Introduction

The PhD dissertation consists of three chapters. Most of the results of the disserta-
tion have been published in our papers [52], [54] and [51]. In the introduction of the
dissertation, we define relators and relator spaces.

Definition. A nonvoid family R of binary relations on a nonvoid set X is called a
relator on X, and the ordered pair X (R) = (X, R) is called a relator space.

Moreover, if R is a relator on X, then the relator R~! = {R™! : R € R} is called
the inverse of R.

|

By establishing some intimate connections between unary operations and set-valued
functions for relators, we greatly extend and supplement some of the former results of
A. Szaz and J. Mala on the various refinements and modifications of relators.

A function [J of the family of all relators on X into itself is called a unary operation
for relators on X. And we write RY = O(R) for every relator R on X. Moreover, a
function § of the family of all relators on X into a family of sets is called a set-valued
function for relators on X. And we write §r = §(R) for every relator R on X.

If O is a unary operation and § is a set-valued function for relators on X, then we
say that:

(1) O is expansive if R C R" for every relator R on X;

(2) O is idempotent if RY = REE for every relator R on X;

(3) § is increasing if s C §r for any two relators R and S on X with § C R;
4)
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Moreover, if § is an increasing set-valued function for relators on X, then the induced
unary operation [g is defined by

(1 is a refinement if it is expansive, idempotent and increasing.

RYs ={S C X?: §sy C Sr}

for every relator R on X.
Finally, an increasing set-valued function for relators on X is called regular if

gR = gRDg

for every relator R on X. And, an increasing set-valued function for relators on X is

called normal if
Sr = U S{r)
RER

for every relator R on X.

The most important theorems of this chapter will show, that a normal set-valued
function for relators on X is, in particular, regular. On the other hand, a unary op-
eration induced by a regular set-valued function is a refinement. Moreover, if § is a



regular set-valued function for relators on X and R is a relator on X, then RYs is the
largest relator on X such that §r = §,0;.
For instance, if R is a relator on X, then the relation intr defined by

intr(A)={re X :dJRe R: R(z) C A}

for all A C X, is called the topological interior induced by R. Moreover, the members
of the families

Tr = {A CX:AC iIltR(A)} and Er = {A Cc X: iIltR(A) 7£ (Z)}

are called the topologically open and the fat subsets of the relator space X (R), respec-
tively.
Furthermore, the unary operations

N = Dint and A= Dg

are called the topological and the paratopological refinements, respectively. Namely,
since int and £ are normal increasing set-valued functions for relators on X, the induced
unary operations A and A are refinements.

Finally, the preorder modification of the relator R on X is defined by

R® = {R*: Re R},

where R® = Ay U Uff:l R™. Note, that the unary operation oo is not expansive,
therefore it is not a refinement.
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In this chapter, a unified treatment of some old and new well-chainedness and con-
nectedness properties of the most basic topological structures (such as closures, prox-
imities and uniformities, for instance) is offered in the framework of relators and their
fundamental refinements.

The results obtained show that the various connectedness properties are actually
particular cases of Cantor’s well-chainedness property neglected by several authors.
Moreover, they show that the hyperconnectedness introduced by L. A. Steen and J. A.
Seebach is a particular case of our paratopological connectedness.

A relator R on X will be called properly well-chained or chain-connected if

R® = {X?}.

Moreover, if [1is a unary operation for relators on X, then the relator R on X will be
called O-well-chained if the relator R" is properly well-chained.

The condition R*® = {X?}, in a detailed form, means only that for every R € R and
x,y € X, with x # y, there exists an n € N such that (z,y) € R". That is, there exists
a family (z;)", in X such that xy =z, z, =y and (z;_1,2;) € Rforalli=1,...,n.



To characterize well-chained relators, we need the notion of the Davis—Pervin rela-
tion. For each A C X, the relation

Ri=A?U(X\A) x X

is called the Davis—Pervin relation on X generated by A.

In the dissertation, we prove that a relator R on X is properly well-chained if
and only if P(R4) N R =  for every proper nonvoid subset A of X, or equivalently
P(R) N'R = ( for every proper preorder R on X.

Moreover, a relator R on X is topologically (paratopologically) well-chained if and
only if R4y ¢ R" (Ra ¢ R*) for every proper nonvoid subset A of X, or equivalently
R ¢ R" (R ¢ R*) for every proper preorder R on X.

Furthermore, a relator R on X is topologically well-chained if and only if
Tr = {0, X}. And, if card(X) > 1, then the relator R on X is paratopologically
well-chained if and only if £ = {X}, or equivalently R = {X?}.

A relator R on X will be called properly connected if the relator
RVR '={RUR':ReR}

is properly well-chained. Moreover, if (1 is a unary operation for relators on X, then
the relator R on X will be called [J-connected if the relator R" is properly connected.

To characterize connected relators, we need the symmetrization of the Davis—Pervin
relation. For each A C X, the relation

Sy=RaNRY

is called the symmetrization of the Davis—Pervin relation R 4.

In the dissertation, we prove that a relator R on X is properly connected if and only
if P(S4)NR = B for every proper nonvoid subset A of X, or equivalently P(S)NR =0
for every proper equivalence S on X.

Moreover, a relator R on X is topologically (paratopologically) connected if and
only if Sy ¢ R" (S4 ¢ R*) for every proper nonvoid subset A of X, or equivalently
S ¢ R" (S ¢ R”) for every proper equivalence S on X.

Furthermore, a relator R on X is topologically connected if and only if the comple-
ment of any proper nonvoid topologically open set is not topologically open. And, if
card(X) > 1, then the relator R on X is paratopologically connected if and only if the
intersection of any two fat sets is non empty.

At the end of this chapter, a diagram can be found which shows the main implica-
tions among the various well-chainedness and connectedness properties of relators.
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In chapter III, some published and unpublished results of Arpad Szaz, Jozsef Mala
and Jend Deak on simple and quasi-simple relators are illustrated and supplemented.

A relator R on X is called properly simple if it is a singleton. Moreover, if [ is
a unary operation for relators on X, then the relator R on X is called [O-simple if



there exists a relation R on X such that RY = {R}". On the other hand, a relator is
called quasi-[-simple, if it is Cloo-simple. We remark, that for instance, the topological
well-chainedness is a particular case of quasi-topological simplicity.

In the dissertation, we prove that a relator R on X is quasi-properly simple if and
only if R* = S for all R, S € R, or equivalently R* is properly simple. And, if a
relator is [l-simple, then it is also quasi-[]-simple.

Moreover, for instance, we prove that a relator R on X is (quasi-)topologically sim-
ple if and only if (R € R" (R € R"). And, we state that the paratopological
simplicity is equivalent to the quasi-paratopological simplicity. After this, we charac-
terize paratopological simple relators, to construct a a non-paratopologically simple,
equivalence relator.

At the end of this chapter, a diagram can be found which shows the main implica-
tions among the various simplicity and quasi-simplicity properties of relators.

1 Relators and their induced basic tools

Definition 1.1. If R is a relator on X, then for any A, B C X and z,y € X we write:
(1) B € Intg(A) if R(B) C A for some R € R;
(2) B € Clg(A) if R(B)N A # () for all R € R;
(3) x € intr(A) if {x} € Intr(A); (4) z € clr(A) if {z} € Clg(A);
(5) y € 0g(2) if y € intg ({z}); (6) y € py(x) if y € clr({z});
The relations Intg, intgz and ox are called the proximal, the topological, and the
infinitesimal interiors induced by R on X, respectively. And, the relations Clg, clg

and pg are called the proximal, the topological, and the infinitesimal closures induced
by R on X, respectively.

Definition 1.2. If R is a relator on X, then for any A C X we write:

(1) A € 7 if A € Intg(A): (2) A €7 if X\ A ¢ Clg(A):
(3) A€ T if A C intr(A): (4) A € Fr if clg(A) C A:
(5) A € Ex if intr(A) £ 0; (6) A € Dy if clg(A) = X.
(7) Er = Er; (8) Dr = U (P(X) \ Dgr).

The members of the families 72, 7Tz and £r are called the proximally open, the topo-
logically open, and the fat subsets of X (R), respectively. And, the members of the
families 7, Fr and Dy are called the proximally closed, the topologically closed, and
the dense subsets of the relator space X (R), respectively.
Definition 1.3. If R is a relator on X, then the relators

(1) R*={SCcX?:FReR:RCS};

(2) R* ={SC X?:VAC X : A €ntg(S(4))};

(3) R"={SCc X?:Vz e X :z€intg(S(z))};



(4) R* ={SC X?:Vz € X:S(z) € Er};
(5) R* = {pr'}; (6) R* = {X x Ex}’
are called the uniform, the proximal, the topological, the paratopological, the infinites-

imal and the parainfinitesimal refinements of R, respectively.

To provide a general framework for the investigation of the above basic tools, we
have introduced in [52]| several new definitions and established their most important
consequences.

We define unary operations (for instance refinements, modifications) and set-valued
functions for relators.

Definition 1.4. A function [J of the family of all relators on X into itself is called a
unary operation for relators on X. And we write RY = [J(R) for every relator R on
X.

Moreover, a function § of the family of all relators on X into a family of sets is called
a set-valued function for relators on X. And we write §zr = F(R) for every relator R
on X.

Definition 1.5. If [J is a unary operation and § is a set-valued function for relators
on X, then we say that:

(1) O is expansive if R C R" for every relator R on X;
(2) O is idempotent if RY = REE for every relator R on X;

(3) § is increasing (decreasing) if §s C Fr (Fr C Fs) for any two relators R and S
on X with S C R.

(4) O is a modification if it is idempotent and increasing;
(5) O is a refinement if it is expansive, idempotent and increasing;

(6) § is O-increasing (O-decreasing) if for any two relators R and S on X we have
SCRY <= §s CFr (Fr C Fs);

(7) the relators R and S on X are §-equivalent if §r = Fs;

(8) the relator R on X is O-fine if R = R".

Theorem 1.6. If [ is a unary operation for relators on X, then the following assertions
are equivalent:

(1) O is a refinement;

(2) there exists a O-increasing (O-decreasing) set-valued function § for relators on
X.

Theorem 1.7. If [ is a unary operation and § is a set-valued function for relators on
X, then the following assertions are equivalent:

(1) § is O-increasing (O-decreasing);

(2) § is increasing (decreasing) and, for every relator R on X, R is the largest
relator on X such that §zro C Fr (§r C Sxo).



Corollary 1.8. If [ is a unary operation and § is a D-monotonic set-valued for re-
lators on X, then for every relator R on X, RY is the largest relator on X such that

372 :373\3'

Definition 1.9. If § is an increasing (decreasing) set-valued function for relators on
X, then the operation Uz, defined by

R% = {SC X5 CFr}  (RT={SCX*:§r CFs})
for every relator R on X, is called the operation induced by §.
Definition 1.10. A monotone set-valued function § for relators on X is called regular
if
Sr = gRDg

for every relator R on X.
Theorem 1.11. If § is a monotone set-valued function for relators on X, then the
following assertions are equivalent:

(1) § is reqular; (2) § is Oz-monotonic;

(8) § is O-monotonic for some unary operation O for relators on X.

Definition 1.12. An increasing (decreasing) set-valued function § for relators on X is
called normal if, for every relator R on X, we have

Sr = Sm) (372 = S{R})'

ReR ReR

Note that, the above definition means only that a monotone set-valued function for
relators on X is normal if and only if

ﬂ S{ry C 8§r C U SR}

RER RER
for every relator R on X.

Theorem 1.13. A normal set-valued function for relators on X s, in particular,
reqular.

Theorem 1.14. %, Int, int, o, 7, 7, £, and D are normal increasing set-valued func-
tions for relators on X.

While, Cl, cl, p, D, and E are normal decreasing set-valued functions for relators
on X.

Unfortunately, the increasing set-valued functions 7 and F, on which topology was
based on, are not even regular, in general.
Therefore, if R is a relator on X, then in general there does not exist a largest

relator on X, such that Tr = Tro (Fr = Fro).



Definition 1.15. If ) and [0 are unary operations for relators on X, then we say that:
(1) O is {-dominating if R® C R for every relator R on X;
(2) O is <> invariant if RY = R¢ for every relator R on X;

(3) O is ¢-absorbing if RY = RO for every relator R on X

(4) O is $-compatible if REC = RO for every relator R on X.

Remark 1.16. In particular, the operation [] will be called inversion compatible if
(RD)_1 = (73_1)D for every relator R on X.

Now, as some useful consequences of the above definitions, we can also state the
following theorems.

Theorem 1.17. If { is an expansive and [0 is a {$-dominating idempotent operation
for relators on X, then O is {-invariant.

Theorem 1.18. If { is an expansive and [ is a {$-dominating modification for relators
on X, then O is {-absorbing.

Theorem 1.19. If § and & are reqular set-valued functions for relators on X such that
Fo 61 is a function, then Oz is Og-dominating.

Corollary 1.20. If § and & are reqular set-valued functions for relators on X such
that Fo &1 and & o F~1 are both functions, then Oz = O.

Corollary 1.21. If § and & are reqular set-valued functions for relators on X such
that §o &~ is a function, then Oz is Og-invariant, Og-absorbing and Og-compatible.

Theorem 1.22. If § and & are set-valued functions for relators on X such that

(6,3) € {(x Int), (x, Cl), (Int, int), (C1, cl),
(int, &), (c], D), (int, o), (cL, p), (£, E), (D, D)},

then § o &~ is a function.

Theorem 1.23. If § and & are set-valued functions for relators on X such that
(6,3) € {(Int, Q1), (int, cl), (£, D), (E, D)},

then Fo &~ &oF ! are both functions.

The appropriateness of our former definitions is already apparent from the following
theorems.

Theorem 1.24.

(1) x =0,; (2) # = Ome = Ocy;
(3) N= |jint - I:,cl; (4) A= DE - DD;
(5).:Dp; (6)A:DE:DD.



Theorem 1.25. The above operations are refinements for relators on X such that, for
any relator R on X,

(1) R* is the largest relator on X such that Intg = Intgs, or equivalently
Clg = Clg#;

(2) R" is the largest relator on X such that intg = intga, or equivalently clr = clga;
(8) R* is the largest relator on X such that Er = Era, or equivalently Dr = Dxgs;
(4) R® is the largest relator on X such that pr = pre.

(5) RA is the largest relator on X such that Er = Ega, or equivalently Dr = Dga.

Theorem 1.26. If R and S are relators on X, then
(1) S Cc R* <= Ints CIntg <= Clg C Cls
(2)S C R" <= intg C intg <= clr C clg
(3) S C R* +— s CEr <= Dr CDs
(4)SCR* <  prCps
(5) S C R* «— Er C BEs <+ Ds C Dy
Theorem 1.27. If R s a relator on X, then

RCR*CR¥cR)cCc R
N N
R* C RA.

Unfortunately, the relators R* and R® are incomparable, in general.

Theorem 1.28. If {, [0 € {*,#,A,0, A}, where o =A or e, such that ) precedes O in
the above list, then [0 is both {-invariant and <$-absorbing.

Moreover, in the dissertation we prove that under the notations RY = R"~! and
RY = RA7!, we have the following

Theorem 1.29. If R s a relator on X, then
R =R and  R*=TR".
In the dissertation, we investigate some other set-valued functions and unary oper-

ations for relators on X, for instance

Definition 1.30. If R is a relation on X, then the relation

o0

R* =,

n=0

where R” = Ro R" ! and R® = Ay is called the preorder hull of R.



Moreover if R is a relator on X, then the relators
R®={R*:RcR} and R?={ScCX?:5%cR>}

are called the preorder modification and the inverse preorder refinement of R, respec-
tively.

Simple applications of the corresponding definitions give the following

Theorem 1.31. oo is an tnversion compatible, normal modification for relators on X
such that, for every relator R on X, we have

R>® C R*> C R®* C R*.

Moreover, 0 = Uy, is an inversion compatible, normal refinement for relators on X
such that, oo is 0-absorbing and 0 is oco-absorbing, and for every relator R on X, we
have

ROUR* C R c R*.

At the end of the first chapter of the dissertation, we investigate some binary op-
erations for relators, and some special relators, which are interesting from the point of
view of topology. Moreover, we write about continuous relations in relator spaces. For
instance, we shall use the following

Definition 1.32. If R = {R;}ic; and & = {S;}ic; are relators on X, then by trusting
to the reader’s good sense to avoid confusions we define

RVS:{RZUsilGI}

Remark 1.33. Note, that if R is a relator on X, then by considering R = {R}ger
and R™! = {R7'} rer we have

RVR'={RUR':ReR}.

Definition 1.34. If R is a relator on X and for all z € X and R € R there exists
V € Tr such that z € V C R(z), then we say that R is topological.

Theorem 1.35. A relator R on X is topological if and only if for all A C X

intr (A) = U{V €ETr:V C A}, or equivalently — clp(A) = m{W €eFr:AC W}

Theorem 1.36. If R s a topological relator on X, then
Er={ACX:qVeTr: 04V C A}.

Definition 1.37. If F' is a relation on one relator space X (R) to another Y (S) and
[] is a unary operation for relators, then the relation F' is said to be [J-continuous, or
more precisely mildly [J-continuous [80] if

(F'o8%0F)" c R".



Thus, in particular, we have the following two theorems.

Theorem 1.38. If f is a function on one relator space X(R) to another Y (S) and
O € {x,#, A, o}, then the following assertions are equivalent:

(1) f is O-continuous; (2) ftoSofcR".

Theorem 1.39. If f is a function on one relator space X (R) onto another Y (S) and
O € {A, A}, then the following assertions are equivalent:

(1) f is O-continuous; (2) f1oSofcCR".

2  Well-chainednesses and connectednesses of relators

In this chapter we investigate well-chained and connected relators.

Analogously to the problem of finding a powerful and flexible notion of a spatial
structure, the problem of finding an appropriate notion of connectedness also has a
long history. The three most important definitions were suggested by K. Weierstrass,
G. Cantor and C. Jordan. (See [86] and [82, p. 29].)

According to Cantor, a metric space X (d) may be called well-chained or chain-
connected if for every z,y € X and every € > 0 there exists a finite family (z;)", of
points of X such that xy =z, x, = y and d(z;_1,2;) <e foralli=1,...,n.

That is, there exists a natural number n such that, for the e-sized d-surrounding
B¢ = {(u,v) € X? : d(u,v) < €}, which is only a tolerance (reflexive and symmetric
relation) on X, we have (z,y) € (B%)", where the nth power is taken with respect to
composition.

Therefore, we may define the well-chainedness properties in the following way.

Definition 2.1. A relator R on X will be called properly well-chained or chain-
connected if R>® = {X?}.

Moreover, if [J is a unary operation for relators on X, then the relator R will be
called O-well-chained if the relator R" is properly well-chained.

According to the above defined refinements for relators, we may naturally call a
relator R on X uniformly, proximally, topologically, paratopologically, infinitesimally
and parainfinitesimally well-chained if it is [J-well-chained with [0 = %, #, A, A, e, A,
respectively.

The well-chainedness of metric or uniform spaces is usually neglected by the authors
of the standard textbooks on topology. The only exceptions seem to be Berge |3, p.
96-99|, Gaal [15, p. 101 and 142| and Whyburn and Duda [85, p. 34-37|.

Several interesting new characterizations of well-chained metric and uniform spaces
were established by Mathews [40], Mrowka and Pervin [41] and Levine [31]. Moreover,
the well-chainedness of nearness spaces has also been studied by Baboolal and Ori [2].

Some of the results of Levine were extended to reflexive relators by Kurdics and
Szaz in [26]. The latter authors also investigated the uniform, proximal and topological
well-chainednesses of reflexive relators. But, the other well-chainedness properties have
been considered first in [54].
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For this, we need the following definition and theorem.

Definition 2.2. For each A C X, the relation
Ry=A2U(X\A) x X
is called the Davis—Pervin relation on X generated by A.

Remark 2.3. Namely, the relations R4 were first used by Davis [9] and Pervin [55] in
their uniformization procedures of topological spaces.

Theorem 2.4. If A, B C X, then R, is a preorder on X such that

Ru(B) =0 if B=0, Ru(B)=Aif 0 # B C A,
Ru(B) =X if B ¢ A.

Theorem 2.5. If R is a relator on X and A C X, then the following assertions are

equivalent:
(1) Ry € R*; (2) A € Tg.

Theorem 2.6. If R is a relator on X, then the following assertions are equivalent:
(1) R is properly well-chained;
(2) Ry ¢ R* for every proper nonvoid subset A of X ;
(8) R ¢ R* for every proper preorder R on X ;
(4) R ¢ R* for every proper nonvoid transitive relation R on X;
(5) TR = {0, X}, (6) 7r = {0, X}

The x-invariances of the refinements x,#, A, A, e, A show the importance of the
following

Theorem 2.7. If R is a relator on X and Ul is an x-invariant operation for relators
on X, then the following assertions are equivalent:

(1) R is O-well-chained;

(2) Ry ¢ RE for every proper nonvoid subset A of X;

(3) R ¢ RE for every proper preorder R on X ;

(4) R ¢ RE for every proper nonvoid transitive relation R on X.

By the above mentioned dominating properties, this theorem shows that ‘paratopo-
logically or infinitesimally well-chained” = ‘topologically well-chained’ — ‘prox-
imally well-chained” =— ‘uniformly well-chained’” =—- ‘properly well-chained’.
And ‘parainfinitesimally well-chained’ = ‘paratopologically and infinitesimally well-
chained’.

For further characterization of the well-chainedness of refinement relators we need
the following
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Theorem 2.8. If R is a relator on X, then
(1) TR = Tr- = Tr# and Fr = Fr = Fr#;
(2) TR = Tr and Fra = Fr;
(8) Tre = Ex U{D} and Fro = (P(X)\ Dr) U{X};
(4) TRe = Fippy and Fre = Tipp};
(5) TR = {A C X : Ex C A} U{0} and Fra = P(Dgr) U{X}.
Theorem 2.9. If R is a relator on X, then the following assertions are equivalent:
(1) R is properly well-chained;
(2) R is uniformly well-chained; (8) R is proximally well-chained.
Theorem 2.10. If R is a relator on X, then the following assertions are equivalent:
(1) R is topologically well-chained;
(2) T = {0,X}; (3) Fr = {0, X}.

Theorem 2.11. If R is a relator on X and card(X) > 1, then the following assertions
are equivalent:

(1) R is paratopologically well-chained; (2) R is parainfinitesimally well-chained;

(3) Er = {X}; (4) Dr = P(X) \ {0};
(5) R = {X?}.
Theorem 2.12. If R s a relator on X, then the following assertions are equivalent:
(1) R is infinitesimally well-chained; (2) {pr} is properly well-chained;
(3) Tory = {0, X}; (4) Fiony = {0, X};
(5) P = X°.

Now, according to the results of [23] and [27], we may define connectedness properties
in the following way.

Definition 2.13. A relator R on X will be called properly connected if the relator
RVR~! is properly well-chained.

Moreover, if [J is a unary operation for relators on X, then the relator R will be
called O-connected if the relator R" is properly connected.

Moreover, analogously to the corresponding well-chainedness properties, the relator
R may be naturally called uniformly, proximally, topologically, paratopologically, infini-
tesimally and parainfinitesimally connected if it is [J-connected with
O =%, #, A\, A, e, A, respectively.

We need the following definition and theorem

Definition 2.14. For each A C X, the relation
Sy=RoNRY

is called the symmetrization of the Davis—Pervin relation R 4.
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Theorem 2.15. If A, B C X, then S, is an equivalence on X such that

SA(B):@ifB:Q], SA(B):X\Aif@%BCX\A,
Sa(B)=A if0 # B C A, Sa(B)=XifB¢g Aand B¢ X\ A.
Theorem 2.16. If R is a relator on X and A C X, then the following assertions are

equivalent:
(1) Sy € R¥; (2) A € TN Fg.

Theorem 2.17. If R s a relator on X, then the following assertions are equivalent:
(1) R is properly connected;
(2) Sa ¢ R* for every proper nonvoid subset A of X;
(8) S ¢ R* for every proper equivalence S on X ;

(4) S ¢ R* for every proper nonvoid symmetric and transitive relation S on X.

Theorem 2.18. If R is a relator on X and [J is an x-invariant operation for relators
on X, then the following assertions are equivalent:

(1) R is O-connected;

(2) Si & RE for every proper nonvoid subset A of X;

(3) S ¢ RE for every proper equivalence S on X;

(4) S ¢ RE for every proper nonvoid symmetric and transitive relation S on X.

By the above mentioned dominating properties, this theorem shows that ‘paratopo-
logically or infinitesimally connected’” = ‘topologically connected” =— ‘proximally
connected’” = ‘uniformly connected’ <= ‘properly connected’. And ‘parainfinites-

imally connected” = ‘paratopologically and infinitesimally connected’.
Moreover, by the required assertions we have the following theorems.

Theorem 2.19. If R s a relator on X, then the following assertions are equivalent:

(1) R is proxzimally connected; (2) R NFr = {0, X }.

Theorem 2.20. If R s a relator on X, then the following assertions are equivalent:

(1) R is topologically connected; (2) TR N Fr ={0,X}.

Theorem 2.21. If R is a relator on X and card(X) > 1, then the following assertions
are equivalent:

(1) R is paratopologically connected;

(2) Er C Dxg; (3) AN B # 0 for all A, B € &x.
Theorem 2.22. If R is a topological relator on X, then the following assertions are
equivalent:

(1) R is paratopologically connected;

(2) Tr \ {0} C Dg; (3) UNV £0 for allU,V € Tr \ {0}.
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Theorem 2.23. If R is a relator on X, then the following assertions are equivalent:

(1) R is infinitesimally connected;

(2) Tpry N Fipry = {0, X }; (3) {pr} is properly connected.
Theorem 2.24. If R is a relator on X and card(x) > 1, then the following assertions
are equivalent:

(1) R is parainfinitesimally connected;

(2) Er #0; (3) Dr # X.

Moreover, we investigate the properties of continuous relations and functions of a
relator space into another.

Theorem 2.25. If R is a relator on X, O € {x,#, A, e} and card(Y') > 1, then the
following assertions are equivalent:

(1) R is O-connected;
(2) every O-continuous function f of X(R) into Y (Ay) is constant.

Theorem 2.26. If R is a relator on X, O € {A, A} and card(Y) = 2, then the
following assertions are equivalent:

(1) R is O-connected;
(2) every O-continuous function f of X(R) into Y (Ay) is constant.

Finally, we compare the various well-chainedness and connectedness properties. For
instance

Theorem 2.27. IfJ is a unary operation for relators on X and R is a U-well-chained
relator on X, then R is, in particular, [1-connected.

We show counterexamples for implications between the well-chainedness and con-
nectedness properties which do not hold, in general.
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The following diagram shows the main implications among the various well-chained-
ness and connectedness properties of relators.

properly properly
[ well-chained connected
i T
uniformly uniformly
well-chained connected
i T ¥
proximally proximally
well-chained connected
i S i
topologically topologically
well-chained connected
1 \\ 1
infinitesimally infinitesimally
well-chained connected
mn X #
paratopologically paratopologically |
well-chained connected o
T f
ultrainfinitesimally ultrainfinitesimally
well-chained connected -
) T ¥
parainfinitesimally parainfinitesimally

well-chained connected

f f
ultimately ultimately
well-chained connected
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3 Simplicity of relators

In this chapter we investigate simple and quasi-simple relators.

Simple and quasi-simple relators were mainly investigated by Arpad Szaz, but sev-
eral interesting problems have been left open. The most exciting ones were solved by
Jozsef Mala and Jens Dedk. However, the results of the latter author have not been
published because of his early and tragic death.

Therefore, the main purpose of [51] was not only to solve some of the remaining open
problems of Arpad Szaz, but also to present the relevant results of Jens Deak. The
latter author provided a useful characterization of paratopologically simple relators,
which lead us to the investigation of two natural operations on families of sets.

Definition 3.1. A relator R on X is called properly simple if it is a singleton. That
is, there exists a relation R on X such that R = {R}.

Moreover, if [ is a unary operation for relators on X, then a relator R on X is
called [-simple if it is (J-equivalent to a properly simple relator.

Finally, if (I is a unary operation for relators on X, then a relator R on X is called
quasi-Ll-simple if it is Cloo-simple.

In particular the relator R on X is quasi-properly simple if it is co-simple.

Remark 3.2. We could define the §-simplicity of relators on X for an arbitrary
set-valued function § for relators on X, but we would not get any new notion. Namely,
for instance, the Int-, cl- and &-simplicity would be equivalent to the #-, A- and
A-simplicity, respectively. Moreover, the 7- and F-simplicity would be equivalent to
the quasi-#- and quasi-A-simplicity, respectively.

Furthermore, we could not define the quasi-§-simplicity for any set-valued functions
§ for relators on X.

We remark that, for instance, the topologically well-chainedness is a particular case
of quasi-topologically simplicity.

By the above mentioned absorbing properties, we can see that ‘properly simple’
—> ‘uniformly simple’ — ‘proximally simple’ =— ‘topologically simple’ —
‘paratopologically simple and infinitesimally simple’.

On the other hand, ‘paratopologically simple or infinitesimally simple’ =—> ‘parain-
finitesimally simple’.

Moreover, it is also clear that if [J is a unary operation for relators on X, then
‘O-simple’ = ‘quasi-[J-simple’.

Theorem 3.3. If O € {x,#, A, o}, then the relator R on X is O-simple if and only if
—1 m
Pr €R-.

By the above theorem, we can see that every relator is infinitesimally simple. There-
fore, quasi-infinitesimally, parainfinitesimally and quasi-parainfinitesimally simple rela-
tors need not be study anymore. Moreover, ‘paratopologically simple’ = ‘infinitesi-
mally simple’.

After this, we characterize quasi-simple relators.
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Theorem 3.4. If R is a relator on X, then the following assertions are equivalent:
(1) R is quasi-properly simple;
(2) R = {ppk.}; (3) R = {ppt}”
The following three basic theorems have also been mostly established in [68].
Theorem 3.5. If R is a relator on X, then the following assertions are equivalent:
(1) R is quasi-uniformly simple; (2) prte € RY;
(3) pak € R™; (4) R = {prs} .
Theorem 3.6. If R is a relator on X, then the following assertions are equivalent:
(1) R is quasi-proximally simple;
(2) prk € R¥; (3) R# = {ppl 1™,
Theorem 3.7. If R is a relator on X, then the following assertions are equivalent:
(1) R is quasi-topologically simple;
(2) prhe € R"; (3) R = {pghee}”

Theorem 3.8. If R and S are relators on X such that S is total, then the following
assertions are equivalent:

(1) 8* C R; (2) §4% c RA®,

Corollary 3.9. If R is a relator on X, then the following assertions are equivalent:
(1) R is paratopologically simple;
(2) R is quasi-paratopologically simple.

Now, we only have to study paratopologically simple relators. For this, we introduce
two operations on families of sets.

Definition 3.10. If A C P(X), then we write
A*={BcX:3A€ A: AC B}.

Note that the notion of the uniform refinement of relators is a special case of the
above definition. As a useful reformulation of the above definition, we can at once state
the following

Proposition 3.11. If A C P(X), then
A*={Bc X:ANP(B) #0}.
Definition 3.12. If A C P(X), then we write

A*={BeA:Ac A,/ ACc B = A=B}.
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Note that thus A° is just the family of the minimal members of A. As a useful
reformulation of the above definition, we can at once state the following

Proposition 3.13. If A C P(X), then
A°={Bc X: AnP(B) = {B}}.

Definition 3.14. If A is an ascending family in P(X) and B C A such that for each
A € A there exists a B € B such that B C A, then B will be called a base for A.

Theorem 3.15. If A is an ascending family in P(X) and B C A, then the following
assertions are equivalent:

(1) B is a base for A; (2) A C B*; (3) A= B*.
Theorem 3.16. If A C P(X) and B is a base for A, then A° = B°.

Theorem 3.17. If A C P(X) such that each nonvoid chain contained in A has a
minimal element, then A* = A%*.

Corollary 3.18. If A is an ascending subfamily of P(X) such that each nonvoid chain
contained in A has a minimal element, then A° is the smallest base for A.

Lemma 3.19. If A, B C X such that B # 0, then card(B) < card(A) if and only if
there exists a function f of A onto B.

Now, we can state a theorem of Jen6 Dedk which was originally stated in terms of
the minimum of the cardinalities of the bases of the family £x.

Theorem 3.20. If R is a relator on X, then the following assertions are equivalent:
(1) R is paratopologically simple;
(2) Er has a base B with card(B) < card(X).

Theorem 3.21. If R is a relator on X such that each nonvoid chain contained in Ex
has a minimal element, then the following assertions are equivalent:

(1) R is paratopologically simple;

(2) card(€3) < card(X);

(3) card({R(z) 12 € X,R € R}") < card(X).

The above theorem allows us to easily check the main assertion of the following

Example 3.22. If X = {1,2,3,4} and R; C X? for all i = 1,2, 3 such that

Rl(l) = R1(2) = {17 2}’ R1(3) = R1(4) = {3’4};
R?(l) = R2(3) = {173}’ R2(2) = R2(4) = {2’4};
R3(1) = R3(4) = {1, 4}, R3(2) = R3(3) = {2,3};

then R = { Ry, Ry, R3} is an equivalence relator on X such that R is not paratopologi-
cally simple.
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Remark 3.23. The above example substantially improves an example of Jend Deak
[11], which gives only a non-paratopologically simple, non-reflexive relator on a four
element set.

The following diagram shows the main implications among the various simplicity
properties of relators.

1 1- 1 —
properly quasi-properly =

simple simple
v < I

uniformly quasi-uniformly
simple simple
v < I
proximally quasi-proximally
simple simple T

4
¢ : . :
opqloglcally quasi t9pologlcally<:
simple simple
. < "
topologicall i- topologicall
paratopologically quasi-paratopologically |

simple simple
U, /
infinitesimally quasi-infinitesimally
simple simple
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