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Abstract. Related to the theory of convex and subadditive functions, we investigate
weakly subquadratic mappings, that is, solutions of the inequality

f(x + y) + f(x− y) ≤ 2f(x) + 2f(y) (x, y ∈ G)

for real valued functions defined on a topological group G = (G, +). Especially, we study
the lower and upper hulls of such functions and we prove Bernstein–Doetsch type theorems
for them.

1. Introduction

In the present paper, we investigate weakly subquadratic functions, that is, solutions of the
inequality

f(x+ y) + f(x− y) ≤ 2f(x) + 2f(y) (x, y ∈ G), (1)

in the case when f is a real valued function defined on a group G = (G,+). Our aim is to
prove regularity theorems for functions of this type. Our studies have been motivated by
classical results of the regularity theory of convex and subadditive functions.
A fundamental result of the regularity theory of convex functions is the theorem of F. Bern-
stein and G. Doetsch [13] which states that if a real valued Jensen-convex function defined
on an open interval is locally bounded from above at one point in its domain, then it
is continuous (cf. also [16] and [17]). It is easy to prove and is well-known that, in the
case of subadditive functions, local boundedness does not imply continuity. However, as
R. A. Rosenbaum proved in [19], if a subadditive function defined on Rn is locally bounded
from above at one point in Rn then it is locally bounded everywhere in Rn. Furthermore,
if a subadditive function f : Rn → R is continuous at 0 and f(0) = 0 then it is continuous
everywhere in Rn (see [16] and [17], too).
Strongly related to these results, we investigate regularity properties of weakly subquadratic
functions. After giving some hints on the terminology we use, in the third part of the paper,
we present some examples and basic properties of weakly subquadratic functions. In Part 4,
we investigate the lower and upper hulls of weakly subquadratic functions, which play a key
role in the theory of convex and subadditive functions. We prove, that, similarly to the case
of convex and subadditive functions, the lower and upper hulls of a weakly subquadratic
function, under quite general conditions, are weakly subquadratic, too. In the last part of
the paper we prove Bernstein–Doetsch type results for weakly subquadratic functions. We
show some theorems concerning the local boundedness of weakly subquadratic functions.
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As a consequence of these, we obtain an analogous theorem to Rosenbaum’s main regularity
result for subadditive functions mentioned above.

2. Terminology

The subquadraticity concept we use in this paper is related to the notion of subadditivity.
A real valued function defined on a group G is called additive if it satisfies the equation

f(x+ y) = f(x) + f(y) (x, y ∈ G),

it is said to be subadditive, if it fulfils

f(x+ y) ≤ f(x) + f(y) (x, y ∈ G) (2)

and it is superadditive, if

f(x+ y) ≥ f(x) + f(y) (x, y ∈ G).

It is easy to see that a function f : G→ R is superadditive if and only if −f is subadditive,
therefore, it is enough to investigate one of these types of functions.
Analogously to these concepts, we may define subquadratic and superquadratic functions.
Our definition is based on the well-known concept of quadratic functions: a real valued func-
tion defined on a group G is called quadratic, if it satisfies the quadratic (or parallelogram
or square-norm or Jordan–von Neumann) equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (x, y ∈ G).

A function f : G→ R is called weakly subquadratic if it satisfies inequality (1), it is said to be
weakly superquadratic if inequality (1) is valid in the opposite direction. Obviously, between
weakly subquadratic and weakly superquadratic functions there is a similar connection as
between subadditive and superadditive functions, therefore, it is enough to consider one
of these concepts, too. Weakly subquadratic functions, in this sense, were studied, among
others in the papers [15], [20] and [21].
We note that, recently, another concept of subquadraticity has also been investigated. In
their paper [7], S. Abramovich, G. Jameson and G. Sinnamon introduced this concept,
calling a function f : [0,∞[→ R subquadratic if, for each x ≥ 0, there exists a constant
cx ∈ R such that the inequality

f(y)− f(x) ≤ cx(y − x) + f
(
|y − x|

)
is valid for all nonnegative y. (More precisely, in the paper above, superquadratic functions
were considered, but here is an analogous relation between the concepts as above.) Sub-
quadratic (or superquadratic) functions have been investigated by several authors in this
sense (cf., e.g, [1], [2], [4], [5], [6], [8], [9], [10], [11], [12], [18]). As a result of the study of the
connection between the two different concepts of subquadraticity (cf. [3] and [14]), it turned
out that if a function f : [0,∞[→ R is subquadratic in the sense of Abramovich, Jameson
and Sinnamon, then its even extension f : R → R satisfies inequality (1). On the other
hand, there are solutions f : [0,∞[→ R of inequality (1) which are not subquadratic func-
tions in the other sense. This is the reason why we use the notion of ‘weakly subquadratic
function’ for a solution of inequality (1).
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3. Examples and basic properties

Examples 3.1.

1. It is easy to see that if B : G × G → R is a biadditive function and b is a nonnegative
real number, then the function f : G→ R

f(x) = B(x, x) + b (x ∈ G)

satisfies (1).
As a special case of the example above, we obtain that if a1 : G→ R and a2 : G→ R are
additive function, c is an arbitrary and b is a nonnegative real constant, then the function
f : G→ R

f(x) = c a1(x)a2(x) + b (x ∈ G)

solves (1), too.
In the class of continuous real functions, the example above gives the weakly subquadratic
functions f : R→ R

f(x) = cx2 + b

where c is an arbitrary, b is a nonnegative real constant.
2. A simple calculation yields that if a : G → R is an additive function and b and d are

nonnegative constants then the function f : G→ R

f(x) = b |a(x)|+ d (x ∈ G)

is weakly subquadratic.
3. The function f : G→ R

f(x) =

{
b if x 6= 0

d if x = 0,

where b and d are nonnegative constants such that d ≤ 3b, is weakly subquadratic.
4. The function f : R→ R

f(x) =

{
b if x ∈ [−1, 1]

d otherwise,

where b and d are nonnegative constants such that b
3
≤ d ≤ 3b, is weakly subquadratic.

5. An arbitrary function f : G→ R satisfying the inequality

sup
x∈G

f(x) ≤ 2 inf
x∈G

f(x)

is weakly subquadratic.
6. The function f : Rn → R

f(x) =

{
0 if x ∈ Qn

b otherwise,

with an arbitrary nonnegative constant b, is weakly subquadratic.

Remarks 3.2.

1. The structure of inequality (1) shows that a linear combination of its solutions with
nonnegative real coefficients also yields a solution. Therefore, such linear combinations
of the examples above are weakly subquadratic functions, too.
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2. It is easy to see, that an even and subadditive function is weakly subquadratic. To show
this statement, let f be a real valued subadditive function defined on a group G and
suppose that f is even, that is, it satisfies f(x) = f(−x) for each x ∈ G. Writing −y
instead of y in inequality (2) we obtain

f(x− y) ≤ f(x) + f(−y) (x, y ∈ G).

Adding this inequality and (2) side by side and using the evenness of f , we obtain the
statement.

3. It is also obvious that a non-positive, weakly subquadratic function defined on a 2-
divisible abelian group is Jensen-concave. In fact, writing u = x + y and v = x − y in
(1), we obtain

f(u) + f(v) ≤ 2f

(
u+ v

2

)
+ 2f

(
u− v

2

)
(u, v ∈ G),

which, using the non-positivity of f , implies

f(u) + f(v)

2
≤ f

(
u+ v

2

)
(u, v ∈ G),

that is, the defining inequality of Jensen-concavity.

Lemma 3.3. If G is a group and f : G → R is a weakly subquadratic function, then we
have

f(kx) ≤ k2f(x) (x ∈ G)

for each positive integer k.

Proof. The statement was proved by Z. Kominek and K. Troczka in [15] in the case when
the domain of the function considered is a linear space. Essentially the same argumentation
yields the validity of the Theorem if the domain is a group. �

4. Lower and upper hulls

The lower and upper hulls play a very important role in the regularity theory of convex and
subadditive functions (cf., e.g., [13], [19], [16] and [17]). Motivated by and related to these
results, in this section, we will investigate the lower and upper hulls of weakly subquadratic
functions in a general setting. We will consider real valued functions defined on a topological
group.
In a topological space (X,O), we denote by U(x) the family of all neighborhoods of an
element x ∈ X (that is, the class of all open sets containing x). For a function f : X → R,
the mapping mf : X → [−∞,∞[

mf (x) = sup
U∈U(x)

inf
u∈U

f(u) (x ∈ X)

is called the lower hull, while Mf : X → ]−∞,∞]

Mf (x) = inf
U∈U(x)

sup
u∈U

f(u) (x ∈ X)

is said to be the upper hull of f .
A topological group is a group endowed with a topology such that the group operation as
well as taking inverses are continuous functions.

Theorem 4.1. The lower hull of a real valued weakly subquadratic function defined on a
topological group is weakly subquadratic, too.
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Proof. Let G be a topological group, f : G→ R be a weakly subquadratic function and let
x0, y0 ∈ G be fixed. Obviously, if mf (x0 +y0) = −∞ or mf (x0−y0) = −∞, then the desired
inequality holds. Thus, we may assume that mf (x0 + y0) > −∞ and mf (x0 − y0) > −∞.
Let, in this case, α, β ∈ R be such that

α < mf (x0 + y0) and β < mf (x0 − y0). (3)

By the definition of the lower hull, there exist open sets W1 ∈ U(x0+y0) and W2 ∈ U(x0−y0)
such that

α < inf
s∈W1

f(s) and β < inf
t∈W2

f(t).

There exist neighborhoods U ∈ U(x0) and V ∈ U(y0) with the properties U + V ⊆ W1 and
U − V ⊆ W2 and, since f is weakly subquadratic, we have

α + β < f(u+ v) + f(u− v) ≤ 2f(u) + 2f(v)

for arbitrary elements u ∈ U and v ∈ V . Therefore,

α + β ≤ 2 inf
u∈U

f(u) + 2 inf
v∈V

f(v),

thus,
α + β ≤ 2 sup

U∈U(x0)

inf
u∈U

f(u) + 2 sup
V ∈U(y0)

inf
v∈V

f(v),

that is,
α + β ≤ 2mf (x0) + 2mf (y0).

Since α and β have been arbitrarily chosen in (3), the theorem is proved. �

Theorem 4.2. The upper hull of a real valued weakly subquadratic function defined on a
topological abelian group uniquely divisible by 2 is weakly subquadratic, too.

Proof. Let f : G → R be weakly subquadratic and let x0, y0 ∈ G be fixed. Analogously
to the first step in the proof of the previous theorem, if Mf (x0) = ∞ or Mf (y0) = ∞,
then the desired inequality holds, so we may consider the situation when Mf (x0) <∞ and
Mf (y0) <∞. Let now α, β ∈ R satisfy the properties

2Mf (x0) < α and 2Mf (y0) < β. (4)

According to the definition of the upper hull, there exist open sets U ∈ U(x0) and V ∈ U(y0)
such that

2 sup
u∈U

f(u) < α and 2 sup
v∈V

f(v) < β.

Since G is uniquely divisible by 2, there exist neighborhoods W1 ∈ U(x0 + y0) and W2 ∈
U(x0 − y0) such that

W1 +W2

2
⊆ U and

W1 −W2

2
⊆ V.

Being f weakly subquadratic and G commutative, the substitutions x = s+t
2

and y = s−t
2

in
inequality (1) give

f(s) + f(t) ≤ 2f

(
s+ t

2

)
+ 2f

(
s− t

2

)
< α + β

for all elements s ∈ W1 and t ∈ W2.
An analogous argumentation as in the proof of the previous theorem yields that

Mf (x0 + y0) +Mf (x0 − y0) ≤ α + β.

Thus, since α and β have been chosen arbitrarily in (4), we obtain our statement. �
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Theorem 4.3. Let G be a topological group, f : G → R be a weakly subquadratic function
and let mf and Mf denote the lower and upper hull of f , respectively. Then we have

Mf (x)−mf (x) ≤ 2Mf (0) (5)

for all x ∈ G for which mf (x) 6= −∞.

Proof. Let x0 ∈ G be fixed. It is easy to see that, by the definitions of the upper and the
lower hulls of f , for each fixed positive ε, there exist neighborhoods U ∈ U(x0) and V ∈ U(0)
such that

f(v) ≤Mf (0) + ε (v ∈ V )

and

f(u− v) ≥ mf (x0)− ε (u ∈ U, v ∈ V ).

Obviously, (x0 − V ) ∈ U(x0), thus, (x0 − V ) ∩ U ∈ U(x0). Therefore, by the definition of
the lower hull of f , there exists a u0 ∈ (x0 − V ) ∩ U , such that

f(u0) ≤ mf (x0) + ε.

In this case, (u0 + V ) ∈ U(x0), so the definition of the upper hull of f implies the existence
of a v0 ∈ V , for which

f(u0 + v0) ≥Mf (x0)− ε.
Since f is weakly subquadratic, we get that

f(u0 + v0) + f(u0 − v0) ≤ 2f(u0) + 2f(v0).

Combining the 5 inequalities derived in this proof, we obtain

Mf (x0)− ε+mf (x0)− ε ≤ 2mf (x0) + 2ε+ 2Mf (0) + 2ε,

that is,

Mf (x0)−mf (x0) ≤ 2Mf (0) + 6ε.

Since x0 ∈ G and ε > 0 can be chosen arbitrarily, our statement is proved. �

Remark 4.4. Obviously, inequality (5) is also valid if we write constants c ≥ 2 instead of
2 on the right hand side of the inequality. However, as the functions in Example 4 show,
c = 2 is an “optimal” constant here, i.e., c = 2 is the smallest number for which inequality
(5) is generally valid.

5. Bernstein–Doetsch type theorems

In the following, we present regularity theorems for weakly subquadratic functions. As
several Examples in 3.1 show (e.g., 6) the local boundedness (or even boundedness) of a
weakly subquadratic functions does not imply its continuity. Therefore, a ‘literal’ analogue
of the Bernstein–Doetsch theorem is not valid here. However, we can prove regularity
theorems which are similar to Rosenbaum’s results on subadditive functions (cf. [19]).

Theorem 5.1. Let G be a uniquely 2-divisible topological abelian group which is generated
by any neighborhood of 0 ∈ G. If a weakly subquadratic function f : G → R is locally
bounded from above at one point in G, then it is locally bounded from above at every point
in G.



REGULARITY OF WEAKLY SUBQUADRATIC FUNCTIONS 7

Proof. At first we prove that the local boundedness of f from above at a point x0 ∈ G
implies its local boundedness from above at 0. Due to the local boundedness of f from
above at x0 ∈ G, there exist a neighborhood U ∈ U(x0) and a real number K such that

f(u) ≤ K (u ∈ U). (6)

Since G is (uniquely) 2-divisible, we may replace x by 2x0+v
2

and y by 2x0−v
2

in (1). Using
the commutativity of G, we obtain that

f(2x0) + f(v) ≤ 2f

(
2x0 + v

2

)
+ 2f

(
2x0 − v

2

)
(v ∈ G),

that is,

f(v) ≤ 2f

(
2x0 + v

2

)
+ 2f

(
2x0 − v

2

)
− f(2x0) (v ∈ G). (7)

Obviously, the sets V1 = 2U − 2x0 and V2 = −2U + 2x0 are open sets containing 0, thus,
V = V1 ∩ V2 also has these properties, that is, V ∈ U(0). If v ∈ V , by the definition of V ,
we have

2x0 + v

2
∈ U and

2x0 − v
2

∈ U.

Therefore, using (6) and (7), we obtain

f(v) ≤ 2K + 2K − f(2x0)

for v ∈ V , which implies that f is locally bounded from above at 0.
Since G is generated by any neighborhood of 0, Lemma 3.3 implies that the local bounded-
ness of f from above at 0 gives its local boundedness from above everywhere in G. �

Theorem 5.2. Let G be a uniquely 2-divisible topological abelian group which is generated
by any neighborhood of 0 ∈ G and let f : G → R be a weakly subquadratic function. If f is
locally bounded from above at one point in G and locally bounded from below at one point in
G then it is locally bounded at every point in G.

Proof. According to Theorem 5.1, the local boundedness of f from above at one point in
G implies its local boundedness from above everywhere in G. Therefore, we have to prove
that the assumptions of the Theorem yield the local boundedness of f from below at each
point in G. Similarly to the proof of Theorem 5.1, in the first step, we show that the local
boundedness of f from below at a point x0 ∈ G implies its local boundedness from below
at 0. The local boundedness of f from below at x0 means that there exist a U ∈ U(x0) and
a real number K such that

f(u) ≥ K (u ∈ U). (8)

Writing x = x0 in (1), we obtain

f(x0 + y) + f(x0 − y) ≤ 2f(x0) + 2f(y) (y ∈ G),

that is,
f(x0 + y) + f(x0 − y)− 2f(x0) ≤ 2f(y) (y ∈ G). (9)

It is easy to see that, for H = U − x0, we have H ∈ U(0). By one of the basic properties of
topological groups, there exists a symmetric neighborhood V ∈ U(0) such that V ⊆ H. Let
V be a set satisfying this property. If y ∈ V , then x0 + y ∈ U and x0 − y ∈ U , thus, by (8)
and (9)

1

2
(K +K − 2f(x0)) ≤ f(y)

for each y ∈ V , which yields the local boundedness of f from below at 0.
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Now we prove that the local boundedness of f from below at 0 together with its local
boundedness from above at a point in G implies its local boundedness from below at an
arbitrary w0 ∈ G. Since f is locally bounded from below at 0, there exist a neighborhood
S ∈ U(0) and a constant c ∈ R such that

f(s) ≥ c (s ∈ S). (10)

Since f is locally bounded from above at one point in G, by Theorem 5.1, it is locally
bounded from above everywhere in G, specifically, it has this property at w0. Therefore,
there exist a neighborhood T ∈ U(w0) and a real constant C such that

f(t) ≤ C (t ∈ T ). (11)

Let us consider the sets R = 2T − 2w0 and H = S ∩R. It is obvious from this construction
that H is a neighborhood of 0. Let V ∈ U(0) be a symmetric subset of H. Since V ⊆ S,
property (10) implies that

f(v) ≥ c (v ∈ V ). (12)

Since G is uniquely 2-divisible, we may consider the set W = V
2

+ w0, which is, obviously,
a neighborhood of w0 with the property W ⊆ T . Thus, by (11), we have

f(w) ≤ C (w ∈ W ). (13)

The definition of W also gives that if v ∈ V , then 2w0−v
2
∈ W . Therefore, using inequality

(13), we get

f

(
2w0 − v

2

)
≤ C (v ∈ V ). (14)

Since f is weakly subquadratic and G is commutative, writing x = 2w0+v
2

and y = 2w0−v
2

in
(1), we obtain

f(2w0) + f(v) ≤ 2f

(
2w0 + v

2

)
+ 2f

(
2w0 − v

2

)
(v ∈ G),

that is,

f(2w0) + f(v)− 2f

(
2w0 − v

2

)
≤ 2f

(
2w0 + v

2

)
(v ∈ G). (15)

Inequalities (12), (14) and (15) imply

1

2
(f(2w0) + c− 2C) ≤ f

(
2w0 + v

2

)
(v ∈ V ).

Finally, by the definition of W , for an arbitrary w ∈ W , there exists a v ∈ V such that
w = 2w0+v

2
. Therefore, the last inequality above gives

1

2
(f(2w0) + c− 2C) ≤ f(w) (w ∈ W )

which yields the local boundedness of f at w0. �

Theorem 5.3. Let G be a uniquely 2-divisible topological abelian group which is generated
by any neighborhood of 0 ∈ G and let f : G→ R be a weakly subquadratic function. If f is
continuous at 0 and f(0) = 0, then f is continuous everywhere in G.

Proof. The continuity of f at 0 implies that it is locally bounded at 0, therefore, by Theorem
5.2, f is locally bounded from below everywhere in G, which yields that mf (x) 6= −∞ for
every x ∈ G. The property f(0) = 0 and the continuity of f at 0 imply that Mf (0) ≤ 0.
Thus, Theorem 4.3 gives that mf (x) = Mf (x) for all x ∈ G, which yields the statement. �
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Remark 5.4. It is remarkable that if we omit one of the assumptions for f in the theorem
above, it does not remain true. In fact, according to Example 5, there exist weakly sub-
quadratic functions f : G→ R, which are continuous at 0 but not continuous on the whole
G. Obviously, f(0) = 0 does not imply any continuity properties for f . Furthermore, the
assumption of the continuity of the function f above at a point other than 0 does not imply
its continuity everywhere (cf., e.g., Example 3).

The authors are thankful to the reviewer and to Professors Zygfryd Kominek and Zsolt
Páles for their valuable comments related to the paper.
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