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We study the finite temperature localization transition in the spectrum of the overlap Dirac operator.
Simulating the quenched approximation of QCD, we calculate the mobility edge, separating localized and
delocalized modes in the spectrum. We do this at several temperatures just above the deconfining transition
and by extrapolation we determine the temperature where the mobility edge vanishes and localized modes
completely disappear from the spectrum. We find that this temperature, where even the lowest Dirac
eigenmodes become delocalized, coincides with the critical temperature of the deconfining transition. This
result, together with our previously obtained similar findings for staggered fermions shows that quark
localization at the deconfining temperature is independent of the fermion discretization, suggesting that
deconfinement and localization of the lowest Dirac eigenmodes are closely related phenomena.
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I. INTRODUCTION

Strongly interacting matter is known to undergo a cross-
over at high temperature. In the low temperature regime,
quarks are bound together to form hadrons due to color
confinement. During the crossover, the boundaries of the
hadrons become blurred and matter goes into the state of
quark-gluon plasma. At the same time the spontaneously
broken chiral symmetry becomes approximately restored.
Besides deconfinement and chiral restoration, there is a third
phenomenon that happens in the crossover region. Above
the crossover temperature the lowest lying eigenmodes of
the Dirac operator become spatially localized [1-4]. This is
in sharp contrast to the temperature regime below the
crossover, where all the quark eigenmodes are extended [5].

In the high temperature phase, the spectrum of the
Dirac operator can be separated into two regions. At the
low end of the spectrum, there are only localized eigenm-
odes and their eigenvalues can be described by Poisson
statistics. In the upper part of the spectrum, the eigenmodes
are extended and the corresponding eigenvalues obey
Wigner-Dyson statistics [5]. At fixed temperature, this
transition in the spectrum between the localized and
extended eigenmodes was shown to be a genuine second
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order transition, and its correlation length critical exponent
was found to be compatible with that of the Anderson model
in the same symmetry class [6].! Building on this analogy
with Anderson transitions, we call the critical point sepa-
rating the localized and extended modes in the spectrum, the
mobility edge, 4. [7]. While in the Anderson model, the
mobility edge is controlled by the amount of disorder in the
system, in QCD an analogous role is played by the physical
temperature. As the temperature is lowered toward the
crossover, the mobility edge moves down in the spectrum,
the part of the spectrum corresponding to localized eigenm-
odes occupies a narrower and narrower band in the spectrum
around zero. Eventually, at a well-defined temperature that
we denote by T7°¢, the mobility edge vanishes, implying that
even the lowest Dirac eigenmodes become delocalized.

In QCD with physical quark masses, the critical temper-
ature of the localization transition, 7%¢, is in the crossover
region [4]. This raises the question whether this is just a
coincidence or there is some deeper physical connection
between the localization transition and the chiral and/or
the deconfinement transition. A possible way to test this is
to move in the parameter space of QCD to a regime where
there is a genuine finite temperature phase transition and
check whether its critical temperature coincides with T%¢.
The simplest way to do that is to consider the limit of

1N0te, however, that in contrast to the Anderson transitions in
condensed matter systems, in QCD this is not a genuine physical
phase transition, as A, the location in the Dirac spectrum is not a
tuneable physical control parameter.
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infinitely heavy quarks, i.e., the quenched approximation to
QCD, which is known to have a first order deconfining
phase transition at a temperature of around 300 MeV.

The possibility of linking the QCD transition to an
Anderson-type localization transition in the Dirac spectrum
was first raised more than 10 years ago by Garcia-Garcia
and Osborn. They studied the spectral statistics of the Dirac
operator in an instanton liquid model [3] and in quenched
as well as full lattice QCD [2] and found evidence that
around the chiral transition the spectral statistics of the
Dirac spectrum changes from Wigner-Dyson toward
Poisson. This indicates that the chiral transition is accom-
panied by a localization transition for the lowest eigenm-
odes of the Dirac operator; however, at that time, no attempt
was made at a determination of 7!, the critical temper-
ature of the localization transition, with a precision com-
parable to how T, the critical temperature of the quenched
deconfining phase transition is available in the literature.

In a previous paper, we explored this possibility by
studying the spectrum of the staggered quark Dirac
operator in quenched gauge field backgrounds, generated
just above the finite temperature phase transition [8]. For
staggered fermions, we calculated T/, the critical temper-
ature of the localization transition and found that it
coincided with that of the deconfining transition. Our
results, obtained on lattices with three different temporal
extensions, L, = 4, 6 and 8, suggest that the agreement of
the localization and the deconfining transition temperature
is universal and is very likely to hold in the continuum limit,
provided the staggered discretization of quarks is in the
correct universality class also for the localization transition.

Unfortunately, staggered quarks are not in the same
random matrix theory symmetry class as continuum quarks
[5]. Moreover, their chiral symmetry is also different from
that of continuum quarks. Although the staggered Dirac
operator is expected to have the correct continuum limit, it
is still possible that at finite lattice spacing it does not
properly describe some properties of the lowest quark
eigenmodes, the ones that are our main concern here for
studying the localization transition. This is a potentially
important issue, as the lowest part of the Dirac spectrum is
particularly sensitive to the chiral properties of the given
discretization. Therefore, in the present work, we chose to
repeat our previous staggered study with the overlap Dirac
operator that has exact chiral symmetry already for finite
values of the lattice spacing [9].

Besides this, there are two more reasons concerning
localization, why it is important to verify our previous
results with the overlap. First, overlap fermions with the
SU(3) gauge group are in the same random matrix
symmetry class, the chiral unitary class, as fermions in
the continuum. Second, unlike the staggered action that is
ultralocal, the overlap action couples quark degrees of
freedom to arbitrarily large distances, albeit with couplings
falling exponentially with the distance. Since in the theory

of Anderson-type models, localization is generally known
to strongly depend on the range of the couplings (hopping
terms in the Hamiltonian) [10], it is interesting to check
whether the nonlocality of the overlap Dirac operator
has any influence on the localization transition in QCD.
In fact, to our knowledge, this is the first study where
the mobility edge is explicitly determined in QCD with
chiral quarks.2

In the present work, we used a subset of the gauge
configurations that were previously generated for our earlier
staggered study. Since overlap spectra are significantly more
expensive to calculate than staggered spectra, here we
limited our study to one value of the temporal lattice size,
L, = 6. We computed the mobility edge for gauge ensembles
generated with six different values of the gauge coupling, £,
all corresponding to temperatures slightly above the decon-
fining transition. By extrapolation we determined the gauge
coupling f°¢ where the mobility edge vanished and all
localized eigenmodes disappeared from the Dirac spectrum.
Confirming our previous staggered result, we found /¢ to
be compatible with the critical gauge coupling of the
deconfining phase transition for L, = 6.

The plan of the paper is as follows. In Sec. I, we describe
the lattice ensembles used for the calculation and show how
we computed the mobility edge from the Dirac spectra. In
Sec. III, we discuss the determination of the critical coupling
of the localization transition. In Sec. IV, we draw our
conclusions and finally in the Appendix we describe the
technical details of the unfolding of the spectrum.

II. CALCULATION OF THE MOBILITY EDGE

The Dirac operator that we used for this study was the
overlap with Wilson kernel parameter M = —1.3. As
smearing of the gauge field is known to improve some
properties of the overlap and also makes the calculations
faster [12], two steps of hex smearing [13] were applied to
the gauge field before inserting it into the overlap. The
gauge field configurations we used here were quenched
Wilson action lattices with temporal extension L, = 6.
In Table I, we collected the parameters of the simulations.

On each gauge configuration, we computed a number of
lowest eigenvalues of DD, where D is the overlap Dirac
operator. In what follows, we always work with the
eigenvalues of DD that are the magnitude squared of
the corresponding eigenvalues of the Dirac operator D.
Since our analysis is based on the unfolded spectrum,
which is invariant with respect to monotonic reparametri-
zations of the spectrum, it makes no difference that we
perform the analysis in terms of the eigenvalues of DD.
As explained in the Appendix, we take extra care to make

“Indirect evidence for localization of overlap quarks has
already been obtained by studying the distribution of the lowest
two eigenvalues in Ref. [11], but the transition to the delocalized
regime in the spectrum was not explicitly seen in that work.
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TABLE 1. Simulation parameters (from left to right): the
Wilson plaquette gauge coupling, the size of the lattice in the
spatial direction, the number of configurations, and the number of
eigenvalues computed for each configuration. All the lattices had
a temporal extension of L, = 6.

ﬂ L.Y NL‘ Nevs
591 40 741 80
5.92 40 821 80
32 3823 50
24 4668 25
5.93 40 750 80
5.94 40 856 80
5.95 40 835 80
5.96 40 609 80
24 3915 25

even the assignment of eigenvalue pairs to spectral win-
dows to be reparametrization invariant. To make the
notation simpler and avoid having to write the absolute
value squared everywhere, we denote by 4 the eigenvalues
of D'D, in terms of which we perform the entire analysis.

The number of eigenvalues to be computed per con-
figuration was chosen to include all the eigenvalues to a
point well above the mobility edge, /16.3 Having exact chiral
symmetry, the overlap possesses exact zero eigenvalues in
gauge field backgrounds with nonzero topological charge.
Since these eigenvalues are all exactly at the lower edge of
the spectrum, they do not contain any information relevant
to the present study; we simply removed them from the
spectra before further analysis.

Localized and delocalized eigenmodes are characterized
by different statistics of the corresponding eigenvalues.
To track the transition throughout the spectrum and locate
the mobility edge, we used the simplest spectral statistics,
the unfolded level spacing distribution (ULSD), calculated
locally, within narrow spectral windows of the spectrum.
Unfolding, a transformation well known in the theory of
random matrices is a monotonic mapping of the spectrum
that sets the local spectral density to unity everywhere
throughout the spectrum. In particular, by construction, the
unfolded eigenvalues are dimensionless and their average
level spacing is unity. More details on how the unfolding
was done are presented in the Appendix.

Unfolding is useful since both for localized and delocal-
ized eigenmodes, universally valid analytic results are known
for the ULSD of the corresponding eigenvalues [5]. Spectra
corresponding to localized eigenmodes obey Poisson sta-
tistics and the ULSD follows the exponential distribution,

p(s) = exp(=s), (1)

>This criterion could be checked only a posteriori, after
determining A..
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FIG. 1. The probability density functions of the level spacings

in the cases when the eigenvalues obey the Poisson statistics
(exponential distribution, dashed line) and Wigner-Dyson sta-
tistics (continuous line, Wigner surmise).

where s is the level spacing between the nearest neighbor
unfolded eigenvalues.

In the case of extended modes, the ULSD is also known
analytically; however, it is much more complicated than in
the localized case and also depends on the random matrix
symmetry class of the given model. A very good approxi-
mation to the ULSD in this case is provided by the so-called
Wigner surmise that for the unitary symmetry class, to
which the overlap operator belongs, reads as

pls) = %@ exp (—%ﬁ). 2)

Notice that both the exponential and the Wigner surmise
distribution are universal in the sense that they are free of
any adjustable parameters. In particular, the originally
dimensionful parameter, the local spectral density has been
removed from the spectrum by the unfolding. For further
reference, we plotted the two distributions in Fig. 1.

Our aim here is to scan the spectrum starting from zero
and follow how the local ULSD changes from the expo-
nential distribution of Eq. (1) to the Wigner surmise of
Eq. (2). To this end, we divide the spectrum into narrow
spectral windows, compute the ULSD separately in each
spectral window, and follow how it changes throughout
the spectrum. In Fig. 2, we show how the unfolded level
spacing distribution evolves as the spectrum is scanned
starting from the lowest eigenvalues (top panel) crossing
the critical, transition region (middle panel) and finally
moving up to the Wigner-Dyson regime (bottom panel).

However, monitoring the continuous change of a func-
tion (here the probability density of the unfolded level
spacings) is complicated. To make this task easier, we
choose a single parameter of this distribution and monitor
how that changes throughout the spectrum. A simple choice
for this parameter is the integral
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FIG. 2. The unfolded level spacing distribution in three differ-
ent spectral windows for the f = 5.95, L, = 40 ensemble. The
spectrum is scanned from the lowest eigenvalues (top panel) with
Poisson statistics, through the critical region (middle panel), up to
the regime with Wigner-Dyson statistics (bottom panel). We also
show the expected limiting distributions, the exponential (dashed
line) and the Wigner surmise (continuous line).

= [ pls)ds 3)

of the probability density up to the lowest crossing point
5o =~ 0.508 of the two limiting distributions, the exponential
and the Wigner surmise. This choice of s, has the
advantage that it maximizes the difference of the integral
between the two limiting cases and thereby facilitates their
clear separation.

An example of how I changes through the spectrum is
shown in Fig. 3. As expected and can also be seen in the
figure, in a finite volume [, changes smoothly from the
value Iﬁ:} =~ 0.398 corresponding to the exponential distri-
bution to / E‘o’ =~ 0.117 corresponding to the Wigner surmise.
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FIG. 3. The integrated probability density [defined in Eq. (3)]
as a function of eigenvalues A of D'D. The figure shows the data
for f=5.95 with a spatial volume of 403. The two short
horizontal lines in the top left and the bottom right corner of
the figure indicate the limiting values of [, for the Poisson
(localized) and the Wigner-Dyson (delocalized) statistics.

However, based on the finite size scaling study of Ref. [6],
in the thermodynamic limit we expect the transition to
become singular, as in a second order phase transition. The
mobility edge 4. that we eventually want to locate is this
sharply defined singular transition point appearing only in
the infinite volume limit. In a finite volume, the definition
of the “critical point” is somewhat arbitrary; however, a
good choice is the point in the spectrum where [ is equal
to the value Iﬁ(r)i‘ = 0.1966, corresponding to the critical
distribution, known from the finite size scaling study of
Ref. [6]. From now on, with a slight abuse of notation,
we will call the point in the spectrum, A., for which
I,,(A.) = IS, the mobility edge.

The quantity A., defined in this way, can still have a
volume dependence, but it is a good approximation to the
mobility edge in the thermodynamic limit. To keep the
finite size corrections under control, we calculated 1, on
lattices of spatial linear size L, = 24, 32, 40. While the
results on the smallest volume differed significantly from
those on the other volumes, the results from the larger two
volumes agreed within the statistical uncertainties.
Therefore, for the rest of the analysis, we always used
the data from the largest volume, L, = 40.

Since the function 7, (1) has an inflection point at 4,
around this point it can be well approximated with a straight
line. We could thus easily determine A. by solving the
equation I, (4,) = I<™ by approximating the function /; (1)
with a linear fit to the data in the given range (see Fig. 3).

III. THE CRITICAL TEMPERATURE OF THE
LOCALIZATION TRANSITION

So far, we have shown how to calculate the mobility
edge, 1., at a given temperature. Our final goal is to
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FIG. 4. The mobility edge as the function of the gauge
coupling, approximated with a power function.

determine the temperature where the mobility edge van-
ishes and localized modes completely disappear from the
Dirac spectrum. Since we keep the temporal size of the
lattice fixed, the temperature can be controlled by the gauge
coupling, f. We computed 4. for lattice ensembles gen-
erated at several different values of the gauge coupling,
above, but close to the deconfining phase transition. The
results are shown in Fig. 4. The range of couplings we used
were limited by two factors. First, even though the
deconfining transition is of first order, the correlation
length increases substantially toward the transition which
puts a lower limit to the couplings for which finite size
corrections can be kept under control. Second, we would
like to extrapolate the function A.(f) to find where it
vanishes, and for the extrapolation only points close
enough to the zero of this function are useful. Since we
expected the zero of the function 4.(f) to be close to the
deconfining transition, 3., we limited our simulations to
couplings not too far from this point.
Finally, for the extrapolation we used the ansatz,

Ac(B) = pr(B = pee)r, (4)

and its parameters p;, p,, and /¢ were fitted to the data.
The ansatz turned out to describe the data remarkably well
and using all six data points the resulting y> per degree of
freedom was y> = 0.67. The fit along with the data is
shown in Fig. 4. The resulting location of the localization
transition is ¢ = 5.893(7), where we quoted the stat-
istical uncertainty. Within the uncertainties, this agrees with
the critical point of the deconfining transition, f. =
5.8943(3) [14]. This, together with similar results obtained
in Ref. [8] with staggered fermions, strongly suggests that
independently of the fermion discretization, the localization
transition and deconfinement happen at the same temper-
ature; therefore, the two phenomena are very likely to be
strongly related.

IV. CONCLUSIONS

We examined the localization transition of the quarks
using the quenched approximation. We computed the lowest
lying eigenvalues of the overlap Dirac operator above the
critical coupling of the deconfining transition. By calculating
the mobility edge, 4., for different gauge couplings we
determined the function A.(f}) and extrapolated it to locate

locwhere the mobility edge vanishes and all the eigenm-
odes become delocalized. We compared our result with the
critical coupling of the deconfining phase transition and
found that the two critical couplings are compatible; the
localization transition and deconfinement occur at the same
temperature. This is in agreement with our previous similar
results with staggered fermions and indicates that localiza-
tion and deconfinement are strongly related phenomena.

The present work was motivated by the fact that in QCD
with physical dynamical quarks the localization transition
occurs in the crossover region. On the one hand, our results
clearly indicate that the localization transition is strongly
related to deconfinement, which—at least on a qualitative
level—probably carries over from the quenched model to
real physical QCD. On the other hand, the quenched model
cannot properly account for the other important transition,
the chiral transition that also occurs in the QCD crossover.
To see how localization is related to chiral restoration, it
would be interesting to consider the other limiting case, the
chiral limit. For massless light quarks, the chiral transition
is expected to become a genuine phase transition [15], and
it could be tested whether its critical temperature agrees
with the critical temperature of the localization transition.
Although simulations in the chiral limit are technically
immensely challenging, such a study could also provide
additional insight into the physics of the restoration of
chiral symmetry, how that happens in the massless (chiral)
limit. Several questions related to this are currently under
active study [16].
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APPENDIX: UNFOLDING

Unfolding is a monotonic mapping of the eigenvalues
that—by definition—renders the spectral density unity
throughout the unfolded spectrum. This transformation is
useful since it removes the scale, specific to the given
spectrum and reveals universal spectral fluctuations. In
principle, unfolding can be done in several different ways,
all equivalent for a dense enough spectrum. Here we did the
unfolding by taking all the eigenvalues from all the
configurations of the given ensemble and putting them
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into ascending order according to their magnitudes. To each
eigenvalue, we assigned its rank divided by the number of
configurations, N.; we used this mapping to define the
unfolded spectrum. In this way, the level spacing between
successive unfolded eigenvalues is exactly 1/N., which
means that there are N, eigenvalues in an interval of unit
length anywhere in the unfolded spectrum. This implies
that the average spectral density per configuration is unity
throughout the unfolded spectrum.

In the present work, we used the unfolded level spacing
distribution (ULSD) calculated from the spectrum unfolded
in the above described way. In particular, we followed how
the ULSD changed throughout the spectrum, starting from
the Poisson statistics and going over to Wigner-Dyson
statistics. This required the calculation of the local ULSD
at different locations in the spectrum. In order to do this, we
divided the spectrum into small spectral windows and
calculated the ULSD in each window separately.

In principle, this method is straightforward, if the
spectrum is infinitely dense. However, for finite density,

there is an ambiguity in how we decide whether a pair of
neighboring eigenvalues belongs to the given spectral
window or not. We could demand that both members of
the pair be within the spectral window in question.
However, this would artificially limit the largest possible
level spacings, especially for eigenvalues close to the edge
of a spectral window. To avoid this uncontrolled trunca-
tion of the tail of the ULSD, we chose the criterion that a
pair of nearest neighbor eigenvalues was considered to
belong to the given spectral window if the midpoint of the
pair was in the window. To ensure that our procedure,
including the assignment of pairs to spectral windows, is
invariant with respect to monotonic reparametrizations of
the spectrum, we applied the midpoint rule in the unfolded
spectrum. This is easily done by mapping the end points of
the spectral window into the unfolded spectrum. Notice,
however, that we can and do still plot the results in terms
of the original (not the unfolded) spectrum, as seen in
Fig. 3.
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