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A B S T R A C T   

In essence, targeting mineralization necessitates exact structural delineation and thorough lithological mapping. 
The latter is still a challenge for geologists and its lack hinders meticulous exploration for various mineraliza-
tions. Here we show for the first time over a case study from Arabian Nubian Shield (ANS), the application of 
hyperspectral PRISMA (PRecursore IperSpettrale della Missione Applicativa) data for objective lithological 
mapping using the well-known Random Forest (RF), XGboost (XGB), and Support Vector Machine (SVM) al-
gorithms. Our results manifested the worthiness of PRISMA data in further lithological mapping, especially with 
SVM with a resultant accuracy depending mainly on the input data combination. Upon field verification, the 
current research reveals the usefulness of PRISMA and its preceding four principal components in delivering a 
detailed lithological map for the study area. Additionally, the eligibility of RF, XGB, and SVM was confirmed in 
delivering acceptable results. SVM exceeds XGB and RF in their overall accuracy (95 %, 92 %, and 90 % for SVM, 
XGB, and RF respectively). Our research strongly recommends blending the vantages of Machine Learning Al-
gorithms’ (MLAs) objectivity and the wealth of PRISMA spectral coverage for further precise lithological map-
ping before applicable mineral exploration programs in similar terrains.   

1. Introduction 

Several multispectral datasets including Landsat (TM, ETM, and OLI) 
and Sentinel 2 are applied in lithological mapping and reasonable results 
are achieved. However, these multispectral sensors have a limited 
number of bands, especially within the Short-wave infrared (SWIR) 
range (only 2 bands in most cases) and are not distinctly able to manifest 
the wide variabilities in mineralogical compositions. Even ASTER, 
which always was a first choice for performing detailed geological in-
vestigations due to acquiring 6 SWIR bands has encountered a problem 
since 2008 and can no longer provide SWIR data. Thus, the geological 
community suffers from the absence of detailed spectral coverage in 
visible and near-infrared (VNIR) and SWIR regions that could help 

specification for endmember spectra resulting in a quantitative litho-
logical mapping. 

With its continuous spectral coverage within 0.4–2.5 μm range, 
hyperspectral remote sensing is considered as an accurate tool for 
providing detailed mineralogical and lithological mapping (Chen et al., 
2007; Feng et al., 2018; Harris et al., 2014a, 2014b; Leverington, 2010; 
Zhang and Li, 2014). Basically, lithological mapping depends mainly on 
matching a reference absorption feature (e.g. for a mineral) or full 
spectrum range (e.g. for rocks) with unknown target spectrum, in what 
is called feature or absorption mapping (Clark et al., 2003; Mustard and 
Sunshine, 1999). Geological image spectrometric studies are performed 
using airborne hyperspectral data including visible infrared imaging 
spectroradiometer-next generation (Kumar et al., 2020; Rani et al., 
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2020; Roy et al., 2022), probe (Harris et al., 2011), other airborne 
sensors (Chabrillat et al., 2010; Feng et al., 2018; Rogge et al., 2014), 
integrated airborne hyperspectral and thermal data (Rodriguez-Gomez 
et al., 2021), and airborne hyperspectral thermal infrared data (Black 
et al., 2016; Liu et al., 2021). However, airborne hyperspectral data 
reported outstanding results in geological applications since the 1980 s, 
airborne surveys are not suitable for all terrains and are not applicable to 
global studies. Consequently, hyperspectral satellite images for instance 
acquired by Hyperion carried by Earth Observing − 1 (Guo et al., 2021; 
Lhissou and Harti, 2020; Pour and Hashim, 2014), and advanced 

hyperspectral imager, mounted on Gaofen-5 (Ye et al., 2020) are 
recently applied for geological remote sensing. 

Of course, these datasets achieved promising results however, they 
are mainly designed according to a certain target, specific project, or 
resolving research area’s particular problems. For instance, we cannot 
find a detailed research study that applied airborne hyperspectral data 
for lithological mapping over the whole Arabian Nubian Shield (ANS), 
which is considered one of the major mineralized terrains on the earth 
and totally suitable for remote sensing studies (Arid or not covered rock 
units)(Shebl and Hamdy, 2023). Additionally, the utilized hyperspectral 

Fig. 1. A) location map of the study area and b) lithological map of the study area modified after Shebl et al., 2022; and Zoheir et al., 2019.  

Fig. 2. Three dimensional cubes of the study area using a) Multispectral Landsat 9 data and b) PRISMA hyperspectral data, highlighting the higher band count 
(mostly highly informative) in the latter compared to the former. 
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satellites e.g. Hyperion have some issues related to the recent data global 
availability and signal–noise ratio (Hu et al., 2012). Consequently, the 
geological community is in need of hyperspectral satellites to provide 
better spectral details and global coverage. 

Recently, PRISMA hyperspectral satellite has been launched to ac-
quire radiance within visible and near-infrared (VNIR) and shortwave 
infrared (SWIR) spectrum ranges besides, possessing Signal Noise Ratio 
(SNR) of > 200:1 and 100:1 for VNIR and SWIR respectively. As a pre-
liminary investigations plentiful VNIR and SWIR bands with these SNRs 
are considered reasonable for detailed lithological mapping (Mishra 
et al., 2022). Consequently, the main aim of the current research is to 
investigate the potentiality of the recently launched PRISMA satellite 
data for lithological mapping. Additionally and for the first time of using 
PRISMA over ANS aiming at enhancing lithological mapping using 
MLAs, the current research applied three MLAs including Random Forest 
(RF), XGboost (XGB), and Support Vector Machine (SVM), to predict the 
lithological targets and highlight the eligibility for the three classifiers 

with PRISMA, to Um Salim area, Central Eastern Desert of Egypt. This 
study area was selected as a part of ANS, where the big lack of geological 
mapping. 

2. Study area and geologic setting 

The study area (Um Salim area, and its environs) is located in the 
Central Eastern Desert of Egypt (Fig. 1a), which constitutes the northern 
part of the Nubian shield, which in turn forms the western part of the 
ANS. This area was selected due to the lack of imaging spectroscopy over 
the ANS. Additionally, it is covered with Neoproterozoic basement rocks 
(Fig. 1b) that are considered a rigid test for PRISMA effectivity in 
differentiating the complicated lithological relationships among these 
intricate terrains. Furthermore, it is well-known for higher gold poten-
tiality (Shebl and Csámer, 2021a; Zoheir et al., 2019), thus an enhanced 
lithological mapping (Based on hyperspectral analysis and efficient 
MLAs) may guide to additional mineralized zones within the study area. 

Fig. 3. Flow chart showing the methodology adopted in the current study.  
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In accordance to the significance of the study area in mineral 
exploration, several researchers have studied the geology of the study 
area (Helba et al., 2001; Shebl et al., 2022; Shebl and Csámer, 2021b, 
2021c; Zoheir and Weihed, 2014). Geologically, the study area is 
covered by ophiolitic components mainly represented by ophiolitic 
serpentinites and their related rocks including talc-carbonates and 
quartz-carbonate dykes. Serpentinites form mostly conspicuous moun-
tainous rocks and are widely distributed within the study area, however, 
smaller size blocks could be found. These blocks are mainly distributed 
within highly tectonized volcaniclastic metasediments as a mélange 
matrix, which covers a considered areal extent at the southern part of 
the study area. Besides these ophiolitic segments, island arc meta-
volcanics constitute a considered part of the study area mainly at the 
southwestern corner. Based on previous studies and our field observa-
tions, these metavolcanics are mainly composed of andesite and 
andesitic metatuffs. Intrusive rocks are mainly represented by 
metagabbro-diorite and syn-orogenic granitic rocks. The former are 
occasionally exemplified at the central part of the study area and almost 
foliated, while the latter are exposed mainly at the northwestern corner 
of the study area. These rocks are dissected by dykes with different 
compositions and trends. 

3. Materials and methods 

3.1. Datasets 

The spectral characteristics of hyperspectral and multispectral sen-
sors provide a notable distinction in remote sensing. Hyperspectral 
sensors provide data in many narrow, continuous bands across specific 
portions of the electromagnetic spectrum. This continuous coverage 
allows for detailed analysis of the surface features and identification of 
subtle variations in the observed data. On the other hand, multispectral 
sensors have a limited number of wider bands. Although they provide 
less spectral detail than hyperspectral sensors, their data can still be 
valuable for identifying and analyzing different surface characteristics 
(Burai et al., 2015). Fig. 2 shows depictions of the study area using 3D 
cubes based on multispectral data (Landsat 9) and hyperspectral data 
(PRISMA), emphasizing the notably greater number of bands in the 
latter dataset, which are primarily rich in informative content when 
compared to the former. 

PRISMA, a sun-synchronous hyperspectral sensor, was launched by 
the Italian Space Agency in March 2019 to provide 250 spectral channels 
within a wavelength range of 0.4–2.5 μm (Bedini and Chen, 2022; Loizzo 
et al., 2019; Mishra et al., 2022). Access to PRISMA data is free to 
registered users, following a validation process. This includes access to 
both archived and newly acquired data, making it highly suitable for a 
variety of research purposes. However, to ensure equitable access and 
sustainable use, a daily data usage quota is imposed. PRISMA is push 
broom sensor with a spatial resolution of 30 m for the hyperspectral 
bands and 5 m for the panchromatic, 30 Km swath width, 97.751◦

inclination, 614.8 km orbital altitude, and has an internal calibration 
unit for better spectral results (Loizzo et al., 2019). PRISMA provides 
detailed spectral information within VNIR (66 channels within the range 
of 400–1100 nm) and SWIR (174 channels within the range of 
920–2500 nm) regions with a spectral width of ≤ 14 nm and spectral 
calibration accuracy of ± 0.1 nm. Signal-noise ratios are > 160, > 100, 

Fig. 4. Lithological discrimination using PRISMA data combinations of a) FCC 105-50-22 in RGB respectively, b) PCs 1-2-3 in RGB respectively, and c) PCs 2-3-4 in 
RGB respectively. Ophiolitic Serpentinite (Sp), Talc carbonate (Tc), Metavolcanics (Mvs), Metagabbro-Diorite (MGD), Volcaniclastic metasediments (VMs), Syn- 
orogenic granite (GR), and Wadi Deposits (WD). 

Table 1 
Training and testing data, and abbreviations of the lithological classes.  

Lithological Unit Training pixels Testing pixels 

Ophiolitic Serpentinite (Sp) 718 343 
Talc carbonate (Tc) 470 197 
Metavolcanics (Mvs) 627 253 
Metagabbro-Diorite (MGD) 189 99 
Volcaniclastic metasediments (VMs) 633 293 
Syn-orogenic granite (Gr) 615 248 
Wadi Deposits (WD) 617 288  
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Fig. 5. Lithological discrimination using PRISMA data combinations of a) PCs 3–1–2 in RGB respectively, b) PCs 4–2-3 in RGB respectively, and c) ICs 1–2-3 in RGB 
respectively. 

Fig. 6. Spectral separability of the lithological targets using PRISMA data.  

Table 2 
Strengths and limitations of RF, XGB, and SVM.   

RF XGB SVM 

Advantages Robust to overfitting problem ability to alleviate overfitting 
effectively 

Ability to handle high dimensionality data using 
relatively few training samples 

mostly ensures better performance high computational 
efficiency 

it provides a trade-off between time-efficiency 
and accuracy 

Errors can be ignored, even if overfitting or underfitting decision trees are 
present. 

Handling missing data Ability to manage small training data sets 
effectively  

RF classifier is relatively insensitive to mislabelled training data Feature importance SVM is one of the most memory-efficient 
methods, 

Disadvantages Less interpretable Slow training time Black-box model 
Sensitive to spatial autocorrelation of the training classes and to the 
proportions of the different classes within the training samples. 

Limited interpretability Computationally expensive 

Instabilities and Computationally expensive Sensitivity to 
hyperparameters 

Overfitting risk  
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Fig. 7. Resultant lithological maps using 1-2pc and a) RF, b) XGB, and c) SVM.  

Table 3 
Confusion matrices, overall and class-based statistics for RF, XGB, and SVM using 1-2pc PRISMA data.  

RF Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 

Sp 280 0 0 0 2 0 8 290 0.965517 0.816327 0.884676 
TC 0 155 6 13 0 0 0 174 0.890805 0.786802 0.83558 
MVs 1 37 163 44 21 7 1 274 0.594891 0.644269 0.618596 
MGD 1 5 20 41 1 0 0 68 0.602941 0.414141 0.491018 
VMs 52 0 43 1 180 0 114 390 0.461538 0.614334 0.527086 
GR 1 0 11 0 22 232 19 285 0.814035 0.935484 0.870544 
WD 8 0 10 0 67 9 146 240 0.608333 0.506944 0.55303 
total 343 197 253 99 293 248 288 1721 OA = 0.695 
Overall Assessment Accuracy 0.695526 0.695526 0.695526 

Macro average 0.705437 0.674043 0.682933 
Weighted Average 0.714219 0.695526 0.69888  

XGB Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 
Sp 277 0 0 0 2 0 8 287 0.965157 0.80758 0.879365 
TC 0 154 9 12 0 0 0 175 0.88 0.781726 0.827957 
MVs 1 38 162 46 21 5 1 274 0.591241 0.640316 0.614801 
MGD 3 5 19 41 1 0 0 69 0.594203 0.414141 0.488095 
VMs 54 0 39 0 186 0 117 396 0.469697 0.634812 0.539913 
GR 3 0 14 0 23 227 18 285 0.796491 0.915323 0.851782 
WD 5 0 10 0 60 16 144 235 0.612766 0.5 0.550669 
total 343 197 253 99 293 248 288 1721 OA = 0.692 
Overall Assessment Accuracy 0.69204 0.69204 0.69204 

Macro average 0.701365 0.670557 0.67894 
Weighted Average 0.711474 0.69204 0.695308  

SVM Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 
Sp 272 0 0 0 0 0 7 279 0.97491 0.793003 0.874598 
TC 0 158 2 30 0 0 0 190 0.831579 0.80203 0.816537 
MVs 2 34 183 25 21 3 1 269 0.680297 0.72332 0.701149 
MGD 1 5 8 44 0 0 0 58 0.758621 0.444444 0.56051 
VMs 64 0 43 0 199 0 126 432 0.460648 0.679181 0.548966 
GR 2 0 10 0 17 244 22 295 0.827119 0.983871 0.898711 

(continued on next page) 
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and > 240 for VNIR, SWIR, and Panchromatic channels respectively. 
Besides these spectral characteristics, PRISMA provides reasonable 
radiometric quantization (12 bits). Based on its band designations, it is 
supposed to introduce better results for the scientific community in 
different disciplines. Actually, some recent studies report the usefulness 
of PRISMA data in environmental analysis (Macusi et al., 2022), vege-
tation studies (Aneece and Thenkabail, 2022; Pepe et al., 2020), glaci-
ology (Kokhanovsky et al., 2022), hydrology (Braga et al., 2022; 
Giardino et al., 2020), Land use and land cover mapping (Lazzeri et al., 
2021), and geological mapping (Bedini and Chen, 2022; Mishra et al., 
2022). 

In the current research, a cloud-free, surface reflectance PRISMA 
scene was utilized to analyse the lithological characteristics of the study 
area. The scene was atmospherically and geometrically corrected then 
resized to the borders of the study area for feature extraction. In addition 
to PRISMA data, several lithological maps of the study area were 
reprojected and compared to enhance our geological interpretation of 
the rock units exposed within the study area. A flow chart showing the 
adopted data and the whole methodology of the current research is 
presented in Fig. 3. 

4. Methods 

4.1. Feature selection and extraction 

Ensuring better selection of input data and accurate features 
extraction is a key point for reliable classification especially with 
hyperspectral remote sensing data (Pal and Foody, 2010). Thus, the 
current research pays special interest in selecting representative training 
and testing data and determining what is the best input for the adopted 
classifiers. Towards that end, several image processing techniques were 
applied to PRISMA data to set up a higher level of discrimination of the 
exposed rock units and determine the informative inputs for the classi-
fiers. Our experiments revealed that some false colour combinations 
(FCC) could provide reasonable lithological discrimination as shown in 
Fig. 4a by FCC 105–50-22 in RGB respectively. Additionally, 
dimensionality-reduction techniques e.g. Principal component analysis 
(PCA) and independent component analysis provide a much better 
informative diagnosis for our lithological targets as shown in figures (4b, 
4c, and 5). These processed images are integrated with several geore-
ferenced previous geological maps and our field observations (Fig. 3) to 
locate meticulous training and testing points (Table 1) depending on the 

Table 3 (continued ) 

RF Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 

WD 2 0 7 0 56 1 132 198 0.666667 0.458333 0.54321 
total 343 197 253 99 293 248 288 1721 OA = 0.715 
Overall Assessment Accuracy 0.715863 0.715863 0.715863 

Macro average 0.742834 0.69774 0.70624 
Weighted Average 0.742318 0.715863 0.716966  

Table 4 
Confusion matrices, overall and class-based statistics for RF, XGB, and SVM using 1-4pc PRISMA data.  

RF Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 

Sp 295 0 0 0 0 0 9 304 0.970395 0.860058 0.911901 
TC 0 191 5 0 0 0 0 196 0.97449 0.969543 0.97201 
MVs 4 6 197 24 3 0 1 235 0.838298 0.778656 0.807377 
MGD 0 0 3 75 1 0 0 79 0.949367 0.757576 0.842697 
VMs 6 0 40 0 269 0 5 320 0.840625 0.918089 0.877651 
GR 0 0 0 0 0 230 1 231 0.995671 0.927419 0.960334 
WD 38 0 8 0 20 18 272 356 0.764045 0.944444 0.84472 
total 343 197 253 99 293 248 288 1721 OA = 0.888 
Overall Assessment Accuracy 0.888437 0.888437 0.888437 

Macro average 0.904699 0.879398 0.888099 
Weighted Average 0.897252 0.888437 0.889341  

XGB Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 
Sp 319 1 0 0 0 0 7 327 0.975535 0.930029 0.952239 
TC 0 187 9 0 0 0 0 196 0.954082 0.949239 0.951654 
MVs 2 8 195 22 8 1 0 236 0.826271 0.770751 0.797546 
MGD 0 1 5 77 1 0 0 84 0.916667 0.777778 0.84153 
VMs 2 0 36 0 267 0 8 313 0.853035 0.911263 0.881188 
GR 0 0 0 0 0 224 1 225 0.995556 0.903226 0.947146 
WD 20 0 8 0 17 23 272 340 0.8 0.944444 0.866242 
total 343 197 253 99 293 248 288 1721 OA = 0.895 
Overall Assessment Accuracy 0.89541 0.89541 0.89541 

Macro average 0.903021 0.883819 0.891078 
Weighted Average 0.900405 0.89541 0.895841  

SVM Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 
Sp 329 0 2 0 0 0 6 337 0.976261 0.959184 0.967647 
TC 0 191 9 2 0 0 0 202 0.945545 0.969543 0.957393 
MVs 1 3 193 19 7 0 1 224 0.861607 0.762846 0.809224 
MGD 0 3 6 78 1 0 0 88 0.886364 0.787879 0.834225 
VMs 2 0 35 0 262 0 8 307 0.85342 0.894198 0.873333 
GR 0 0 0 0 0 237 1 238 0.995798 0.955645 0.975309 
WD 11 0 8 0 23 11 272 325 0.836923 0.944444 0.887439 
total 343 197 253 99 293 248 288 1721 OA = 0.907 
Overall Assessment Accuracy 0.907612 0.907612 0.907612 

Macro average 0.907988 0.896248 0.900653 
Weighted Average 0.909303 0.907612 0.907134  
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areal extent of each rock unit and our reliable field investigations. So, at 
this stage, we have to specify what are the best data inputs to be clas-
sified by these selected features. To answer this question, careful 
screening for the resultant principal components (PCs) was performed. It 
reveals that all the adopted highly discriminative combinations (Figs. 4 
and 5) contains at least one of the first four PCs. Thus, the foremost four 
PCs were adopted as data input in the current research. This is also 
coinciding with all the previous studies indicating that the former PCs 
are more informative compared to posterior components. Consequently, 
we tested the first two PCs (as a second input data) to see their 
discrimination ability in delivering an acceptable lithological map. Also, 
to access the PRISMA data potentiality itself, the whole number of the 
adopted bands (234b) was specified as the third data input. At this stage, 
three data inputs including 1-2PC, 1-4PC, and 234b are ready to be 
classified using MLAs. 

4.2. MLAs 

Generally, parametric and non-parametric machine learning classi-
fiers have been applied to the current dataset. As we expected and 
coinciding with previous studies (Belgiu and Drăgu, 2016), the effi-
ciency of parametric algorithms is poor compared to non-parametric 
models. For instance, the maximum Likelihood classifier (MLC) has 
been tested in our research as a common parametric algorithm and the 
result was erroneous for most of the classes. Of course, this may be 
attributed to the current data complexity however a faster and 
outstanding output could be achieved with MLC and generally para-
metric classifiers when the input data are less complicated or mostly 
unimodal data (Liu et al., 2011). With the reference to the hyperspectral 
data complexity and the complicated spectral signatures of the classified 
targets (Fig. 6), the current research excluded parametric classifiers and 
adopted three non-parametric classifiers (RF, XGB, and SVM) employing 

various allocation mechanisms (bagging, boosting, and Hyperplane de-
cision boundary) to check their potentiality in assigning the proper la-
bels for the PRISMA data. In contrast with parametric classifiers, these 
non-parametric models are less restrictive as they did not make any 
mathematical assumptions linking the input and output or depend on 
certain parameters rather, they mine the data itself and learn from it. 

4.3. Random Forest (RF) 

Random forest has become one of the most popular ensemble clas-
sifiers implemented using remote sensing data. Simply and as the name ‘ 
forest’ suggests, RF is a set of Classification and Regression Trees 
(CARTs) used for predictions (Breiman, 2001). Each tree works inde-
pendently to predict a label for each data point. After voting and aver-
aging the decisions (class probability assignment) for all the trees, the 
final label could be selected and assigned for this data point. Then, the 
algorithm is fed with another unlabelled data point to predict its label. 
As a bagging technique, RF employs two-thirds (randomly selected) of 
the data for training while the remaining other third is kept for internal 
validation to monitor the algorithm performance. 

Depending on the field of study, the predicted targets, and data 
characteristics, the number of trees (user-defined parameter) may 
change from one application to another. Similarly, the variables con-
trolling tree splitting are specified by the user to help better predictions. 
Several previous studies revealed that RF accuracy is more sensitive to 
the variables specifying trees growing and splitting than their numbers 
(Belgiu and Drăgu, 2016; Ghosh et al., 2014; Kulkarni and Sinha, 2012). 
In the current research, the best results were achieved by specifying 100, 
− 1 and 500 for numbers of estimators, jobs and trees, respectively. 

Fig. 8. Resultant lithological maps using 1-4pc and a) RF, b) XGB, and c) SVM.  
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4.4. The extreme gradient boosting (XGBoost) 

As the name “Boosting” suggests, these algorithms provide a kind of 
augmentation to the weak learners by adjusting the weights from mis-
classifications, to be approximately optimum (the weights) at the final 
result. The latter is enhanced due to combining the iteration’s weighted 
votes for a certain classification (Elith et al., 2008). Several types of 
boosting models including categorical boosting, gradient boosting ma-
chine, light gradient boosting machine, adaptive boosting, and XGBoost 
are well-known and utilized for various applications (Zhang et al., 
2022). XGBoost is considered a step forward from the bagging and even 
the previously mentioned boosting algorithms as it shackles the over-
fitting through a regularization process, provides a faster performance 
through employing parallel handling (CPU’s multi-threading) for the 
nodes (Chen and Guestrin, 2016). XGBoost introduces good results in 
several applications for instance, PM2.5 prediction (Joharestani et al., 
2019), remote sensing classifications (Bhagwat and Uma Shankar, 2019; 
Jafarzadeh et al., 2021), plant species diversity mapping (Zhao et al., 
2022), Forest Aboveground Biomass Estimation (Li et al., 2019), flash 
floods hazard assessment (Ma et al., 2021) and geological mapping 
(Elbegue et al., 2022; Parsa, 2021). In the current research, we adopted 
the default parameters for XGB and just specified multi:softprob as an 
objective. 

4.5. Support vector machine 

SVM is still a prevalent MLA that could deliver outstanding results in 
various applications since it was introduced by (Boser et al., 1992; 
Cortes and Vapnik, 1995). As a machine learning model, SVM is a 
computer algorithm that assigns a label to unknown data after training 
and learning. SVM is a mathematical entity designed to divide the 
datasets after a reasonable training phase, depending mainly on the 

specification of the separating hyperplane that is defined as the line 
separating a high-dimensional space into specific patterns (Noble, 
2006). Based on the statistical learning theory, selecting the maximum- 
margin hyperplane is a key parameter for better predictions and reliable 
classification results. This could be achieved by selecting the separator 
that has the maximum margin or maximal distance from the hyperplane 
to the nearest vector. In real data, the hyperplane separator is not 
perfectly distinguishing the classes, due to some errors. Thus, a soft 
margin solution may be introduced allowing these error data points to 
penetrate the hyperplane with a minimal effect on the final result. 
Additionally, SVM implemented a kernel function to help increase the 
separability of nonseparable data sets. This is mostly achieved by 
increasing the data dimensionality. Of course, careful assignment for all 
of these parameters is required. In the current study, SVM hypertuning 
depends mainly on trial and error besides considering the parameters 
utilized in several similar studies. Table 2 provides a comprehensive 
overview of the main advantages and disadvantages (Chan and Canters, 
2007; Ham et al., 2005; Mellor et al., 2015; Mountrakis et al., 2011; 
Shebl and Csámer, 2021b; Wu et al., 2016) of the three adopted algo-
rithms in the current research. 

5. Results and discussion 

Nine thematic maps were produced using the utilized algorithms 
(RF, XGB, and SVM) over 3 main data inputs, including the whole data 
set of bands (234b), the first 2 PCs (1–2 PC), and the preceding 4 PCs (1- 
4PC). Generally, our results indicated that the worst input data was 1- 
2PC as it delivers unacceptable lithological allocation as shown in 
Fig. 7. This was documented by the lower overall accuracies (OA) 
whatever the implemented algorithm. For instance, the OAs were 69. 5 
%, 69. 2 %, and 71.5% for RF, XGB, and SVM respectively. These sig-
nificant drops in OAs are attributed to several misclassifications among 

Fig. 9. Resultant lithological maps using PRISMA data a) RF, b) XGB, and c) SVM.  
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the seven classes as shown in Table 3. For instance, several unacceptable 
F1- scores e.g., 0.61, 0.49, 0.52, and 0.55 for metavolcanics, metagabbro 
diorite, volcaniclastic metasediments, and wadi deposits respectively, 
were recorded. The overall F1-score for the resultant RF thematic map 
was about 0.69. Similarly, XGB and SVM findings were poor where the 
overall F1-score was about 0.69, and 0.71 for the former and the latter 
respectively. This is clearly tabulated with precision and recall for each 
lithological class in Table 3. Additionally, the macro- and weighted- 
average recall, precision, and F1-score were calculated denoting the 
ineligibility of 1-2PC of PRISMA as input data for classifying compli-
cated lithologies whatever the implemented algorithm. 

Visual inspection of the three (RF, XGB, and SVM) resultant thematic 
maps using 1-2PC confirms this statistical analysis, where we can 
reasonably discriminate serpentinite rocks (highest F1-score) in violet 
colour. However, the other six classes are poorly classified and error 
pixels are dominant resulting in salt and pepper phenomena in the 
thematic maps. For instance, metavolcanics (blue) covering the south-
western part of the study area are heavily mixed with green-coloured 
pixels representing metagabbro diorite rocks and talc carbonate rocks 
as denoted by the error matrix for the three classifiers in the previously 
mentioned tables. Similarly, the elliptical metagabbro-diorite mass at 
the central part of the study area is mostly misclassified as metavolcanics 
(dominant blue instead of green). Notwithstanding the dominance of 
errors with 1–2 PC input data, minute differences highlighting the 
various powers of the utilized algorithms still could be observed. For 
example, granitic rocks at the extreme northwestern corner of the study 
area are well-classified (fewer error pixels could be seen) using SVM 
compared to RF and XGB. 

Due to the unsatisfactory results with 1-2PC input data and 

coinciding with (Shebl and Csámer, 2021b), it is recommended to in-
crease the number of participated bands to enhance the classification 
accuracy and the generalization process in mapping lithologically- 
complicated terrains. A step forward for our research was performed 
by adopting the first four informative PCs (1-4PC). Through our exper-
iments, feeding the three classifiers with 1-4PC is conducive to better 
prediction. The resultant thematic maps, overall accuracies, precision, 
recall, and F1-score (Table 4) were much better compared to the pre-
vious experiment (using 1-2PC). With reference to the previous 
geological maps, field observations, and the resultant statistical classi-
fication assessment reports, RF, XGB, and SVM were eligible in deliv-
ering precise thematic maps (Fig. 8) for the study area using PRISMA 
data. Furthermore, SVM exceeds RF and XGB in producing a reliable 
lithological map with an OA of 90.07% compared to 88.8% and 89.5% 
for RF and XGB respectively. Exhaustive checking for the classified 
targets revealed outstanding lithological discrimination as confirmed by 
the statistical analysis (Table 4). Ophiolitic serpentinite, talc-carbonate, 
granitic rocks, and wadi deposits are precisely allocated and in a har-
mony with previous geological maps and our field investigations with 
insignificant errors using the three algorithms. For instance, serpentinite 
F1-score was about 0.91, 0.95, and 0.96 for RF, XGB, and SVM, 
respectively denoting the efficiency of the utilized classifiers and the 
eligibility of the 1-4PC input data in the lithological separation of these 
classes. However, some errors (visually interpreted and statistically 
recorded) are conspicuous between metavolcanics (blue), and 
metagabbro-diorite (green) and between metavolcanics and volcani-
clastic metasediments (dark grey). These misclassifications are attrib-
uted to the wide-range composition of metavolcanics including slightly 
metamorphosed calc-alkaline andesite-dacite volcanics, and their 

Table 5 
Confusion matrices, overall and class-based statistics for RF, XGB, and SVM using all (234b) PRISMA bands.  

RF Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 

Sp 110 0 0 0 0 0 1 111 0.990654 0.861789 0.921739 
TC 0 79 2 4 0 0 0 85 0.951807 0.88764 0.918605 
MVs 4 10 147 7 1 0 0 169 0.875 0.835227 0.854651 
MGD 0 0 0 13 0 0 0 13 1 0.708333 0.829268 
VMs 4 0 23 0 149 0 3 179 0.818681 0.851429 0.834734 
GR 0 0 0 0 0 217 1 218 0.990909 0.995434 0.993166 
WD 5 0 4 0 25 2 152 188 0.811828 0.961783 0.880466 
total 123 89 176 24 175 219 157 963 OA = 0.900 
Overall Assessment Accuracy 0.900312 0.900312 0.900312 

Macro average 0.91984 0.871662 0.890376 
Weighted Average 0.905812 0.900312 0.900588  

XGB Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 
Sp 115 0 0 0 0 0 1 116 0.991379 0.934959 0.962343 
TC 0 82 0 2 0 0 0 84 0.97619 0.921348 0.947977 
MVs 3 7 158 7 1 1 0 177 0.892655 0.897727 0.895184 
MGD 0 0 0 15 0 0 0 15 1 0.625 0.769231 
VMs 0 0 14 0 152 0 2 168 0.904762 0.868571 0.886297 
GR 0 0 0 0 0 214 0 214 1 0.977169 0.988453 
WD 5 0 4 0 22 4 154 189 0.814815 0.980892 0.890173 
total 123 89 176 24 175 219 157 963 OA = 0.924 
Overall Assessment Accuracy 0.924195 0.924195 0.924195 

Macro average 0.939972 0.886524 0.905665 
Weighted Average 0.929582 0.924195 0.924281  

SVM Sp Tc Mvs MGD VMs Gr WD tot precision recall f1-score 
Sp 115 0 0 0 0 0 1 116 0.991228 0.918699 0.953586 
TC 0 89 0 1 0 0 0 90 0.988889 1 0.994413 
MVs 0 0 163 0 2 0 0 165 0.987879 0.926136 0.956012 
MGD 0 0 0 22 0 0 0 22 1 0.916667 0.956522 
VMs 1 0 13 0 154 0 2 170 0.914286 0.914286 0.914286 
GR 0 0 0 0 0 218 0 218 1 1 1 
WD 7 0 0 1 19 1 154 182 0.865169 0.980892 0.919403 
total 123 89 176 24 175 219 157 963 OA = 0.955 
Overall Assessment Accuracy 0.955348 0.955348 0.955348 

Macro average 0.963921 0.950954 0.956317 
Weighted Average 0.958079 0.955348 0.955716  
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related pyroclastics (Shebl et al., 2022; Zoheir and Weihed, 2014), thus 
the classifiers are occasionally confused between these slight variations 
using only four bands. Similarly, volcaniclastic metasediments are 
mainly represented by the ophiolitic mélange within the study area, 
which indicates a heterogeneous composition of mixed rocks (Kusky 
et al., 2020) of this class (higher intra-class variability) resulting in 
several misclassifications, especially with metavolcanics. This could be 
easily depicted by visual inspection of the southwestern part of the 
resultant thematic maps where error green pixels of metagabbro-diorite 

could be seen within metavolcanics. Similarly, metavolcanics error 
pixels are dominant within metagabbro-diorite mass at the central part 
of the study area. 

To overcome these issues among these spectrally related classes 
(Fig. 6), an experiment was performed by feeding the three algorithms 
with the whole number of bands (234b) to test their potentiality and 
classifiers’ performance in delivering rigorous generalization. As we 
expected, the classifier prediction was boosted through the 234b 
resulting in more accurate thematic maps (Fig. 9) compared to the 

Fig. 10. Final lithological map of the study area using PRISMA hyperspectral data and SVM with annotations of the distribution for 14 field verification points 
presented and illustrated in Figs. 11 and 12. 
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previous results. Statistically, outstanding overall accuracies were ach-
ieved by SVM (0.95) compared to XGB (0.92) and RF (0.90). A class- 
based assessment through precision, recall, and F1-score besides over-
all evaluation (macro- and weighted-average recall, precision, and F1- 
score) reveals superior results (Table 5) and confirms the superiority 
of SVM and XGB over RF in lithological mapping using PRISMA data. 
This may be attributed to the inability of handling non-data pixels (an 
issue occasionally encountered with hyperspectral data) with RF 
resulting in decreasing the training data for a successful run of RF 
classification. 

Visual examination of the thematic maps manifests their accuracy 
compared to the previous results (the salt and pepper effect is dimin-
ished, especially with SVM). Comparing RF, XGB, and SVM results prove 

the statistical analysis where for instance, XGB and RF are still confused 
in discriminating this meta-gabbro diorite mass compared to SVM which 
separates it in almost green colour (fewer error pixels). Similarly, the 
correspondence between metavolcanics (blue) and volcaniclastic met-
asediments (grey) is resolved in SVM compared to XGB and RF. 

It is imperative to emphasize that the current research findings have 
the potential to greatly enhance mineral prospectivity mapping through 
the utilization of MLAs in enhancing lithological mapping (a main pillar 
for detecting mineral deposits) using hyperspectral data. The study 
provides an improved lithological map, which, when combined with 
thorough structural mapping and precise delineation of alteration zones 
can significantly aid in targeting mineral deposits (Abdelkader et al., 
2022; Badawi et al., 2022; El-Desoky et al., 2022; Shebl et al., 2021b, 

Fig. 11. Field photographs showing a) Wadi deposits and Gabal Um Salatit serpentinites at the back ground, b) Wadi deposits and Gabal Um Salim serpentinites, c) 
thrusting contact between serpentinites and volcaniclastic metasediments, d) highly deformed volcaniclastic metasediments, e) Metagabbro dirorite, and f) and g) 
Talc carbonate rocks. 
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2021a; Shebl and Csámer, 2021a). These advancements in mapping 
techniques contribute to a more effective approach for identifying po-
tential mineral resources. Overall, the chosen algorithms (RF, XGB, and 
SVM) in this study hold promise for future mineral potentiality mapping 
using various datasets due to their ability to process high-dimensional 
datasets, produce robust results, and rank feature importance. For 
instance, these algorithms have the ability to evaluate how significant 
the specific geological feature such as geochemical data, lithology, 
geological structure, and topographical characteristics are for mineral 
exploration programs in a particular region. Also, using these algo-
rithms, new gold occurrence could be predicted by training the model to 
known gold mineralization presences in the area. Several studies 
(adopting RF, XGB, and SVM) have been conducted regarding their ef-
ficiency in targeting gold mineralization, for instance; (Xu et al., 2019) 
show that alteration zone mapping using remote sensing and SVM is 

significant for extracting gold metallogenic prediction. Also, (Abdol-
maleki et al., 2020) created a mineral perspective map by applying SVM 
by combining geological, geochemical, and geophysical datasets. 
Additionally, random forests have several applications in remote sensing 
data analysis for the extraction of target features critical for mineral 
exploration (Kuhn et al., 2018). ((Zhang et al., 2022) mentioned that 
XGB provides an effective classification model for establishing three 
dimensional (3D) mineral prospectivity map. In their study, geological 
data were used to establish a 3D model, and subsequently, a pro-
spectivity model was built based on the metallogenic system and on 
geological anomaly theories. Thus the current research strongly 
recommend implementing PRISMA data with SVM for better lithological 
mapping which could be used as a further input for mineral potentiality 
mapping to ensure more reliable favourable mineralized zones. 

Fig. 12. Field photographs showing a) Wadi deposits 
(WD), volcaniclastic metasediments (VMs), and ser-
pentinites (Sp), b) Wadi deposits (Wd) and Meta-
volcanics (MVs), c) highly deformed volcaniclastic 
metasediments (VMs), d) small blocks of Talc car-
bonate rocks (Tc) within highly deformed volcani-
clastic metasediments representing the ophiolitic 
mélange, e) serpentinites (Sp) and their related Talc 
carbonate rocks (Tc), f) Metavolcanic (MVs) tuffs and, 
g) Nearly vertical volcaniclastic metasediments 
(VMs).   
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5.1. Field verification 

In addition to the statistical accuracy assessment, visual interpreta-
tion, and comparison with previous geological maps, the resultant the-
matic maps were checked and correlated with our ground-based 
investigations. During our field observations, >30 field station was 
visited to investigate the lithological contacts. Representative field 
observation points were dropped over the final thematic map (Fig. 10) 
and explained in Figs. 11 and 12 showing a considerable concurrence 
between the resultant thematic maps and the exposed real rock units. 
Additionally, photomicrographs representing the main lithological units 
within the study area are introduced in Fig. 13 for better identification 
and validation. This agreement enhances our results and recommends 
the adopted approach for further lithological mapping in similar 
terrains. 

6. Conclusions  

1- For the first time over the study area and the whole ANS, a new 
lithologic map was produced using PRISMA hyperspectral data and 
various methodical MLAs (RF, XGB, and SVM).  

2- PRISMA hyperspectral data and their informative transformations (e. 
g., the first four PCs) are efficient in detailed lithological mapping in 
complicated terrains using MLAs.  

3- As a way for decreasing the data dimensionality, PCA components (at 
least four PCs) are eligible in lithological discrimination, however 

implementing the total number of bands delivers more accurate 
results.  

4- RF, XGB, and SVM are appropriate selections with PRISMA data. 
SVM and XGB results was better than RF in precise allocation of the 
lithological targets. Additionally, data non-availability in some 
bands may affect RF prediction process compared to SVM and XGB.  

5- Within the study area, volcaniclastic metasediments, metavolcanics, 
and metagabbro diorite rocks are mostly misclassified using data 
transformations due to their spectral similarities. Adopting the total 
number of PRISMA channels better extricates these lithologies, 
especially with SVM.  

6- After comprehensive visual interpretation with previous geological 
maps, field investigations, and detailed statistical analysis, the cur-
rent research strongly recommends applying XGB and SVM over 
PRISMA data for further lithological and mineralogical studies. We 
also expect that our findings and their implications could greatly 
help in various future research directions related to mineral explo-
ration and lithological discrimination due to the ability of the current 
approach to resolving minute relationships among the closely related 
rocks e.g., serpentinites and talc carbonates within the same expo-
sures as documented by our field observations. 
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Fig. 13. Photomicrograph representing ophiolitic 
Serpentinite and their associated talc carbonates and 
shows a) Veins of carbonate minerals (see the arrows) 
cut through antigorite aggregates of fibrolamellar 
structure in serpentinite, C.N., and b) Opaque min-
erals (magnetite or chromite) resulting from the 
alteration of cracked olivine and /or orthopyroxene 
into fine-grained serpentine minerals which replaced 
by talc and carbonate minerals, C.N.Photomicro-
graphs of metavolcanics showing c) Metaandesite 
consists of fine-grained plagioclase and hornblende 
and dissected by veinlets of carbonate and opaque 
minerals, C.N., d) Metarhyolite shows a porphyritic 
texture and consists of quartz, orthoclase and plagio-
clase phenocrysts in a groundmass of the same con-
stituents, and e) Andesitic metatuffs shows plagioclase 
with few quartz crystal fragments embedded in a fine- 
grained andesitic groundmass, C.N. f) Tremolite- 
actinolite replaces hornblende and pyroxene in met-
agabbro, C.N.   
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