
Correlation clustering: a parallel approach?

László ASZALÓS∗, Mária BAKÓ†

∗ University of Debrecen

Faculty of Informatics

26 Kassai str., H4028 Debrecen, Hungary

Email: aszalos.laszlo@inf.unideb.hu
† University of Debrecen

Faculty of Economics

138 Böszörményi str., H4032 Debrecen, Hungary

Email: bakom@unideb.hu

Abstract—Correlation clustering is a NP-hard problem, and
for large graphs finding even just a good approximation of the
optimal solution is a hard task. In previous articles we have
suggested a contraction method and its divide and conquer
variant. In this article we present several improvements of this
method (preprocessing, quasi-parallelism, etc.) and prepare it
for parallelism. Based on speed tests we show where it helps the
concurrent execution, and where it pulls us back.

I. INTRODUCTION

C
LUSTERING is an important tool of unsupervised learn-

ing. Its task is to group objects in such a way, that the

objects in one group (cluster) are similar, and the objects from

different groups are dissimilar. It generates an equivalence

relation: the objects being in the same cluster. The similarity

of objects are mostly determined by their distances, and the

clustering methods are based on distance.

Correlation clustering is an exception, it uses a tolerance

(reflexive and symmetric) relation. Moreover it assigns a cost

to each partition (equivalence relation), i.e. number of pairs

of similar objects that are in different clusters plus number of

pairs of dissimilar objects that are in the same cluster. Our task

is to find the partition with the minimal cost. Zahn proposed

this problem in 1965, but using a very different approach [1].

The main question was the following: which equivalence

relation is the closest to a given tolerance (reflexive and

symmetric) relation? Many years later Bansal et al. published

a paper, proving several of its properties, and gave a fast, but

not quite optimal algorithm to solve this problem [2]. Bansal

have shown, that this is an NP-hard problem.

The number of equivalence relations of n objects, i.e. the

number of partitions of a set containing n elements is given

by Bell numbers Bn, where B1 = 1, Bn =
∑n−1

i=1

(

n−1

k

)

Bk.

It can be easily checked that the Bell numbers grow expo-

nentially. Therefore if n > 15, in a general case we cannot

achieve the optimal partition by exhaustive search. Thus we

need to use some optimization methods, which do not give

optimal solutions, but help us achieve a near-optimal one.

If the correlation clustering is expressed as an optimization

problem, the traditional optimization methods (hill-climbing,

genetic algorithm, simulated annealing, etc.) could be used

in order to solve it. We have implemented and compared the

results in [3].

In a former article we have shown the clustering algorithm

based on the divide&conquer method, which was more effec-

tive than our previous methods. But our measurements have

pointed out, that this method is not scalable. Hence for large

graphs the method will be very slow. Therefore we would

like to speed up the method. The simplest way to do it is to

distribute the calculations between the cores of the processor.

Unfortunately, theory and practice often differs.

The structure of the paper is the following: in Section 2

correlation clustering is defined mathematically, Section 3

presents the contraction method and some variants. Next, the

best combination of local improvements is selected, and in

Section 5 the former divide and conquer method is improved.

Later the technical details of the concurrency is discussed

II. CORRELATION CLUSTERING

In the paper the following notations are used: V denotes the

set of the objects, and T ⊂ V ×V the tolerance relation defined

on V . A partition is handled as a function p : V → {1, . . . , n}.
The objects x and y are in a common cluster, if p(x) = p(y).

We say that objects x and y are in conflict at given tolerance

relation and partition iff value of cpT (x, y) = 1 in (1).

cpT (x, y)←







1 if (x, y) ∈ T and p(x) 6= p(y)
1 if (x, y) /∈ T and p(x) = p(y)
0 otherwise

(1)

We are ready to define the cost function of relation T
according to partition p:

cT (p)←
1

2

∑

cpT (x, y) =
∑

x<y

cpT (x, y) (2)

The task of correlation clustering is to determine the value

of minp cT (p), and a partition p for which cT (p) is minimal.

Unfortunately, this exact value cannot be determined in prac-

tical cases, except for some very special tolerance relations.

Hence we can only get approximative, near optimal solutions.

Correlation clustering can be defined as a problem of

statistical physics [4], where the authors use analogies from

physics to solve the problem for small graphs. Here we do

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 403–406

DOI: 10.15439/2017F166

ISSN 2300-5963 ACSIS, Vol. 11

978-83-946253-7-5/$25.00 c©2017, IEEE 403

something similar. We can define the attraction between two

objects: if they are similar then the attraction between them

is 1; if they are dissimilar then the attraction between them is

−1 (they repulse each other); otherwise—which can occur at

a partial tolerance relation—the attraction is 0.

a(x, y)←







1, if (x, y) ∈ T
−1, if (x, y) /∈ T
0, otherwise

(3)

(3) can be generalized for object x and for clusters g and

h:

a′(x, g) =
∑

y∈g

a(x, y) and â(g, h) =
∑

y∈h

a′(y, g).

We leave it to the reader to check that if these sums are positive

and we join these element and clusters—by getting a partition

p′ containing the clusters g ∪ {x} or g ∪ h—then cT (p) ≥
cT (p

′). This means that by joining attractive clusters, the cost

decreases.

III. CONTRACTION METHOD

The contraction method [5] is based on two operation: the

name contraction means that we join two attractive clusters.

We can treat a cluster as stable, if for each of its elements the

best position is inside this cluster, because the superposition

of the forces (attraction or repulsion between an element and

other elements is attraction for each element in the cluster; and

there does not exist another cluster which is more attractive

for any element in the cluster. But it is possible that the

joining of two stable clusters produces a non-stable cluster:

the new elements are mostly repulsive for a given element. In

this case to get less conflicts this element needs to be moved

into another cluster. Specially, if one object is repulsed by

all clusters, a singleton containing this element needs to be

constructed. The process includes calculation of the attractive

forces of one object x for all clusters, and moving nodes based

on the maximal attraction we called movement.

[5] contains the forces that are needed to recalculated after

a movement or a contraction. These recalculations can be

applied for any kind of tolerance relation. If the graph of

the tolerance relation is dense—by using the matrices of

forces between objects, forces between objects and clusters

(for the movements) and forces between clusters (for the

contractions)—then the contraction method can be run in an

efficient way by adding and subtracting rows and columns of

these matrices.

If the graph of the tolerance relation is sparse, then it is a

waste to use full matrices for storing the actual forces. (If the

tolerance relation contains small amounts of dissimilarity, then

the optimal partition consist of only some clusters, so a small

matrix is enough to store the forces between clusters.) In our

former articles the algorithms were implemented in Python,

and we used associative arrays (dict) and associative arrays

of associative arrays to store the non-zero objects. But the

deletion is problematic for this data type, therefore the imple-

mentations based on hash apply only logical deletion. Working

Fig. 1. Different combinations of steps of the local search.

with big tolerance relations, the limit of the implementation is

noticeable.

Our new implementation approaches the problem from a

new direction. By working with a sparse graph, most of its

nodes (the objects) only have a few neighbours. If the forces on

a specific node are needed to be calculated (for the movement),

only its neighbours need to be checked, not all the objects.

Therefore instead of searching for the neighbours of a given

object again and again, we store them and the signs of their

edges. Of course this means each edge is stored twice i.e. at

both of its endpoints, but at a sparse graph (|E| = O(|V |))
this is not a serious problem.

To calculate the forces between clusters in the case of a

dense graph all edges need to be visited, so the complexity

is O(n2). But at sparse graphs the number of edges is

proportional to the number of vertices, so the complexity of

the calculation of forces is O(n).
Correlation clustering can be treated as an optimization

problem, where the aim is to minimize the number of conflicts.

The steps of contraction and movement can be treated as

a local search step. Nevertheless, simple variants of the hill

climbing method are not effective for this problem. We have

tested this in case of a graph with 13 nodes and from almost 3

million partitions only 2 were global optimum and around ten

thousand were local minimum. For bigger graphs the ratio of

number of global and local optima will be even smaller, so to

find a global optima or a near optimal local optima is a truly

difficult task.

The interesting question is how to combine the steps of

contraction and movement. Fig. 1/a shows the method we

implemented in the former article [6]. A contraction could

be a dramatic change, even when two big clusters are joined.

This means that with contraction many object get their final

positions at the same time. In this variant this contraction

step is repeated until it is successful (the number of conflicts

decreases). Next, from the unstable clusters some objects are

moved to better positions, and this movement is repeated until

it is profitable.

404 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

This algorithm produced a rather fast method. By rewriting

the source we compared this algorithm with some other vari-

ants. At first we tested what is the effect of changing the order

of contraction and movement. Fig. 1/b shows a variant with

a different order, where we execute a contraction after each

movement. It is obvious, that the movements only produce

local changes, so it takes many cycles to move the objects

into their final cluster. Finally we created a variant which

moves the objects until it is profitable, then joins the clusters

until is it profitable, and if there was a contraction, then it

starts a new turn, as Fig. 1/c shows. There is an unbreakable

conflict between the speed and efficiency/accuracy: the number

of conflicts at method c were 13 percent less that at method

a.

IV. QUASI-PARALLEL VARIANT

Formerly we have discussed the quasi-parallel variant of the

algorithms [5]. The most naive variant of the contraction step

calculates all the forces between clusters, and next joins the

two most attractive clusters and drops the other calculations.

A bit cleverer variant reuses the calculated forces to calculate

the forces according to the new (contracted) clusters.

The most costive variant wants to use all the calculations

(without any recalculations). Hence it sorts all the calculated

forces in decreasing order, and if that value is positive and

valid, it joins the suitable clusters. (When can a calculated

force be invalid? If some of the clusters it belongs to do

not exist any more, because we have already merged them

with another, a third cluster.) We named this last variant as

quasi-parallel, because we practically join the clusters parallel,

although not independently.

Of course we can implement similar variants of the move-

ment step too. We did, and compared their speed and ef-

ficiency. Obviously, the latter variants are faster than the

previous ones. The efficiency of the first two variants is the

same: we calculated the same values, but the speedier variant

needed more technical implementation. Which was surprising

is that the last two variants differ in efficiency for contraction

and movement.

In case of contraction, the sequential (the first two) variants

were better than the quasi-parallel. Maybe the contraction step

was so dramatic, that if we join two weakly attractive clusters

before we realize that these clusters are more attracted by other

clusters, then we cannot redo this action later. Here, based on

our tests, the best strategy is to join only the most attractive

clusters, and in the next round consider this new joined cluster

as well.

In case of movement, the opposite holds. Here the costive

(quasi-parallel) version is the best. We can interpret a move-

ment of one object as an engagement. If we allow for a cluster

that is getting increasingly stronger to keep on gathering new

and new objects, this cluster becomes huge and will not release

its objects. With quasi-parallel execution several small clusters

grow parallel, and movements can be redone, if there is be a

more attractive cluster for an object.

TABLE I
REMAINING EDGES OF THE SUBGRAPHS (IN PERCENT)

N no. of subgraphs
2 5 10 20

BA(3,2)
500 62.8/50.6 45.1/18.9 43.4/9.8 39.1/5.7

1000 63.2/48.9 50.3/21.6 42.8/9.8 40.4/5.2
5000 62.5/50.0 49.3/20.9 45.3/10.0 42.6/4.5

10000 62.6/50.3 49.2/20.0 44.8/10.6 42.8/5.0
20000 62.7/50.2 49.5/20.4 44.7/10.1 42.8/4.9

ER (p=0.015)
500 58.6/51.2 39.0/19.7 31.1/9.4 28.2/5.5

1000 53.4/49.9 28.1/20.6 20.8/10.2 16.2/4.8
5000 51.2/50.0 21.7/20.0 11.9/10.0 7.3/4.9

10000 50.5/49.9 20.9/19.9 11.0/10.0 6.2/5.0
20000 50.2/50.0 20.4/20.0 10.5/10.0 5.6/5.0

In the following measurements we will use the algorithm

of Fig. 1/c with quasi-parallel movement and sequential con-

traction.

V. DIVIDE AND CONQUER RELOADED

In a former article we have examined whether the divide

and conquer approach is useful for correlation clustering [6].

As a reminder, the divide and conquer solution consist of three

simple steps:

• divide the problem into subproblems,

• solve the subproblems (in a recursive way)

• construct the solution of the original problem from the

solutions of the subproblems.

In some cases some of the steps could be left out or are

very trivial. In our former article the construction of the sub-

problems was simple: we divided the graph into same size

sub-graphs by the IDs of the objects. It can be checked easily,

that with this construction most of the edges are left out from

our calculations.

In case of Erdős-Rényi random graphs (ER) the edges are

distributed uniformly at random. As the matrices of subgraphs

cover only n/n2 part of the matrix of original graph, only

1/n of the edges are left to work with. We construct slightly

better sub-graphs with a little effort i.e. with complexity of

O(n). The breadth first traversal of the graph is used, and the

nodes are taken in that order in which they are deleted from

the fringe, i.e. when they get closed. The effectiveness of this

trick is shown in Table I. It is not a surprise that in case of ER

graphs, where the edges are independent from each other, this

trick has no real effect. But at Barabási-Albert type random

graphs (BA)—where the construction guaranties that the edges

are not independent—the trick works well: when the former

method left 5 percent of the edges, this leaves us 40 percent

of them.

The other steps of the divide and conquer approach re-

mained the same. The sub-problems were solved by recursion

if they were big enough, otherwise a direct solution was used:

starting from singleton clusters, the algorithm of Fig. 1/c

for the graph of the sub-problem was followed. Finally all

the clusters from the solutions of the sub-problems were

LÁSZLÓ ASZALÓS, MÁRIA BAKÓ: CORRELATION CLUSTERING: A PARALLEL APPROACH? 405

collected and put together (as an initial clustering of the whole

graph), and we executed the algorithm of Fig. 1/c again. It is

surprising, but solving the original problem, the sub-problems,

the subsub-problems, etc. is faster than solving the original

problem alone. This is not a paradox, the key question is the

initial clustering of the original problem.

VI. TECHNICAL DETAILS: CONCURRENCY

The last sentences of the previous chapter are very promis-

ing. Moreover at the reimplementation of our software we have

taken care of parallelism.

We implemented our software in Python.1 For calculation

intensive tasks this language offers a multiprocessing

package. At first we used the instruction map for each object,

which could be familiar to the reader from Google’s MapRe-

duce concept. We recall, that movement in the algorithm of

Fig. 1/c (at top right, emphasized by colour) is inside a

double cycle. One task (to calculate the forces on an object) is

extremely simple, hence the overhead is huge, it run thousands

time slower than the original. Next we created a pool, and

the set of nodes were divided into four, and each core of

the processor received one subset, and the role to calculate

the forces on nodes that are in that subset. At graphs with

hundred nodes the parallel version was 300 times slower than

the original. As the number of nodes of the graph increased the

running time ratio became smaller and smaller, but at graphs

with 20,000 nodes the parallel version was twice slower.

Our framework—constructed for divide and conquer

method (D&C)—enables us to break the original problem into

sub-problems, and solve them in parallel using the possibilities

of a multi-core processor.

One categorisation of tolerance graphs is based on the rate

of positive edges. As the edges of BA graphs are dependent,

two graphs with the same rate could be very different, but

using big samples can help us to discover tendencies. Based

on the measurements, the preprocessing for D&C (the trick in

the previous section) is useless when this rate is small, and

very profitable if this rate is near to 1.

The biggest divergence in number of conflicts was at rate

0.71—where even the number of conflicts was maximal—so

we executed speed tests for 3/2 type BA graphs with this rate.

Based on the measurements, the running time the algorithm

of Fig. 1/c is near quadratic—a problem with 20, 000 nodes

was solved within a minute on an i5-6500 processor—and the

aim is to solve problems with million of nodes in reasonable

time.

We tested the D&C method which gave about 8 percent

worse results than solving the problem at once. Does the

running time compensate for this penalty? If we only have

a few objects, the overhead of solving sub-problems gives

a longer running time. At 3000-5000 objects this overhead

disappears. But at problematic cases the hardness of solving

the sub-problems brings this overhead back. We examined the

running time of the subproblems, and we found, that for big

1The source files are available at https://github.com/aszalosl/DC-CC2.

graphs the combination of subsolutions (repeat the contraction

method for the whole graph) could take up 98% of the running.

VII. FUTURE PLANS

Although we have a fast algorithm to solve the problems

for large graphs, and some hints about how to choose between

them, the research is not over. When solving big graph

problems, most of the time only one thread is running, hence

we have possibilities to use the concurrency. It is worth to

try a manager and a pool of worker processes defined not

inside cycles, but at the upper levels. The overhead of the

communication between processes could be problematic, but

only tests could decide on usefulness of this approach.

The fastest computation is no computation. Therefore we

need to examine which calculations are necessary, and which

can be omitted.

Of course these tricks do not change the quadratic complex-

ity of the algorithm, but we believe, that we can reduce the

the constant part, which will be very important in practice.

VIII. CONCLUSION

We introduced a correlation clustering problem, and we

presented the contraction method to solve it. We improved

our former algorithm in several ways, and we created several

variants to it. Some of them used the elements of concurrent

execution of the Python code with a small success.

To our knowledge, these are the state of the art algorithms

in correlation clustering.

We made several measurements and the results gave hints

on how to select amongst them to solve a particular problems.

By these measurements our method has quadratic complexity.

Finally, we presented the bottleneck of the algorithms. Our

next step is to eliminate this, hopefully by using concurrency

in a different way.

REFERENCES

[1] C. Zahn, Jr, “Approximating symmetric relations by equivalence
relations,” Journal of the Society for Industrial & Applied Mathematics,
vol. 12, no. 4, pp. 840–847, 1964. doi: 10.1137/0112071. [Online].
Available: http://dx.doi.org/10.1137/0112071

[2] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,”
Machine Learning, vol. 56, no. 1-3, pp. 89–113, 2004. doi:
10.1023/B:MACH.0000033116.57574.95. [Online]. Available: http://dx.
doi.org/10.1023/B:MACH.0000033116.57574.95

[3] L. Aszalós and M. Bakó, “Advanced search methods (in Hungar-
ian),” http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0103 13
fejlett keresoalgoritmusok, 2012.

[4] Z. Néda, R. Florian, M. Ravasz, A. Libál, and G. Györgyi,
“Phase transition in an optimal clusterization model,” Physica A:

Statistical Mechanics and its Applications, vol. 362, no. 2, pp.
357–368, 2006. doi: 10.1016/j.physa.2005.08.008. [Online]. Available:
http://dx.doi.org/10.1016/j.physa.2005.08.008

[5] L. Aszalós and T. Mihálydeák, “Correlation clustering by contraction,
a more effective method,” in Recent Advances in Computational

Optimization. Springer, 2016, vol. 655, pp. 81–95. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-40132-4 6

[6] L. Aszalós and M. Bakó, “Correlation clustering: divide and conquer,”
in Position Papers of the 2016 Federated Conference on Computer

Science and Information Systems, ser. Annals of Computer Science and
Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki,
Eds., vol. 9. PTI, 2016. doi: 10.15439/2016F168 pp. 73–78. [Online].
Available: http://dx.doi.org/10.15439/2016F168

406 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

