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Abstract: In this study, metallic nanoislands were prepared by thermal annealing of gold thin film
produced by vacuum evaporation on a glass substrate to investigate the surface-enhanced Raman
scattering (SERS) effect on them. The influence of the analyte on the enhancement factor of SERS
was studied with riboflavin and rhodamine 6G dye. Two laser excitation sources at 532 and 633 nm
wavelengths were used for SERS measurements. We found that the enhancement factors of the
gold nanoisland SERS substrates were influenced by the analytes’ adsorption tendency onto their
surfaces. The SERS amplification was also found to be dependent on the electronic structure of the
molecules; higher enhancement factors were obtained for rhodamine 6G with 532 nm excitation,
while for riboflavin the 633 nm source performed better.

Keywords: gold nanoislands; plasmonics; surface-enhancement Raman scattering; sensors;
photonic devices

1. Introduction

Raman spectroscopy is a branch of vibrational spectroscopy that allows highly sensi-
tive structural identification of various chemical and biological materials based on their
unique vibrational characteristics, all without destroying the sample. Raman spectroscopy
is an effective tool for analytical studies, but the low intensity of Raman signals is a major
disadvantage of the method [1]. Surface-enhanced Raman scattering (SERS) is a commonly
used technique to enhance the signal, that allows the analysis of low-concentration samples
or even the detection of a single molecule. The SERS effect can occur when the analyte
is in close vicinity of a nanoscale-structured metal surface. By using metal surfaces with
optimal parameters, the intensity of Raman signals can be enhanced by several orders of
magnitude [2–4].

It is now accepted that two types of mechanisms play a role in an increase in the
intensity of Raman signals: the electromagnetic (EM) enhancement [5] derived from elec-
tromagnetic fields generated by plasmon excitation of metal particles serving as SERS
substrates, and the chemical amplification [6,7], which allows the target molecule to trans-
fer electrons to the metal particles, often leading to the formation of a chemical bond
between the metallic surface and the molecule [2].

For SERS measurements, plasmonic metal substrates made of silver, gold, or copper
are used in most cases [8], which are synthesized by various methods. SERS active agents
can be divided into three categories: (1) metal nanoparticles (MNPs) in suspension, (2)
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MNPs immobilized on solid substrates, (3) nanostructured surfaces fabricated directly
on solid substrates by using nanolithography and template synthesis [9]. Manufacturing
technologies allow tuning of the size and shape of the nanoparticles, which can also
greatly influence the degree of enhancement [10,11]. To produce substrates with optimal
parameters providing maximum SERS enhancement [12], it is necessary to understand
how the material, size, shape, and arrangement of nanoparticles, or the excitation source,
affect SERS efficiency [13–15].

If the particle size is too small, the light scattering properties will decrease, resulting
in a decrease in SERS enhancement. As the particle size increases, the SERS effect also
increases as the number of available free electrons is higher, which plays an important
role in the excitation of plasmons [8]. In our previous work, examining the effect of size
and distance of Au and Ag nanoparticles generated by heat treatment of a thin metallic
layer produced by vacuum evaporation, we found that the SERS effect increases linearly
with particle size, as larger particles function as larger scattering centers [12]. In addition,
by reducing the distance between the particles, hot spots will be located closer to each
other, leading to the formation of highly concentrated EM fields, which results in the
enhancement of Raman signals [12,16–18].

To effectively optimize nanoparticles for SERS, the plasmon wavelength of the particle
must be considered as well. The localized surface plasmon resonance (LSPR) peak of
the plasmonic material must be close to the wavelength of the excitation source or the
inelastically scattered light. The LSPR wavelength of a plasmonic material depends on
the material, size, and shape of the particle. In the case of gold and silver, the plasmon
wavelength is between 500 and 800 nm, and 400 and 700 nm, respectively. Furthermore,
the plasmon peak shows a redshift with increasing size of the nanostructures and distance
between the particles. If the wavelength of the excitation source is far from the LSPR peak
of the plasmonic material, the extent of EF also decreases [12,13].

In addition to the parameters of the nanoislands, the adsorption of the analyte to
their surface should play an important role in the SERS process. However, there are no
systematic studies concerning how the analytes affect the optical parameters of the SERS
substrates, only the initial parameters and their effect on enhancement factors are studied.
Many different analyte molecules are used for SERS developments and measurements. For
example, heterocyclic aromatic compounds such as melamine [19,20], or explosives such
as TNT [21,22], or drugs and pharmaceuticals such as methamphetamine [23,24]. For our
studies, we selected two frequently used compounds, riboflavin and rhodamine 6G, which
are both widely used in SERS research, to study and understand the SERS process, and as an
analyte molecule to optimize the production of different SERS substrates and to determine
the enhancement factor [2,25–30]. However, no systematic studies have been performed
before concerning how the properties of the analyte influence the enhancement factor at
different excitation wavelengths. As the electronic structure of the selected analytes is
different, the obtained results could add important knowledge about the influence of the
analyte on the SERS enhancement.

In this study, SERS enhancement was investigated on gold nanoislands made by heat
treatment of a gold thin film formed on a glass substrate by thermal vacuum evaporation.
The enhancement factor was studied for two different analytes and two excitation wave-
lengths, and the role of the adsorption and electronic structure of the analytes in the SERS
enhancement was examined.

2. Materials and Methods
2.1. Preparation of Gold Nanoislands as SERS Substrates

The SERS active surfaces used for the measurements were formed on substrates cut
from microscope slides with a glass cutter. The glass plates were cleaned in an EMMI-
20HC ultrasonic bath in 96% ethanol, and then wiped dry with a sterile paper towel.
The amount of gold to be evaporated was measured on a Sartorius Micro M3p semi-
micro analytical balance. A gold thin layer of a given thickness was prepared by thermal
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vacuum evaporation. The thickness of the film, which was measured with an Ambios
XP-1 profilometer, was found to be 9 and 12 nm. The layer deposition was followed by
heat treatment of the gold film in an oven saturated with Ar:H precursor gas. The high
temperature causes diffusion on the surface, which results in cracking of the layer, followed
by nanoscale island formation. The heat treatment was performed at different temperatures
(450, 500, and 550 ◦C) and for different periods (15, 30, 60, and 120 min), which led to
the formation of gold nanoparticles having different parameters (e.g., particle diameter,
interparticle distance and so, plasmon wavelength) [12]. The following table (Table 1)
summarizes the production parameters of the 18 substrates that were examined in our
study.

Table 1. Production parameters of gold nanoisland substrates.

Sample No.
Initial Layer
Thickness

(nm)

Annealing
Temperature

(◦C)

Annealing
Time
(min)

1 9 500 15
2 9 500 60
3 9 550 15
4 12 450 15
5 9 550 60
6 12 450 120
7 9 450 60
8 12 550 60
9 12 500 60
10 12 550 15
11 12 500 30
12 9 450 30
13 9 450 15
14 9 450 120
15 12 500 15
16 9 500 30
17 9 550 60
18 12 550 120

2.2. Characterization of SERS Substrates

The obtained samples were investigated with a SHIMADZU UV-3600 (Kioto, Japan,
Shimadzu Corporation) spectrophotometer to study their plasmon wavelength. The optical
transmittance of the samples was measured in the air before and after the adsorption of
the analytes. The freshly prepared and washed metallic nanoislands were examined by
using a scanning electron microscope (SEM). SEM images were recorded with a Hitachi
S4300-CFE (Chiyoda City, Tokyo, Hitachi Corporation) instrument (see Figure 1).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 14 
 

  

(a) (b) 

Figure 1. SEM image of a gold nanoislands sample (Sample 7): (a) freshly prepared; (b) after wash-

ing. 

2.3. Sample Preparation for SERS Measurements 

Two different analyte solutions were used for SERS measurements. The first was an 

aqueous solution of riboflavin (St. Louis, MO, USA, Sygma Aldrich Coorporation) at a 

concentration of 10−5 mol/dm3. The gold nanoisland substrates were immersed in the ribo-

flavin solution overnight, then, washed with distilled water, and dried in the air [31]. The 

other analyte was an aqueous solution of rhodamine 6G (R6G) (St. Louis, MO, USA, 

Sygma Aldrich Coorporation) at a concentration of 10−5 mol/dm3. In this case, the solution 

was dripped onto the SERS substrate so that it was completely spread on it, and then dried 

in air [32]. 

The same gold nanoisland substrates were used during the experiments, thus, be-

tween measurements with the two analytes, they were cleaned by soaking in cc. HNO3 for 

30 min. This was followed by washing with distilled water to remove any acid residue 

remaining on the surface, and then dried in air. The cleaned substrates were verified by 

optical transmittance spectra, and there was no difference as compared with the as-depos-

ited substrates. 

2.4. SERS Measurements 

A Horiba LabRam Raman spectrometer was used for SERS measurements with two 

different excitation sources of 532 and 633 nm wavelength. The excitation beam was fo-

cused on the surface of the sample with a 50× lens in both cases. For reference measure-

ments, the analyte solution was applied to a clear glass plate under the same conditions. 

For riboflavin and R6G, the measurement parameters are summarized in Table 2. 

  

Figure 1. SEM image of a gold nanoislands sample (Sample 7): (a) freshly prepared; (b) after washing.



Appl. Sci. 2021, 11, 9838 4 of 12

2.3. Sample Preparation for SERS Measurements

Two different analyte solutions were used for SERS measurements. The first was an
aqueous solution of riboflavin (St. Louis, MO, USA, Sygma Aldrich Coorporation) at a
concentration of 10−5 mol/dm3. The gold nanoisland substrates were immersed in the
riboflavin solution overnight, then, washed with distilled water, and dried in the air [31].
The other analyte was an aqueous solution of rhodamine 6G (R6G) (St. Louis, MO, USA,
Sygma Aldrich Coorporation) at a concentration of 10−5 mol/dm3. In this case, the solution
was dripped onto the SERS substrate so that it was completely spread on it, and then dried
in air [32].

The same gold nanoisland substrates were used during the experiments, thus, between
measurements with the two analytes, they were cleaned by soaking in cc. HNO3 for 30 min.
This was followed by washing with distilled water to remove any acid residue remaining
on the surface, and then dried in air. The cleaned substrates were verified by optical
transmittance spectra, and there was no difference as compared with the as-deposited
substrates.

2.4. SERS Measurements

A Horiba LabRam Raman spectrometer was used for SERS measurements with two
different excitation sources of 532 and 633 nm wavelength. The excitation beam was focused
on the surface of the sample with a 50× lens in both cases. For reference measurements,
the analyte solution was applied to a clear glass plate under the same conditions. For
riboflavin and R6G, the measurement parameters are summarized in Table 2.

Eighteen different gold nanoisland SERS substrates were investigated in this study.
The SERS and normal Raman spectra shown in the following figures were measured on the
same gold nanoisland substrate, obtained using the production parameters mentioned in
Table 1. Each sample, each analyte with each excitation laser were examined in 10 different
points. The presented results are the average value of the EF, and the standard deviation of
these values was found to be 1–3%.

The contact angles of the two analytes’ aqueous solutions were analyzed on pure glass
and gold nanoisland substrates. A DSA 30 Drop Shape Analyzer (Krüss GmbH, Hamburg,
Germany) was used for the contact angle measurements. The sessile drop method was
applied to measure the water, rhodamine, and riboflavin contact angle (CA) on glass and
gold nanoisland glass surfaces at room temperature (25 ◦C). The rhodamine and riboflavin
droplets (5 µL) were deposited on glass and modified glass surfaces with a manual dosing
system, the water droplets (5 µL) were deposited with an automatic dosing system. The
diameter of a used needle was 0.5 mm. The contact angles were calculated by Krüss
Advance software by fitting the captured droplet shape to the degree calculated from the
Young–Laplace equation. The mean contact angles were calculated from 10 individual
droplet measurements (n = 10).

Table 2. Raman measurement parameters for riboflavin and rhodamine 6G.

Riboflavin Rhodamin 6G
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Table 2. Cont.

Riboflavin Rhodamin 6G

Excitation wavelength 532 nm 633 nm 532 nm 633 nm
Laser intensity 3.2%, 0.9 mW/cm2 1%, 0.06 mW/cm2 0.1%, 0.03 mW/cm2 1%, 0.06 mW/cm2

Measurement time 30 s 40 s 30 s 30 s
Accumulation 5 7 10 10

3. Results and Discussion

Figure 2 compares the Raman spectra of riboflavin measured on the gold nanoisland
SERS substrate described above, on a pure glass substrate as a reference and in solid
form. All spectra were recorded with the same measurement conditions. The spectra
were recorded with 633 nm excitation, as in the case of riboflavin, a higher SERS enhance-
ment was obtained with this excitation wavelength. The following characteristic peaks
of riboflavin can be detected in the spectra: high-intensity bands at 1174 and 1222 cm−1

corresponding to the C–N bending vibrations of the uracil ring and the C-CH3 bond of the
benzene ring, respectively. The peak at 1402 cm−1 can be assigned to C-C vibrations and
the peak at 1496 cm−1 can be assigned to the -CH3 group. Furthermore, the peak appearing
as a shoulder at 1530 cm−1 and the high-intensity band at 1562 cm−1 can be linked to the
vibration of the C-N bond [24,31,33].

Figure 3 shows the Raman spectra of R6G, recorded similarly to those of riboflavin
in Figure 2. A comparison of the spectra shows that using gold nanoisland substrate and
the SERS process, the main bands of rhodamine 6G appear with a higher intensity than in
other samples. The spectra shown were recorded with 532 nm excitation, since in the case
of R6G a higher degree of enhancement was achieved with this laser. In the SERS spectrum,
the C-C vibration of the aromatic ring appears at 1650, 1599, and 1363 cm−1. The band
at 1312 cm−1 can be related to the stretching vibration of the C-O-C group of the carbon
skeleton, and the peaks at 1189 and 773 cm−1 are the vibrations of the -CH3 group. At
614 cm−1, the vibration of the C-C-C group appears at a high intensity [34].
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substrates, and in solid form.

In our study, the magnitude of the SERS enhancement was calculated based on the
enhancement factor (EF) [35] defined as follows:

EF =
ISERS/NSERS

INR/NNR
, (1)

where ISERS is the intensity of the signal obtained during the SERS measurement; INR is the
intensity of the signal obtained during the normal Raman (reference) measurement; and
NSERS and NNR are the average number of molecules absorbed on the surface during the
SERS and normal Raman measurements, respectively [35]. For riboflavin, the magnitude
of SERS EF was calculated from the intensity of the peak at ~1575 cm−1, corresponding to
the vibration of the C-N bond. For R6G, the EF value was calculated from the intensity of
the peak at ~1650 cm−1, arising from the vibrations of the C-C bond of the aromatic ring.

Figure 4 compares the surface-enhanced Raman spectra measured on a given gold
nanoisland sample with two excitation wavelengths. The main peaks of riboflavin can
be detected in both spectra in the Figure; however, the degree of the enhancement of the
Raman signal is more pronounced while using the 633 nm laser. The EF value for the
532 nm laser was found to be 9, while, for 633 nm excitation, it was 42.
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The same comparison for the other analyte, i.e., R6G, is provided in Figure 5. The
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In the case of gold nanoisland substrates, a higher enhancement would be expected
for 532 nm excitation, since the magnitude of the SERS enhancement is influenced by
the plasmon wavelength of the substrate. We know that the LSPR peak of the active
surface must fall close to the wavelength of the excitation source [12]. This is true in
the case of rhodamine 6G, where a higher enhancement was observed with the green
laser, but the opposite occurs for riboflavin. This may be explained by the fact that the
adsorption process of riboflavin is different as compared with R6G, which results in a
greater plasmon wavelength of the gold substrate. As a result, the LSPR peak will be
closer to the wavelength of the red laser and a greater enhancement can be achieved with
this excitation source. Figure 6a shows the normalized absorbance of the gold nanoisland
substrate without analyte and with R6G and riboflavin adsorbed on the surface. It can
be seen how the plasmon wavelength of the gold substrate is redshifted by the different
analytes. Initially, the LSPR wavelength of the clean substrate is at 532 nm, which is shifted
to 551 nm with rhodamine 6G, and to 585 nm with riboflavin. The latter is closer to the
wavelength of the 633 nm excitation source than to 532 nm. Furthermore, Figure 6b shows
the spectra of the normalized absorbance of the two analyte solutions. In the 400–750 nm
region, the absorption peak of riboflavin is located below 510 nm, while R6G has strong
band in the 425–600 nm region. Comparing this with the excitation wavelengths, it can be
concluded that a resonant Raman scattering could occur mainly for the R6G and for that
only with 532 nm excitation. As a consequence, the SERS spectrum of this analyte can also
be of resonant with 532 nm excitation.
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Table 3 summarizes the plasmon wavelengths of the gold nanoisland substrates after
the riboflavin and R6G solution was adsorbed on their surface. Furthermore, the table
contains average EF values calculated for both riboflavin and rhodamine 6G based on
the intensities of the peaks described above as a function of the two excitation sources
(green and red). The standard deviation of these values was 3–5%. The initial plasmon
wavelength of the gold nanostructures was in the range of 510–550 nm, which was already
shown earlier [12,36]. The cleaned substrates were verified, and there was no difference in
the plasmon wavelength as compared with the as-deposited substrates.

Table 3. The plasmon wavelength of gold nanoislands SERS with different analyte solutions, and their associated EF values.

Sample
No.

Plasmon Wavelength of
Gold Nanoisland

Substrate with R6G, nm

SERS Enhancement Factor for
Different Excitations

Plasmon Wavelength of
Gold Nanoisland Substrate

with Riboflavin, nm

SERS Enhancement Factor for
Different Excitations

532 nm 633 nm 532 nm 633 nm

1 569 59.98 +/− 1.81 1.69 +/− 0.04 593 10.46 +/− 0.15 16.28 +/− 0.29
2 545 85.31 +/− 2.99 31.99 +/− 0.80 586 14.71 +/− 0.22 33.76 +/− 0.89
3 539 85.06 +/− 2.98 2.67 +/− 0.09 570 2.04 +/− 0.09 1.89 +/− 0.03
4 593 145.06 +/− 2.45 54.12 +/− 1.89 607 5.93 +/− 0.23 69.82 +/− 1.51
5 532 44.85 +/− 1.57 1.5 +/− 0.03 558 1.57 +/− 0.03 4.51 +/− 0.08
6 636 172.58 +/− 2.59 12.30 +/− 0.18 643 9.81 +/− 0.30 207.12 +/− 4.11
7 589 87.97 +/− 3.08 4.08 +/− 0.06 622 2.71 +/− 0.11 100.48 +/− 1.92
8 548 154.11 +/− 5.39 28.15 +/− 0.62 569 2.21 +/− 0.09 3.53 +/− 0.07
9 582 183.94 +/− 3.68 10.96 +/− 0.24 600 9.65 +/− 0.28 22.37 +/− 0.42

10 547 259.17 +/−
10.37 32.30 +/− 0.71 571 5.50 +/− 0.20 35.64 +/− 0.75

11 557 86.20 +/− 3.02 1.76 +/− 0.04 592 28.69 +/− 0.67 21.87 +/− 0.52
12 559 93.40 +/− 2.34 3.79 +/− 0.05 595 15.64 +/− 0.39 27.55 +/− 0.65
13 557 158.83 +/− 5.56 54.43 +/− 1.72 587 9.80 +/− 0.35 15.29 +/− 0.35
14 556 104.82 +/− 2.62 6.58 +/− 0.25 584 16.90 +/− 0.42 40.06 +/− 0.82
15 582 109.25 +/− 2.73 18.09 +/− 0.41 613 2.82 +/− 0.03 7.71 +/− 0.42
16 613 61.91 +/− 3.10 5.48 +/− 0.21 655 2.75 +/− 0.04 127.75 +/− 2.11
17 540 67.35 +/− 3.37 22.45 +/− 0.49 586 12.33 +/− 0.29 18.88 +/− 0.42
18 573 56.23 +/− 2.53 2.54 +/− 0.06 627 4.63 +/− 0.19 76.47 +/− 2.25
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The data in the table demonstrate that, for the rhodamine 6G and riboflavin, the higher
EF could be achieved with different laser excitations, which could also be connected with
the adsorption of the analyte on the SERS substrate. The polarity and the polar surface area
(PSA) can be used to quantify the adsorption. The PSA is defined as the surface area of
a molecule that arises from oxygen or nitrogen atoms, plus hydrogen atoms attached to
nitrogen or oxygen atoms [32]. Roughly, PSA is the ability of a molecule to form hydrogen
bonds due to the presence of nitrogen and oxygen atoms [37]. For the riboflavin, it is
155 A2, while for the R6G is 63.5 A2 [38,39]. As the PSA value is in a good connection with
the contact angle [40], the latter was measured on glass and gold nanoisland substrates. It
was found that for the riboflavin it is 11◦ +/− 2◦, while for the R6G it is 33◦ +/− 3◦ on a
glass substrate, and 27◦ +/− 3◦ and 45◦ +/+ 5◦ on gold nanoislands substrate, respectively.
It can be seen that while the contact angle increases for both cases on the SERS substrate,
the relation is similar to that of the pure glass substrate. The contact angle values could
be connected with the structure of the molecule and its PSA as well. The examination
of the structure of the two analyte molecules shows that riboflavin has several hydroxyl
groups (-OH) in its structure, with which it can form larger secondary bonds (H-bond
and/or Van der Waals bond) with the gold surface. While the side chains of the rhodamine
6g molecule contains a methyl group (-CH3) in its structure, which could not bond so
easily to the Au surface. As a consequence, there is a difference in the orientation of the
two analytes on the gold surface, and this has also been supported by earlier studies. It
was found that rhodamine 6G molecule adsorbs on the silver surface with the xanthene
plane lying parallel and both the tail of the phenyl group and the ethylamine groups
pointing up from the surface [40]. In another hand, from model calculations of different
orientations and characteristic bands intensities observed in SERS spectra was evident
that riboflavin molecules were adsorbed on the surface via aromatic ring, heterocyclic
rings II and III (N10 and O2) and heterocyclic rings II and III in the case of gold, silver,
and copper, respectively [33]. The results of the contact angle measurements are in good
agreement with the PSA of these materials; a larger contact angle means that the material
is more hydrophobic, and the PSA value is lower, as has also been shown earlier in another
study [41]. As a result of this investigation, it was found that the polarity of the molecule
influences the SERS process, as it affects the absorption of the substrate.

As a consequence of the results, during the investigation of the SERS effect, not only
the parameters of the nanostructure (material, shape, size, gap, and the peak of the plasmon
wavelength) and the wavelength of the laser excitation should be considered [12], but the
type of the studied analyte, and its adsorption on the substrate as well. It was shown in
our study that different analytes have different adsorption, which affects which excitation
wavelength will cause the highest SERS enhancement. Previously, there were no examples
of systematic studies of the effect of the analytes on the SERS process. Rhodamine 6G and
riboflavin have both been used as analyte molecules in several cases to investigate the
optimization of different production of SERS substrates. Furthermore, using the optimized
substrates, the detection limit is determined for both analytes [4,23,33,42–45].

4. Conclusions

SERS enhancement of gold nanoisland SERS substrates was investigated with two
different analytes (riboflavin and rhodamine 6G) and two excitation wavelengths (532 and
633 nm). According to the experimental results, higher enhancement factors were obtained
for rhodamine 6G with 532 nm excitation, while for riboflavin the 633 nm source performed
better. This relation between the analyte and the used excitation can be associated with the
different adsorption tendencies of the investigated molecules on the surface of the gold
nanoislands, as well as with resonant Raman scattering of R6G with 532 nm excitation.
Our results indicate that during the planning of SERS measurements, it is necessary to
consider the possible differences in the adsorption of the analytes, since it might affect
SERS enhancement and the optimal excitation wavelength.
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