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A B S T R A C T   

Protein phosphatase Z1 (Ppz1) has been shown to take part in important physiological functions in fungi 
including a contribution to virulence of Candida albicans. Although its involvement in the oxidative stress 
response has also been documented, the exact mechanism of action of its protective effect against oxidative 
damage remains unknown. By developing a pipeline to analyze the biophysical properties of the cell membrane 
in fungi, we demonstrate that the plasma membrane of Ppz1-KO Candida albicans displays increased sensitivity to 
tert-butyl-hydroperoxide-induced oxidative damage. In particular, the response to the oxidizing agent, charac-
terized by increased lipid peroxidation, reduced lipid order, and inhibited lateral mobility of plasma membrane 
components, is significantly more pronounced in the Ppz1-KO C. albicans strain than in the wild-type counter-
part. Remarkably, membrane constituents became almost completely immobile in the phosphatase deletion 
mutant exposed to oxidative stress. Furthermore, moderately elevated membrane lipid peroxidation accompa-
nied by the aforementioned changes in the biophysical characteristics of the plasma membrane are already 
detectable in untreated Ppz1-KO cells indicating latent membrane damage even in the absence of oxidative 
stress. In conclusion, the hypersensitivity of cells lacking Ppz1 to oxidative damage establishes that potential 
Ppz1 inhibitors may synergize with oxidizing agents in prospective anti-fungal combination therapies.   

1. Introduction 

Candida albicans is an innocuous yeast species present in the micro-
biome of more than half of healthy adults [1]. This opportunistic path-
ogen can become life-threatening in people with compromised immune 
system [2]. The most serious health hazard is posed by emerging new 
strains resistant to multiple medications [3]. The success of any kind of 
pharmacological intervention hinges upon specificity. Many currently 
available anti-fungal drugs affect the yeast cell membrane, since its 
unique sterol component, ergosterol, presents an ideal target [4]. The 
yeast plasma membrane is highly compartmentalized, a phenomenon 
that is attributed to the strong separation tendency of ergosterol, the 
hydroxylation and the long hydrocarbon chains of fatty acids, the lower 

versatility of lipids and to the partitioning preferences of membrane 
proteins [5–8]. Consequently, fluid membrane areas are intermixed with 
several membrane domains, among which membrane compartment of 
the Can1 arginine permease (MCC) and membrane compartment of the 
Pma1 H+-ATPase (MCP) are the most abundant [9,10]. Fungal plasma 
membranes are also unique in the sense that they contain 
sphingolipid-enriched gel domains and distinct sterol-enriched domains, 
possibly corresponding to MCP and MCC, respectively [8]. Conventional 
ergosterol-directed anti-fungal drugs act not only by undermining the 
function of the membrane as a permeability barrier, but also by sub-
verting the organizing principle of the aforementioned membrane 
domain structure required for certain yeast virulence factors [5]. 

Since resistance against conventional anti-fungal medications 
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increases [3,11], there is a pressing need for new drug targets. Protein 
phosphatases present such a possible target due to their diversity 
stemming from convergent evolution [12]. Homology searching iden-
tified 78 potential protein phosphatases in the C. albicans genome [13]. 
Among these, the serine/threonine-specific PPZ protein phosphatases 
are fungus-specific enzymes without closely related human orthologues 
[13–15]. The product of the C. albicans PPZ1 gene, the Ppz1 protein, is 
involved in important physiological functions, e.g., maintenance of cell 
wall integrity, salt tolerance and transmembrane transport [16,17]. 
Homozygous PPZ1 deletion mutants exhibited reduced competitive 
fitness, reduced virulence, and diminished attachment to surfaces [16, 
18,19]. The role of PPZ in the oxidative stress response of several fungi, 
including C. albicans and A. fumigatus, has been reported [20,21]. 
Upregulation of genes involved in oxidative processes, enhanced activity 
of several oxidative enzymes, an elevated ratio of oxidized to reduced 
glutathione and an increase in reactive oxygen species (ROS) were 
observed in the phosphatase deletion mutant C. albicans implying that 
an oxidative stress response was primed [17,22]. Interestingly, the 
overexpression of Ppz1 in S. cerevisiae also increased the expression of 
oxidative enzymes and ROS formation [23]. The unique structural fea-
tures of CaPpz1 [24,25] and the synergistic transcriptional effects of 
oxidative agents with the Ppz1-null mutation [17,22] suggest that spe-
cific combination therapies could be developed. Since Ppz1 affects 
transmembrane transport [16,17] as well as plasma membrane-related 
processes [22], and since one of the primary targets of oxidative dam-
age is the cell membrane [26,27], we set out to characterize the effect of 
the oxidizing agent tert-butyl-hydroperoxide (tBOOH) and the Ppz1 
deletion on the biophysical properties of the Candida cell membrane. 

tBOOH was selected as it accelerates lipid peroxidation chain reactions 
in biological membranes and contributes to the generation of butoxy 
radicals via Fenton-type reactions [28,29]. As an organic peroxide, 
tBOOH (i) modifies membrane lipid composition [30,31]; (ii) increases 
ROS concentration [30]; (iii) induces the antioxidative defense system 
[32–34]; and (iv) stimulates cyanide-sensitive respiration in fungi [33]. 

2. Materials and methods 

2.1. Cells 

Two strains of Candida albicans were applied in the experiments: the 
control QMY23 (WT) with the genotype his1Δ/his1Δ, leu2Δ:C. dublin-
iensis HIS1/leu2Δ:C. maltose LEU2, URA3/ura3Δ:imm434, IRO1/iro1Δ: 
imm434 [35] and the protein phosphatase-knockout (KO) with the ge-
notype ura3Δ-iro1Δ:imm434/URA3-IRO1, his1Δ/his1Δ, leu2Δ/leu2Δ, 
ppz1Δ:C. dubliniensis HIS1/ppz1Δ:C. maltosa LEU2 [16]. Both strains 
were cultured as previously described [17]. 

2.2. Treatment and biophysical investigation of cells 

Oxidative stress was induced by a 1-h treatment with 0.4 mM of 
tBOOH [17]. Membrane hydration and membrane lipid peroxidation 
were measured with PY3174 [36–39] or with the Image-iT® Lipid 
peroxidation sensor (C10445, ThermoFisher Scientific, Waltham, MA), 
respectively. Image analysis strategies and representative image seg-
mentation results are summarized in Suppl. Figs. 1-2. Mobility of the 
fluorescent marker FAST-DiI (D3899, ThermoFisher Scientific) was 

Fig. 1. Representative images of yeast cells labeled by PY3174. WT and KO C. albicans cells were treated with tBOOH or left untreated followed by labeling with 
PY3174 and confocal microscopy to measure the GP of the fluorescent marker. The intensity of PY3174 and the transmission images are shown in the middle and 
bottom rows, respectively. Images were segmented and the fluorescence intensities were only evaluated in membrane pixels. This feature of the analysis prevented 
potential unfair bias that could have been the result of the high fluorescence intensity observed inside certain cells that suffered extensive oxidative damage. The GP 
of the membrane is shown in the top row according to the color scale in the upper left corner. Representative images from five independent experiments are 
presented. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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determined by fluorescence recovery after photobleaching (FRAP) [40] 
(Suppl. Fig. 3). tBOOH had negligible effects on the fluorescence char-
acteristics of FAST-DiI and PY3174 (Suppl. Fig. 4). More detailed 
description of the methods is available in the Supplementary 
Information. 

3. Results and discussion 

3.1. Methodological innovations 

Since yeast cells are rarely analyzed by quantitative microscopy, we 
first attempted to measure membrane fluidity using fluorimetry of intact 
cells by fluorescence anisotropy measurements. However, we noted a 
significant contribution of light scattering to the measured signal at any 
reasonable density of C. albicans in the suspensions (data not shown). As 
an alternative approach, protoplasts were generated to reduce light 
scattering. However, removal of the cell wall initiates stress signaling in 
yeast rendering such experiments for characterizing oxidative damage 
somewhat questionable [41]. Additionally, the protoplastation effi-
ciency of the WT and KO strains was significantly different, and the 
oxidative treatment reduced the rate of protoplast formation in both 
samples (Suppl. Fig. 5) casting further doubt on the interpretation of the 
anisotropy results. Therefore, fluorescently labeled, intact yeast cells 
were attached to the surface of poly-lysine-coated coverslips for 
microscopic investigations in which light scattering is not an issue. As 

opposed to previous attempts, in which the fluorescence signal was 
evaluated in all pixels in single cells [42], we wanted to limit the analysis 
to the cell membrane to eliminate the effect of intracellular dye mole-
cules. Even though most cells displayed typical membrane fluorescence, 
image segmentation was necessary to achieve this aim. Fluorescence 
intensities reporting membrane compactness or lipid peroxidation were 
only evaluated in membrane masks determined by a convolutional 
neural network (Fig. 1, Suppl. Fig. 2). Such analysis permitted 
cell-by-cell and pixel-by-pixel analysis of membrane biophysical prop-
erties that will be described in the following sections. 

3.2. Oxidative stress-induced increase in the hydration of the plasma 
membrane is exacerbated in Ppz1-null Candida cells 

Intact C. albicans cells were labeled with the environment sensitive 
dye PY3174, and the generalized polarization (GP) of the indicator was 
compared in untreated WT and KO cells. Although the mean GP of the 
KO strain was only non-significantly lower than that of WT cells 
(Fig. 2A), cell-by-cell analysis revealed that there was a fraction of un-
treated KO cells with significantly reduced GP (Fig. 1and Fig. 2B). Due to 
the low number of these cells, their contribution to the mean was min-
imal leading to the nonsignificant difference between the population 
averages. tBOOH-induced oxidative stress decreased GP in both WT and 
KO cells with the reduction in the latter being significantly larger (Fig. 1 
and Fig. 2A). Cell-by-cell analysis proved to be invaluable since it 

Fig. 2. Measurement of membrane hy-
dration. WT and KO cells were grown in 
the presence or absence of tBOOH for 1 h 
that was followed by labeling with 
PY3174, whose fluorescence was 
measured in the blue- and red-edge of its 
emission spectrum. The GP, character-
izing the extent of water penetration into 
the membrane, was calculated for mem-
brane pixels only. (A) The mean GP of 
each experimental condition was 
normalized to the untreated, WT cells in 
each experiment. The mean of 100–200 
cells, recorded in five biological repli-
cates, along with the standard deviation, 
is shown. Asterisks indicate significant 
difference obtained with Tukey’s HSD 
test after significant F values were 
calculated in two-way ANOVA (p <

0.05). (B) The distribution of GP values 
of individual cells is shown by the his-
tograms. (C) Pixelwise GP values were 
calculated for the membrane of control 
and tBOOH-treated WT and KO cells. A 
pixel was considered to have high GP if 
its GP was above zero. The total area of 
such high-GP domains was determined 
for every individual cell, and the mean 
± standard deviation of high-GP mem-
brane areas is shown. Both the effects of 
the genotype (WT vs. KO) and of the 
treatment (control vs. tBOOH) were sig-
nificant (p < 0.05). (D) The area of in-
dividual membrane domains containing 
contiguous pixels with high-GP values 
was determined, and the distribution of 
these domain sizes is displayed. Both the 
effect of the phenotype (KO vs. QM) and 
of the treatment (control vs. tBOOH) 
were significant (p < 0.05). Image anal-
ysis algorithms for pixelwise analysis 

(panels C and D) are summarized in Suppl. Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this 
article.)   
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revealed that (i) there were two kinds of cells considering all treatment 
conditions with one of them having high GP values and the other, 
oxidatively damaged cells displaying low GP whose range overlapped in 
all samples in which they were present; and (ii) all treated KO cells 
exhibited low GP values while only a fraction of WT cells responded to 
tBOOH in the same manner. Since decreased GP indicates higher 
penetration of water into the membrane [36,39,42], our data suggest 
that oxidative damage led to lower membrane compactness and that KO 
cells, exhibiting latent oxidative damage even without 
tBOOH-treatment, responded more vigorously to the oxidizing agent. 

3.3. Pixel-by-pixel analysis of GP reveals alterations in the plasma 
membrane of Ppz1-null Candida cells 

Since cell-by-cell GP values implied an altered plasma membrane 
structure in KO cells, we undertook a more detailed investigation of the 
pixelwise distribution of GP as described in Suppl. Fig. 1. The membrane 
of tBOOH-treated cells exhibited a larger standard deviation of GP 
implying that the plasma membrane became more heterogeneous 
(Suppl. Fig. 6). Next, we divided the plasma membrane into areas 
characterized by high or low GP values. High-GP domains, arbitrarily 
defined as pixels with GP above zero, correspond to more compact 
membrane regions. The total area of high-GP domains was reduced by 
tBOOH treatment in both WT and KO cells (Fig. 1 and Fig. 2C). 
Remarkably, the high-GP domains practically disappeared in oxidatively 
stressed KO cells. The area of high-GP domains was lower in untreated 
KO cells than in the WT control indicating that the plasma membrane of 
untreated KO cells was already altered. Calculating the distribution of 
the size of high-GP domains revealed that all individual high-GP do-
mains shrank in tBOOH-treated KO cells, while only a fraction of them 
did so in treated WT cells (Fig. 2D). This analysis also confirmed that the 
membrane of untreated KO cells exhibited changes seen in oxidatively 
damaged membranes in that a small fraction of high-GP domains was 
reduced in size. Consequently, the biophysical properties of the plasma 
membrane suggest that KO cells are not only more sensitive to tBOOH, 
but their membrane already displays signs of preliminary oxidative 

damage. 

3.4. Lateral diffusion of lipids is significantly reduced by the loss of Ppz1 
and by oxidative stress 

Since membrane fluidity strongly correlates with lipid mobility, we 
measured the lateral diffusion of the membrane marker FAST-DiI par-
titioning preferentially in disordered membrane domains [43]. 
Compared to untreated WT cells, both the KO and tBOOH treatment 
significantly increased the immobile fraction while their combined ef-
fect essentially immobilized the marker (Fig. 3). The KO mutation 
induced a significant decrease in the recovery time constant implying 
faster diffusion that may be the consequence of a less ordered mem-
brane. The KO phenotype and tBOOH synergize according to the FRAP 
and GP experiments. However, both the oxidative stress and the absence 
of Ppz1 decrease lipid order that is usually associated with higher 
freedom of lateral mobility contrasting with the drastically lower mobile 
fraction induced by both experimental conditions. This apparent 
contradiction can be resolved by the following arguments. (i) Oxidizing 
agents leading to lipid peroxidation introduce hydrophilic groups in the 
hydrocarbon chain, especially in unsaturated lipids present in copious 
amounts in the plasma membrane of yeasts [44,45]. Such hydrophilic 
groups significantly subvert the orderedness of the membrane, poten-
tially leading to “whiskers” of oxidized fatty acids sticking out of the 
bilayer [46], and “invite” water molecules deep into the hydrophobic 
core according to molecular dynamics simulations [47]. (ii) Although 
extensive peroxidation leads to increased membrane fluidity [48], less 
subversive oxidation applied in this study causes decreased fluidity due 
to crosslinking of proteins and lipids [26,49–51] resulting in increased 
density of obstacles that hinder lateral diffusion of lipids [52]. Note that 
peroxidation-induced crosslinking in the cell wall may also account for 
the decreased protoplastation efficiency observed in the KO strain and in 
tBOOH-treated cells (Suppl. Fig. 5). In some publications, moderate lipid 
peroxidation has been reported to increase membrane fluidity, but the 
interpretation of these experiments is complicated by the confounding 
effect of protoplastation and by the confusion of decreased membrane 

Fig. 3. Results of fluorescence recovery after photobleaching experiments. tBOOH-treated and control WT and KO cells were labeled by the fluorescent membrane 
marker FAST-DiI. The fluorescence intensity in a membrane spot was measured before photobleaching and during the recovery period. The fluorescence intensity in 
the membrane spot was double-normalized, and the curves were averaged for five biological replicates. These average curves are shown in part A. The standard 
deviation is only shown for every 6th data point for clarity. Equation S3 was fitted to individual recovery curves providing the recovery time constant and the 
immobile fraction as described in the Supplementary Materials and Methods. Box plots showing their distributions are presented in panels B and C. Due to the very 
high immobile fraction of tBOOH-treated KO cells, the recovery time constants are not reliable in this condition. As far as the recovery time constants are concerned, 
only untreated KO cells revealed significant difference from all other samples in pairwise comparisons. Regarding the immobile fractions, all pairwise comparisons 
other that the KO-control vs. WT-tBOOH revealed significant differences. Post-hoc comparisons were carried out after significant F values obtained in ANOVA, and 
were considered significant if p < 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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order with increased fluidity [31,53]. In conclusion, latent oxidative 
damage in the membrane of KO cells restricts lateral diffusion in the 
membrane and its exacerbation by tBOOH leads to such an extent of 
immobilization that seems to be incompatible with proper membrane 
function. 

3.5. Membrane lipid peroxidation reveals more pronounced oxidative 
damage induced by tBOOH in Ppz1-null cells 

We directly tested the assumption that both tBOOH and the Ppz1 
deletion induce lipid peroxidation and revealed that KO cells exhibited a 
50% higher level of membrane lipid peroxidation than the WT (Fig. 4). 
This finding not only provides an explanation for the changes in the 
biophysical properties of the membrane, but it is also in accordance with 
a two-times higher free radical generation in KO cells measured by 
dichlorofluorescein-diacetate assay [22]. Furthermore, the 
tBOOH-induced lipid peroxidation was augmented significantly by the 
absence of Ppz1. Thus, Ppz1 seems to be involved in protecting Candida 
cells from oxidative stress, and the loss of its expression leads to 
oxidative membrane damage among which the most significant is the 
almost complete immobilization of membrane components after mild 
oxidative challenge. Although putative substrates of Ppz1 have been 
identified [23,54,55], neither their involvement in the oxidative stress 
response, nor the role of their phosphorylation is known necessitating 
further research to reveal the molecular target of Ppz1 in this process. 
However, based on the synergism between the Ppz1-KO mutation and 
oxidative damage, combination of prospective Ppz1 inhibitors with mild 
oxidizing agents may efficiently tackle fungal infections caused by 
drug-resistant Candida species. 
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M. Molnár, I. Farkas, Z. Hamari, J. Arino, I. Pócsi, V. Dombrádi, Protein 
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