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Abstract. Let K be a principal ideal domain, G a finite group, and M a KG-module which is a
free K-module of finite rank on which G acts faithfully. A generalized crystallographic group is
a non-split extension € of M by G such that conjugation in € induces the G-module structure
on M. (When K = Z, these are just the classical crystallographic groups.) The dimension of
€ is the K-rank of M, the holonomy group of € is G, and € is indecomposable if M is an in-
decomposable KG-module.

We study indecomposable torsion-free generalized crystallographic groups with holonomy
group G when K is Z, or its localization Z,) at the prime p, or the ring Z, of p-adic integers.
We prove that the dimensions of such groups with G non-cyclic of order p? are unbounded.
For K = Z, we show that there are infinitely many non-isomorphic such groups with G the
alternating group of degree 4 and we study the dimensions of such groups with G cyclic of
certain orders.

1 Introduction

Zassenhaus developed algebraic methods in [11] for studying the classical crystallo-
graphic groups and he pointed out the close connection between them and the theory
of integral representations of finite groups. Historical overviews and an account of
the present state of the theory of crystallographic groups and its connections to other
branches of mathematics are given in [9], [10].

In general, the classification of the crystallographic groups is a problem of wild
type, in the sense that it is related to the classical unsolvable problem of describing
the canonical forms of pairs of linear operators acting on finite-dimensional vector
spaces (see [5], [7]). One may however focus on special classes of crystallographic
groups, for example, on groups whose translation group affords an irreducible (or
indecomposable) integral representation of the holonomy group. In this direction,
Hiss and Szczepanski [6] proved that there are no torsion-free crystallographic groups
with irreducible holonomy group. On the other hand, Kopcha and Rudko [7] showed
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that the problem of describing torsion-free crystallographic groups with indecom-
posable cyclic holonomy group of order p” with n > 5 is still of wild type.

The generalized crystallographic groups introduced in [3] are defined as follows. Let
K be a principal ideal domain, G a finite group, and M a KG-module which is a free
K-module of finite rank on which G acts faithfully. A generalized crystallographic
group is a group € which has a normal subgroup isomorphic to M with quotient G,
such that conjugation in € induces the G-module structure on M and such that the
extension does not split. The K-rank of M is called the dimension of €, and the
holonomy group of € is G. (When K = Z, this agrees with one of the usual descrip-
tions of crystallographic groups; for emphasis, we sometimes refer to them as classi-
cal crystallographic groups.)

In [3], we studied indecomposable generalized crystallographic groups when K is
Z, or its localization Z ) at the prime p, or the ring Z, of p-adic integers, and either
G is a cyclic p-group or p = 2 and G is non-cyclic of order 4. Retaining this restric-
tion on the choice of K but allowing p to be arbitrary, we consider here indecom-
posable torsion-free generalized crystallographic groups with holonomy group non-
cyclic of order p* and we prove in Theorem 2 that the dimensions of such groups are
unbounded.

For the classical case (when K = Z), we show in Theorem 3 that there are infi-
nitely many non-isomorphic indecomposable torsion-free crystallographic groups
with holonomy group the alternating group of degree 4. In Theorem 1, we consider G
cyclic of order satisfying the following condition: p? divides G for all prime divisors p
of |G| and p? divides |G| for at least one p. We prove that then every product of |G|
with a positive integer coprime to it is the dimension of an indecomposable torsion-
free crystallographic group with holonomy group G.

2 The main results

Let K be a principal ideal domain, F be a field containing K and let G be a finite
group. Let M be a K-free KG-module, with a finite K-basis affording a faithful rep-
resentation I' of G by matrices over K. Let FM be the F-space spanned by this K-
basis of M, so that M becomes a full lattice in FM. Let M = FM*/M™ be the
quotient group of the additive group FM™ of the linear space FM by the additive
group M+ of the module M. Then FM is an FG-module and M is a KG-module with
operations defined by

glom) =og(m), g(x+ M) = g(x) + M,
forgeG,oceF,AmeM,xeFM. . R
Let T: G — M be a 1-cocycle of G with values in M. Elements of M being cosets
in FM* modulo M*, we regard each value T(g) of T as a subset of FM, and define
the group

Coys(G; M;T) = {(9,x)|ge G,xe T(g)}



Torsion-free crystallographic groups with indecomposable holonomy group. II 557

with the operation
(9:x)(g",x") = (99", 9x" + x),

forg,g' € G, xe T(g), x' € T(g').

The K-rank of M will be called the K-dimension of Crys(G; M; T). When T is
not cohomologous to 0, the group Crys(G; M;T) is called indecomposable it M
is an indecomposable KG-module. If K =7Z and F = R, then the abstract group
Crys(G; M; T) is a classical crystallographic group.

Let C'(G,M) and B'(G,M) be the groups of 1-cocycles and 1-coboundaries
of G with values in M, so that H'(G, M) = C'(G,M)/B'(G,M). The group
Crys(G; M; T) is an extension of M ™ by G; it is torsion-free if and only if for each
subgroup H of G of prime order the restriction 7|, is not a coboundary.

Using results from [1], [2], [8] we prove the following two theorems.

Theorem 1. Let G be a cyclic group of order |G| = p{"* ... pl, where pi,...,ps are
distinct primes and suppose that ny = 3 and that n, = 2,...,n; =2 if s = 2. Let m be
a natural number coprime to |G| and put d = m|G|. Then there exists a torsion-free
indecomposable classical crystallographic group of dimension d with holonomy group
isomorphic to G.

Theorem 2. Let K be Z,Z ) or Z,, and let G = C, x C,. Then the K-dimensions of the
indecomposable torsion-free groups €xys(G; M; T) are unbounded.

In [3] we described completely the indecomposable torsion-free crystallographic
groups with holonomy group C, x C,. We proved that there exist at least 2p — 3
torsion-free crystallographic groups having cyclic indecomposable holonomy group
of order p?. Note that the holonomy group of an indecomposable torsion-free crys-
tallographic group can never have prime order. Therefore we have the following
result.

Theorem 3. There exist infinitely many non-isomorphic indecomposable torsion-free
classical crystallographic groups with holonomy group isomorphic to the alternating
group Ay of degree 4.

3 Preliminary results and the proof of Theorem 1

Let K =17Z,Z, or Z, as above, H,» = {ala®" =1) be a cyclic group of order
p" (n = 2), & be a primitive p°th root of unity, with 7 =& | fors > 1, and &, = 1.
Define ordered bases B, for the free K-modules R; = K[&,] by setting

Bl = {laéla"wéf_z}a
By={1,&),..., &2 & &E, ... &y

and in general (for i > 1)
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Bi=Bi U&B UEB U U By,

ordered as indicated. Obviously |B;| = #(p’) (where ¢ is the Euler function). Each R;
with i < n is a KH,»-module with action defined by

al@) =¢&¢-a (xeR)). (1)

We note that R; is only a K-submodule of R;;, not a KH,.-submodule. Let Ei be the
matrix representing multiplication by &; in the ring R; with respect to the K-basis B;
for each 7 > 0 (where Ry = K). Note that

Elp = Ep ® Ei—l (l > 1)

where E, is the identity matrix of degree p and ® is the Kronecker product of
matrices.

Let 0; be the matrix representation of H,» with respect to the K-basis B; of the
KH,»-module R;. From (1) it follows that

and 0y, . .. ,0, are irreducible K-representations of H .

Let 0 <i <j < n. For each « € R; we denote by <o¢>} the matrix with ¢(p’) rows
and ¢(p’) columns in which all columns are zero except the last which is the co-
ordinate vector of o € R; in the basis B;. Thus

&+ oyl = (&)
N (TR (O HE CHHIE 2)
oyl & = (ou (k)Y y, s o1 (k) D)y, <o (k) D)),

for 0 < k < p, where o, (k) = a and o,(k) = 0 for s # p — k. The matrix <rx>; de-
fines an extension of the KH,.-module R; by the KH,,-module R; realizing the fol-

lowing K-representation of H,:
£ i
a4 & <Of>j ) (3)
0 ¢

If o = 0 (mod pNR;) this K-representation is completely reducible and the correspond-
ing extension of modules is split, i.e.

P Bxtga,, (W, %) =0 (> )). (4)

Let m be a natural number and let 4 be an m x m matrix over K. Consider the K-
representations of the cyclic group H,» = {a|a”" = 1), with n > 2, defined by
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E, 0
A :Em 0 Em o1: Pt 5
1 ®do + E, ® 01 a»—><0 Em®§1>

Em@éZ 0
A=E, Qb+ - +E,®d6: a— 5

73 2 (0 1)

where

Ula) = AR E,@<Y) -+ E, @)
B Em®<1>; Em®<l>3! Eﬁ1®<1>r11

is the intertwining matrix.
. . 2
For n = 2 we define the following K-representation of H,» = {a|a” = 1):

10 <1
rd: ae— & <1~>; : (5)
0 &

Lemma 1. Let J,, be the lower triangular Jordan block of degree m with entries 1 on the
main diagonal. Then T [(771-])"1 (resp. FI()U) is an indecomposable K-representation of degree
m|Hyn| of Hyn for n =2 (resp. of degree |H,:| of the group H,y).

Proof. Representations depending on matrix parameters in this way were studied in
[1], [2]. Using methods and results from these papers, it is not difficult to show that
for n > 2 the K-representations I“;""fi and FX’Z are equivalent if and only if

C'4C—-B=0 (modp), (6)

for some invertible matrix C. Moreover, the K-representation F[g'_"/i is decomposable

if and only if there is a decomposable matrix B which satisfies (6). In particular, r[(){fy)m

is an indecomposable K-representation of H,.. The case of the representation 1"1()1>
follows from [1].

Put
r;’”) forn>2, m>I;
rom = F[(,l% forn>2,m=1; )
'Y forn=2.
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Lemma 2. Let L, be a KH,.-module affording the K-representation I 1(,’”) of Hyn ( for

n = 2)and {vi,v2,..., v} be a K-basis corresponding to this representation in L,. Then
Kvy is a KH), n-submodule in Ly, and over K it has a direct complement L[’) invariant
under a? wzth K-basis {wy,...,w;} where w; = v; + Av; with A;€ K fori=2,...,1.

Proof. Let n > 2. Clearly a - v; = vy, i.e. Kv; is a KHy»-submodule in L,. Using (2) it
is easy to check that in the matrix Fl(,’”) (a?) the intertwining matrix

p—1
Ula") = > A""Ya) - Ua) - Aj(a)
=0
has the form
Jm®U11 Em®U1 n—l)
U(a’) =
( ) <Em ® U21 e Em ® UZ n—1
where
= (Y, KDY, Usi= (I D] D) i=1,....n—1).
We change the basis elements v,,,; to W,,,.; = Ui + vy fori=1,..., p — 1. Since the

sum —(Ups1 + -+ + Upap—1) + v1 is replaced by —(Wpp1 + <+ + Wiap—1) + pu1, the
effect on the first row of the matrix U(a?) is to make its elements either 0 or non-
zero multiples of p. From (4) with i = 0 we can change the basis elements by setting
Winti = Upmai + 401 for p < iwith each 4; € K and so we get a K-module L]’, invariant
under a” such that L, = Kv; @ Ll’,.

For n = 2 the statement of the lemma is clear.

For the rest of this section we suppose that K = Z. Let G be cyclic of order ¢ . . . ¢,
where ¢; = p!" for each i, with py,..., p, distinct primes, and with n; > 2 for each i
and n; > 3. Write G = H,, x --- x H, with H,, cyclic of order g; for each i.

Let T™ be the tensor product of the Z- representatlon 1"(”’) of H, and the Z-
representations I'y, of the groups H, for me N and j = 2 ,s. Then T is a
Z-representation of the group G in which

r(af',....ap) = (a)) ® ) (a5) ® - @ T} (ay).
Lemma 3. If (m,|G|) = 1 then T is an indecomposable Z-representation of G.

Proof. Let T n, be the restriction of the representatlon '™ to H,. By Lemma
1 the degree of each indecomposable summand of T |, n, 18 m|Hy,| for i=1 and
|H,,| for i > 1. '

If T is a non-zero summand in [, then its degree of is divisible by m|H,,| and by
|Hy,|,...,|Hy| if s > 2 (see Lemma 1 for the case K = Z,). Thus since (m, |G|) =1
we have F =T as required.
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Now we construct a cocycle for G. Let M be a ZG-module of the Z-representation
") affording the group G and

M=1L, Qg QkLp, (8)

where L, is a ZH,:-submodule for 1"'”) for each i. If g=a{ ...a" e G and
= ®-- ®leMthen

g-l=a' L ® - ®al-I

where /; € L,,, t; € Z for each i.

We can suppose that M < RY. Each Z-basis for M is also an R-basis in R and an
R"/Z"- bas1s in M =R?"/M~*, where d = m|G| = deg(T""™).

Let v = U1 ® - ® v§ ) be the tensor product of the first Z-basis elements of the
modules Li,...,L, . Obviously a - v = v. Define /' : G — M by

t L,
f(g)z(—'+---+ ) vt M, 9)
q1 qs
whereg:al"...agserith ty,...,t; € Z. Since g - v = v and

f(g1-92) = f(g1) + f(92) forgi,92€QG,

we obtain

S(g1-92) = f(92) + f(91) = g1~ f(92) + f(91)

and therefore f is a 1-cocycle of G in M. The lemma is proved.

Lemma 4. The restriction of f to each subgroup of G of prime order subgroup is not a
coboundary.

Proof. Let 1 <i<sand let b =a” where r = p/"~'. From Lemma 2 and (8) the Z-
module M can be decomposed as M = Zv @ M', where Zv is a ZG-module and M’
isa Z- module which is invariant under a” "and hence under b. Thus M = Fo® M’
and b(M') = M'. If z e M, then z = ow + z, for some o € F, z; € M'. From (9) and
since b(z1) € M, it follows that

fb)y=plo+M#bB-1)z+M

for any z € M. Therefore the restriction of f to <(b) is not a coboundary, which
proves the lemma.

Proof of Theorem 1. By Lemma 4 the group €rys(G; M; T) is torsion-free. Moreover,
according to Lemma 3, ') (@) is an indecomposable subgroup in GL(d, K), where
d = m|G| and (m,|G|) = 1. So the proof is complete.
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4 Proof of Theorem 2

Let K =Z,Z, or Z, as above and let ¢ = £ be a primitive pth root of unity (where
p>2). Then B) = {1,¢,...,e"72} is an F-basis in the field F(¢) and a K-basis in the
ring K|[e], where  is the field of fractions of the ring K.

We write <o) for the column co-ordinate vector the element a € F(¢) in the basis
By and a for the matrix representing the operation of multiplication by o in the §-
basis B; of the field F(¢). Clearly & - () = <{ex).

The group G = {a,b) = C, x C, (where p > 2) has the following p + 2 irreducible
K-representations, which are pairwise inequivalent over the field :

vra—1, b 1;

yra—1, b—g

Vpia—& b1 (10)

y3:a—§& b g

piia—& b &,
fori:2,...,p—l,wherei:Ep_l is the (p — 1) x (p — 1) identity matrix.

Put t=p, | @ ®p, Dy; Dy, Dy,. Define the K-representation I'y of the
group G = {a,b) by

o (0 VD) (10 VO,

where the intertwining matrix U satisfies:

1) Cory
U@y =| vy =| |

15 o)

0 (1>

and o; = (e " —1)/(e—1) fori=1,2,...,p.

Lemma 5. Ty is a faithful indecomposable K-representation of G = {a,b).

Proof. Using &- (o) = {eay and 1 + &+ --- + &1 = 0 it is easy to see that Iy is a K-
representation. Since Z = Z(,) < Z,, it is now enough to complete the proof of the
lemma for K = Z,. For this it is sufficient to prove that the centralizer

E(To) = {X e M(p*, K)| XTo(g) = Lo(9)X for all g € G}

of Iy is a local ring. Let 8,6’ be representations from (10) and let V' be a K-matrix
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such that d(g)V = Vé'(g) forall g € G. Then V = 0if 6 # 6" and V' = X with x € K[¢]
if 6 =0’ # y,. It follows that each X € E(I) has the form

F 0 o e 0 Ond
X 0 - 0 {y2)
xp 0 <yp>
Xp+1 <yp+l>
0 X0

where x; = xo + (¢ — 1)y, xo € K and y; € K[¢] for i = 1,2,..., p + 1. From the form
of the matrix X and the condition K = Z, we see that X is an invertible matrix if and
only if xp is a unit in K. Since K is a local ring, it follows that E(I7) is also local, as
required.

Let My = K”" be the K-module of the K-representation I'y of G consisting of
p>-dimensional columns over K. It is convenient to condense each element of M,
regarding it as a column vector of length p + 2 with p + 1 entries from K?~! =~ K[e]
and final entry from K. We will do the same with elements of FM, (the space of
column vectors of length p? over F).

Lemma 6. Let oo = (¢ — 1) and let X, Y be the following elements from FM:

> (@

x=|w | r=|w | (1)
(@ >
0 0

There exists a 1-cocycle f : G = {a,b) = C, x C, — My = FM{ /M such that
fla)=X+ My and f(b)=Y + M,.

Moreover, this cocycle f is special, i.e. on each non-trivial subgroup of G it is not
cohomologous to the zero cocycle.

Proof. Note that = (¢ — 1)' € F(&) does not belong to K[¢], but px € K[¢]. It is easy
to see that the initial p 4+ 1 diagonal quadratic blocks of the matrix

(rg—l +r67_2++F0+Ep2)(g) (ge G)

are either zero or have the form p1, and that the final 1-dimensional block is equal to
p. It follows that
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(T~ (a) + T§ % (a) + -+ + To(a) + Ey2) X € My,
(T (b)Y + T2 (b) + -+ To(b) + Ep) Y € M, (12)
(Fo(a) — Epz) Y — (ro(b) — Epz)X € M().
The third condition follows since (& — 1){a) = (1) e K™ L
Define a function [ : G = {a,b) = C, x C, — M, by
S(1) = My;
fla)y=(a"+-+a+1)X + M, (13)
SO =@ b+ )Y + My, f(a'b)) = d'f (b)) + f(a'),
fori,j=1,....,p—1. R
According to (11)—(13) we get that f is a cocycle from G to M. To prove the rest of
the statement it is sufficient to consider generating elements {a,a’b|i =0,...,p — 1}
for all non-trivial cyclic subgroups of G.
For each x € FM, and for 1 < s < p + 1, write x(, for sth condensed co-ordinate

of the vector x. We will do the same with elements of M. Then by (13) we obtain
that

fin(@h) =<ty + K1 (s=1,...,p), fip(@) =<e>+ K (14)

It is easy to see that

&0 o o 0 (B
0 0 (B
To(a*) = < <ﬂ:> ,
0 i o
1

where f, = (¢ —1)/(¢ = 1) for s =1,2,..., p. Since &°0, + f, =0 for s =1,2,.
(see the notation before Lemma 5), p — 1 rows of the matrix [y(a’b) — E,. corre-
sponding to the sth diagonal block will be 0. Moreover the final p rows of this matrix
are also 0. Thus for any vector z € FM, the sth condensed coordinate of the vector
(To(a’h) — E,)z for s =1,2,..., p will be equal to 0. The (p + 1)st coordinate in
(To(a) — E,»)z will also be 0.

Hence, from (14) and the condition o = (¢ — 1)~ ¢ K[e] it follows that

(Fo(a'b) — E)z+ f(a’b) # My and (Ty(a) — Ep2)z + f(a) # My

for any z € FM, and for s = 1,2,..., p. The lemma is proved.
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Corollary 1. The group €rys(G; My; f) is torsion-fiee.

Let us define a K-representation of the group G = <a,b) as follows. Set

E, ® s 0 u up
A E,® 7, U Uy
! E, ® 7y 0 ’
0 E, ® 7

where

un(a) = uy (@) = —un () = E,® 1, uy(b) = upn(b) =0,
up(a) = un(b) = J, ® 1), un(a) = E, ® (1),

and J, is the upper triangular Jordan block of degree n.
Lemma 7. The K-representation A, of the group G = {a,b) is indecomposable.
Proof. See [1], [5].

Using I'y we define the following K-representation of G:

I W,
Fn: 3
<0 An)

565

where ¥}, is the matrix whose entries are intertwining functions of the composition
factors in I’y with the composition factors in A,,. All of these intertwining functions
are 0 except the function v which intertwines y; in Iy with the first representation y,

in E, ® y, and v(a) = v(h) = {1). Thus

0..0 0 0 0
S
Vi@ =n0)=[0...0 <15 <0y - <0>
0...0 0y <0y --- 0
0...0 0> <0y --- <0
0.0 0 0 - 0

Lemma 8. I, is an indecomposable K-representation of G = {a,b).

Proof. Clearly T, is a K-representation equivalent to the K-representation
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Ppit+tpy V)
Fn/:(Pl 0 2 A,n )7 (15)

n+1

of the group G, where A, differs from A,;; only by the intertwining matrix
U’ = (u;) (the notation for A,, u; was introduced after Corollary 1, and that for
Iy, before Lemma 5):

upy(a) = upy(b) = J, ., ® 1),
uy(a) = Epp1 ® (1),

i) =iy = - 0) = (0 ).

Moreover, in the representation A, there is a non-zero intertwining between the
first y, and the first y,: we have u(a) = 0, u(b) = <1). Note that we obtained I', from
I, by a permutation of the indecomposable components, and intertwining functions
of I/ were obtained from the corresponding ones of T,. If I', is decomposable, then
either the representations p,_;, ..., p, or their sum cannot be components in I'/. Each
of these representations has non-zero intertwining with y,, which cannot be changed
without changing the zero intertwining for p, i,...,p,. Thus if I’ is decomposable
then so is the representation A, ;.

However the A/ +1 of G is indecomposable. Indeed, the additive group of the in-
tertwining functions for any pairs of different irreducible K-representations (10) of
the group G is isomorphic to the additive group of the field K, = K/pK. Any equi-
valence transformation (over K) acting on A/, will change the intertwining func-
tions of the different pairs of the irreducible components of A, . If we change the
intertwining functions by elements of the field K, then the effect on the functions is to
change the elements of the field K,,. As a consequence the K-representation A, 41 can
be parametrized by the following matrix over K,:

E J 0 0
C = n n+1 h E/: ]
(& £) weeri=(o 5)

We recall that the notation for A, was introduced before Lemma 7 and in (15)—(16).
The representation A, is decomposable over K if and only if there exist matrices
Sie GL(n+1,K,) fori=1,...,4 such that

S, oN! /8 0 E' X
C = 17
(5 ) (b 5)=(5 a.) )

where



Torsion-free crystallographic groups with indecomposable holonomy group. II 567

X; 0
X = 18
( 0 Xz) 18)
is decomposable over K, and X1, X, are square matrices.
Now suppose that A, is decomposable and satisfies (17)—(18). It follows that

P n 0
S =("! S, =S, =
I (* S>’ 2= 04 (* S>’
where 1,1, # 0, S € GL(n, K,) and

X=81_ 8S="1"rT, (19)

1 0 h-ty Yy
T = Y = . 20
<0 S> ’ ( Y21 Yn ( )
Here Y has the following description: ¢ - £, # 0, y;2 = (#1,0,...,0), y21 is a column
vector of length n, Y, is a matrix obtained from the matrix J, by changing the

first column by a column vector over K. Since y1»S # 0 we cannot have X = #1,
X, = S7'Y,S, where X1, X, are defined in (18). Thus

0
lys=("* . 21
S S(0X2 (21)

Let K, be the algebraic closure of the K,. The equivalence transformation with 7
over K, given in (19) can be used to decompose further the matrix X so that X, splits
into Jordan blocks over K, (see (17)—(21)).

Of course, we can arrange that X3 is Jy(«), the Jordan block with entries o on the
main diagonal. We regard Y as a linear operator on the space Fp”“ of column vec-
tors. Thus from (18) it follows that X is the matrix of the operator Y in that basis
of the space K,""!, consisting of the columns of the matrix 7. The Jordan block
X, = Jy(o) corresponds to the eigenvector e € 7,,”“ of the operator Y; thus Ye = ae.
Since X, does not include the first column of X, the vector ¢ is a column of T, dif-
ferent from the first column, i.e. the first component of e is equal to 0. Using the
description of Y in (19), it is easy to show that the equation Ye = oe (with o € K,,) is
impossible for a vector e = (0,y,,...,%,) T £ 0. This contradicts the decomposability
of the K-representation A, of G and the lemma is proved.

where

Proof of Theorem 2. We can suppose that M < F%. Clearly each K-basis in M
is also an F-basis in F% and an (F'/K*)-basis in M =F%" /M*, where
d, = deg(T,) = (3p — 2)n + p?. Thus Crys(G; M,; T,,) has dimension equal to the
degree d, of the representation I, and since d,, is not bounded as a function of n the
theorem is proved.
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5 Proof of Theorem 3

We take K = Z and consider classical crystallographic groups. Let
Ay =<a,b|a®>=b> = (ab)* = 1)

be the alternating group of degree 4. We begin with the following Z-representations
of Ay:

A a—1, b—1,;

1 0 0 —1I

A “_’<o 1)’ b_’(l —1)’

0 -1 1 00 1
As: a—>(0 -1 0), b—>(1 0 0);

1 -1 0 01 0

1 -1 -1 0 -1 1
As a—>(0 0 1), b—>(1 0 1).

0 1 0 0 1 0

Now consider the representations A, I';, defined by

As 0 X1 X3

Ao A X, O _— E, ® A U
o N 0 E,®A)
0 Ay

where

Ula) =E, @+ J,(00®p, U(b) =0,
2 =(0,0,0,0,2,0,1,—1,0,0,0), A= (0,-2,0,0,0,0,0,1,—1,—1,0),

and J,(v) is n x n the Jordan block with entries v on the main diagonal. It was proved
in [8] that the representations A, Ay, A3 and A4 are irreducible and A and T, are in-
decomposable Z-representations.

Let M, be a Z-module affording the representation I', of A4 consisting of col-
umn vectors of length d, over Z, where deg(I',) = d, = 12n. It is easy to check that
fo s Ay — M, defined by
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fol@) = (0,...,0,5.10,...,0)" + M, fu(b) = (4,0,...,0)" + M,

N —

is a 1-cocycle which is special. Therefore we obtain

Corollary 2. The classical crystallographic group Crys(Aa; My; f) is torsion-free.
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