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The differential virial theorem relates the force −�V /�r associated with the one-body potential V�r� of
density-functional theory to the Laplacian �

2n of the ground-state density n�r� and to a quantity zs�r� involv-
ing the kinetic energy density tensor t���r�. Having the concept of the Pauli potential VP�r�, zs is derived for
spherically symmetric ground-state densities n�r� in terms of the von Weizsäcker kinetic energy density and the
first derivative of VP�r�. zs is related solely to the gradient kinetic energy density tG�r� for Be-like atomic ions.

DOI: 10.1103/PhysRevA.78.044501 PACS number�s�: 31.15.E�

I. BACKGROUND

In earlier work with Gál �1�, we obtained an explicit dif-
ferential equation for the non-relativistic ground-state elec-
tron density n�r ,Z� for He-like atomic ions in the limit of
large nuclear charge Ze, utilizing the work of Schwartz �2�.
After a discussion of some implications of density-functional
theory �DFT� �3� for spherically symmetric ground-state
electron densities, our prime example will treat the Be-like
ions cited in the title. We adopt here the approach via the
differential virial theorem �DVT�, going back to March and
Young �4� for arbitrary level filling in one dimension and
generalized first to spherically symmetric systems by Nagy
and March �6� then to three dimensions by Holas and March
�5�. Their result for the magnitude of �V /�r of the force
associated with the one-body potential V�r� of DFT �3�
reads, in spherical symmetry,

−
�V

�r
= −

�2

4m

��/�r��2n�r�

n�r�
+

zs�r�

n�r�
. �1�

The quantity zs�r� appearing in Eq. �1� is the single-
particle�s� limit of the many-electron vector field z�r� de-
fined in �5� from the kinetic energy density tensor t���r�. In
turn this latter quantity is defined from the first-order �many-
electron� density matrix ��r� ,r�� by

t���r� =
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�2�

From t���r� the explicit definition of the � component z��r�
of the vector field z�r� introduced above is �5�

z��r� = 2�
�

�t���r�

�r�

. �3�

We note here that from the definitions �2� and �3� the
quantity z��r� is, dimensionally, like a kinetic energy density
divided by a length.

That this statement has a concrete consequence can be
readily shown in the single-particle DFT limit of one occu-

pied level. Then the single-particle Dirac density matrix
�s�r ,r��, appropriate to the He-like sequences of atomic
ions, has the form in terms of the exact ground-state density
n:

�s�r,r�� = n�r�1/2n�r��1/2. �4�

Akbari et al. �7� have recently pointed out that if Eq. �4� is
used in the definitions �2� and �3� above and applying the
Euler equation �12� using the fact that the kinetic energy
density is equal to the von Weizsäcker kinetic energy �Eq. �6�
below�, then zs�r� in Eq. �1� has the explicit form

zs�r� = 4
tW�r�

r
+ 2

�tW�r�

�r
, �5�

where tW�r� is the von Weizsäcker kinetic energy density �8�
defined by

tW =
�2

8m

�n��2

n
. �6�

Our major aim below is to generalize the result �5�, which is
exact for one-level occupancy only, to arbitrary level filling,
provided always the resulting ground-state densities n have
spherical symmetry.

II. GENERALIZATION OF EQ. (5) TO TAKE INTO

ACCOUNT ARBITRARY LEVEL FILLING

Before turning to the very specific example of Be-like
atomic ions with configuration �1s�2�2s�2, we give below re-
sults concerning zs�r� in Eq. �1� for arbitrary level filling
when the ground-state density n is spherical.

The one-body potential V�r� of DFT �3� leads to one-
electron wave functions �i�r� satisfying the Schrödinger
equation

�
2�i +

2m

�2 ��i − V�r���i = 0. �7�

Using the Laplacial form tL�r� of kinetic energy density for
the appropriate general level occupancy, we multiply Eq. �7�
by �

i
* and sum over occupied levels to find
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tL�r� + nV�r� = �
occupied i

�i��i�
2 	 g�r� . �8�

Forming the gradient of Eq. �8� we find

�tL�r� + n � V�r� + V�r� � n = �g . �9�

Returning to Eq. �1� we can write

zs�r� =
�2

4m

�

�r
�

2n�r� +
�tL

�r
+ V�r�

�n�r�

�r
−

�g�r�

�r
. �10�

Using Eq. �6� to replace tL�r� by the positive definite gradient
form tG�r� of kinetic energy density, we readily obtain

zs�r� =
�tG�r�

�r
+ V�r�

�n�r�

�r
−

�g�r�

�r
. �11�

III. INTRODUCTION OF PAULI POTENTIAL VP(R)

Several workers independenty introduced the concept of
the Pauli potential �9,10� termed VP�r� below. Using the Eu-
ler equation of DFT �3�, namely

� =
	Ts

	n�r�
+ V�r� , �12�

where Ts�n� is the single-particle kinetic energy functional,
we can write

	Ts

	n�r�
=

	TW

	n�r�
+ VP�r� . �13�

Now the functional derivative of the von Weizsäcker kinetic
energy TW is well known to have the form
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	n�r�
=

�2

8m
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n
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n
. �14�

Next let us replace V�r� in Eq. �10� using Eq. �12� to find
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	n�r�

�n�r�

�r
+ �

�n�r�

�r
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Using Eqs. �13� and �14�, Eq. �15� can be rewritten as

zs�r� =
�tG
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8m
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n
�2
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. �16�

If we write ts�r� as the sum of tW�r� and the Pauli contribu-
tion tP�r� then Eq. �16� becomes

zs�r� = 2
�tW

�r
+ 4

tW

r
+

�tP

�r
+ �n� −

�g�r�

�r
− VP�r�n�. �17�

In relation to Eq. �17� it may be useful to note a connection
with the studies of Politzer and co-workers �11,12�. Using an
“average” one-electron eigenvalue defined by �̄�r�
=�i�ini�r� /n�r� and called local ionization potential, the
quantity g entering Eq. �17� can be replaced, when desired,
by g= �̄n.

Now, we focus on replacing the quantity �n�−g� entering
the central Eq. �17� by Pauli quantities, and in particular by
the derivative of the Pauli potential VP�r�. From the one-
electron Schrödinger equation �7�, one finds

tL�r� + nV�r� = g�r� . �18�

But from Eq. �12�

n
	Ts

	n�r�
+ nV�r� = n� . �19�

Furthermore, if we insert Eq. �13� into Eq. �19�, we find

n
	TW

	n�r�
+ nVP�r� − tL�r� = n� − g�r� . �20�

Using the explicit form of 	TW /	n�r�, given in Eq. �14�, in
Eq. �20� readily yields, after using Eq. �6�,

VP�r� =
tP�r�

n�r�
+ � −

g�r�

n�r�
. �21�

Returning to Eq. �17�, we can utilize Eq. �21� to remove
�n�−g� to obtain the desired result for zs�r� as

zs�r� = 4
tW

r
+ 2tW� �r� + n�r�VP��r� . �22�

This reduces, as it must, to the one-level result �3� of Akbari
et al. �7� when we set VP�r�=0 for this case. �Note that Eq.
�22� is an exact result, the approximation �4� was not applied
in the derivation.� Equation �22� is a major focal point of this
Brief Report.

IV. EXPLICIT EXAMPLE FOR TWO-LEVEL OCCUPANCY:

THE CASE OF BE-LIKE ATOMIC IONS WITH

NUCLEAR CHARGE ZE

Here, since we are using throughout this Brief Report the
single-particle limit of DFT �3� characterized by the one-
body potential V�r� in Eq. �1�, z�r�→zs�r� for the Be-like
series. In this limit, Dawson and March �13� wrote the Dirac
first-order density matrix �s�r ,r�� in a form generalizing the
one-level result �4� to the Be-like series under discussion.
Their form of �s is constructed from a density amplitude
n�r�1/2 and a phase 
�r� as

�s�r,r�� = n�r�1/2n�r��1/2 cos�
�r�� − 
�r�� . �23�

Here the wave functions �1s�r� and �2s�r� are, respectively,
n�r�1/2 cos 
�r� and n�r�1/2 sin 
�r�. It is a straightforward, if
somewhat tedious, matter to insert Eq. �23� into the defini-
tion �2� to obtain now the single-particle kinetic energy den-
sity tensor t��

�s� �r� in terms of density n�r� and phase 
�r�.
Then the � component of zs�r� introduced via Eq. �1� is also
readily found by insertion of the above t��

�s� �r� in Eq. �3�.
Rather than attempt to summarize the results of the above

route, we outline below a simpler procedure based on Eq.
�1�. Thus we write
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zs�r� =
�2

4m

�

�r
�

2n�r� − n�r�
�V�r�

�r
. �24�

Defining the Laplacian form tL�r� of the kinetic energy den-
sity from the wave functions �1s�r� and �2s�r� written above
in terms of n�r� and 
�r�, it is a straightforward matter to use
the Schrödinger equation �7� to find �V /�r entering Eq. �24�
as

�V

�r
= −

tL��r�

n�r�
+

tL�r�n��r�

n2�r�
− ��1s − �2s�
� sin 2
�r� . �25�

But it is well known �14� that n�r� and 
�r� are related by a
nonlinear pendulumlike equation, namely

�
2
�r� +

�n�r�

n�r�
� 
�r� − 2� sin 2
�r� = 0, �26�

where �= ��1s−�2s� /2. Hence, using Eq. �26�, the term in-
volving sin 2
�r� can be removed from Eq. �25� to obtain

�V

�r
= −

tL��r�

n�r�
+

tL�r�n��r�

n2�r�

− 
��r�

��r� +
2

r

��r� +

n��r�

n�r�

��r�� . �27�

We note that tG− tL=�2
/4m�

2n�r� for use below. Next the
phase terms in Eq. �27� can be removed by using the gradient
form tG of the kinetic energy density. Inserting Eq. �27� in
Eq. �24�, using �13�

tG�r� = tW�r� +
1

2
n�
��2, �28�

we can write the phase terms entering in Eq. �27� in terms of
�tG− tW� /n�r� and its first derivative. The result is a very
straightforward generalization of the one-level form �5�,

zs�r� = 4
tG�r�

r
+ 2

�tG�r�

�r
, �29�

which reduces immediately to Eq. �5� when we note that
putting 
=0 in the form of �s in Eq. �23� leads back to the
one-level form �4�. It must not, of course, be assumed that
Eq. �29� for the Be series of atomic ions will apply to higher
level occupancy such as in the Ne atom with single-particle
configuration �1s�2�2s�2�2p�6.

Briefly, one can, of course, regard Eq. �29� as a special
case of the central Eq. �22�. The Pauli potential VP�r� can be
found from the work of Nagy �15� and is given by

VP�r� =
1

2
�
��2 − 2� cos2 
 , �30�

where � is defined immediately below Eq. �26�. Some ma-
nipulation after forming VP��r� for insertion in Eq. �22� leads
back to the intuitively appealing result �29�, as the appropri-

ate generalization of the one-level formula �5� for zs�r� en-
tering the force balance Eq. �1�.

V. SUMMARY AND FUTURE DIRECTIONS

The main results of the present study, with a starting point
of the differential virial theorem �5� in DFT, are embodied,
for spherically aymmetric electron densities, as follows:

�i� Equation �22� relating the magnitude of zs�r� defined
in Eq. �3� in terms of the single-particle first-order Dirac
density matrix �s�r ,r��, having by definition the exact
ground-state density n�r� as its diagonal, �i.e., r�=r� to a sum
of the three terms, involving the von Weizsäcker kinetic en-
ergy density tW�r� and the first derivative of the Pauli poten-
tial VP�r�.

�ii� The fully worked out example of the family of Be-like
atomic ions with nuclear charge Ze. If tG�r� is the gradient
form of the single-particle kinetic energy density, zs�r� is
shown to have the form 4

tG�r�

r
+2

�tG�r�

�r
, which is an immediate

generalization of the one-level result of Akbari et al. �7�,
where tG�r� becomes the von Weizsäcker form tW= �2

8m

�n��2

n
.

As to future directions which should prove fruitful, the
most immediate further application would be to utilize the
shape of �s�r ,r�� for the ground-state electron density n�r ,Z�
for Ne-like atomic ions having nuclear charge Ze. In the
course of such an investigation, attention should clearly be
given to the explicit construction of the Pauli potential VP�r�.
Finally, and in longer terms, Holas and March �5� compared
and constucted the DVT for DFT with �as yet unknown!�
potential V�r� with the exact correlated result involving the
density matrix ��r ,r�� satisfying �2��, in contrast to the
idempotent Dirac matrix �s used in the present paper. Re-
turning briefly to �1�, the differential equation for n�r ,Z�
derived here should be used in the exact force-balance equa-
tion replacing the DFT form �1�,

−
�Vext

�r
= −

�2

4m

��/�r��2n�r�

n�r�
+

z�r�

n�r�
+ Fee�r� . �31�

Hall, Jones, and Rees �16� have given a form of ��r ,r��
generalizing off the diagonal Schwartz electron density �2�
utilized in �1�. This should throw light on the sum of the final
two terms of Eq. �31�, determined, respectively, from
��r ,r��, now used in the many-body definition of t���r� in
Eq. �2� by merely replacing �s�r ,r�� by ��r ,r�� in �16�. A
byproduct of such an investigation may throw further light
on the correlation kinetic energy density tcorr�n�, to be added
to the form tG�r� studied in this Brief Report.
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