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Let H be a HilbertC* -module over a matrix algebraA. It is proved that any
function T:H→H which preserves the absolute value of the~generalized! inner
product is of the formT f5w( f )U f ( f PH), wherew is a phase-function andU is
an A-linear isometry. The result gives a natural extension of Wigner’s classical
unitary–antiunitary theorem for Hilbert modules. ©1999 American Institute of
Physics.@S0022-2488~99!01611-4#

I. INTRODUCTION AND STATEMENT OF THE RESULT

Wigner’s unitary–antiunitary theorem reads as follows. LetH be a complex Hilbert space and
let T:H→H be a bijective function~linearity or continuity is not assumed! with the property that

u^Tx,Ty&u5u^x,y&u ~x,yPH !.

ThenT is of the form

Tx5w~x!Ux ~xPH !,

whereU:H→H is either a unitary or an antiunitary operator andw:H→C is a so-called phase-
function which means that its values are of modulus 1. This celebrated result plays a very impor-
tant role in quantum mechanics and in representation theory in physics.

In our recent paper1 we presented a new, algebraic approach to this theorem. Our idea turned
out to be strong enough to give a natural generalization of Wigner’s theorem for Hilbert
C* -modules over matrix algebras. However, in the main result@Ref. 1, Theorem 1# we supposed
that our map is surjective and, in addition, a condition was imposed on the underlying module
which was proved to be equivalent to that its so-called modular dimension is high enough. In the
present paper, refining and modifying our argument quite significantly, we obtain our Wigner-type
result in full generality, that is, neither the surjectivity of the transformation in question nor the
high dimensionality of the Hilbert module is assumed.

First, we clarify the concepts and notation that we are going to use throughout. For a bit more
detailed discussion we refer to the introduction of Ref. 1. LetA be aC* -algebra. LetH be a left
A-module with a map@ .,.#:H3H→A satisfying

~i! @ f 1g,h#5@ f ,h#1@g,h#;
~ii ! @a f ,g#5a@ f ,g#;
~iii ! @g, f #5@ f ,g#* ;
~iv! @ f , f #>0 and@ f , f #50 if and only if f 50

for every f ,g,hPH andaPA. If H is complete with respect to the normf °i@ f , f #i1/2, then we
say thatH is a HilbertA-module or a HilbertC* -module overA with generalized inner product
@.,.#. Nowadays, Hilbert modules overC* -algebras play a very important role in many parts of
functional analysis such as, for example, in theK-theory ofC* -algebras. There is another concept
of Hilbert modules due to Saworotnow.2 These are modules overH* -algebras. The only formal
difference in the definition is that in the case of Saworotnow’s modules, the generalized inner
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product takes its values in the trace-class of the underlyingH* -algebra and the norm with respect
to which we require completeness isf °(tr@ f , f #)1/2. Saworotnow’s modules appear naturally
when dealing with multivariate stochastic processes and they have applications in Clifford analysis
and hence in some parts of mathematical physics.

If the underlyingC* -algebraA is the algebraMd(C) of all d3d complex matrices, then,A
being finite dimensional, the norms onA are all equivalent. Therefore, the HilbertC* -modules
over theC* -algebraMd(C) are the same as Saworotnow’s Hilbert modules over theH* -algebra
Md(C). We emphasize this fact since, in general, the behavior of Saworotnow’s Hilbert modules
is much nicer and we shall use several results concerning them. Finally, we note that it seems to
be more common to use right modules instead of left ones. Of course, this is not a real difference,
only a question of taste.

Now we are in a position to formulate the main result of the paper. Recall that in any
C* -algebraA, the elementuau denotes the square root ofa* a (aPA).

Theorem: Let H be a Hilbert C* -module over the matrix algebra A5Md(C), d.1. Let
T:H→H be a function with the property that

u@T f ,T f8#u5u@ f , f 8#u ~ f , f 8PH!. ~1!

Then there exists an A-isometry U:H→H and a phase-functionw:H→C such that

T f5w~ f !U f ~ f PH!.

Here, A-isometry means that U:H→H is a linear map with U(a f )5aU f and @U f ,U f 8#
5@ f , f 8# (aPA, f, f 8PH).

The corresponding result for the cased51, that is, whenH is a Hilbert space, can be found
in Refs. 3 and 4~for a recent paper also see Ref. 5!. As we shall see in the proof, the nonappear-
ance ofA-anti-isometries in the above result is the consequence of the noncommutativity of the
underlying algebraA.

Hilbert spaces over algebras different fromR andC do appear in mathematical physics~see,
for example, Ref. 6 for a Wigner-type theorem concerning Hilbert spaces over the skew-field of
quaternions!. We believe that our present result may also have physical interpretation.

II. PROOF

We give some additional definitions and notation that we shall use in the proof of our theo-
rem. As mentioned in the introduction, Saworotnow’s modules have many convenient properties
which are familiar in the theory of Hilbert spaces~we refer to Ref. 2!. First of all, if H is a Hilbert
module over anH* -algebra, thenH is a Hilbert space with the inner product^.,.&5tr@ .,.#. If
M,H is a closed submodule, then its orthogonal complement with respect to^.,.& and@.,.# are the
same. A linear operatorT on H which is bounded with respect to the Hilbert space norm defined
above is called anA-linear operator ifT(a f )5aT f holds true for everyf PH andaPA. Every
A-linear operatorT is adjointable, namely, the adjointT* of T in the Hilbert space sense is
A-linear and we have@T f ,g#5@ f ,T* g# ( f ,gPH). Consequently, the collection of allA-linear
operators forms aC* -subalgebra in the full operator algebra on the Hilbert spaceH. This will be
denoted byB~H! while the notation of the full operator algebra over a Hilbert spaceH is B(H).

In the case of a Hilbert moduleH over anH* -algebra, the natural equivalent of the Hilbert
basis is the so-called modular basis.7 An elementf PH is called a modular unit vector, if@ f , f # is
a nonzero minimal projection inA. A family $ f a%a,H is said to be modular orthonormal if

~a! @ f a , f b#50 if aÞb,
~b! f a is a modular unit vector for everya.

A maximal modular orthonormal family of vectors inH is called a modular basis. The common
cardinality of modular bases inH is called the modular dimension ofH ~see Ref. 7, Theorem 2!.
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Now, we define operators which are the natural equivalent of the finite rank operators in the
case of Hilbert spaces. Iff ,gPH, then let f (g denote theA-linear operator defined by

~ f (g!h5@h,g# f ~hPH!.

It is easy to see that for everyA-linear operatorS we have

S~ f (g!5~S f !(g, ~ f (g!S5 f (~S* g!

and

~ f (g!~ f 8(g8!5~@ f 8,g# f !(g85 f (~@g, f 8#g8!.

Define

F~H!5H (
k51

n

f k(gk : f k ,gkPH~k51,...,n!,nPNJ
which is a *-ideal in theC* -algebra of allA-linear operators. Observe that ifH is a Hilbert
module overMd(C), then the range of every element ofF~H! has finite linear dimension, but
there can be finite rank operators on the Hilbert spaceH which do not belong toF~H!. In general,
if the underlyingH* -algebra is infinite dimensional, then these two classes of operators have
nothing to do with each other.

We begin with some auxiliary results that we shall need in the proof of our theorem.
Lemma 1: Let A5Md(C), dPN. If H is a Hilbert A-module, then every projection inB~H! is

of the form P5(a f a( f a , where$ f a%a,H is a modular orthonormal basis in the range of P (the
range of an A-linear projection is a closed submodule).

If $ f a%a,H is a modular orthonormal set, then for the orthogonal projection onto the closed
submodule generated by$ f a%a (which is an A-linear projection) we have P5(a f a( f a .

Proof: Let first PPB(H) be a projection and let$ f a%a denote a modular orthonormal basis in
the closed submodule rngP. By Ref. 7 Theorem 1, we have

f 5(
a

@ f , f a# f a ~ f PrngP!.

SinceP f50 and@ f , f a#50 for f PrngP', we obtainP5(a f a( f a .
Now, let $ f a%a,H be a modular orthonormal set and denoteM the closed submodule

generated by this set. We show that$ f a%a is a modular basis inM. Since this collection is a
modular orthonormal family, if this was not maximal, then we could find a nonzero elementf
PM which is modular orthogonal to$ f a%a , that is,@ f , f a#50 for everya. But this is a contra-
diction, since every element ofM can be approximated by finite sums of the forma1f a1

1¯

1anf an
(aiPA) and hence we would obtain thatf is modular orthogonal to itself. By the first part

of the proof we obtain that the orthogonal projection ontoM is equal to(a f a( f a , so this
operator is anA-linear projection. h

Lemma 2: Let A5Md(C), dPN and letH be a Hilbert A-module. Suppose thatM,H is a
closed submodule and$ f a%a is a modular orthonormal system generatingM. Then for every
g,hPM we have

~i! g5(a@g, f a# f a ,
~ii ! @g,h#5(a@g, f a#@ f a ,h#.

Moreover, the vector kPH belongs toM if and only if

5546 J. Math. Phys., Vol. 40, No. 11, November 1999 Lajos Molnár

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

137.189.170.231 On: Mon, 22 Dec 2014 12:32:09



@k,k#5(
a

@k, f a#@ f a ,k#.

Proof: See Ref. 7, Theorem 2, and its proof. h

Proposition 3: Let A5Md(C), dPN. If H is a Hilbert A-module, thenB~H! is a type I von
Neumann factor. If the modular dimension ofH is greater than 2, thenB~H! is not isomorphic to
M2(C).

Proof: It is clear thatB~H! is a von Neumann algebra since it is the commutant of the set
$La :Laf 5a f( f PH,aPA)% in the full operator algebra overH as a Hilbert space. To show that
B~H! is a factor, it is sufficient to verify that the central projections inB~H! are all trivial. Let
PPB(H) be a nonzero central projection. Letf be a modular unit vector in rngP. For anya,b
PA we have

P•g(~a f !5g(~a f !•P5g(P~a f !5g(~a f !.

This implies that

P~b@ f , f #a* g!5P~~g(~a f !!b f !5~g(~a f !!b f5b@ f , f #a* g.

The element@ f , f # is a rank-one projection. Hence, every element ofA is the sum of
b@ f , f #a* -type elements and hence we obtain thatPg5g for everygPH. ThusP5I . So,B~H!
is a factor. We next prove thatB~H! is type I. Let f PH be a modular unit vector. Since@ f , f # f
5 f ~see Ref. 7, Lemma 1!, for anyAPB(H) we compute

f ( f •A• f ( f 5~@A f , f # f !( f 5~@A~@ f , f # f !,@ f , f # f # f ( f !5~@ f , f #@A f , f #@ f , f # f !( f 5l~ f ( f !,

wherel is scalar such that@ f , f #@A f , f #@ f , f # f 5l f ~the existence of such a scalar follows from the
fact that@ f , f # is a rank-one matrix!. This shows that the projectionf ( f is Abelian. So, every
nonzero central projection inB~H! contains a nonzero Abelian projection which means thatB~H!
is type I.

Suppose that the modular dimension ofH is greater than 2. To see thatB~H! is not isomor-
phic to M2(C) it is now enough to show that the linear dimension ofB~H! is greater then 4. Let
$ f 1 , f 2 , f 3% be a modular orthonormal set inH. Denote @ f i , f i #5ei . If d>2, then there are
elementsai ,biPA such that$eiai ,eibi% is independent for everyi 51,2,3. It is easy to check that
$(ai f i)( f i ,(bi f i)( f i : i 51,2,3% is linearly independent. Therefore, the algebraic dimension of
B~H! is at least 6. Ifd51, then the statement is trivial. h

Let H be a Hilbert space. Recall that ifx,yPH, thenx^ y stands for the operator defined by
(x^ y)(z)5^z,y&x(zPH). The ideal of all finite rank operators inB(H) is denoted byF(H).

Lemma 4: Let H be a Hilbert space. Iff:F(H)→B(H) is a * -homomorphism which pre-
serves the rank-one projections, then there is an isometry UPB(H) such thatf is of the form

f~A!5UAU* ~APF~H !!.

Similarly, if c:F(H)→B(H) is a * -antihomomorphism preserving the rank-one projections, then
c is of the form

c~A!5VAtrV* ~APF~H !!,

where V is an isometry andtr denotes the transpose with respect to a fixed orthonormal basis in
H.

Proof: Let y,zPH be such that̂f(y^ y)z,z&51. Define

Ux5f~x^ y!z ~xPH !.
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It is easy to see thatU is an isometry andUA5f(A)U(APF(H)). Let xPH be an arbitrary unit
vector. Thenf(x^ x) is a rank-one projection, so it is of the formf(x^ x)5x8^ x8 with some
unit vectorx8PH. Since

Ux^ x5f~x^ x!U5x8^ U* x8,

we obtain thatx8 is equal toUx multiplied by a scalar of modulus 1. Therefore,f(x^ x)5Ux
^ Ux5U•x^ x•U* . Since this holds true for every unit vectorxPH, by linearity we have the
first assertion of the lemma.

As for the second statement, we can apply a similar argument. Choosingy,zPH such that
^c(y^ y)z,z&51, define

Ṽx5c~y^ x!z ~xPH !.

One can verify thatṼ is an anti-isometry~that is, a conjugate-linear isometry!, and then prove that
c(A)5ṼA* Ṽ* (APF(H)). Considering an antiunitary operatorJ for which JA* J* 5Atr and
definingV5ṼJ, we conclude the proof. h

Lemma 5: Let(an) be a sequence in the Hilbert space H and let bPH be such that(nan

^ an5b^ b in the trace norm. Then for every n there exists a scalarln such that an5lnb.
Proof: Clearly, we may assume thatibi51. Taking traces on both sides of the equality

(nan^ an5b^ b, we obtain(niani251. On the other hand, we also have

(
n

u^b,an&u25K S (
n

an^ anDb,bL 51.

By the Schwarz inequality,

15(
n

u^b,an&u2<(
n

iani251.

So, there are equalities in the Schwarz inequalitiesu^b,an&u<iani . This implies the assertion.h

Proof of Theorem:We define an orthoadditive projection-valued measurem on the lattice
P~H! of all A-linear projections as follows. If$ f a%a is a modular orthonormal set, then let

mS (
a

f a( f aD 5(
a

T fa(T fa .

Observe that by~1!, $T fa%a is also modular orthonormal and, hence, by Lemma 1(aT fa(T fa

belongs toP~H!. We show thatm is well-defined. Let$ f a%a and$gb%b generate the same closed
submoduleM. We claim that the same holds true for$T fa%a and$Tgb%b . Indeed, ifgPM, then
due to the fact that$ f a%a is a modular basis inM we see thatg5(a@g, f a# f a . This implies that

@Tg,Tg#5@g,g#5(
a

@g, f a#@ f a ,g#5(
a

@Tg,T fa#@T fa ,Tg#,

which, by Lemma 2, gives us thatTg belongs to the closed submodule generated by$T fa%a . It is
now obvious thatm is an orthoadditiveP~H!-valued measure onP~H!.

Let us suppose that the modular dimension ofH is greater than 2. By Proposition 3 we can
apply a deep result of Bunce and Wright@Ref. 8, Theorem A#. It states that every bounded finitely
orthoadditive, Banach space valued measure on the set of all projections in a von Neumann
algebra without a summand isomorphic toM2(C) can be uniquely extended to a bounded linear
transformation defined on the whole algebra. Letf:B(H)→B(H) denote the transformation
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corresponding tom. Since it sends projections to projections, it is a standard argument to
verify that f is a Jordan*-endomorphism ofB~H!, that is, we havef(T)25f(T2), f(T)*
5f(T* )(TPB(H)) ~see, for example, the proof of Ref. 9, Theorem 2!.

We prove thatf( f ( f )5T f(T f for every f PH. Let @ f , f #5( il i
2ei , wherel i ’s are non-

negative real numbers andei ’s are pairwise orthogonal rank-one projections. Definef i

5(1/l i)ei f . We have@ f i , f i #5ei and @ f i , f j #50 if iÞ j , that is, $ f i% i is modular orthonormal.
Then f 5( il i f i5( iei f since

(
i

@ f , f i #@ f i , f #5(
i

l i
2ei5@ f , f #

implies thatf 5( i@ f , f i # f i5( iei f ~see Lemma 2!. So, we have

f~ f ( f !5(
i , j

f~ei f (ej f !.

But (ei f )((ej f )50 if iÞ j . Indeed, we compute@g,ej f #ei f 5@g, f #ejei f 50 for everygPH.
Hence,

f~ f ( f !5(
i

f~ei f (ei f !5(
i

l i
2f~ f i( f i !5(

i
l i

2m~ f i( f i !5(
i

l i
2T fi(T fi .

So, the question is that whether the equalityT f(T f5( il i
2T fi(T fi holds true. Clearly,$T fi% is

modular orthonormal. We compute

@T f ,T f#5@ f , f #5(
i

@ f , f i #@ f i , f #5(
i

@T f ,T fi #@T fi ,T f#

which, by Lemma 2, implies thatT f5( i@T f ,T fi #T fi . We know that u@T f ,T fi #u5u@ f , f i #u
5l iei . Similarly, u@T fi ,T f#u5u@ f i , f #u5l iei . Sinceei is a rank-one projection, we obtain that
@T f ,T fi # is also rank-one. Furthermore, asu@T f ,T fi #u5u@T fi ,T f#u is a scalar multiple ofei we
can infer that@T f ,T fi #5m il iei , wherem i is a scalar of modulus 1. Therefore, we have

T f(T f5(
i , j

m im̄ j~l ieiT f i(l jejT f j !.

But similarly as above, foriÞ j we have

~eiT f i(ejT f j !g5@g,ejT f j #eiT f i5@g,T f j #ejeiT f i50.

Therefore

T f(T f5(
i , j

m im̄ j~l ieiT f i(l jejT f j !

5(
i

m im̄ i~l ieiT f i(l ieiT f i !5(
i

l ieiT f i(l ieiT f i5(
i

l i
2~eiT f i(eiT f i !.

But (eiT f i(eiT f i)5T fi(T fi . Indeed, sinceT fi is a modular unit vector, we haveeiT f i

5@ f i , f i #T fi5@T fi ,T fi #T fi5T fi ~see Ref. 7, Lemma 1!. Consequently, we obtainT f(T f
5( il i

2T fi(T fi and this was to be proved. So, we getf( f ( f )5T f(T f for every f PH.
We assert thatf is either a*-homomorphism or a*-antihomomorphism. By Lemma 1 the

minimal projections inH are exactly the operators of the formf ( f , wheref PH is a modular unit
vector. Clearly,f sends minimal projections to minimal projections. By Ref. 1, Lemma 2, the
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linear space generated by the minimal projections inB~H! is F~H!. SinceB~H! is a type I factor,
it is isomorphic to the full operator algebraB(H) on a Hilbert spaceH. Since *-isomorphisms
preserve the minimal projections,F~H! corresponds to the idealF(H) of all finite rank operators
in B(H). Under this identification, we obtain a Jordan*-homomorphismf̃ on F(H) correspond-
ing to f uF(H) which sends rank-one projections to rank-one projections. SinceF(H) is a local
matrix algebra, by Ref. 10, Theorem 8, we obtain thatf̃ is the sum of a*-homomorphism and
a *-antihomomorphism. Asf̃ preserves the rank-one projections, from the simplicity of the ring
F(H) it follows that f̃ is either a*-homomorphism or a*-antihomomorphism. Obviously, the
same holds forf uF(H) .

Let us suppose that the modular dimension ofH is greater thand. By Ref. 1, Remark 2, there
are vectorsg,hPH such that @g,h#5I . The map f uF(H) is either a*-homomorphism or
a *-antihomomorphism. First consider this latter case. Referring to Lemma 4 we have an operator
UPB(H) with U* U5I and a *-antiautomorphismc of F~H! such thatf(A)5Uc(A)U* (A
PF(H)).

We define

V f5c~g( f !U* Th ~ f PH!,

whereg,hPH are fixed and such that@g,h#5I . Clearly, V is a conjugate-linear operator. We
have

VA f5c~g(~A f !!U* Th5c~g( f A* !U* Th5c~A!* c~g( f !U* Th5c~A!* V f ,

that is,VA5c(A)* V(APF(H)). We compute

@V f ,V f#5@c~g( f !U* Th,c~g( f !U* Th#

5@c~g( f • f (g!U* Th,U* Th#

5@Uc~g( f • f (g!U* Th,Th#

5@f~g( f • f (g!Th,Th#

5@f~A@ f , f #g(A@ f , f #g!Th,Th#

5@~T~A@ f , f #g!(T~A@ f , f #g!!Th,Th#

5@Th,T~A@ f , f #g!#@T~A@ f , f #g!,Th#

5@h,A@ f , f #g#@A@ f , f #g,h#5@h,g#@ f , f #@g,h#5@ f , f #.

SinceV is conjugate-linear, by polarization we obtain

@V f ,V f8#5@ f 8, f # ~ f , f 8PH!.

We show that rngT,rngU which will imply UU* T5T (UU* is the projection onto the
range ofU!. Let f PH. In the previous part of the proof we have learned thatT f(T f is a linear
combination of operators of the formT fb(T fb , where f b’s are modular unit vectors. We have

T fb(T fb5f~ f b( f b!5Uc~ f b( f b!U*

and, c being a *-antiautomorphism,c( f b( f b) is a minimal projection. Therefore,c( f b( f b)
5 f b8( f b8 with some modular unit vectorf b8 and henceT fb(T fb5U f b8(U f b8 . Now let T f5g8
1g9, whereg8PrngU andg9PrngU'. We have

@g9,g9#25@g9,T f#@T f ,g9#5@~T f(T f !g9,g9#50.
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This gives us thatg950 which shows thatT fPrngU.
We next prove thatV is surjective. Letf PH be arbitrary. Sincec is a* -antiautomorphism of

F~H!, we can find an operatorRPF(H) such thatc(R)* 5 f (U* Th. We compute

VRg5c~R!* Vg

5c~R!* c~g(g!U* Th

5c~R!* U* f~g(g!Th

5c~R!* U* ~Tg(Tg!Th

5@Th,Tg#c~R!* U* Tg

5@Th,Tg#@U* Tg,U* Th# f

5@Th,Tg#@UU* Tg,Th# f

5@Th,Tg#@Tg,Th# f 5@h,g#@g,h# f 5 f .

Sincef was arbitrary, we have the surjectivity ofV.
We compute

@UV f8,T f#@T f ,UV f8#5@~T f(T f !UV f8,UV f8#

5@U* ~T f(T f !UV f8,V f8#

5@U* f~ f ( f !UV f8,V f8#

5@c~ f ( f !V f8,V f8#

5@~V• f ( f ! f 8,V f8#5@ f 8,~ f ( f ! f 8#5@ f 8, f #@ f , f 8#.

This gives us that

@V21U* T f8, f #@ f ,V21U* T f8#5@UVV21U* T f8,T f#@T f ,UVV21U* T f8#

5@UU* T f8,T f#@T f ,UU* T f8#

5@T f8,T f#@T f ,T f8#5@ f 8, f #@ f , f 8#.

Replacingf by x f(xPA), we obtain

@V21U* T f8, f #x* x@ f ,V21U* T f8#5@ f 8, f #x* x@ f , f 8#.

Since every element ofA is a linear combination of elements of the formx* x, it follows that

@V21U* T f8, f #y@ f ,V21U* T f8#5@ f 8, f #y@ f , f 8#

holds for everyyPA. This implies that for everyf PH, the matrices@ f ,V21U* T f8# and@ f , f 8#
are linearly dependent. It requires only elementary linear algebra to verify the following assertion.
If X,Y are vector spaces andA,B:X→Y are linear operators such that for everyxPX, the set
$Ax,Bx% is linearly dependent, then eitherA and B have rank at most one or$A,B% is linearly
dependent. Since the rank of the linear operatorf °@ f , f 8# is clearly greater than 1 iff 8Þ0, we
have a scalarl f 8 ~depending only onf 8) such that@ f ,V21U* T f8#5l f 8@ f , f 8#( f , f 8PH). This
gives us that there is a functionw:H→C such thatV21U* T f85w( f 8) f 8 which results inT f8
5w( f 8)UV f8. It follows from the properties ofT,U,V that w is of modulus 1. Finally, we have

u@ f , f 8#u5u@T f ,T f8#u5u@UV f ,UV f8#u5u@V f ,V f8#u5u@ f 8, f #u.
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Since this must hold true for everyf , f 8PH, it follows that for every rank-one matrixaPA we
have uau5ua* u. But this is an obvious contradiction. Since we have started with assuming that
f uF(H) is a * -antihomomorphism, we thus obtain that it is in fact a* -homomorphism.

Pushing the problem fromB~H! to the full operator algebraB(H)(>B(H)), we see that there
is an A-isometry UPB(H) such thatf(A)5UAU* (APF(H)). This gives us thatT f(T f
5U f (U f for every f PH. Similarly as before, this implies that rngT,rngU which yields
UU* T f5T f( f PH). We next compute

@U f 8,T f#@T f ,U f 8#5@~T f(T f !U f 8,U f 8#

5@~U f (U f !U f 8,U f 8#5@U f 8,U f #@U f ,U f 8#5@ f 8, f #@ f , f 8#,

which gives us that

@U* T f8, f #@ f ,U* T f8#5@UU* T f8,T f#@T f ,UU* T f8#5@T f8,T f#@T f ,T f8#5@ f 8, f #@ f , f 8#.

Just as above, it follows thatU* T f8 is a scalar multiple off 8. Therefore, there exists an
A-isometryU and a phase-functionw:H→C such that

T f5w~ f !U f ~ f PH!.

This completes the proof in the case when the modular dimensionn of H is greater thand.
We now treat the low dimensional cases, that is, whenn<d. Let Hd denote thed-dimensional

complex Euclidean space. ThenHd can be considered as a HilbertA-module. Here, the module
operation is (a,j)°a(j) and the generalized inner product is defined by@j,z#5j ^ z. Clearly,
the modular dimension of this module is 1. It now follows from the structure of our Hilbert
A-modules~see, for example, Ref. 11! that H is isomorphic to then-fold direct sum ofHd with
itself. So, we may assume thatH5( i 51

n
% Hd . The definition of the module operation and that of

the inner product on this direct sum is defined as follows:

a@j i # i5@aj i # i , @@j i # i ,@z i # i #5(
i

j i ^ z i .

Let us describe the elements ofB~H!. Since every element ofB~H! is a linear operator on the
direct sum of vector spaces, it can represented by a matrix

F a11 ¯ a1n

] � ]

an1 ¯ ann

G ,

whereai j ’s are linear operators acting onHd . Now, A-linearity means that

F a11aj11¯1a1najn

]

an1aj11¯1annajn

G5F a11 ¯ a1n

] � ]

an1 ¯ ann

G F aj1

]

ajn

G5F a~a11j11¯1a1njn!

]

a~an1j11¯1annjn!
G

holds for everyaPA and j iPHd . It is easy to see that this is equivalent toai j a5aai j (aPA)
which means thatai j ’s are scalars. Consequently,B~H! is isomorphic toMn(C).

Suppose thatn.1. If z is any vector inHd , then letzk denote the element ofH whose
coordinates are all 0 except for thekth one which isz. Fix a unit vectorjPHd . We have

(
i

~Tjk! i ^ ~Tjk! i5@Tjk,Tjk#5@jk,jk#5j ^ j.
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From Lemma 5 we infer that for everyi 51,...,n, there is a scalara ik such that (Tjk) i5a ikj.
Clearly, the columns of the matrix (a ik) are unit vectors. Since@Tjk,Tj l #50 for kÞ l , it follows
that the columns of our matrix are pairwise orthogonal as well. So (a ik) is a unitary matrix and
hence it defines anA-unitary operatorU on H. ConsideringU* T instead ofT, we can assume that
Tjk is equal tojk for everyk51,...,n. If f is any vector inH, then considering the equality

uj ^ ~T f !ku5u@Tjk,T f#u5u@jk, f #u5uj ^ f ku,

we obtain

~T f !k5mkf k ~k51,...,n! ~2!

with some scalarsmk of modulus 1. We claim that all themk’s are equal. Fix agPH whose
coordinates are pairwise orthogonal unit vectors inHd ~recall thatn<d). It is apparent that if we
multiply T from the left by anA-unitary operator whose matrix is diagonal, then the so obtained
transformation still has the property~2!. So we may assume thatTg5g. Let f PH be arbitrary.
We have

U(
i

m i f i ^ giU5u@T f ,Tg#u5u@ f ,g#u5U(
i

f i ^ giU.
This implies that

(
i , j

^m j f j ,m i f i&gi ^ gj5(
i , j

^ f j , f i&gi ^ gj

which gives that

^m j f j ,m i f i&5^ f j , f i&.

So, if ^ f i , f j&Þ0, then we havem i5m j . Suppose now that^ f i , f j&50 but f i , f jÞ0. Let zPHd be
any nonzero vector and considerz i1z j . By what we have just proved, it follows thatT(z i1z j ) is
a scalar multiple ofz i1z j . We compute

uz ^ ~m i f i1m j f j !u5u@z i1z j ,T f#u5u@T~z i1z j !,T f#u5u@z i1z j , f #u5uz ^ ~ f i1 f j !u

which clearly gives us thatm i5m j . Therefore, we obtain that for any vectorf PH, Tf is equal to
f multiplied by a complex number of modulus 1. The assertion of the theorem now follows for the
case 1,n<d.

Finally, suppose thatn51, which means thatH5Hd . Our problem is to describe those maps
T:Hd→Hd for which uTj ^ Tzu5uj ^ zu(j,zPHd). But this equality clearly implies thatTz is
equal toz multiplied by a scalar of modulus 1.

The proof of the theorem is now complete. h
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