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Synthesis and antibacterial evaluation of some
teicoplanin pseudoaglycon derivatives containing
alkyl- and arylthiosubstituted maleimides

Magdolna Csávás1, Adrienn Miskovics1, Zsolt Szűcs1, Erzsébet Rőth1, Zsolt L Nagy1, Ilona Bereczki1,
Mihály Herczeg1, Gyula Batta2, Éva Nemes-Nikodém3, Eszter Ostorházi3, Ferenc Rozgonyi3, Anikó Borbás1 and
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Bis-alkylthio maleimido derivatives have been prepared from teicoplanin pseudoaglycon by reaction of its primary amino group

with N-ethoxycarbonyl bis-alkylthiomaleimides. Some of the new derivatives displayed excellent antibacterial activity against

resistant bacteria.
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INTRODUCTION

Glycopeptide antibiotics exert their antibacterial activityQ4 by inhibiting
two sequential enzymatic reactions—transglycosylation and transpep-
tidation—in the bacterial cell-wall biosynthesis. The antibiotics
recognize and tightly bind to the L-Lys-D-Ala- D-Ala termini of
peptidoglycan precursors at the external side of the developing
bacterial membrane. In this way transglycosylation and transpeptida-
tion are physically prevented, arresting cell-wall elongation and cross-
linking and leading to cell lysis.1 Due to the lack of cross-resistance to
other antibacterial drugs, the glycopeptide antibiotics have become
first-line drugs for the treatment of life-threatening multi-drug
resistant infections by Gram-positive bacteria.2

The emergence and spread of glycopeptide-resistant enterococci and
glycopeptide intermediate-resistant Staphylococcus aureus, as well as
teicoplanin-resistant Staphylococcus haemolyticus3 present a serious
global challenge and have led to renewed interest in the development
of novel, effective and safe antibacterials including new derivatives of
glycopeptide antibiotics.4–6

Inspired by the high activity of the semisynthetic lipoglycopeptide
antibiotics telavancin,7 dalbavancin8 and oritavancin9 against
vancomycin-resistant bacteria, we have started a program to produce
new antibiotics by introducing lipophilic subtituents to the primary
amino function of ristocetin aglycon and of teicoplanin pseudoagly-
con. Applying various approaches including squaric acid conjugation
method, azide-alkyne cycloaddition reaction or three-component
isoindole formation, we have prepared a large set of new derivatives
exhibiting high antibacterial10–13 and, in some cases, robust anti-
influenza virus activity.14–17

Recently, Caddick, Baker and coworkers18–21 reported on applica-
tions of 3,4-dibromomaleimides for site-specific protein modification
and bioconjugation. The method is based on addition–elimination
reaction of thiols to the bromomaleimides leading to regeneration of
the double bond resulting in thiomaleimide products (Scheme 1). Last
year the group of Caddick and Baker published a simple method for
the synthesis of N-functionalised bromo- and thiomaleimides through
the corresponding N-ethoxycarbonyl maleimide derivatives.22 Apply-
ing these recent results of maleimide chemistry we describe here
derivatisation of teicoplanin pseudoaglycon with thiomaleimide sub-
stituents carrying two lipophilic alkyl or aryl sulfide side chains.

RESULTS AND DISCUSSION

Dibromomaleimide (1) that can be obtained by simple bromination of
maleimide23 has been allowed to react with a range of thiols including
the 6-thio-D-galactose derivative 2a, thiophenol 2b, phenylmetha-
nethiol 2c, dodecanethiol 2d, octanethiol 2e, propanethiol 2f and
t-butyl mercaptane 2h, representing a series of substituents of different
lipophilicity.
The obtained sulfides 3a–g have been then ethoxycarbonylated with

ethyl chloroformate in the presence of potassium carbonate to provide
5a–g, ready for a reaction with a primary amino group (Scheme 2).
Direct methoxycarbonylation12b of dibromomaleimide offers an alter-
native route for the synthesis of the targeted N-functionalized
dithiomaleimide as it is illustrated by the synthesis of 6g. We tested
this route with several thiols such as 2d–2g, however, the sulfide
formation showed low efficacy in all cases.
Next, teicoplanin pseudoaglycon 710c has been reacted with

N-ethoxycarbonyl maleimides 5a–g and 6g in the presence of
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triethylamine (Table 1). In these reactions bis-alkyl- or arylthiomalei-
mide 8a–f were formed in moderate yields, together with the N-
alkoxycarbonyl derivatives of the teicoplanin pseudoaglycon (9 and
10). The formation of 9 and 10 can be explained by the steric
hindrance of the amino function of 7. In the case of 5g and 6g, the
undesired carbamate derivatives 9 and 10 were dominantly formed,
probably due to the presence of bulky t-butyl substituents of the
reagents.
Antibacterial activity of maleimido-teicoplanin-pseudoaglycons was

evaluated on a panel of Gram-positive bacteria (Table 2). The D-
galactose-containing 8a, the bis-phenylthio derivative 8b and the bis-
benzylthio derivative 8c displayed similar activities than teicoplanin
pseudoaglycon 7 with one exception: the maleimido compounds 8a–c
were active against Enterococcus faecalis 15 376 having vanA resistance
gene while teicoplanin and 7 were completely inactive against this
bacterium strain.
The detected antibacterial activities of 8d, 8e and 8f were related to

the length of the alkyl chain substituents of their maleimide residues.
The bis-dodecyl derivative 8d was inactive, the bis-octyl derivative 8e
was a weak antibacterial and the bis-propylthio compound 8f
displayed very high activity. It can be supposed that a correlation

exists between lipophilicity of the maleimide substituents and anti-
bacterial activity, and the high lipophilicity erodes the activity. To test
this hypothesis, logP (logarithm of partition coefficient between n-
octanol and water) values were calculated for N-methyl maleimide
derivatives 11a–f and the calculated logP values corroborate our
postulation (Table 3).
In conclusion we have utilized, for the first time, bis-sulfide

derivatives of N-alkoxycarbonyl maleimide for versatile derivatisation
of teicoplanin pseudoaglycon. It turned out that lipophilicity of
substituents of the maleimide ring has strong influence on the
antibacterial activity of these derivatives. Further synthetic tuning of
these chemical structures hopefully will result in even more effective
antibacterials.

EXPERIMENTAL PROCEDURE

General information
Maleimide and thiols 2b–2g were purchased from Sigma-Aldrich Q5Chemical.
2,3-Dibromomaleimide 1, 1,2:3,4-di-O-isopropylidene-6-deoxy-6-thio-α-D-
galactopyranose 2a and teicoplanin pseudoaglycon 7 were prepared according
to literature procedures. TLC analysis was performed on Kieselgel 60 F254
(Merck Q6) silica gel plates with visualization by immersing in ammonium-
molibdate solution followed by heating or Pauly-reagent in the case of
teicoplanin derivatives. Column chromatography was performed on silica gel
60 (Merck 0.063–0.200mm), flash column chromatography was performed on
silica gel 60 (Merck 0.040–0 0.063mm). Organic solutions were dried over
MgSO4 and concentrated under vacuum. The 1H (400 and 500MHz) and 13C
NMR (100.28, 125.76MHz) spectra were recorded with Bruker DRX-400 and
Bruker Avance II 500 spectrometers. Chemical shifts are referenced to Me4Si or
DSS Q7(0.00 p.p.m. for 1H) and to solvent signals (CDCl3: 77.00 p.p.m., DMSO-
d6: 39.51 p.p.m. for 13C). MALDI Q8-TOF MS analyses for the compounds 8b, 8c,
8e, 9 and 10 were carried out in positive reflectron mode using a BIFLEX III
mass spectrometer (Bruker Q9, Germany) equipped with delayed-ion extraction.
In the case of 8a, 8d and 8f, MALDI-TOF MS spectra were recorded
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Scheme 1 Reaction of thiols with 3,4-dibromomaleimide.
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by a Voyager-DE STR MALDI-TOF Biospectrometry Workstation (Applied

BiosystemsQ10 ). 2,5-Dihydroxybenzoic acid was used as matrix and CF3COONa as

cationising agent in DMF. Elemental analysis (C, H, S) was performed on an

Elementar Vario MicroCube instrument. The antibacterial activity of 8a–f, 9
and 10 was tested against a panel of Gram-positive bacteria using broth

microdilution method as described earlier.24

General method A for preparation maleimide bis-sulfides (3a–3g)
To a stirred solution of 2,3-dibromomaleimide23 (1.0mmol) in CH2Cl2 (20ml)

Et3N (2.0 mmol) and thiol (2.1mmol) were added under argon atmosphere

and stirred for 3 h at room temperature. The reaction mixture was evaporated,

and the crude product was purified by flash chromatography to give the desired

compound.

General method B for preparation N-ethoxycarbonyl maleimide
bis-sulfides (5a–5g)
To a stirred solution of maleimide bis-sulfide (1.0mmol) in dry acetone

(20ml) K2CO3 (1.2mmol) and ethyl chloroformate (1.2mmol) were added

under argon atmosphere and stirred for 3 h at room temperature. The

reaction mixture was diluted with CH2Cl2, filtered through a pad of Celite

and evaporated. The crude product was used for further step without

purification.

Table 1 Synthesis and structure of teicoplanin pseudoaglycon-maleimide conjugates

Reagent R Products (yield %)

5a 8a (15) 9a

5b Ph 8b (21) 9 (41)

5c Bn 8c (16) 9 (44)

5d n-dodecyl 8d (44) 9a

5e n-octyl 8e (22) 9a

5f n-propyl 8f (66) 9a

5g t-butyl 8gb 9 (59)

6g t-butyl 8gb 10 (48)

aFormation was observed (based on TLC), but it was not isolated.
bIdentified by MS method but it could not be isolated in pure form.
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General method C for the synthesis of teicoplanin pseudoaglycon
derivatives (8a–8f)
To a stirred solution of teicoplanin pseudoaglycon10c (0.1mmol) in dry DMF

(5ml) N-ethoxycarbonyl maleimide bis-sulfides (0.14mmol) and Et3N (0.1

mmol) were added under argon atmosphere and stirred for overnight at room

temperature. The reaction mixture was evaporated, and the crude product was

purified by flash chromatography to give the desired compound.

Compound 3a. 2,3-Dibromomaleimide (255mg, 1.0 mmol) was reacted with
thiol 2a25 (580.4mg, 2.1 mmol) according to general method A. The crude

product was purified by silica gel chromatography in n-hexane:acetone= 8:2, to

give 3a (550mg, 85%) as a yellow sirup. 1H NMR (400MHz, CDCl3) δ 7.58

(1H, s, NH), 5.51 (2H, d, J1,2= 0.3 Hz, 2×H-1), 4.62 (2H, d, J2,3= 8.0 Hz,

2×H-2), 4.32–4.30 (4H, m, 2×H-3, 2×H-4), 3.98–3.95 (2H, m, 2×H-5),

3.57–3.36 (4H, m, 2×H-6a,b), 1.48, 1.44, 1.33, 1.32 (24H, 4× s, 8 ×CH3-ip);
13C NMR (100MHz, CDCl3) δ 165.8 (2C, 2×C=O), 137.2, 136.9 (2C, C=C),

109.5, 108.7 (4C, 4×Cq-ip), 96.5 (2C, 2×C-1), 71.5, 70.9, 70.4, 67.9 (8C,

skeleton carbons), 31.6 (2C, 2×C-6), 25.9, 24.9, 24.4 (8C, 8×CH3); analysis

calculated for C28H39NO12S2 C 52.08, H 6.09, N 2.17, O 29.73, S 9.93. Found:
C 51.99, H 6.08, S 9.90.

Compound 3b. 2,3-Dibromomaleimide (255mg, 1.0mmol) was reacted
with thiophenol 2b (215 μl, 2.1mmol) according to general method A.
The crude product was purified by silica gel chromatography in n-hexane:
acetone= 8:2, to give 3b (310mg, 98%) as a yellow sirup. 1H NMR
(400MHz, CDCl3) δ 7.83 (1H, s, NH), 7.29–7.17 (10H, m, arom); 13C
NMR (100MHz, CDCl3) δ 166.5 (2C, 2×C=O), 136.8 (2C, C=C), 131.9,
129.1, 128.6 (10C, arom), 128.9 (2C, Cq arom); analysis calculated for
C16H11NO2S2 C 61.32, H 3.54, N 4.47, O 10.21, S 20.46. Found: C 61.15,
H 3.53, S 20.39.

Compound 3c. 2,3-Dibromomaleimide (510mg, 2.0mmol) was reacted with
benzyl mercaptan 2c (490 μl, 4.2mmol) according to general method A. The
crude product was purified by silica gel chromatography in n-hexane:acetone=
8:2, to give 3c (460mg, 67%) as a yellow sirup. 1H NMR (400MHz, CDCl3) δ
7.78 (1H, s, NH), 7.29–7.26 (10H, m, arom), 4.42 (4H, s, 2 × SCH2);

13C NMR
(100MHz, CDCl3) δ 175.3, 166.3 (2C, 2×C=O), 136.5 (2C, C=C), 128.9,
128.8, 128.7, 127.7 (10C, arom), 36.2 (2C, 2× SCH2); analysis calculated for
C18H15NO2S2 C 63.32, H 4.43, N 4.10, O 9.37, S 18.78. Found: C 63.19, H 4.45,
S 18.69.

Compound 3d. 2,3-Dibromomaleimide (510mg, 2.0 mmol) was reacted with
dodecyl mercaptan 2d (950 μl, 4.2 mmol) according to general method A. The
crude product was purified by silica gel chromatography in n-hexane:ethyl
acetate= 9:1, to give 3d (670mg, 67%) as a yellow sirup. 1H NMR (400MHz,
CDCl3) δ 7.55 (1H, s, NH), 3.29–3.25 (4H, m, 2× SCH2), 1.64–1.25 (40H, m,
20×CH2), 0.89–0.86 (6H, m, 2 ×CH3);

13C NMR (100MHz, CDCl3) δ 165.8
(2C, 2×C=O), 136.4 (2C, C=C), 31.5, 31.4, 30.2, 29.3, 29.1, 28.9, 28.7, 28.1
(20C, 20×CH2), 22.3 (2C, 2 × SCH2), 13.7 (2C, 2×CH3). Analysis calculated
for C28H51NO2S2 C 67.55, H 10.33, N 2.81, O 6.43, S 12.88. Found: C 66.59, H
10.23, S 12.03.

Compound 3e. 2,3-Dibromomaleimide (255mg, 1.0 mmol) was reacted with
octyl mercaptan 2e (364 μl, 2.1 mmol) according to general method A. The
crude product was purified by silica gel chromatography in n-hexane:acetone=
8:2, to give 3e (317mg, 82%) as a yellow sirup. 1H NMR (400MHz, CDCl3) δ
7.71 (1H, s, NH), 3.28 (4H, t, J= 7.5 Hz, 2× SCH2), 1.69–1.60 (8H, m,
4×CH2), 1.43–1.27 (20H, m, 10×CH2), 0.88 (6H, t, J= 6.8 Hz, 2 ×CH3);

13C
NMR (100MHz, CDCl3) δ 166.3 (2C, 2×C=O), 136.7 (2C, C=C), 31.8,
30.5, 29.0, 28.5 (12C, 12 ×CH2), 22.6 (2C, 2× SCH2), 14.0 (2C, 2×CH3);
analysis calculated for C20H35NO2S2 C 62.29, H 9.15, N 3.63, O 8.30, S 16.63.
Found: C 61.03, H 9.08, S 16.08.

Compound 3f. 2,3-Dibromomaleimide (510mg, 2.0 mmol) was reacted
with propyl mercaptane 2f (380 μl, 4.2 mmol) according to general
method A. The crude product was purified by silica gel chromatography in
n-hexane:ethyl acetate= 9:1, to give 3f (430mg, 87%) as a yellow
sirup. 1H NMR (400MHz, CDCl3) δ 7.77 (1H, s, NH), 3.28–3.25 (4H, m,

Table 2 Antibacterial activity of compounds 7–10

Teicoplanin 7 8a 8b 8c 8d 8e 8f 9 10

Bacillus subtilis ATCC 6633 0.5/16 2/16 4/256 4/32 4/32 128/256 32/256 1/256 64/256 8/64

Staphylococcus aureus MSSA ATCC 29213 0.5/2 2/32 4/256 2/16 4./32 64/256 8/64 1/256 16/128 8/64

Staphylococcus aureus MRSA ATCC 33591 0.5/2 1/16 4/256 2/16 4/32 64/256 2/16 1/256 4/64 8/64

Staphylococcus epidermidis biofilm ATCC 35984 2/32 2/32 1/256 1/8 0.5/2 8/256 1/8 0.5/256 4/32 4/64

Enterococcus faecalis ATCC 29212 2/64 4/32 4/256 1/64 0.5/64 8/256 8/256 1/256 8/256 8/256

Staphylococcus epidermidis mecA 16/32 1/32 1/256 2/16 0.5/4 8/256 2/16 0.5/256 4/32 8/64

Enterococcus faecalis 15376 vanA 256/256 256/256 4/256 1/256 0.5/32 128/256 32/256 1/256 16/256 8/256

Enterococcus faecalis ATCC 51299 vanB 4/256 2/32 2/256 2/64 0.5/64 64/256 8/128 1/256 8/128 8/128

Abbreviations: ATCC, American type culture collection; mecA, mecA gene expression in Staphylococcus; MRSA, methicillin resistant Staphylococcus aureus; MSSA, methicillin sensitive
Staphylococcus aureus; vanA +, vanA gene positive; vanB +, vanB gene positive.

Table 3 Calculated logP for N-methyl maleimide derivatives 11a–f

Compound R LogP

11a 0.54

11b Ph 2.65

11c Bn 2.78

11d n-dodecyl 8.48

11e n-octyl 5.14

11f n-propyl 0.97
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2× SCH2), 1.73–1.66 (4H, m, 2×CH2), 1.06–1.02 (6H, m, 2×CH3);
13C NMR (100MHz, CDCl3) δ 166.3 (2C, 2×C=O), 137.2 (2C, C=C),
33.6 (2C, 2 ×CH2), 23.8 (2C, 2× SCH2), 13.1 (2C, 2×CH3); analysis calculated
for C10H15NO2S2 C 48.95, H 6.16, N 5.71, O 13.04, S 26.14. Found: C 48.18, H
5.70, S 26.01.

Compound 3g. 2,3-Dibromomaleimide (510mg, 2.0 mmol) was reacted with
t-butyl mercaptane 2g (473 μl, 4.2mmol) according to general method A. The
crude product was purified by silica gel chromatography in n-hexane:ethyl
acetate= 9:1, to give 3g (432mg, 80%) as a yellow sirup. 1H NMR (400MHz,
CDCl3) δ 8.09 (1H, s, NH), 1.54 (18H, s, 6 ×CH3);

13C NMR (100MHz,
CDCl3) δ 166.9 (2C, 2×C=O), 145.3 (2C, C=C), 51.9 (2C, 2× SCq), 32.2
(6C, 6×CH3); analysis calculated for C12H19NO2S2 C 52.71, H 7.00, N 5.12, O
11.70, S 23.46. Found: C 51.66, H 6.93, S 22.89.

Compound 6g. To a stirred solution of 2,3-dibromomaleimide (0.255 g, 1.0
mmol) in tetrahydrofuran (4ml) N-methylmorpholine (76 μl, 1.1 mmol) and
methyl chloroformate (85 μl, 1.1 mmol) were added at 0 °C. When TLC (n-
hexane:acetone= 8:2) showed complete conversion of the starting material
(3 h), the reaction mixture was diluted with CH2Cl2, filtered through a pad of
Celite and evaporated. The obtained crude 4 (0.308 g) was reacted, without
purification, with t-butyl mercaptan 2g (237 μl, 2.1mmol) according to general
method A to give compound 6g (0.150 g). The crude product was used for
further step without purification.

Compound 8a. Teicoplanin pseudoaglycon (140mg, 0.1mmol) was reacted
with compound 5a (100mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=
8:2, to give 8a (30mg, 15%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 2051.39m/z. Calcd for C94H94Cl2N8O35S2Na 2051.45m/z.

Compound 8b. Teicoplanin pseudoaglycon (140mg 0.1mmol) was reacted
with compound 5b (58mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=

8:2, to give 8a (35mg, 21%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 1719.41m/z. Calcd for C82H66Cl2N8O25S2Na 1719.29m/z.

Compound 8c. Teicoplanin pseudoaglycon (140mg, 0.1 mmol) was reacted
with compound 5c (41mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=
7:3, to give 8c (27mg, 16%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 1747.47m/z. Calcd for C84H70Cl2N8O25S2Na 1747.32m/z.

Compound 8d. Teicoplanin pseudoaglycon (140mg, 0.1mmol) was reacted
with compound 5d (74mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=
9:1, to give 8d (85mg, 44%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 1903.66m/z. Calcd for C94H106Cl2N8O25S2Na 1903.60m/z.

Compound 8e. Teicoplanin pseudoaglycon (140mg, 0.1mmol) was reacted
with compound 5e (69mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=
8:2, to give 8d (38mg, 22%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 1791.64m/z. Calcd for C86H90Cl2N8O25S2Na 1791.47m/z.

Compound 8f. Teicoplanin pseudoaglycon (140mg, 0.1 mmol) was reacted
with compound 5f (40mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=
9:1, to give 8d (110mg, 66%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 1651.02m/z. Calcd for C76H70Cl2N8O25S2Na 1651.32m/z.

Compound 9. Teicoplanin pseudoaglycon (140mg, 0.1mmol) was reacted
with compound 5g (49mg, 0.14mmol) according to general method C. The
crude product was purified by silica gel chromatography in toluene:methanol=
9:1, to give 9 (87mg, 59%) as a yellow powder. MALDI-TOF MS: [M+Na]
+= 1495.34m/z. Calcd for C69H62Cl2N8O25Na 1495.31m/z.

Compound 10. Teicoplanin pseudoaglycon (210mg, 0.15mmol) was
reacted with compound 6g (70mg, 0.21mmol) according to general

Table 4 1H and 13C NMR data for compounds 8a, 8b, 8c and 8d (chemical shifts in ppm)

Assignment 8a 13C 8a 1H 8b 13C 8b 1H 8c 13C 8c 1H 8d 13C 8d 1H

x1 64.8 7.05 64.8 7.07 64.9 7.06 64.6 7.05

x2 55.6 4.98 55.9 4.98 55.9 4.99 55.5 4.98

x3 59.2 5.32 59.1 5.29 59.2 5.33 59.1 5.36

x4 54.8 5.59 54.8 5.58 54.9 5.59 54.8 5.64

z6 76.8 5.40 76.2 5.45 76.7 5.42 76.3 5.42

2f 131.5 7.68 131.6 7.67 131.5 7.65 131.8 7.69

3b 109.7 6.32 109.7 6.28 110.2 6.32 110.0 6.39

4b 107.9 5.57 108.2 5.53 108.3 5.55 108.2 5.55

4f 104.6 5.07 104.8 5.06 104.9 5.07 104.9 5.06

5b 136.3 7.09 136.6 7.09 136.6 7.09 136.5 7.11

GlcNAc 1 98.4 4.40 98.8 4.39 99.0 4.36 99.0 4.39

Maleimide 2 165.3 165.4 165.4 165.5

Maleimide 3 135.3 135.3 136.8 134.2

Maleimide 4 135.3 135.3 136.8 134.2

Maleimide 5 165.3 165.4 165.4 165.5

SCH2 35.5 4.42–4.37 31.5 3.33–3.21

α-Galp 1 95.7 5.41

α-Galp 2 69.7 4.30

α-Galp 3 70.2 4.60

α-Galp 4 70.9 4.22

α-Galp 5 67.2 3.82

α-Galp 6 31.2 3.37–3.27

iP-Cq 108.8; 108.6

iP-CH3 31.5–24.2 1.40–1.23

Ph 131.0–128.18 7.29–7.15
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method C. The crude product was purified by silica gel chromatography
in toluene:methanol= 8:2, to give 10 (120mg, 48%) as a yellow powder.
MALDI-TOF MS: [M+Na]+= 1481.51m/z. Calcd for C68H60Cl2N8O25Na
1481.29m/z.

NMR analysis
The 1H and 13C NMR data of the teicoplanin derivatives 8a–f, 9 and 10 are
collected in Tables 4 and 5. The spectra were recorded at 500.13/125.76MHz
frequencies, respectively, at 300 K, using DMSO-d6, as solvent. Numbering

Table 5 1H and 13C NMR data for compounds 8e, 8f, 9 and 10 (chemical shifts in p.p.m.)

Assignment 8e 13C 8e 1H 8f 13C 8f 1H 9 13C 9 1H 10 13C 10 1H

x1 64.8 7.05 64.8 7.05 64.8 7.05 64.8 7.06

x2 56.0 4.99 55.7 4.99 55.7 4.98 56.0 4.98

x3 59.4 5.42 59.2 5.42 58.9 5.34 59.3 5.42

x4 54.9 5.57 54.8 5.58 54.8 5.62 54.8 5.59

z6 76.0 5.42 76.2 5.42 76.8 5.42 76.3 5.42

2f 131.3 7.64 131.0 7.64 131.8 7.63 131.5 7.66

3b 110.0 6.32 110.0 6.32 110.0 6.32 109.9 6.33

4b 108.3 5.57 108.1 5.54 107.6 5.53 108.0 5.51

4f 104.8 5.08 104.7 5.08 104.8 5.09 104.8 5.08

5b 136.6 7.09 136.3 7.09 136.2 7.2 136.1 7.09

GlcNAc 1 99.3 4.38 99.4 4.38 99.8 4.36 98.6 4.38

Maleimide 2 165.5 165.4

Maleimide 3 138.5 135.4

Maleimide 4 138.5 135.4

Maleimide 5 165.5 165.4

SCH2 31.0 3.25–3.17 32.9 3.28–3.15

CH2 29.9–21.9 1.56–1.14 23.4 1.60–1.55

CH3 13.8 0.86–0.82 12.8 0.95–0.93

NH 1 7.96

CO 2 169.9 169.5 7.86

OCH3 51.5 3.56

OCH2 60.1 4.05–4.01

CH3 14.8 1.18–1.15

Figure 1 Structure and numbering for compounds 8a–f, 9 and 10. A full color version of this figure is available at The Journal of Antibiotics journal online.
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atoms in teicoplanin derivatives are given in Figure 1. Signal assignments were
aided by 2D HSQC, TOCSY (15 and 60ms mixing times) and HMBC (60ms
mixing time) experiments.

ACKNOWLEDGEMENTS

This research was supported by the European Union and the State of Hungary,
co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/
2-11-1-2012-0001 ‘National Excellence Program’. The study was also supported
by the Hungarian Research Fund (OTKA K 109208 and ANN 110821) and by
the University of Debrecen (bridging fund to PH).

1 Kahne, D., Leimkuhler, C., Lu, W. & Walsh, C. Glycopeptide and lipoglycopeptide
antibiotics. Chem. Rev. 105, 425–448 (2005).

2 von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S. & Habich, D. Antibacterial
natural products in medicinal chemistry—exodus or revival? Angew. Chem. Int. Ed.
Engl. 45, 5072–5129 (2006).

3 Kristóf, K. et al. Significance of methicillin-teicoplanin resistant Staphylococcus
haemolyticus in bloodstream infections in patients of the Semmelweis University
hospitals in Hungary. Eur. J. Clin. Microbiol. Infect. Dis. 30, 691–699 (2011).

4 Xu, H.-W., Shang-Shang Qin, S.-S. & Liu, H.-M. New synthetic antibiotics for the
treatment of enterococcus and campylobacter infection. Current Topics Med. Chem.
14, 21–39 (2014).

5 James, R. C., Pierce, J. G., Okano, A., Xie, J. & Boger, D. L. Redesign of glycopeptide
antibiotics: Back to the future. ACS Chem. Biol. 7, 797–804 (2012).

6 Ashford, P.-A. & Bew, S. P. Recent advances in the synthesis of new glycopeptide
antibiotics. Chem. Soc. Rev. 41, 957–978 (2012).

7 Cooper, R. D. et al. Reductive alkylation of glycopeptide antibiotics: synthesis and
antibacterial activity. J. Antibiot. 49, 575–581 (1996).

8 Judice, J. K. & Pace, J. L. Semi-synthetic glycopeptide antibacterials. Bioorg. Med.
Chem. Lett. 13, 4165–4168 (2003).

9 Malabarba, A. & Ciabatti, R. Glycopeptide derivatives. Curr. Med. Chem. 8,
1759–1773 (2001).

10 Sztaricskai, F. et al. N-glycosylthioureido aglyco-ristocetins without platelet aggregation
activity. J. Antibiot. 60, 529–533 (2007).

11 Pintér, G. et al. Click reaction synthesis of carbohydrate derivatives from ristocetin
aglycon with antibacterial and antiviral activity. Bioorg. Med. Chem. Lett. 20,
2713–2717 (2010).

12 Sipos, A. et al. Synthesis of isoindole and benzoisoindole derivatives of teicoplanin
pseudoaglycon with remarkable antibacterial and antiviral activities. Bioorg. Med.
Chem. Lett. 22, 7092–7096 (2012).

13 Sipos, A. et al. Synthesis of fluorescent ristocetin aglycon derivatives with remarkable
antibacterial and antiviral activities. Eur. J. Med. Chem. 56, 361–367 (2012).

14 Naesens, L. et al. Anti-influenza virus activity and structure-activity relationship of
aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains. Anti-
viral Res. 82, 89–94 (2009).

15 Vanderlinden, E. et al. Intracytoplasmic trapping of influenza virus by a lipophilic
derivative of aglycoristocetin. J. Virol. 86, 9416–9431 (2012).

16 Pintér, G. et al. A diazo transfer—click reaction route to new, lipophilic teicoplanin
and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus
activity: an aggregation and receptor binding study. J. Med. Chem. 52,
6053–6061 (2009).

17 Bereczki, I. et al. Semisynthetic teicoplanin derivatives as new influenza virus binding
inhibitors: synthesis and antiviral studies. Bioorg. Med. Chem Lett. 24,
3251–3254 (2014).

18 Smith, M. E. B. et al. Protein modification, bioconjugation, and disulfide bridging using
bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).

19 Schumacher, F. F. et al. In situ maleimide bridging of disulfides and a new approach to
protein PEGylation. Bioconj. Chem. 22, 132–136 (2011).

20 Ryan, C. P. et al. Tunable reagents for multi-functional bioconjugation: reversible or
permanent chemical modification of proteins and peptides by control of maleimide
hydrolysis. Chem. Commun. 47, 5452–5454 (2011).

21 Schumacher, F. F. et al. Next generation maleimides enable the controlled assembly of
antibody–drug conjugates via native disulfide bond bridging. Org. Biomol. Chem. 12,
7261–7269 (2014).

22 Castañeda, L. et al. A mild synthesis of N-functionalised bromomaleimides, thiomalei-
mides and bromopyridazinediones. Tetrahedr. Lett. 54, 3493–3495 (2003).

23 Marminon, C. et al. Syntheses and antiproliferative activities of rebeccamycin
analogues bearing two 7-azaindole moieties. Bioorg. Med. Chem. 11, 679–687
(2003).

24 Sztaricskai, F. et al. A new series of glycopeptide antibiotics incorporating a squaric
acid moiety. J. Antibiot. 59, 564–582 (2006).

25 Martins Alho, M. A., D'Accorso, N. B. & Thiel, I. M. E. Syntheses of some 6-S-
heterocyclic derivatives of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose. J. Hetero-
cyclic Chem. 33, 1339–1343 (1996).

Antibacterial
Q1

evaluation of teicoplanin
M Csávás et al

7

The Journal of Antibiotics


