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Differential virial theorem in density-functional theory in terms of the Pauli potential for
spherically symmetric electron densities: Illustrative example for the family of Be-like atomic
ions
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The differential virial theorem relates the force —dV/dr associated with the one-body potential V(r) of
density-functional theory to the Laplacian V21 of the ground-state density n(r) and to a quantity z,(r) involv-
ing the kinetic energy density tensor z,4(r). Having the concept of the Pauli potential Vp(r), z, is derived for
spherically symmetric ground-state densities n(r) in terms of the von Weizsécker kinetic energy density and the
first derivative of Vp(r). z, is related solely to the gradient kinetic energy density #(r) for Be-like atomic ions.
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I. BACKGROUND

In earlier work with G4l [1], we obtained an explicit dif-
ferential equation for the non-relativistic ground-state elec-
tron density n(r,Z) for He-like atomic ions in the limit of
large nuclear charge Ze, utilizing the work of Schwartz [2].
After a discussion of some implications of density-functional
theory (DFT) [3] for spherically symmetric ground-state
electron densities, our prime example will treat the Be-like
ions cited in the title. We adopt here the approach via the
differential virial theorem (DVT), going back to March and
Young [4] for arbitrary level filling in one dimension and
generalized first to spherically symmetric systems by Nagy
and March [6] then to three dimensions by Holas and March
[5]. Their result for the magnitude of dV/dr of the force
associated with the one-body potential V(r) of DFT [3]
reads, in spherical symmetry,
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The quantity z,(r) appearing in Eq. (1) is the single-
particle(s) limit of the many-electron vector field z(r) de-
fined in [5] from the kinetic energy density tensor #,4(r). In
turn this latter quantity is defined from the first-order (many-
electron) density matrix ¥(r’,r”) by
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From 7,4(r) the explicit definition of the a component z,,(r)
of the vector field z(r) introduced above is [5]
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We note here that from the definitions (2) and (3) the
quantity z,(r) is, dimensionally, like a kinetic energy density
divided by a length.

That this statement has a concrete consequence can be
readily shown in the single-particle DFT limit of one occu-
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pied level. Then the single-particle Dirac density matrix
v,(r,r’), appropriate to the He-like sequences of atomic
ions, has the form in terms of the exact ground-state density
n:

Hlrr') =) n(r) 2. 0

Akbari et al. [7] have recently pointed out that if Eq. (4) is
used in the definitions (2) and (3) above and applying the
Euler equation (12) using the fact that the kinetic energy
density is equal to the von Weizsicker kinetic energy [Eq. (6)
below], then z,(r) in Eq. (1) has the explicit form

tylr otylr
z(r) = 4M + 2ﬂ’ (5)
r or
where ty/(r) is the von Weizsécker kinetic energy density [8]
defined by

8m n

w= (6)
Our major aim below is to generalize the result (5), which is
exact for one-level occupancy only, to arbitrary level filling,
provided always the resulting ground-state densities n have
spherical symmetry.

II. GENERALIZATION OF EQ. (5) TO TAKE INTO
ACCOUNT ARBITRARY LEVEL FILLING

Before turning to the very specific example of Be-like
atomic ions with configuration (1s5)%(2s)?, we give below re-
sults concerning z,(r) in Eq. (1) for arbitrary level filling
when the ground-state density n is spherical.

The one-body potential V(r) of DFT [3] leads to one-
electron wave functions ;(r) satisfying the Schrodinger
equation

2m
Vi + ﬁ[si - V(r]g;=0. (7)
Using the Laplacial form #;(r) of kinetic energy density for
the appropriate general level occupancy, we multiply Eq. (7)

by 1,//;k and sum over occupied levels to find
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t1(r) +nV(r) = 2 8i|'r//i|258(”)- (8)

occupied i

Forming the gradient of Eq. (8) we find

Vi, (r) +nV V(r)+ V(r) Vn=Vg. 9)
Returning to Eq. (1) we can write
() ) oty on(r)  dg(r)
z,(r) = . arV n(r) + o + V(r) " ar (10)

Using Eq. (6) to replace #; (r) by the positive definite gradient

form 5(r) of kinetic energy density, we readily obtain

otg(r on(r) Jdg(r
1) | ™) _8(r)
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(11)
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III. INTRODUCTION OF PAULI POTENTIAL Vp(R)

Several workers independenty introduced the concept of
the Pauli potential [9,10] termed Vp(r) below. Using the Eu-
ler equation of DFT [3], namely

oT,
= — + V N 12
P o (r) (12)
where T,[n] is the single-particle kinetic energy functional,
we can write
Of, _ Ty
on(r) — én(r)

Now the functional derivative of the von Weizsédcker kinetic
energy Ty is well known to have the form

(W) K T
n(r)  8m 4m n
Next let us replace V(r) in Eq. (10) using Eq. (12) to find

dn(r)  g(r)

+ Vp(r). (13)
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Using Egs. (13) and (14), Eq. (15) can be rewritten as
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If we write ¢,(r) as the sum of #(r) and the Pauli contribu-
tion 7p(r) then Eq. (16) becomes
w, Zp

g(r)
r=2—+4 n' -
2(r) dar r or H dar

= Vp(r)n'. (17)

In relation to Eq. (17) it may be useful to note a connection
with the studies of Politzer and co-workers [11,12]. Using an
“average” one-electron eigenvalue defined by &(r)
=>,e;n,(r)/n(r) and called local ionization potential, the
quantity g entering Eq. (17) can be replaced, when desired,
by g=¢&n.
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Now, we focus on replacing the quantity un’'—g’ entering
the central Eq. (17) by Pauli quantities, and in particular by
the derivative of the Pauli potential Vp(r). From the one-
electron Schrodinger equation (7), one finds

t.(r) +nV(r)=g(r). (18)
But from Eq. (12)
T
n5n(;) +nV(r)=npu. (19)

Furthermore, if we insert Eq. (13) into Eq. (19), we find

STy
on(r)

n +nVp(r) —1,(r) =np—g(r). (20)

Using the explicit form of 6Ty,/ dn(r), given in Eq. (14), in
Eq. (20) readily yields, after using Eq. (6),

_tp(r) g(r)
Vip(r) = n) AT ) (21)

Returning to Eq. (17), we can utilize Eq. (21) to remove
un'—g' to obtain the desired result for z,(r) as

() = 4% £ 207 + n(D VP, (22)

This reduces, as it must, to the one-level result (3) of Akbari
et al. [7] when we set Vp(r)=0 for this case. [Note that Eq.
(22) is an exact result, the approximation (4) was not applied
in the derivation.] Equation (22) is a major focal point of this
Brief Report.

IV. EXPLICIT EXAMPLE FOR TWO-LEVEL OCCUPANCY:
THE CASE OF BE-LIKE ATOMIC IONS WITH
NUCLEAR CHARGE ZE

Here, since we are using throughout this Brief Report the
single-particle limit of DFT [3] characterized by the one-
body potential V(r) in Eq. (1), z(r) —z,(r) for the Be-like
series. In this limit, Dawson and March [13] wrote the Dirac
first-order density matrix vy,(r,7") in a form generalizing the
one-level result (4) to the Be-like series under discussion.
Their form of v, is constructed from a density amplitude
n(r)"? and a phase 6(r) as

Y(ror') =n(r) Pn(r)"? cos[60") - 6(r)].  (23)

Here the wave functions ¢,,(r) and i,,(r) are, respectively,
n(r)V? cos 6(r) and n(r)"? sin 6(r). It is a straightforward, if
somewhat tedious, matter to insert Eq. (23) into the defini-
tion (2) to obtain now the single-particle kinetic energy den-
sity tensor t%(r) in terms of density n(r) and phase 6(r).
Then the o component of z,(r) introduced via Eq. (1) is also
readily found by insertion of the above t(of}g(r) in Eq. (3).

Rather than attempt to summarize the results of the above
route, we outline below a simpler procedure based on Eq.
(1). Thus we write
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_h_z_z v(r)
4= V() = n() =

(24)

Defining the Laplacian form #;(r) of the kinetic energy den-
sity from the wave functions ¢, ,(r) and ,,(r) written above
in terms of n(r) and 6(r), it is a straightforward matter to use
the Schrodinger equation (7) to find dV/dr entering Eq. (24)
as

V40 an'e)
ar (r) nz(r)

But it is well known [14] that n(r) and 6(r) are related by a
nonlinear pendulumlike equation, namely

Va(r)
_n() V o(r) -

where &=(g,—&,,)/2. Hence, using Eq. (26), the term in-
volving sin 26(r) can be removed from Eq. (25) to obtain
wv_ 11(r) tL(V) '(r)
ar n(r) n*(r)

—(e15,—&2,)0 sin26(r). (25)

V20(r) + 268in20(7) =0,  (26)

n'(r) }
UG RC)
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We note that t;—1;, =A%/4mV?n(r) for use below. Next the
phase terms in Eq. (27) can be removed by using the gradient
form t of the kinetic energy density. Inserting Eq. (27) in
Eq. (24), using [13]

NG

16(7) = tul1) + 500 (28)

we can write the phase terms entering in Eq. (27) in terms of
[tg—tw]/n(r) and its first derivative. The result is a very
straightforward generalization of the one-level form (5),

o) el 09)
r

z(r)=4—"—
which reduces immediately to Eq. (5) when we note that
putting 6=0 in the form of vy, in Eq. (23) leads back to the
one-level form (4). It must not, of course, be assumed that
Eq. (29) for the Be series of atomic ions will apply to higher
level occupancy such as in the Ne atom with single-particle
configuration (1s5)%(2s5)%(2p)S.
Briefly, one can, of course, regard Eq. (29) as a special
case of the central Eq. (22). The Pauli potential V(r) can be
found from the work of Nagy [15] and is given by

1
Vp(r) = 5(0’)2 —2&cos? 6, (30)
where £ is defined immediately below Eq. (26). Some ma-

nipulation after forming Vp(r) for insertion in Eq. (22) leads
back to the intuitively appealing result (29), as the appropri-
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ate generalization of the one-level formula (5) for z,(r) en-
tering the force balance Eq. (1).

V. SUMMARY AND FUTURE DIRECTIONS

The main results of the present study, with a starting point
of the differential virial theorem [5] in DFT, are embodied,
for spherically aymmetric electron densities, as follows:

(i) Equation (22) relating the magnitude of z,(r) defined
in Eq. (3) in terms of the single-particle first-order Dirac
density matrix 7y,(r,r’), having by definition the exact
ground-state density n(r) as its diagonal, (i.e., r'=r) to a sum
of the three terms, involving the von Weizsicker kinetic en-
ergy density ty(r) and the first derivative of the Pauli poten-
tial Vp(r).

(ii) The fully worked out example of the family of Be-like
atomic ions with nuclear charge Ze. If t5(r) is the gradient
form of the single- partlcle kmenc energy density, z,(r) is
shown to have the form 4[6 2 2{%3? which is an immediate
generalization of the one- level result of Akbari et al. [7],

where t;(r) becomes the von Weizsicker form t,= :1 ;%}

As to future directions which should prove fruitful, the
most immediate further application would be to utilize the
shape of y,(r,r’) for the ground-state electron density n(r,Z)
for Ne-like atomic ions having nuclear charge Ze. In the
course of such an investigation, attention should clearly be
given to the explicit construction of the Pauli potential Vp(r).
Finally, and in longer terms, Holas and March [5] compared
and constucted the DVT for DFT with (as yet unknown!)
potential V(r) with the exact correlated result involving the
density matrix y(r,r’) satisfying <1y, in contrast to the
idempotent Dirac matrix 7y, used in the present paper. Re-
turning briefly to [1], the differential equation for n(r,Z)
derived here should be used in the exact force-balance equa-
tion replacing the DFT form (1),

2 2
(Wew W OVE) 20) g gy
ar 4m n(r) n(r)

Hall, Jones, and Rees [16] have given a form of y(r,r’)
generalizing off the diagonal Schwartz electron density [2]
utilized in [1]. This should throw light on the sum of the final
two terms of Eq. (31), determined, respectively, from
¥(r,r’), now used in the many-body definition of #,4(r) in
Eq. (2) by merely replacing y,(r,r’) by y(r,r’) in [16]. A
byproduct of such an investigation may throw further light
on the correlation kinetic energy density ¢,,,,[n], to be added

to the form #;(r) studied in this Brief Report.
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