glycolide) microspheres. *Journal of Controlled Release* 70, 193–202. (doi:10.1016/S0168-3659(00)00352-7)
- Peiró IG. 2013 Movements, sex-ratios, recovery rates and longevity of the bearded
 reedling *Panurus biarmicus* in Iberia. *Ringing & Migration* 28, 50–52.
 (doi:10.1080/03078698.2013.810855)
- 7. Tóth Z, Ouyang JQ, Lendvai ÁZ. 2018 Exploring the mechanistic link between
 corticosterone and insulin-like growth factor-1 in a wild passerine bird. *PeerJ* 6, e5936.
 (doi:10.7717/peerj.5936)
- Vágási CI, Vincze O, Pătraş L, Osváth G, Pénzes J, Haussmann MF, Barta Z, Pap PL.
 205 2019 Longevity and life history coevolve with oxidative stress in birds. *Functional Ecology* 33, 152–161. (doi:10.1111/1365-2435.13228)
- 207 9. R Core Team. 2019 *R: a language and environment for statistical computing*. Vienna,
 208 Austria. http://www.R-project.org/: R Foundation for Statistical Computing.
- 209 10. Sparkman AM, Vleck CM, Bronikowski AM. 2009 Evolutionary ecology of endocrine210 mediated life-history variation in the garter snake *Thamnophis elegans*. *Ecology* 90, 720–
 211 728. (doi:10.1890/08-0850.1)
- 11. Garratt M, Nakagawa S, Simons MJP. 2017 Life-span extension with reduced
 somatotrophic signaling: moderation of aging effect by signal type, sex, and experimental
 cohort. *Journal of Gerontology A* 72, 1620–1626. (doi:10.1093/gerona/glx010)
- 215 12. Andreassen M, Raymond I, Kistorp C, Hildebrandt P, Faber J, Kristensen LØ. 2009 IGF1
 216 as predictor of all cause mortality and cardiovascular disease in an elderly population.
 217 *European Journal of Endocrinology* 160, 25–31. (doi:10.1530/EJE-08-0452)
- Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N. 2014 Low
 insulin-like growth factor-1 level predicts survival in humans with exceptional longevity.
 Aging Cell 13, 769–771. (doi:10.1111/acel.12213)
- 14. Lewin N, Swanson EM, Williams BL, Holekamp KE. 2017 Juvenile concentrations of
 IGF-1 predict life-history trade-offs in a wild mammal. *Functional Ecology* **31**, 894–902.
 (doi:10.1111/1365-2435.12808)
- 15. Vágási CI, Tóth Z, Pénzes J, Pap PL, Ouyang JQ, Lendvai ÁZ. 2020 The Relationship
 between Hormones, Glucose and Oxidative Damage is Condition- and Stress-dependent
 in a Free-living Passerine Bird.
- 16. Lodjak J, Mägi M. 2017 Crosstalk between growth and somatic maintenance in young
 animals. *Journal of Avian Biology* 48, 1360–1363. (doi:10.1111/jav.01519)
- 17. Luginbuehl V, Zoidis E, Meinel L, von Rechenberg B, Gander B, Merkle HP. 2013
 Impact of IGF-I release kinetics on bone healing: A preliminary study in sheep. *European*

- *Journal of Pharmaceutics and Biopharmaceutics* **85**, 99–106.
 (doi:10.1016/j.ejpb.2013.03.004)
- 18. Vágási CI, Pătraş L, Pap PL, Vincze O, Mureşan C, Németh J, Lendvai ÁZ. 2018
 Experimental increase in baseline corticosterone level reduces oxidative damage and
 enhances innate immune response. *PLoS ONE* 13, e0192701.
 (doi:10.1371/journal.pone.0192701)
- 19. Bonier F, Cox RM. 2020 Do hormone manipulations reduce fitness? A meta-analytic test
 of the Optimal Endocrine Phenotype Hypothesis. *Molecular and Cellular Endocrinology* 500, 110640. (doi:10.1016/j.mce.2019.110640)
- 240 20. Higashi Y, Sukhanov S, Anwar A, Shai S-Y, Delafontaine P. 2010 IGF-1, oxidative
 241 stress and atheroprotection. *Trends in Endocrinology & Metabolism* 21, 245–254.
 242 (doi:10.1016/j.tem.2009.12.005)