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Let H be a HilbertC*-module over a matrix algebrA. It is proved that any
function T: H—H which preserves the absolute value of tigeneralized inner
product is of the forniT f=¢(f )Uf (f € H), whereg is a phase-function and is

an A-linear isometry. The result gives a natural extension of Wigner's classical
unitary—antiunitary theorem for Hilbert modules. ®99 American Institute of
Physics[S0022-24889)01611-4

I. INTRODUCTION AND STATEMENT OF THE RESULT

Wigner’s unitary—antiunitary theorem reads as follows. Hdie a complex Hilbert space and
let T:H—H be a bijective functiorflinearity or continuity is not assumgevith the property that

KT TY[=Kx,y)| (x,yeH).

ThenT is of the form
Tx=¢(X)UXx (xeH),

whereU:H—H is either a unitary or an antiunitary operator aptH—C is a so-called phase-
function which means that its values are of modulus 1. This celebrated result plays a very impor-
tant role in quantum mechanics and in representation theory in physics.

In our recent papémwe presented a new, algebraic approach to this theorem. Our idea turned
out to be strong enough to give a natural generalization of Wigner's theorem for Hilbert
C*-modules over matrix algebras. However, in the main rd&#f. 1, Theorem Jlwe supposed
that our map is surjective and, in addition, a condition was imposed on the underlying module
which was proved to be equivalent to that its so-called modular dimension is high enough. In the
present paper, refining and modifying our argument quite significantly, we obtain our Wigner-type
result in full generality, that is, neither the surjectivity of the transformation in question nor the
high dimensionality of the Hilbert module is assumed.

First, we clarify the concepts and notation that we are going to use throughout. For a bit more
detailed discussion we refer to the introduction of Ref. 1. Adte aC* -algebra. LetH be a left
A-module with a map.,.]: HXH— A satisfying

(i) [f+g,h]=[f.h]+[g,h];

(i) [af,g]=a[f.g];

(i) [g.f]=[f.9]";

(iv) [f,f]=0 and[f,f]=0 if and only if f=0

for everyf,g,heH andaeA. If H is complete with respect to the norfa>|[ f,f]||*? then we

say thatH is a HilbertA-module or a HilberiC* -module overA with generalized inner product

[.,.]. Nowadays, Hilbert modules ov&™* -algebras play a very important role in many parts of
functional analysis such as, for example, in Kxheory of C* -algebras. There is another concept

of Hilbert modules due to SaworotndwThese are modules ovet* -algebras. The only formal
difference in the definition is that in the case of Saworotnow’s modules, the generalized inner
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product takes its values in the trace-class of the underlifieplgebra and the norm with respect
to which we require completeness fis>(tr[ f,f])2 Saworotnow’s modules appear naturally
when dealing with multivariate stochastic processes and they have applications in Clifford analysis
and hence in some parts of mathematical physics.

If the underlyingC* -algebraA is the algebrav 4(C) of all dxXd complex matrices, them
being finite dimensional, the norms @dnare all equivalent. Therefore, the HilbeZt -modules
over theC* -algebraM 4(C) are the same as Saworotnow’s Hilbert modules oveHhealgebra
M4(C). We emphasize this fact since, in general, the behavior of Saworotnow’s Hilbert modules
is much nicer and we shall use several results concerning them. Finally, we note that it seems to
be more common to use right modules instead of left ones. Of course, this is not a real difference,
only a question of taste.

Now we are in a position to formulate the main result of the paper. Recall that in any
C*-algebraA, the elemental denotes the square root afa (acA).

Theorem: Let H be a Hilbert C*-module over the matrix algebraAM4(C), d>1. Let
T:H—H be a function with the property that

[[Tf,Tf]|=|[f.f'] (f.f'eH). (@)
Then there exists an A-isometry’d— H and a phase-functiop:H— C such that
Tf=¢(f)Uf (feH).

Here, A-isometry means that:HH—H is a linear map with Waf)=aUf and [Uf,Uf’]
=[f,f'] (aeA, f, f'eH).

The corresponding result for the cade 1, that is, wher#H is a Hilbert space, can be found
in Refs. 3 and 4for a recent paper also see Ref. Bs we shall see in the proof, the nonappear-
ance ofA-anti-isometries in the above result is the consequence of the noncommutativity of the
underlying algebraA.

Hilbert spaces over algebras different frdtrand C do appear in mathematical physicee,
for example, Ref. 6 for a Wigner-type theorem concerning Hilbert spaces over the skew-field of
quaternions We believe that our present result may also have physical interpretation.

II. PROOF

We give some additional definitions and notation that we shall use in the proof of our theo-
rem. As mentioned in the introduction, Saworotnow’s modules have many convenient properties
which are familiar in the theory of Hilbert spac@se refer to Ref. 2 First of all, if H is a Hilbert
module over arH* -algebra, ther?{ is a Hilbert space with the inner produgct.)=tr[.,.]. If
MCH is a closed submodule, then its orthogonal complement with respécp &nd(.,.] are the
same. A linear operator on H which is bounded with respect to the Hilbert space norm defined
above is called ai-linear operator ifT(af)=aTf holds true for everyf e H andae A. Every
A-linear operatorT is adjointable, namely, the adjoift* of T in the Hilbert space sense is
A-linear and we haveéTf,g]=[f,T*g] (f,ge ). Consequently, the collection of aM-linear
operators forms &€* -subalgebra in the full operator algebra on the Hilbert sgdc@&his will be
denoted byB(H) while the notation of the full operator algebra over a Hilbert spdde B(H).

In the case of a Hilbert modut®& over anH* -algebra, the natural equivalent of the Hilbert
basis is the so-called modular baSian elementf e M is called a modular unit vector, jiff,f] is
a nonzero minimal projection iA. A family {f ,},CH is said to be modular orthonormal if

(b) f, is a modular unit vector for every.

A maximal modular orthonormal family of vectors #i is called a modular basis. The common
cardinality of modular bases iH is called the modular dimension & (see Ref. 7, Theorem)2
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Now, we define operators which are the natural equivalent of the finite rank operators in the
case of Hilbert spaces. ff,ge H, then letf©g denote theA-linear operator defined by

(fOg)h=[h,glf (heH).
It is easy to see that for eveArlinear operatoiS we have
S(fOg)=(Sf)0g, (fOg)S=fO(S*g)
and

(fOg)(f'Og")=([f',g]f )Og'=fO([g,f"]g").
Define

n

F(H)= kgl fLO0k:fr,gke H(k=1,..n),neN

which is a*-ideal in theC*-algebra of allA-linear operators. Observe that# is a Hilbert
module overM4(C), then the range of every element #tH) has finite linear dimension, but
there can be finite rank operators on the Hilbert sgdaghich do not belong to-(H). In general,
if the underlyingH* -algebra is infinite dimensional, then these two classes of operators have
nothing to do with each other.

We begin with some auxiliary results that we shall need in the proof of our theorem.

Lemma 1: Let A=My(C), deN. If H is a Hilbert A-module, then every projection B{H) is
of the form P=% f ,Of,, where{f .} ,CH is a modular orthonormal basis in the range of P (the
range of an A-linear projection is a closed submodule).

If {f,.}.CH is a modular orthonormal set, then for the orthogonal projection onto the closed
submodule generated Ky ,}, (which is an A-linear projection) we have=F= ,f ,Of,.

Proof: Let first P e B('H) be a projection and I€ff .}, denote a modular orthonormal basis in
the closed submodule rigy By Ref. 7 Theorem 1, we have

f=> [f,f]f, (ferngP).

SincePf=0 and[f,f,]=0 for f e rngP*, we obtainP== ,f ,Of .

Now, let {f,},CH be a modular orthonormal set and dendt¢ the closed submodule
generated by this set. We show tHdt,}, is @ modular basis inV. Since this collection is a
modular orthonormal family, if this was not maximal, then we could find a nonzero eleiment
€ M which is modular orthogonal tff .}, , that is,[f,f,]=0 for everya. But this is a contra-
diction, since every element 0§41 can be approximated by finite sums of the foeqfalJr---

+anfan (a; e A) and hence we would obtain thiais modular orthogonal to itself. By the first part

of the proof we obtain that the orthogonal projection o6 is equal toX ,f,Of,, so this
operator is arA-linear projection. O

Lemma 2: Let AMy4(C), de N and let’{ be a Hilbert A-module. Suppose th&tC7H is a
closed submodule anff .}, is a modular orthonormal system generating. Then for every
g,he M we have

(i) g=Z,09.f.]f,,
(i) [g,h]=Z,[0.f.][f..h].

Moreover, the vector & H belongs toM if and only if
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[k,k]=§ [K,f Il K.

Proof: See Ref. 7, Theorem 2, and its proof. O

Proposition 3: Let A=M4(C), de N. If H is a Hilbert A-module, thelB(H) is a type | von
Neumann factor. If the modular dimension7fis greater than 2, thet8(#) is not isomorphic to
M(C).

Proof: It is clear thatB(H) is a von Neumann algebra since it is the commutant of the set
{La:L,f=af(f e H,ae A)} in the full operator algebra ovéi as a Hilbert space. To show that
B(H) is a factor, it is sufficient to verify that the central projections(#) are all trivial. Let
P e B(H) be a nonzero central projection. Liebe a modular unit vector in rnB. For anya,b
e A we have

P.-g®©(af)=g0(af)-P=gOP(af)=gO(af).
This implies that
P(b[f,fla*g)=P((gO(af))bf)=(gO(af))bf=Db[f,fla*g.

The element[f,f] is a rank-one projection. Hence, every element Afis the sum of
b[ f,f]a*-type elements and hence we obtain tRat=g for everyge H. ThusP=1. So, B(H)
is a factor. We next prove thdi(H) is type |. Letf e H be a modular unit vector. Singé,f|f
=f (see Ref. 7, Lemma)lfor any A e B('H) we compute

fOf-A-fOf=([Af,F1F)Of=(A(F,F1).[f,F1F1FOF ) =([f,FI[AL,F][f,f]f ) OF=N(fOT),

where is scalar such thatf, f ][ Af,f][ f,f]f=\Tf (the existence of such a scalar follows from the
fact that[ f,f] is a rank-one matrix This shows that the projectio©f is Abelian. So, every
nonzero central projection iB(7{) contains a nonzero Abelian projection which means Biaf)

is type I.

Suppose that the modular dimension7éfis greater than 2. To see th&(H) is not isomor-
phic to M,(C) it is now enough to show that the linear dimension3¢#) is greater then 4. Let
{f,,f,,f3} be a modular orthonormal set iK. Denote[f;,f;]=¢;. If d=2, then there are
elements; ,b; € A such thate;a; ,e;b;} is independent for every=1,2,3. It is easy to check that
{(af;))Of;,(bif;)Of;:i=1,2,3 is linearly independent. Therefore, the algebraic dimension of
B(H) is at least 6. Ifd=1, then the statement is trivial. O

Let H be a Hilbert space. Recall thatify e H, thenx®y stands for the operator defined by
(x®y)(2)=(z,y)x(ze H). The ideal of all finite rank operators B(H) is denoted by (H).

Lemma 4: Let H be a Hilbert space. #:F(H)—B(H) is a *-homomorphism which pre-
serves the rank-one projections, then there is an isometeyBl(H) such that¢ is of the form

H(A)=UAU* (AcF(H)).

Similarly, if ¢:F(H)—B(H) is a *-antihomomorphism preserving the rank-one projections, then
¢ is of the form

H(A)=VA"™V*  (AcF(H)),
where V is an isometry anid denotes the transpose with respect to a fixed orthonormal basis in
H.
Proof: Lety,ze H be such that ¢(y®y)z,z)=1. Define

Ux=¢(x®y)z (XxeH).
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It is easy to see thad is an isometry antDA= $(A)U(Ae F(H)). Letxe H be an arbitrary unit
vector. Theng(x®x) is a rank-one projection, so it is of the forf(x®x)=x’'®x’ with some
unit vectorx’ e H. Since

Ux®@x=gp(x@x)U=x"@U*x’,

we obtain thatx’ is equal toUx multiplied by a scalar of modulus 1. Thereforg(x® x) =Ux
®Ux=U-x®x-U*. Since this holds true for every unit vectoe H, by linearity we have the
first assertion of the lemma.

As for the second statement, we can apply a similar argument. ChopsirgH such that
(Y(y®y)z,z)=1, define

Vx=i(y®x)z (xeH).

One can verify thaV is an anti-isometrythat is, a conjugate-linear isomelrynd then prove that
y(A)=VA*V* (AeF(H)). Considering an antiunitary operatdrfor which JA*J* =A" and
definingV=VJ, we conclude the proof. O
Lemma 5: Lef(a,) be a sequence in the Hilbert space H and let 8 be such that,a,
®a,=b®b in the trace norm. Then for every n there exists a scalasuch that g=»A,b.
Proof: Clearly, we may assume th#ib||=1. Taking traces on both sides of the equality
>.a,®a,=b®b, we obtainZ,|a,|?>=1. On the other hand, we also have

S Kbagl=|

> a,®a, b,b> =1.
n

By the Schwarz inequality,
1=3 [(ba?<3 Jail?=1.

So, there are equalities in the Schwarz inequalifesa,)|<||a,||. This implies the assertionl
Proof of TheoremWe define an orthoadditive projection-valued measuren the lattice
‘P(H) of all A-linear projections as follows. Iff .}, is @ modular orthonormal set, then let

o

> fa(Dfa) => Tf,OTf,.

Observe that by1), {Tf,}, is also modular orthonormal and, hence, by Lemnm3 I, OTf,
belongs toP(H). We show thaiu is well-defined. Le{f,}, and{gz}; generate the same closed
submoduleM. We claim that the same holds true {arf .}, and{Tgg} ;. Indeed, ifg e M, then
due to the fact thaff .}, is @ modular basis itM we see thay==_,[g,f,]f,. This implies that

[Tg,Tg]=[g,g]=§ [g,fa][fa,g]=§ [Tg,Tf,J[Tf,,Tgl,

which, by Lemma 2, gives us thag belongs to the closed submodule generatedTiy,}, . It is
now obvious thaju is an orthoadditiveP(H)-valued measure oR(H).

Let us suppose that the modular dimensiorf-ofs greater than 2. By Proposition 3 we can
apply a deep result of Bunce and WrigReef. 8, Theorem A It states that every bounded finitely
orthoadditive, Banach space valued measure on the set of all projections in a von Neumann
algebra without a summand isomorphicNb,(C) can be uniquely extended to a bounded linear
transformation defined on the whole algebra. Iget3(+)— B(H) denote the transformation
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corresponding tow. Since it sends projections to projections, it is a standard argument to
verify that ¢ is a Jordan*-endomorphism of3(%), that is, we havep(T)?=¢(T?), #(T)*
=¢(T*)(TeB(H)) (see, for example, the proof of Ref. 9, Theorem 2

We prove thatp(fOf)=TfOTT for everyf e H. Let[f,f]=2i)\i2ei, where\;’s are non-
negative real numbers and;’s are pairwise orthogonal rank-one projections. Defifhe
=(1/\)eif. We have[f;,fj]=¢; and[f;,f;]=0 if i#], that is,{f;}; is modular orthonormal.
Thenf=3,\f;=Z=;e;f since

> [FH1f L f1=2 Me=[f,f]
implies thatf =3[ f,f;]f;=2,e;f (see Lemma R So, we have
H(FOF)=2 ¢(efOgf).
ni

But (e;f )©O(e;f)=0 if i#j. Indeed, we computgg,e;flef=[g,f]e;e;f=0 for everyge H.
Hence,

P(fOf )= p(efOef)= N2p(f;Of)=2 MNu(fOf)=>, N2 THOTT,.

So, the question is that whether the equalify® Tf=3;\*Tf;OTf; holds true. Clearly{Tf;} is
modular orthonormal. We compute

[Tf,TH=[f,f]=> [f.f1[f;,f1=> [Tf,THITH, T

which, by Lemma 2, implies thaT f=3,[Tf,Tf;]Tf;. We know that|[Tf,Tf]|=|[f,f;]
=\;g . Similarly, [[Tf;, Tf]|=|[f;,f]|=\e . Sinceg; is a rank-one projection, we obtain that
[Tf,Tf;] is also rank-one. Furthermore, g f,Tf;]|=|[Tf;,Tf]| is a scalar multiple of; we
can infer thaf{ Tf, Tf;]= ui\;e;, wherey; is a scalar of modulus 1. Therefore, we have

TIOTF=2, wim(\ieTHONgTH)).
1)

But similarly as above, for#j we have
(ele,@e]TfJ)gz[g,e]Tfl]e,Tfl=[g,TfJ]eJe,Tf|=O

Therefore

)

:Z Mim()\ieiniQ)\ieini):Z )\ieiniQ)\ieiniZEi )\iz(einiQeini).

But (¢ Tf,0eTf)=TfOTf,. Indeed, sinceTf; is a modular unit vector, we haveTf;
=[f;, . f;]Tf;=[Tf, ,Tf,]Tf;=Tf, (see Ref. 7, Lemma )1l Consequently, we obtaif fOTf
=Ei)\i2Tfi®Tfi and this was to be proved. So, we @gitf Of )=TfOTT for everyf e H.

We assert thatp is either a*-homomorphism or &-antihomomorphism. By Lemma 1 the
minimal projections ir{ are exactly the operators of the foff® f, wheref e H is a modular unit
vector. Clearly,¢ sends minimal projections to minimal projections. By Ref. 1, Lemma 2, the
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linear space generated by the minimal projection8(H) is F(H). SinceB(H) is a type | factor,
it is isomorphic to the full operator algebB(H) on a Hilbert spacéd. Since *-isomorphisms
preserve the minimal projectiong(H) corresponds to the ide&l(H) of all finite rank operators

in B(H). Under this identification, we obtain a Jord&rhomomorphismyp on F(H) correspond-
ing to ¢ 53, which sends rank-one projections to rank-one projections. Jft€) is a local
matrix algebra, by Ref. 10, Theorem 8, we obtain tiais the sum of a*-homomorphism and

a *-antihomomorphism. Ag) preserves the rank-one projections, from the simplicity of the ring

F(H) it follows that ¢ is either a*-homomorphism or & -antihomomorphism. Obviously, the
same holds ok z -

Let us suppose that the modular dimensiorHois greater thaml. By Ref. 1, Remark 2, there
are vectorsg,he’H such that[g,h]=1. The map ¢z, is either a*-homomorphism or
a *-antihomomorphism. First consider this latter case. Referring to Lemma 4 we have an operator
U e B(H) with U*U=1 and a*-antiautomorphismy of F(H) such that¢(A)=UH(A)U* (A
e F(H)).

We define

Vi=y(gOf)U*Th (feH),

whereg,heH are fixed and such thag,h]=1. Clearly,V is a conjugate-linear operator. We
have

VAT=y(gO(AT))U* Th=y(gOTA*)U* Th=yy(A)* (gOT )U* Th=y(A)* VT,
that is,VA=(A)*V(Ae F(H)). We compute
[VE,VI]=[(gOf )U*Th,y(gOf )U*Th]
=[4(gOf-fOg)U*Th,U*Th]
=[Uy(gOf-fOg)U*Th,Th]
=[op(gOf-fOQ)Th,Th]
=[¢(\[f,f1gO\[f,f1g)Th,Th]
=[(T(F,F19)OT([f,f19))Th,Th]
=[Th,T(JIf,fI9) I T(VIT,f1g), Th]
=[h,V[f.f19]0VIT,f1g.h]=[h,g][f,f1[g,h]=[f,f].
SinceV is conjugate-linear, by polarization we obtain
[VEVE]=[f"f] (f,f' eH).

We show that rn@ CrngU which will imply UU*T=T (UU* is the projection onto the
range ofU). Let f e H. In the previous part of the proof we have learned th&®Tf is a linear
combination of operators of the forif,OTf,, wheref,’s are modular unit vectors. We have

beQbe:¢(fb©fb):Ul//(fb©fb)U*
and, ¢ being a*-antiautomorphismy(f,©f,) is a minimal projection. Thereforaj(f,Of)

=f Of, with some modular unit vectof;, and hencel f,OTf,=Uf,OUf,. Now let Tf=g’
+9g", whereg’ e rngU andg” e rngU*. We have

[9".9"1?=[¢". TfI[Tf,g"]=[(TfOTf)g",g"]=0.
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This gives us thay)”=0 which shows thal f e rngU.
We next prove tha¥ is surjective. Leff €  be arbitrary. Since/ is a*-antiautomorphism of
F(H), we can find an operatd® e F(H) such thaty(R)* =fOU*Th. We compute

VRg=#(R)*Vg
=¢(R)*¢(gOg)U*Th
=y(R)*U* ¢(gOQg)Th
=y¥(R)*U*(TgOTQ)Th
=[ThTgl¥(R)*U*Tg
=[Th,Tg][U*Tg,U*Th]f
=[Th,Tg][UU*Tg,Thif
=[Th,Tg][Tg,Thlf=[h,g][g,h]f="f.

Sincef was arbitrary, we have the surjectivity wf
We compute

[UVE TH[THUVE |=[(TFOTF)UVF ,UVF’]
—[U*(TFOTF)UVF V']
—[U* ¢(fOf )UVF' VF']
—[Y(FOF )V V']
=[(V-fOF)f" VI ]=[f",(fOf ) f']=[f" F][f,f].

This gives us that

[VTIUXTE f][f,V U TH ]=[UVV U T T|[Tf,UVV IU*Tf']
=[UU*Tf Tf[Tf,UU*Tf']
=[Tf TE[TEHTE]=[f",F][f.f'].

Replacingf by xf(xe A), we obtain
[V IUXTE fIx*x[f,V U T |=[f" f]x*x[f,f'].
Since every element &k is a linear combination of elements of the fowfx, it follows that
[VZIU*TE fly[f,V IU*TH =, fly[f,f']

holds for everyy e A. This implies that for every € H, the matricegf,V-1U*Tf'] and[f,f’]

are linearly dependent. It requires only elementary linear algebra to verify the following assertion.
If X,Y are vector spaces amd,B:X—Y are linear operators such that for every X, the set
{Ax,B% is linearly dependent, then eithér and B have rank at most one dA,B} is linearly
dependent. Since the rank of the linear operatel f,f'] is clearly greater than 1 if’ #0, we

have a scalak;: (depending only orf’) such thaf f,V *U*Tf ]=\[f,f'](f,f’ e H). This

gives us that there is a functiop: H—C such thatV tU*Tf = ¢(f')f’ which results inTf’
=(f")UVT'. It follows from the properties of ,U,V that ¢ is of modulus 1. Finally, we have

L 1= [T T =[[UVE UV =[[VEVET[=[[f"f]].
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Since this must hold true for everfyf’ e H, it follows that for every rank-one matriae A we
have|a|=|a*|. But this is an obvious contradiction. Since we have started with assuming that
&\ 7w is a*-antihomomorphism, we thus obtain that it is in fact-aomomorphism.

Pushing the problem fro8() to the full operator algebrB(H)(=B(H)), we see that there
is an A-isometry U € B(H) such thaté(A)=UAU*(Ae F(H)). This gives us thafffOTf
=UfOUTf for every f e H. Similarly as before, this implies that riig_rngU which yields
UU*Tf=Tf(f e H). We next compute

[Uf' TF[TF,Uf' ]=[(TFOT)UF",UF']
=[(UfOUF)UF’ Uf']=[UF’ ,UfJ[Uf,Uf =" fI[f,f'],

which gives us that
[U*TE ][ f,U*TH |=[UU*TE TH[Tf,UU*TE ]=[TF TF[TFTE]=[f",f][f,f'].

Just as above, it follows thdt)* Tf' is a scalar multiple off’. Therefore, there exists an
A-isometryU and a phase-functioa:H— C such that

Ti=¢(f)Uf (feH).

This completes the proof in the case when the modular dimemsafrH is greater tharl.

We now treat the low dimensional cases, that is, wierd. Let H, denote thael-dimensional
complex Euclidean space. Théty can be considered as a Hilbé&tmodule. Here, the module
operation is §,¢&)—a(¢) and the generalized inner product is defined by,]=¢® {. Clearly,
the modular dimension of this module is 1. It now follows from the structure of our Hilbert
A-modules(see, for example, Ref. 1thatH is isomorphic to then-fold direct sum ofHy with
itself. So, we may assume that=={"_,®H4. The definition of the module operation and that of
the inner product on this direct sum is defined as follows:

al§li=la&li, [L&] ,[fi]i]ZEi §&i®d.

Let us describe the elements B{H). Since every element df(7{) is a linear operator on the
direct sum of vector spaces, it can represented by a matrix

a;;p Qi

Qn1 "t App

wherea;;’s are linear operators acting ¢ty . Now, A-linearity means that

ajqagyt- -+ agadé, a1 " Qi |[ag; a(agéyt+ - +anén)

anla§1+"'+anna§n ant "t apn agn a(an1§1+"'+ann§n)

holds for everyae A and&eHy. It is easy to see that this is equivalentaga=aa;;(acA)
which means thad;;’s are scalars. Consequentl§(#) is isomorphic toM,(C).

Suppose thah>1. If { is any vector inHy, then let{* denote the element df whose
coordinates are all 0 except for théh one which is{. Fix a unit vectorée Hy. We have

Ei (TE)@(TE)=[TE TE=[e=¢wé.
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From Lemma 5 we infer that for eveiiy=1,...n, there is a scalaw;, such that T&);=a;¢.
Clearly, the columns of the matrixa{,) are unit vectors. SinceT &4, T£']1=0 for k#1, it follows
that the columns of our matrix are pairwise orthogonal as well. &p) (is a unitary matrix and
hence it defines aA-unitary operatot) on H. ConsiderindJ* T instead ofT, we can assume that
T&K is equal togk for everyk=1,...n. If f is any vector inH, then considering the equality

|E0 (T =|[TETHI=I[£f]|=[£af,

we obtain

(THi=mf (k=1,..n) 2

with some scalarg, of modulus 1. We claim that all thg,'s are equal. Fix & e H whose
coordinates are pairwise orthogonal unit vectorsljp(recall thatn<d). It is apparent that if we
multiply T from the left by anA-unitary operator whose matrix is diagonal, then the so obtained
transformation still has the propertf). So we may assume thaig=g. Let f e H be arbitrary.

We have

‘Zi mﬁ@gi‘:|[Tf,Tg]|=|[f,g]|=Z fm‘.

This implies that

iEj: (mif; vﬂifi>gi®gj=i§j: (f;.fgi®g;
which gives that

(uifymifi)=(f;,.1i).

So, if(f;,f;)#0, then we haver; = u; . Suppose now thdtf; ,f;)=0 butf;,f;#0. Let{ e Hg be
any nonzero vector and considgr-£'. By what we have just proved, it follows tha{'+ ') is
a scalar multiple of'+ ¢!. We compute

[¢@(uifit =08+ THI=IT(+ ), TH=1[+ & fl[=[¢e (fi+ )]

which clearly gives us that; = u; . Therefore, we obtain that for any vectoe 7, Tfis equal to
f multiplied by a complex number of modulus 1. The assertion of the theorem now follows for the
case Kn=d.

Finally, suppose that= 1, which means that=H . Our problem is to describe those maps
T:Hyg—Hy for which |TéERTE|=[£®¢|(€,¢eHy). But this equality clearly implies tha¢ is
equal toZ multiplied by a scalar of modulus 1.

The proof of the theorem is now complete. O
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