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Abstract. Let K be a principal ideal domain, G a finite group, and M a KG-module which is a
free K-module of finite rank on which G acts faithfully. A generalized crystallographic group is
a non-split extension C of M by G such that conjugation in C induces the G-module structure
on M. (When K ¼ Z, these are just the classical crystallographic groups.) The dimension of
C is the K-rank of M, the holonomy group of C is G, and C is indecomposable if M is an in-
decomposable KG-module.
We study indecomposable torsion-free generalized crystallographic groups with holonomy

group G when K is Z, or its localization Zð pÞ at the prime p, or the ring Zp of p-adic integers.
We prove that the dimensions of such groups with G non-cyclic of order p2 are unbounded.
For K ¼ Z, we show that there are infinitely many non-isomorphic such groups with G the
alternating group of degree 4 and we study the dimensions of such groups with G cyclic of
certain orders.

1 Introduction

Zassenhaus developed algebraic methods in [11] for studying the classical crystallo-
graphic groups and he pointed out the close connection between them and the theory
of integral representations of finite groups. Historical overviews and an account of
the present state of the theory of crystallographic groups and its connections to other
branches of mathematics are given in [9], [10].

In general, the classification of the crystallographic groups is a problem of wild
type, in the sense that it is related to the classical unsolvable problem of describing
the canonical forms of pairs of linear operators acting on finite-dimensional vector
spaces (see [5], [7]). One may however focus on special classes of crystallographic
groups, for example, on groups whose translation group a¤ords an irreducible (or
indecomposable) integral representation of the holonomy group. In this direction,
Hiss and Szczepański [6] proved that there are no torsion-free crystallographic groups
with irreducible holonomy group. On the other hand, Kopcha and Rudko [7] showed
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that the problem of describing torsion-free crystallographic groups with indecom-
posable cyclic holonomy group of order pn with nd 5 is still of wild type.

The generalized crystallographic groups introduced in [3] are defined as follows. Let
K be a principal ideal domain, G a finite group, and M a KG-module which is a free
K-module of finite rank on which G acts faithfully. A generalized crystallographic
group is a group C which has a normal subgroup isomorphic to M with quotient G,
such that conjugation in C induces the G-module structure on M and such that the
extension does not split. The K-rank of M is called the dimension of C, and the
holonomy group of C is G. (When K ¼ Z, this agrees with one of the usual descrip-
tions of crystallographic groups; for emphasis, we sometimes refer to them as classi-
cal crystallographic groups.)

In [3], we studied indecomposable generalized crystallographic groups when K is
Z, or its localization ZðpÞ at the prime p, or the ring Zp of p-adic integers, and either
G is a cyclic p-group or p ¼ 2 and G is non-cyclic of order 4. Retaining this restric-
tion on the choice of K but allowing p to be arbitrary, we consider here indecom-
posable torsion-free generalized crystallographic groups with holonomy group non-
cyclic of order p2 and we prove in Theorem 2 that the dimensions of such groups are
unbounded.

For the classical case (when K ¼ Z), we show in Theorem 3 that there are infi-
nitely many non-isomorphic indecomposable torsion-free crystallographic groups
with holonomy group the alternating group of degree 4. In Theorem 1, we consider G
cyclic of order satisfying the following condition: p2 divides G for all prime divisors p
of jGj and p3 divides jGj for at least one p. We prove that then every product of jGj
with a positive integer coprime to it is the dimension of an indecomposable torsion-
free crystallographic group with holonomy group G.

2 The main results

Let K be a principal ideal domain, F be a field containing K and let G be a finite
group. Let M be a K-free KG-module, with a finite K-basis a¤ording a faithful rep-
resentation G of G by matrices over K . Let FM be the F -space spanned by this K-
basis of M, so that M becomes a full lattice in FM. Let M̂M ¼ FMþ=Mþ be the
quotient group of the additive group FMþ of the linear space FM by the additive
group Mþ of the module M. Then FM is an FG-module and M̂M is a KG-module with
operations defined by

gðamÞ ¼ agðmÞ; gðxþMÞ ¼ gðxÞ þM;

for g A G, a A F , m A M, x A FM.
Let T : G ! M̂M be a 1-cocycle of G with values in M̂M. Elements of M̂M being cosets

in FMþ modulo Mþ, we regard each value TðgÞ of T as a subset of FM, and define
the group

CrysðG;M;TÞ ¼ fðg; xÞ j g A G; x A TðgÞg
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with the operation

ðg; xÞðg 0; x 0Þ ¼ ðgg 0; gx 0 þ xÞ;

for g; g 0 A G, x A TðgÞ, x 0 A Tðg 0Þ.
The K-rank of M will be called the K-dimension of CrysðG;M;TÞ. When T is

not cohomologous to 0, the group CrysðG;M;TÞ is called indecomposable if M

is an indecomposable KG-module. If K ¼ Z and F ¼ R, then the abstract group
CrysðG;M;TÞ is a classical crystallographic group.

Let C1ðG; M̂MÞ and B1ðG; M̂MÞ be the groups of 1-cocycles and 1-coboundaries
of G with values in M̂M, so that H 1ðG; M̂MÞ ¼ C1ðG; M̂MÞ=B1ðG; M̂MÞ. The group
CrysðG;M;TÞ is an extension of Mþ by G; it is torsion-free if and only if for each
subgroup H of G of prime order the restriction T jH is not a coboundary.

Using results from [1], [2], [8] we prove the following two theorems.

Theorem 1. Let G be a cyclic group of order jGj ¼ pn1
1 . . . pns

s , where p1; . . . ; ps are

distinct primes and suppose that n1 d 3 and that n2 d 2; . . . ; ns d 2 if sd 2. Let m be

a natural number coprime to jGj and put d ¼ mjGj. Then there exists a torsion-free

indecomposable classical crystallographic group of dimension d with holonomy group

isomorphic to G.

Theorem 2. Let K be Z;ZðpÞ or Zp, and let GGCp � Cp. Then the K-dimensions of the

indecomposable torsion-free groups CrysðG;M;TÞ are unbounded.

In [3] we described completely the indecomposable torsion-free crystallographic
groups with holonomy group C2 � C2. We proved that there exist at least 2p� 3
torsion-free crystallographic groups having cyclic indecomposable holonomy group
of order p2. Note that the holonomy group of an indecomposable torsion-free crys-
tallographic group can never have prime order. Therefore we have the following
result.

Theorem 3. There exist infinitely many non-isomorphic indecomposable torsion-free

classical crystallographic groups with holonomy group isomorphic to the alternating

group A4 of degree 4.

3 Preliminary results and the proof of Theorem 1

Let K ¼ Z;ZðpÞ or Zp as above, Hpn ¼ ha j apn ¼ 1i be a cyclic group of order
pn ðnd 2Þ, xs be a primitive psth root of unity, with xp

s ¼ xs�1 for sd 1, and x0 ¼ 1.
Define ordered bases Bi for the free K-modules Ri ¼ K ½xi� by setting

B1 ¼ f1; x1; . . . ; xp�2
1 g;

B2 ¼ f1; x1; . . . ; xp�2
1 ; x2; x2x1; . . . ; x

p�1
2 x

p�2
1 g;

and in general (for i > 1)
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Bi ¼ Bi�1 U xiBi�1 U x2i Bi�1 U � � �U x
p�1
i Bi�1;

ordered as indicated. Obviously jBij ¼ fðpiÞ (where f is the Euler function). Each Ri

with ic n is a KHpn -module with action defined by

aðaÞ ¼ xi � a ða A RiÞ: ð1Þ

We note that Ri is only a K-submodule of Riþ1, not a KHpn -submodule. Let ~xxi be the
matrix representing multiplication by xi in the ring Ri with respect to the K-basis Bi

for each id 0 (where R0 ¼ K ). Note that

~xxp
i ¼ Ep n ~xxi�1 ði > 1Þ

where Ep is the identity matrix of degree p and n is the Kronecker product of
matrices.

Let di be the matrix representation of Hpn with respect to the K-basis Bi of the
KHpn -module Ri. From (1) it follows that

diðaÞ ¼ ~xxi ðid 0Þ

and d0; . . . ; dn are irreducible K-representations of Hpn .
Let 0c ic jc n. For each a A Ri we denote by hai i

j the matrix with fðpiÞ rows
and fðp jÞ columns in which all columns are zero except the last which is the co-
ordinate vector of a A Ri in the basis Bi. Thus

~xxi � hai i
j ¼ hxiai

i
j ;

hai i
j ¼ ðh0i i

j�1; . . . ; h0i
i
j�1; hai

i
j�1Þ; ð2Þ

hai i
j � ~xx

k
j ¼ ðha1ðkÞi i

j�1; . . . ; hap�1ðkÞi i
j�1; hapðkÞi i

j�1Þ;

for 0c k < p, where ap�kðkÞ ¼ a and asðkÞ ¼ 0 for s0 p� k. The matrix hai i
j de-

fines an extension of the KHpn -module Ri by the KHpn -module Rj realizing the fol-
lowing K-representation of Hpn :

a 7!
~xxi hai i

j

0 ~xxj

 !
: ð3Þ

If a1 0 ðmod pRiÞ this K-representation is completely reducible and the correspond-
ing extension of modules is split, i.e.

p ExtKHpn
ðRj;RiÞ ¼ 0 ði > jÞ: ð4Þ

Let m be a natural number and let A be an m�m matrix over K . Consider the K-
representations of the cyclic group Hpn ¼ ha j apn ¼ 1i, with n > 2, defined by
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D1 ¼ Em n d0 þ Em n d1: a 7! Em 0

0 Em n ~xx1

� �
;

D2 ¼ Em n d2 þ � � � þ Em n dn: a 7!
Em n ~xx2 0

. .
.

0 Em n ~xxn

0
BB@

1
CCA;

G
ðmÞ
p;A ¼ D1 U

0 D2

� �
: a 7! D1ðaÞ UðaÞ

0 D2ðaÞ

� �
;

where

UðaÞ ¼ Anh1i0
2 Em nh1i0

3 � � � Em nh1i0
n

Em nh1i1
2 Em nh1i1

3 � � � Em nh1i1
n

 !

is the intertwining matrix.
For n ¼ 2 we define the following K-representation of Hp2 ¼ ha j ap2 ¼ 1i:

Gð1Þ
p : a 7!

1 0 h1i0
2

~xx1 h1i1
2

0 ~xx2

0
B@

1
CA: ð5Þ

Lemma 1. Let Jm be the lower triangular Jordan block of degree m with entries 1 on the

main diagonal. Then G
ðmÞ
p;Jm

(resp. Gð1Þ
p ) is an indecomposable K-representation of degree

mjHpn j of Hpn for nd 2 (resp. of degree jHp2 j of the group Hp2 ).

Proof. Representations depending on matrix parameters in this way were studied in
[1], [2]. Using methods and results from these papers, it is not di‰cult to show that
for n > 2 the K-representations G

ðmÞ
p;A and G

ðmÞ
p;B are equivalent if and only if

C�1AC � B1 0 ðmod pÞ; ð6Þ

for some invertible matrix C. Moreover, the K-representation G
ðmÞ
p;A is decomposable

if and only if there is a decomposable matrix B which satisfies (6). In particular, G
ðmÞ
p;Jm

is an indecomposable K-representation of Hpn . The case of the representation Gð1Þ
p

follows from [1].

Put

GðmÞ
p ¼

G
ðmÞ
p;Jm

for n > 2; m > 1;

G
ð1Þ
p;1 for n > 2; m ¼ 1;

Gð1Þ
p for n ¼ 2:

8>><
>>: ð7Þ
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Lemma 2. Let Lp be a KHpn -module a¤ording the K-representation GðmÞ
p of Hpn ( for

nd 2) and fv1; v2; . . . ; vtg be a K-basis corresponding to this representation in Lp. Then
Kv1 is a KHpn -submodule in Lp, and over K it has a direct complement L 0

p invariant

under ap with K-basis fw2; . . . ;wtg where wi ¼ vi þ liv1 with li A K for i ¼ 2; . . . ; t.

Proof. Let n > 2. Clearly a � v1 ¼ v1, i.e. Kv1 is a KHpn -submodule in Lp. Using (2) it
is easy to check that in the matrix GðmÞ

p ðapÞ the intertwining matrix

UðapÞ ¼
Xp�1

t¼0

D
p�t�1
1 ðaÞ �UðaÞ � D t

2ðaÞ

has the form

UðapÞ ¼ Jm nU11 � � � Em nU1 n�1

Em nU21 � � � Em nU2 n�1

� �
;

where

U1 i ¼ ðh1i0
i ; . . . ; h1i

0
i Þ; U2 i ¼ ðh1i1

i ; hx1i
1
i ; . . . ; hx

p�1
1 i1

i Þ ði ¼ 1; . . . ; n� 1Þ:

We change the basis elements vmþi to wmþi ¼ vmþi þ v1 for i ¼ 1; . . . ; p� 1. Since the
sum �ðvmþ1 þ � � � þ vmþp�1Þ þ v1 is replaced by �ðwmþ1 þ � � � þ wmþp�1Þ þ pv1, the
e¤ect on the first row of the matrix UðapÞ is to make its elements either 0 or non-
zero multiples of p. From (4) with i ¼ 0 we can change the basis elements by setting
wmþi ¼ vmþi þ liv1 for pc i with each li A K and so we get a K-module L 0

p invariant
under ap such that Lp ¼ Kv1 lL 0

p.
For n ¼ 2 the statement of the lemma is clear.

For the rest of this section we suppose that K ¼ Z. Let G be cyclic of order q1 . . . qs
where qi ¼ pni

i for each i, with p1; . . . ; ps distinct primes, and with ni d 2 for each i

and n1 d 3. Write G ¼ Hq1 � � � � �Hqs with Hqi cyclic of order qi for each i.

Let GðmÞ be the tensor product of the Z-representation GðmÞ
p1

of Hq1 and the Z-
representations Gqj of the groups Hqj for m A N and j ¼ 2; . . . ; s. Then GðmÞ is a
Z-representation of the group G in which

GðmÞðat1
1 ; . . . ; a

ts
s Þ ¼ GðmÞ

p1
ðat1

1 ÞnGð1Þ
p2
ðat2

2 Þn � � �nGð1Þ
ps
ðats

s Þ:

Lemma 3. If ðm; jGjÞ ¼ 1 then GðmÞ is an indecomposable Z-representation of G.

Proof. Let GðmÞjHqi
be the restriction of the representation GðmÞ to Hqi . By Lemma

1 the degree of each indecomposable summand of GðmÞjHqi
is mjHq1 j for i ¼ 1 and

jHqi j for i > 1.
If G is a non-zero summand in GðmÞ, then its degree of is divisible by mjHq1 j and by

jHq2 j; . . . ; jHqs j if sd 2 (see Lemma 1 for the case K ¼ ZpÞ. Thus since ðm; jGjÞ ¼ 1
we have G ¼ GðmÞ, as required.
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Now we construct a cocycle for G. Let M be a ZG-module of the Z-representation
GðmÞ a¤ording the group G and

M ¼ Lp1 nK � � �nK Lps ; ð8Þ

where Lpi is a ZHpn
i
-submodule for GðmÞ

pi
for each i. If g ¼ at1

1 . . . ats
s A G and

l ¼ l1 n � � �n ls A M, then

g � l ¼ at1
1 � l1 n � � �n ats

s � ls;

where li A Lpi , ti A Z for each i.
We can suppose that MHRd . Each Z-basis for M is also an R-basis in Rd and an

Rþ=Zþ-basis in M̂M ¼ Rdþ=Mþ, where d ¼ mjGj ¼ degðGðmÞÞ.
Let v ¼ v

ð1Þ
1 n � � �n v

ð1Þ
s be the tensor product of the first Z-basis elements of the

modules L1; . . . ;Lps . Obviously a � v ¼ v. Define f : G ! M̂M by

f ðgÞ ¼ t1

q1
þ � � � þ ts

qs

� �
� vþM; ð9Þ

where g ¼ at1
1 . . . ats

s A G with t1; . . . ; ts A Z. Since g1 � v ¼ v and

f ðg1 � g2Þ ¼ f ðg1Þ þ f ðg2Þ for g1; g2 A G;

we obtain

f ðg1 � g2Þ ¼ f ðg2Þ þ f ðg1Þ ¼ g1 � f ðg2Þ þ f ðg1Þ

and therefore f is a 1-cocycle of G in M̂M. The lemma is proved.

Lemma 4. The restriction of f to each subgroup of G of prime order subgroup is not a

coboundary.

Proof. Let 1c ic s and let b ¼ ar where r ¼ pni�1
i . From Lemma 2 and (8) the Z-

module M can be decomposed as M ¼ ZvlM 0, where Zv is a ZG-module and M 0

is a Z-module which is invariant under a
pi
i and hence under b. Thus M̂M ¼ Fvl M̂M 0

and bðM̂M 0Þ ¼ M̂M 0. If z A M̂M, then z ¼ avþ z1 for some a A F , z1 A M̂M 0. From (9) and
since bðz1Þ A M̂M 0, it follows that

f ðbÞ ¼ p�1
i vþM0 ðb� 1ÞzþM

for any z A M̂M. Therefore the restriction of f to hbi is not a coboundary, which
proves the lemma.

Proof of Theorem 1. By Lemma 4 the group CrysðG;M;TÞ is torsion-free. Moreover,
according to Lemma 3, GðmÞðGÞ is an indecomposable subgroup in GLðd;KÞ, where
d ¼ mjGj and ðm; jGjÞ ¼ 1. So the proof is complete.
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4 Proof of Theorem 2

Let K ¼ Z;ZðpÞ or Zp as above and let e ¼ x be a primitive pth root of unity (where
p > 2). Then B1 ¼ f1; e; . . . ; ep�2g is an F-basis in the field FðeÞ and a K-basis in the
ring K ½e�, where F is the field of fractions of the ring K .

We write hai for the column co-ordinate vector the element a A FðeÞ in the basis
B1 and ~aa for the matrix representing the operation of multiplication by a in the F-
basis B1 of the field FðeÞ. Clearly ~ee � hai ¼ heai.

The group G ¼ ha; biGCp � Cp (where p > 2) has the following pþ 2 irreducible
K-representations, which are pairwise inequivalent over the field F:

g0 : a 7! 1; b 7! 1;

g1 : a ! ~11; b ! ~ee;

g2 : a 7! ~ee; b 7! ~11; ð10Þ

g3 : a 7! ~ee; b 7! ~ee;

ri : a 7! ~ee; b 7! ~ee i;

for i ¼ 2; . . . ; p� 1, where ~11 ¼ Ep�1 is the ðp� 1Þ � ðp� 1Þ identity matrix.
Put t ¼ rp�1 l � � �l r2 l g3 l g2 l g1. Define the K-representation G0 of the

group G ¼ ha; bi by

a 7! tðaÞ UðaÞ
0 g0ðaÞ

� �
; b 7! tðbÞ UðbÞ

0 g0ðbÞ

� �
;

where the intertwining matrix U satisfies:

UðaÞ ¼

h1i

..

.

h1i

0

0
BBBB@

1
CCCCA; UðbÞ ¼

ha1i

..

.

hapi

h1i

0
BBBB@

1
CCCCA;

and ai ¼ ðep�i � 1Þ=ðe� 1Þ for i ¼ 1; 2; . . . ; p.

Lemma 5. G0 is a faithful indecomposable K-representation of G ¼ ha; bi.

Proof. Using ~ee � hai ¼ heai and 1þ eþ � � � þ ep�1 ¼ 0 it is easy to see that G0 is a K-
representation. Since ZHZðpÞ HZp, it is now enough to complete the proof of the
lemma for K ¼ Zp. For this it is su‰cient to prove that the centralizer

EðG0Þ ¼ fX A Mðp2;KÞ jXG0ðgÞ ¼ G0ðgÞX for all g A Gg

of G0 is a local ring. Let d; d 0 be representations from (10) and let V be a K-matrix
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such that dðgÞV ¼ Vd 0ðgÞ for all g A G. Then V ¼ 0 if d0 d 0 and V ¼ ~xx with x A K ½e�
if d ¼ d 0 0 g0. It follows that each X A EðG0Þ has the form0

BBBBBBBBB@

~xx1 0 � � � � � � 0 hy1i

~xx2 0 � � � 0 hy2i
. .
. . .

. ..
. ..

.

~xxp 0 hypi

~xxpþ1 hypþ1i

0 x0

1
CCCCCCCCCA
;

where xi ¼ x0 þ ðe� 1Þyi, x0 A K and yi A K½e� for i ¼ 1; 2; . . . ; pþ 1. From the form
of the matrix X and the condition K ¼ Zp we see that X is an invertible matrix if and
only if x0 is a unit in K . Since K is a local ring, it follows that EðG0Þ is also local, as
required.

Let M0 ¼ Kp2 be the K-module of the K-representation G0 of G consisting of
p2-dimensional columns over K . It is convenient to condense each element of M0,
regarding it as a column vector of length pþ 2 with pþ 1 entries from K p�1 GK ½e�
and final entry from K . We will do the same with elements of FM0 (the space of
column vectors of length p2 over F ).

Lemma 6. Let a ¼ ðe� 1Þ�1
and let X ;Y be the following elements from FM0:

X ¼

h0i
..
.

h0i

hai

0

0
BBBBB@

1
CCCCCA; Y ¼

hai
..
.

hai

h0i

0

0
BBBBB@

1
CCCCCA: ð11Þ

There exists a 1-cocycle f : G ¼ ha; biGCp � Cp ! M̂M0 ¼ FMþ
0 =M

þ
0 such that

f ðaÞ ¼ X þM0 and f ðbÞ ¼ Y þM0:

Moreover, this cocycle f is special, i.e. on each non-trivial subgroup of G it is not

cohomologous to the zero cocycle.

Proof. Note that a ¼ ðe� 1Þ�1 A FðeÞ does not belong to K ½e�, but pa A K ½e�. It is easy
to see that the initial pþ 1 diagonal quadratic blocks of the matrix

ðGp�1
0 þ G

p�2
0 þ � � � þ G0 þ Ep2ÞðgÞ ðg A GÞ

are either zero or have the form p~11, and that the final 1-dimensional block is equal to
p. It follows that
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ðGp�1
0 ðaÞ þ G

p�2
0 ðaÞ þ � � � þ G0ðaÞ þ Ep2ÞX A M0;

ðGp�1
0 ðbÞ þ G

p�2
0 ðbÞ þ � � � þ G0ðbÞ þ Ep2ÞY A M0; ð12Þ

ðG0ðaÞ � Ep2ÞY � ðG0ðbÞ � Ep2ÞX A M0:

The third condition follows since ð~ee� ~11Þhai ¼ h1i A Kp�1.
Define a function f : G ¼ ha; biGCp � Cp ! M̂M0 by

f ð1Þ ¼ M0;

f ðaiÞ ¼ ðai�1 þ � � � þ aþ 1ÞX þM0; ð13Þ

f ðb jÞ ¼ ðb j�1 þ � � � þ bþ 1ÞY þM0; f ðaib jÞ ¼ aif ðb jÞ þ f ðaiÞ;

for i; j ¼ 1; . . . ; p� 1.
According to (11)–(13) we get that f is a cocycle from G to M̂M0. To prove the rest of

the statement it is su‰cient to consider generating elements fa; aib j i ¼ 0; . . . ; p� 1g
for all non-trivial cyclic subgroups of G.

For each x A FM0 and for 1c sc pþ 1, write xðsÞ for sth condensed co-ordinate
of the vector x. We will do the same with elements of M̂M0. Then by (13) we obtain
that

fðsÞðasbÞ ¼ he saiþ Kp�1 ðs ¼ 1; . . . ; pÞ; fðpþ1ÞðaÞ ¼ haiþ K p�1: ð14Þ

It is easy to see that

G0ðasÞ ¼

~ees 0 � � � � � � 0 hbsi

~ees 0 � � � 0 hbsi
. .
. . .

. ..
. ..

.

~ees 0 hbsi

0 ~11 0

1

0
BBBBBBBB@

1
CCCCCCCCA
;

where bs ¼ ðes � 1Þ=ðe� 1Þ for s ¼ 1; 2; . . . ; p. Since esas þ bs ¼ 0 for s ¼ 1; 2; . . . ; p
(see the notation before Lemma 5), p� 1 rows of the matrix G0ðasbÞ � Ep2 corre-
sponding to the sth diagonal block will be 0. Moreover the final p rows of this matrix
are also 0. Thus for any vector z A FM0 the sth condensed coordinate of the vector
ðG0ðasbÞ � Ep2Þz for s ¼ 1; 2; . . . ; p will be equal to 0. The ðpþ 1Þst coordinate in
ðG0ðaÞ � Ep2Þz will also be 0.

Hence, from (14) and the condition a ¼ ðe� 1Þ�1 B K ½e� it follows that

ðG0ðasbÞ � Ep2Þzþ f ðasbÞ0M0 and ðG0ðaÞ � Ep2Þzþ f ðaÞ0M0

for any z A FM0 and for s ¼ 1; 2; . . . ; p. The lemma is proved.
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Corollary 1. The group CrysðG;M0; f Þ is torsion-free.

Let us define a K-representation of the group G ¼ ha; bi as follows. Set

Dn ¼

En n g3 0 u11 u12

En n g2 u21 u22

En n g1 0

0 En n g0

0
BBB@

1
CCCA;

where

u11ðaÞ ¼ u21ðaÞ ¼ �u21ðbÞ ¼ En n ~11; u11ðbÞ ¼ u22ðbÞ ¼ 0;

u12ðaÞ ¼ u12ðbÞ ¼ Jn nh1i; u22ðaÞ ¼ En nh1i;

and Jn is the upper triangular Jordan block of degree n.

Lemma 7. The K-representation Dn of the group G ¼ ha; bi is indecomposable.

Proof. See [1], [5].

Using G0 we define the following K-representation of G:

Gn ¼
G0 Vn

0 Dn

� �
;

where Vn is the matrix whose entries are intertwining functions of the composition
factors in G0 with the composition factors in Dn. All of these intertwining functions
are 0 except the function v which intertwines g3 in G0 with the first representation g0
in En n g0 and vðaÞ ¼ vðbÞ ¼ h1i. Thus

VnðaÞ ¼ VnðbÞ ¼

0 . . . 0 0 0 � � � 0
. . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 � � � 0

0 . . . 0 h1i h0i � � � h0i

0 . . . 0 h0i h0i � � � h0i

0 . . . 0 h0i h0i � � � h0i

0 . . . 0 0 0 � � � 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Lemma 8. Gn is an indecomposable K-representation of G ¼ ha; bi.

Proof. Clearly Gn is a K-representation equivalent to the K-representation
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G 0
n ¼

rp�1 þ � � � þ r2 V 0
n

0 D 0
nþ1

� �
; ð15Þ

of the group G, where D 0
nþ1 di¤ers from Dnþ1 only by the intertwining matrix

U 0 ¼ ðu 0
ijÞ (the notation for Dn, uij was introduced after Corollary 1, and that for

G0, before Lemma 5):

u 0
12ðaÞ ¼ u 0

12ðbÞ ¼ J 0
nþ1 nh1i;

u 0
22ðaÞ ¼ Enþ1 nh1i;

u 0
11ðbÞ ¼ u 0

22ðbÞ ¼ 0;

u 0
11ðaÞ ¼ u 0

21ðaÞ ¼ �u 0
21ðbÞ ¼

~00 0

0 En n ~11

� �
:

ð16Þ

Moreover, in the representation D 0
nþ1 there is a non-zero intertwining between the

first g1 and the first g0: we have uðaÞ ¼ 0, uðbÞ ¼ h1i. Note that we obtained G 0
n from

Gn by a permutation of the indecomposable components, and intertwining functions
of G 0

n were obtained from the corresponding ones of Gn. If G
0
n is decomposable, then

either the representations rp�1; . . . ; r2 or their sum cannot be components in G 0
n. Each

of these representations has non-zero intertwining with g0, which cannot be changed
without changing the zero intertwining for rp�1; . . . ; r2. Thus if G

0
n is decomposable

then so is the representation D 0
nþ1.

However the D 0
nþ1 of G is indecomposable. Indeed, the additive group of the in-

tertwining functions for any pairs of di¤erent irreducible K-representations (10) of
the group G is isomorphic to the additive group of the field Kp ¼ K=pK . Any equi-
valence transformation (over K) acting on D 0

nþ1 will change the intertwining func-
tions of the di¤erent pairs of the irreducible components of D 0

nþ1. If we change the
intertwining functions by elements of the field Kp then the e¤ect on the functions is to
change the elements of the field Kp. As a consequence the K-representation D 0

nþ1 can
be parametrized by the following matrix over Kp:

C ¼ E 0
n J 0

nþ1

E 0
n Enþ1

� �
; where E 0

n ¼
0 0

0 En

� �
:

We recall that the notation for Dn was introduced before Lemma 7 and in (15)–(16).
The representation D 0

nþ1 is decomposable over K if and only if there exist matrices
Si A GLðnþ 1;KpÞ for i ¼ 1; . . . ; 4 such that

S1 0

0 S2

� ��1

C
S3 0

0 S4

� �
¼ E 0

n X

E 0
n Enþ1

� �
; ð17Þ

where
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X ¼ X1 0

0 X2

� �
ð18Þ

is decomposable over Kp, and X1;X2 are square matrices.
Now suppose that D 0

nþ1 is decomposable and satisfies (17)–(18). It follows that

S1 ¼
t�1
1 0

� S

� �
; S2 ¼ S4 ¼

t2 0

� S

� �
;

where t1t2 0 0, S A GLðn;KpÞ and

X ¼ S�1
1 J 0

nþ1S2 ¼ T�1YT ; ð19Þ

where

T ¼ 1 0

0 S

� �
; Y ¼ t1 � t2 y12

y21 Yn

� �
: ð20Þ

Here Y has the following description: t1 � t2 0 0, y12 ¼ ðt1; 0; . . . ; 0Þ, y21 is a column
vector of length n, Yn is a matrix obtained from the matrix J 0

n by changing the
first column by a column vector over Kp. Since y12S0 0 we cannot have X1 ¼ t1t2,
X2 ¼ S�1YnS, where X1;X2 are defined in (18). Thus

S�1YnS ¼ � 0

0 X2

� �
: ð21Þ

Let Kp be the algebraic closure of the Kp. The equivalence transformation with T

over Kp given in (19) can be used to decompose further the matrix X so that X2 splits
into Jordan blocks over Kp (see (17)–(21)).

Of course, we can arrange that X2 is JsðaÞ, the Jordan block with entries a on the
main diagonal. We regard Y as a linear operator on the space Kp

nþ1 of column vec-
tors. Thus from (18) it follows that X is the matrix of the operator Y in that basis
of the space Kp

nþ1, consisting of the columns of the matrix T . The Jordan block
X2 ¼ JsðaÞ corresponds to the eigenvector e A Kp

nþ1 of the operator Y ; thus Ye ¼ ae.
Since X2 does not include the first column of X , the vector e is a column of T , dif-
ferent from the first column, i.e. the first component of e is equal to 0. Using the
description of Y in (19), it is easy to show that the equation Ye ¼ ae (with a A Kp) is
impossible for a vector e ¼ ð0; g1; . . . ; gnÞ

T 0 0. This contradicts the decomposability
of the K-representation D 0

nþ1 of G and the lemma is proved.

Proof of Theorem 2. We can suppose that MHF dn . Clearly each K-basis in M

is also an F -basis in F dn and an ðFþ=KþÞ-basis in M̂M ¼ F dnþ=Mþ, where
dn ¼ degðGnÞ ¼ ð3p� 2Þnþ p2. Thus CrysðG;Mn;TnÞ has dimension equal to the
degree dn of the representation Gn, and since dn is not bounded as a function of n the
theorem is proved.
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5 Proof of Theorem 3

We take K ¼ Z and consider classical crystallographic groups. Let

A4 ¼ ha; b j a2 ¼ b3 ¼ ðabÞ3 ¼ 1i

be the alternating group of degree 4. We begin with the following Z-representations
of A4:

D1: a ! 1; b ! 1;

D2: a ! 1 0

0 1

� �
; b ! 0 �1

1 �1

� �
;

D3: a !
0 �1 1

0 �1 0

1 �1 0

0
@

1
A; b !

0 0 1

1 0 0

0 1 0

0
@

1
A;

D4: a !
1 �1 �1

0 0 1

0 1 0

0
@

1
A; b !

0 �1 1

1 0 1

0 1 0

0
@

1
A:

Now consider the representations D;Gn defined by

D ¼

D3 0 X1 X3

D3 X2 0

D2 0

0 D4

0
BBB@

1
CCCA; Gn ¼

En nD1 U

0 En nD

� �
;

where

X1ðaÞ ¼
1 0

0 1

�1 1

0
@

1
A; X2ðaÞ ¼

0 1

�1 1

�1 0

0
@

1
A; X3ðaÞ ¼

0 0 1

0 0 0

0 �1 0

0
@

1
A;

XiðbÞ ¼ 0 ði ¼ 1; 2; 3Þ;

UðaÞ ¼ En n aþ Jnð0Þn b; UðbÞ ¼ 0;

a ¼ ð0; 0; 0; 0; 2; 0; 1;�1; 0; 0; 0Þ; b ¼ ð0;�2; 0; 0; 0; 0; 0; 1;�1;�1; 0Þ;

and JnðnÞ is n� n the Jordan block with entries n on the main diagonal. It was proved
in [8] that the representations D1;D2;D3 and D4 are irreducible and D and Gn are in-
decomposable Z-representations.

Let Mn be a Z-module a¤ording the representation Gn of A4 consisting of col-
umn vectors of length dn over Z, where degðGnÞ ¼ dn ¼ 12n. It is easy to check that
fn : A4 ! M̂Mn defined by
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fnðaÞ ¼
�
0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

nþ3

; 1
2
; 1
2
; 0; . . . ; 0

�T þMn; fnðbÞ ¼
�
1
3
; 0; . . . ; 0

�T þMn

is a 1-cocycle which is special. Therefore we obtain

Corollary 2. The classical crystallographic group CrysðA4;Mn; fnÞ is torsion-free.
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