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ABSTRACT
We analyze, in exact terms, multiband 2D itinerant correlated
fermionic systems with many-body spin-orbit interactions, and
in-plane external magnetic fields. Even if such systems with
broad applicability in leading technologies are non-integrable,
we set up an exact solution procedure for them, which is
described in details. Casting the Hamiltonian in positive
semidefinite form, the technique leads to the ground state,
and also characterises the low lying excitation spectrum.
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I. Introduction

Surfaces with spin-orbit interactions (SOI) are the subject for a broad area of current
research (see the review [1]), SOI providing essential effects in various phenomena
of large interest today, ranging from quantum magnets [2], topological phases [3],
ultracold atom experiments [4], to Majorana fermions [5]. The applications appear
mostly in low dimensional systems [6–12], and during processing, often external
fields are as well present, the most interesting applications being related to strongly
correlated systems. Contrary to its importance, although exact treatments of 2D
strongly correlated systems with spin-orbit coupling are being developed [12],
studies including applied external magnetic fields are absent. Our aim in this
Letter is to fill up this gap by setting up the details of a calculation procedure for
such situations, considering Hamiltonians describing realistic correlated systems.

The main difficulty encountered is that the here studied 2D systems are non-
integrable, so special techniques must be used in order to describe them in exact
terms. For this reason we use the method based on positive semidefinite operator
properties whose applicability does not depend on dimensionality and integr-
ability [13–16]. The method has been previously applied in conditions unima-
ginable befor in the context of exact solutions in 1-3D, even in the presence
of the disorder [17–24].
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II. The system analysed

The Hamiltonian of the system has the form Ĥ = Ĥkin + Ĥint + Ĥh,

Ĥ =
∑
p,p′

∑
i,r

∑
s,s′

(kp,p′;s,s′
i,i+r ĉ†p,i,sĉ p′ ,i+r,s′ + H.c.)+

∑
p

∑
i

Up,in̂ p,i,�n̂ p,i,�

+
∑
p,i

∑
s,s′

�hp,iĉ
†
p,i,s�ss,s′ ĉ p,i,s′ . (1)

where the first term represents the kinetic part of the Hamiltonian (Ĥkin), the
second term is the interaction part (Ĥint), while the last term describes the inter-
action with the external magnetic field (Ĥh). At the level of Ĥkin, in order to have
a realistic 2D surface description, two bands are considered, denoted hereafter by
p, p′ = a, b. However we note, that this choice not diminishes the applicability of
the deduced results, since usually, the theoretical description of muliband
systems is given by projecting the multiband structure in a few-band picture
[25], projection which is stopped here only for its relative simplicity at two-
bands level. Again in order to approach a real systems, besides on-site one par-
ticle terms (r = 0), one takes into consideration nearest-neighbour (r = x1, x2,
where x1, x2 are the Bravais vectors), and next nearest-neighbour
(r = x2 + x1, x2 − x1) contributions. Furthermore, note that the kp,p′ ;s,s′

i,i+r coeffi-
cient represents for (p = p′, r = 0), (p = p′, r = 0) on-site potential, (hopping
matrix element); while for (p = p′, r = 0), (p = p′, r = 0) on-site hybridis-
ation, (inter-site hybridisation). Concerning Ĥint , since in itinerant many-
body systems strong screening effects are present, we consider at this stage
only the on-site Coulomb repulsion (Hubbard interaction term) in the corre-
lated band (p=b, Ub . 0), the second band being considered non-correlated
(p=a, Ua = 0). The many-body spin-orbit interactions being of one-particle
type, are introduced in the kinetic part of the Hamiltonian, explicitly in the
nearest neighbour spin-flip hopping terms, i.e. coefficients
kp,p;s,−s
i,i+r , r = x1, x2. These terms are of Rashba (lpR, p = a, b) and Dresselhaus
(lpD, p = a, b) type [26]. Consequently, one has for r = x1, the structure
kp,p;�,�
i,i+x1 = l

p
R − ilpD, kp,p;�,�

i,i+x1 = −l
p
R − ilpD, while for r = x2 the expressions

kp,p;�,�
i,i+x2 = l

p
D − ilpR, k

p,p;�,�
i,i+x2 = −l

p
D − ilpR. We underline that even if usually

the SOI contributions are small, they introduce essential effects since they
break the double spin-projection degeneracy of each band. Hence, in the pres-
ence of strong correlations, the essential effects introduced cannot be obtained
by standard perturbation approximations [12]. We note that other spin-flip
terms are not present in Ĥkin, and one has for all considered r values
kp,p′;�,�
i,i+r = kp,p′;�,�

i,i+r = kp,p′
i,i+r. Furthermore, in order to not diminish the effect of

the spin-flip nearest-neighbour hopping terms produced by SOI, the external
fields are only applied in-plane, hence without the z-component
(hzp,i = 0, hxp,i, h

y
p,i = 0). We underline, that the in-plane hxp,i, hyp,i
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contributions will additively renormalise the kp,p;s,−s
i,i contributions as

�k
p,p;�,�
i,i = kp,p;�,�

i,i + hx − ihy, (�k
p,p;�,�
i,i )∗ = �k

p,p;�,�
i,i .

III. The Hamiltonian cast in pozitive semidefinite form

A. The transformation of the Hamiltonian

Now we turn back to (1), and present the transformation of Ĥ in exact terms. On
this line we introduce two block operators Q=A,B for each site i, which for a
fixed Q value are defined as

Q̂i =
∑
p=a,b

∑
n=1,2,3,4

∑
a=�,�

qQ,p,n,aĉ p,i+rn,a. (2)

Here, in order r1 = 0, r2 = x1, r3 = x1 + x2, and r4 = x2, see Figure 1. At a
given lattice site i, for a fixed Q and p value, the Q̂i operator has 8 contributions,
4 for spin a =�, and other 4 for spin a =�. For fixed α the mentioned 4 values
denoted by n=1,2,3,4 are placed in the four corners of an elementary plaquette
connected to the lattice site i. Using (2), the starting system Hamiltonian Ĥ in
(1) becomes of the form

Ĥ = P̂ + Sc, (3)

where P̂ represents a positive semidefinite operator, while Sc a scalar. Taking into
account that P̂ = P̂Q + P̂U where P̂U = Ub

∑
i P̂i, for Ub . 0 one has

P̂Q =
∑
i

∑
Q=A,B

Q̂iQ̂
†
i , P̂i = n̂b,i,�n̂b,i,� − (n̂b,i,� + n̂b,i,�)+ 1,

Sc = hN − UbNL −
∑
i

∑
Q=A,B

di,Q, di,Q = {Q̂i, Q̂
†
i }, (4)

where N(NL) represents the number of electrons (lattice sites).
The corresponding matching equations which allows the transformation of

the starting Hamiltonian from (1) into the form described by Ĥ in (3), (4),

Figure 1. Unit cell defined at the lattice site i with in-cell notations of sites n=1,2,3,4.
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are as follows: One has 32 equations for nearest-neighbour contributionsm=1,2,
namely 16 for a fixed m

−kp,p′;s,s′
i,i+xm =

∑
Q=A,B

(q∗Q,2m,p,sqQ,1,p′,s′ + q∗Q,3,p,sqQ,6−2m,p′,s′), (5)

and similarly one has 32 equations for the next nearest-neighbour contributions,
as previously 16 for a fixed m = +1

−kp,p′;s,s′
i,i+x2+mx1 =

∑
Q=A,B

q∗Q,3+(1−m)/2,p,sqQ,1+(1−m)/2,p′,s′ . (6)

Finally local (e.g. r = 0) contributions give rise to 16 equations which can be
written as

− kp,p′;s,s′
i,i [(1− d p,p′)+ (1− ds,s′)d p,p′ + d p,p′ds,s′]+ (h− Up)d p,p′ds,s′

− [hx − ik(s)hy]d p,p′(1− ds,s′) =
∑
Q=A,B

∑
n=1,2,3,4

q∗Q,n,p,sqQ,n,p′,s′ , (7)

where k(s) = d�,s − d�,s. One has here totally 80 non-linear equations,
whose unknown are the 32 numerical prefactors qQ,n,p,s called ‘block operator
parameters’, and the parameter η entering in the ground state energy
(Eg = Sc). The total number of Hamiltonian parameters (taking into
account all possible spin dependences as well) is 76, so a proper description
for a real material can be provided. But taking into account the conditions
presented below (1) and used in this description, besides SOI couplings
and U, one remains with only 10 Ĥkin parameters per one band in both
x1, x2 directions.

B. Solution of the matching equations

In order to start the deduction of the exact ground states, first we should
deduce the numerical prefactors qQ,p,n,a of the block operators from (2)
from the matching Equations (5)–(7). Starting this job, first we observe
from (5)–(7) that all qQ=A,p,n,a components can be given in function of the
qQ=B,p,n,a coefficients via the relation qA,p,n,a = dn,aqB,p,n,a, where the coefficiens
dn,a have the expression

dn,a = − da,�
y

+ da,�
x

( )
dn,1 − da,�

v
+ da,�

z

( )
dn,2 + (x∗da,� + y∗da,�)dn,3

+ (z∗da,� + v∗da,�)dn,4, (8)

where x,y,v,z are numerical prefactors. After this step it results that the
remaining qB,p,n,a unknowns with p=a can be given in term of the qB,p,n,a coeffi-
cients containing p=b via the relation qB,a,n,a = anqB,b,n,a, where one has for the
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numerical coefficients an the expression

an = a1dn,1 + a2dn,2 + g0
a∗
1
dn,3 + g0

a∗
2
dn,4 (9)

where g0 is an arbitrary real and positive parameter, while a1, a2 are two
further numerical prefactors. In this manner, up to (9) only 8 unknown coeffi-
cients remain, namely qB,b,n,a with n=1,2,3,4 and a =�, �. But it turns out that
these eight unknown coefficients are interdependent, and all can be expressed
in function of one block operator parameter, namely qB,b,n=1,�, via

qB,b,1,� = 1
w∗ qB,b,1,�, qB,b,3,� =− u∗

w∗ q
∗
B,b,1,�, qB,b,3,� = |a1|2

g0

1
uyx∗

qB,b,1,�,

qB,b,2,� =vqB,b,2,�, qB,b,4,� =−a∗
2

a∗
1

u∗y∗

v∗w∗ q
∗
B,b,2,�, qB,b,4,� =a∗

2a1

g0

v∗

uyz∗
q∗B,b,2,�, (10)

where |qB,b,2,�| = |m‖qB,b,1,�|, v= [zwx∗(1+ vy∗)]/[vy∗(1+ zx∗)], |w| = (|u‖y|���
g0

√
)/|a1|,s= yv∗. Taking s, k,f1,f2 as arbitrary parameters, one obtains

three coupled equations in X= vx∗, Z= vz∗, V = |v|2

ks∗(1+s)=Z k(1+s)+X∗ − |X|2
V

[ ]
+ (V−X),

X−V
1+X

eif1 =V
s∗ −Z
V+sZ

,

V+ZX∗

X−Z
eif2 =V

(1+s∗)
s−V

. (11)

from where, together with the σ expression, the remaining unknown x, y, z, v
parameters can be deduced, and based on them, starting from the relation
k2= f qB,b,n=1,�, where k2= |qB,b,n=2,�| is a free parameter, and f ; f (x, y, z, v)
is a known function, see (12),

f = V(|a1|2−g0)

|y|2(g0−|a2|2)
k(1+|y|2)− (1+|x|2)

k(1+V)− (1+|z|2) |v−x|2
|y− z|2

, (12)

qB,b,n=1,� can be determined. Then, qB,b,n=2,� = |qB,b,n=2,�|exp(iu2), where u2 is a
free parameter, is given by k2 exp iu2. The Hamiltonian parameters expressed
in ka,ai,i+x1 units, enter in the 12 free parameters k, Re(s), Im(s),f1,f2,
Re(a1), Im(a1), Re(a2), Im(a2), g0, k2, u2 of the solution presented above
(e.g. ka,b,s,si,i+x1 = 2a∗

2
a1a∗

2+g0
, kb,a,s,si,i+x1 = 2a1

a1a∗
2+g0

, etc.). We further note that when the
presented solution appears, the relation kb,b,s,si,i+r = (1/g0)k

a,a,s,s
i,i+r fixes for all

possible r [see the discussion following (1)] the magnitudes ratio of diagonal
Ĥkin overlap elements from the two bands.
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IV. The ground state wave functions

The first deduced ground state wave function corresponding to the transformed
Hamiltonian from (3) connected to the matching Equations (4)–(7) is of the
form

|C1,g〉 =
∏
i

∏
Q=A,B

Q̂†
i

( )
Q̂†

1,i|0〉 (13)

where
∏

i extends over allNL lattice sites, one has Q̂†
1,i =

∑
s as,iĉ

†
b,i,s, where as,i

are numerical prefactors, and |0〉 is the bare vacuum with no fermions present.
This |C1,g〉 solution corresponds to 3/4 system filling.

The presented wave vector from (13) represents the ground state for the fol-
lowing reason: a) As seen from (2) the block operators Q̂†

i are linear combi-
nations of canonical Fermi creation operators acting on the finite number of
sites of the given block, consequently the Q̂†

i Q̂
†
i = 0 equality is satisfied.

Hence the relation P̂Q|C1,g〉 = 0 automatically holds. Furthermore, b) The P̂i
positive semidefinite operators from the expression of the P̂U operators in (4)
(note that because of Ub . 0, also P̂U is a positive semidefinite operator)
attain their minimum eigenvalue zero when at least one b-electron is present
on the site i. Hence, for the minimum eigenvalue zero of P̂U , at least one b-elec-
tron is needed to be present on all lattice sites. But

∏
i Q̂

†
1,i introduces a b-elec-

tron on each site, consequently also P̂U |C1,g〉 = 0 holds. As a summary of the
above presented arguments, also for P̂ = P̂Q + P̂U one has P̂|C1,g〉 = 0, i.e.
|C1,g〉 represents the ground state. The uniqueness of this ground state at 3/4
system filling can also be demonstrated on the line of the Appendix 2 of Ref.
[16].

We note that the ground state (13) can be extended also above 3/4 system
filling as follows:

|C2,g〉 =
∏
i

∏
Q=A,B

Q̂†
i

( )
Q̂†

1,i

∏N1

j=1

ĉ†b,kj,akj

( )
|0〉 (14)

where N1 , NL, ĉ
†
b,k,a is the Fourier transformed ĉ†b,i,a, akj being an arbitrary

spin projection for each kj, and
∏N1

j=1 is taken over N1 arbitrary kj values. The
filling corresponding to (14) corresponds to 3/4+ N1/NL system filling. The
demonstration of the ground state nature follows the line presented above in
the case of (13), and is based on the observation that the supplementary
product (

∏N1
j=1 ĉ

†
b,kj,akj

) not alters the properties P̂Q|Cz,g〉 = P̂U |Cz,g〉 = 0, for
both z=1,2.
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In similar manner we have deduced ground state wave vectors also below
system half filling. On this line one has

|C3,g〉 =
∏Ns

j

Ĉ†
j |0〉 (15)

where Ĉ†
j represent block operators which on their turn are linear combinations

of ĉ†p,i,s creation operators, and must satisfy the anti-commutation relations
{Q̂i, Ĉ

†
j } = 0 for all lattice sites i, and both Q=A,B values. The j index here

denotes different (independent) Ĉ†
j terms. The number of carriers described

by (15) is given by Ns. We underline that in the case of the ground state (15)
the starting Hamiltonian (1) is transformed in the expression

Ĥ = P̂Q,1 + hN , P̂Q,1 =
∑
i

∑
Q=A,B

Q̂†
i Q̂i. (16)

The corresponding matching Equations (5)–(7) remain unaltered in their
right hand side, but their left hand side gains a minus sign, and supplementary,
in (7) the renormation h 	 h+ Up emerges. The energies En,g corresponding
to the ground states |Cn,g〉 for n=1,2,3 become

En,g = h(N + N1dn,2)− UbNL −
∑
i

∑
Q=A,B

di,Q

[ ]
(dn,1 + dn,2)+ hNsdn,3. (17)

V. Summary and conclusions

We started with the observation that surfaces and interfaces have a broad appli-
cation spectrum in leading technologies, and such two dimensional systems have
by their nature in the caseof realmaterials potential gradients (∇V) at their surfaces.
These gradients are generating many-body spin-orbit coupling (�s · (∇V × �k)),
which even if small, produces essential effects since breaks the double spin projec-
tion degeneracy of each band. In applications, the correlated electron surfaces are
often exposed to in-plane magnetic fields. Such processes, contrary to their impor-
tance, have not been analysed till now in exact termsmainly due to the non-integr-
able nature of the systems. In this Letter we fill up this gap by working out and
describing a procedure which, using positive semidefinite operator properties,
deduces exact results in 2D for such systems. The technique merits attention
since provide solution for the matching equations consisting of 80 coupled non-
linear complex-algebraic equations. Extended results presentinghow this technique
works in concrete cases will be published in a forthcoming detailed paper.
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