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Abstract

In this paper, first we define a periodic (semi-periodic, quasi-periodic)
word and then we define a primitive (strongly primitive, hyper prim-
itive) word. After we define several Marcus contextual grammars,
we show that the set of all primitive (strongly primitive, hyper prim-
itive) words can be generated by some Marcus contextual grammar.

1 Introduction

Let X∗ denote the free monoid generated by a nonempty finite alphabet
X and let X+ = X∗ \ {ε} where ε denotes the empty word of X∗. For
the sake of simplicity, if X = {a}, then we write a+ and a∗ instead of
{a}+ and {a}∗, respectively. Let L ⊆ X∗. Then L is called a language
over X. By |L|, we denote the cardinality of L. If L ⊆ X∗, then L+

denotes the set of all concatenations of words in L and L∗ = L+ ∪ {ε}.
In particular, if L = {w}, then we write w+ and w∗ instead of {w}+ and
{w}∗, respectively. Let u ∈ X∗. Then u is called a word over X .

Definition 1.1 A word u ∈ X+ is said to be periodic if u can be repre-
sented as u = vn, v ∈ X+, n ≥ 2. If u is not periodic, then it is said to be
primitive. By Q we denote the set of all primitive words.

Remark 1.1 Fig. 1.1 indicates that u is a periodic word.
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Fig. 1.1

Definition 1.2 A word u ∈ X+ is said to be semi-periodic if u can be
represented as u = vnv′, v ∈ X+, n ≥ 2 and v′ ∈ Pr(v) where Pr(v)
denotes the set of all prefixes of v. If u is not semi-periodic, then it is
said to be strongly primitive. By SQ we denote the set of all strongly
primitive words.

Remark 1.2 Fig. 1.2 indicates that u is a semi-periodic word.
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Definition 1.3 A word u ∈ X+ is said to be quasi-periodic if a letter in
any position in u can be covered by some v ∈ X+ with |v| < |u|. More
precisely, if u = wax,w, x ∈ X∗ and a ∈ X, then v ∈ Suf(w)aPr(x)
where Suf(w) denotes the set of all suffixes of w. If u is not quasi-
periodic, then it is said to be hyper primitive. By HQ we denote the set
of all hyper primitive words.

Remark 1.3 Fig. 1.3 indicates that u is a qusi-periodic word.

Then we have the following inclusion relations.
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Fact 1.1 HQ ⊂ SQ ⊂ Q.

Proof That HQ ⊆ SQ ⊆ Q is obvious. Now consider the following
example. Let X = {a, b, . . .}. Then ababa ∈ Q \ SQ and aabaaabaaba ∈
SQ \ HQ. Thus HQ �= SQ �= Q. Therefore, every inclusion is proper.

2 Marcus Contextual Grammars

We begin this section by the following definition.

Definition 2.1 (Marcus) contextual grammar with choice is a structure
G = (X,A, C,ϕ) where X is an alphabet, A is a finite subset of X∗,
i.e. the set of axioms, C is a finite subset of X∗ × X∗, i.e. the set of
contexts, and ϕ : X∗ → 2C is the choice function. If ϕ(x) = C holds
for every x ∈ X∗ then we say that G is a (Marcus) contextual grammar
without choice. In this case, we write G = (X,A,C) instead of writing
G = (X,A, C,ϕ).

Definition 2.2 We define two relations on X∗: for any x ∈ X∗, we write
x ⇒ex y if and only if y = uxv for a context (u, v) ∈ ϕ(x), x ⇒in y if and
only if x = x1x2x3, y = x1ux2vx3 for some (u, v) ∈ ϕ(x2). By ⇒∗

ex and
⇒∗

in, we denote the reflexive and transitive closure of each relation and let
Lα(G) = {x ∈ X∗ | w ⇒∗

α x, w ∈ A} for α ∈ {ex, in}. Then Lex(G) is the
(Marcus) external contextual language (with or without choice) generated
by G, and similarly, Lin(G) is the (Marcus) internal contextual language
(with or without choice) generated by G.

Example 2.1 Let X = {a, b} and let G = (X,A,C, ϕ) be a Marcus
contextual grammar where A = {a}, C = {(ε, ε), (ε, a), (ε, b)}, ϕ(ε) =



{(ε, ε)}, ϕ(ua) = {(ε, b)} for u ∈ X∗ and ϕ(ub) = {(ε, a)} for u ∈ X∗.
Then Lex(G) = a(ab)∗ ∪ a(ba)+b and Lin(G) = aX∗ ∪ X∗a2X∗.

The following example shows that the classes of languages generated
by Marcus contextual grammaes have no relation with the Chomsky lan-
guage classes.

Example 2.2 Let |X| ≥ 2 and let w = a1a2a3 · · · be an ω-word over
X where ai ∈ X for any i ≥ 1. Let G = (X,A,C,ϕ) be be a Marcus
contextual grammar where A = {a1}, C = {(ε, ε}, (ε, a) | a ∈ X}, ϕ(ε) =
{ε, ε), ϕ(a1a2a3 · · · ai) = {ε, ai+1} and ϕ(u) = ∅ if u is not a prefix of
w. Then Lex(G) = {a1, a1a2, a1a2a3, · · ·}. Hence, there exists a Mar-
cus contextual grammar generating a language which is not recursively
enumerable.

As for more details on Marcus contextual grammars and languages,
see [3].

3 Set of Primitive Words

In this section, we deal with the set of all primitive words. First we
provide the following three lemmas. The proofs of the lemmas are based
on the results in [2] and [5].

Lemma 3.1 For any u ∈ X+, there exist unique q ∈ Q and i ≥ 1 such
that u = qi.

Lemma 3.2 Let i ≥ 1, let u, v ∈ X∗ and let uv ∈ {qi | q ∈ Q}. Then
vu ∈ {qi | q ∈ Q}.

Lemma 3.3 Let X be an alphabet with |X| ≥ 2. If w, wa /∈ Q where
w ∈ X+ and a ∈ X, then w ∈ a+.

Using the above lemmas, we can prove the following. The proof can
be seen in [1].

Proposition 3.1 The language Q is a Marcus external contextual lan-
guage with choice.

However, in the case of |X| ≥ 2 we can prove that the other types of
Marcus contextual grammars cannot generate Q.



4 Set of Strongly Primitive Words

In this section, we deal with the set of all primitive words. First we
provide the following three lemmas. All results in this section can be
seen in [1].

Lemma 4.1 Let X be an alphabet with |X| ≥ 2. If awb ∈ SQ where
w ∈ X∗ and a, b ∈ X, then aw ∈ SQ or wb ∈ SQ.

Using the above lemma, we can prove the following.

Proposition 4.1 The language SQ is a Marcus external contextual lan-
guage with choice.

However, we can prove that the other types of Marcus contextual
grammars cannot generate SQ.

5 Set of Hyper Primitive Words

In this section, first we characterize a quasi-periodic word.

Definition 5.1 Let u ∈ X+ be a quasi-periodic word and let any letter
in u be covered by a word v. Then we denote u = v ⊗ v ⊗ · · · ⊗ v.

Remark 5.1 Fig. 5.1 indicates that u = v ⊗ v ⊗ · · · ⊗ v.
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The following lemma is fundamental (see [3]).

Lemma 5.1 Let u ∈ X+ and let u = xv = vy for some x, y, v ∈ X+.
Then there exist α, β ∈ X∗ and n ≥ 1 such that α �= ε and u = (αβ)nα.



Lemma 5.2 Let x, u, v ∈ X+. If u = xv = vy and |v| ≥ |u|/2, then
u /∈ HQ.

Proof By Lemma 5.1, there exist α, β ∈ X∗ with αβ �= ε and n ≥ 2 such
that x = αβ, v = (αβ)n−1α and y = βα, i.e. u = (αβ)nα. In this case,
u = αβα ⊗ αβα · · · ⊗ αβα. Thus αβα covers u and u /∈ HQ.

Proposition 5.1 Let u ∈ X+. Then there exists a hyper primitive word
v ∈ HQ such that u = v ⊗ v ⊗ · · · ⊗ v. In this representation, v and each
position of v are uniquely determined

Proof Let u = v ⊗ v ⊗ · · · ⊗ = w ⊗ w ⊗ · · · ⊗ w where v, w ∈ HQ. If
|v| < |w|(|w| < |v|), then w(v) is covered by v(w). This contradicts the
assumption that v, w ∈ HQ. Thus |v| = |w| and v = w. This means that
v is uniquely determined.

Now suppose there exist two distinct representations for u = v ⊗ v ⊗
· · · ⊗ v. Then there exists some position of u such that v ⊗ v = xv where
x, y ∈ X+ and |v| ≥ 1/2|u|. By Lemma 5.2, v /∈ HQ, a contradiction.
Hence each position of v is uniquely determined as well.

Now we show the following lemma.

Lemma 5.3 Let X be an alphabet with |X| ≥ 2. If aw /∈ HQ and
wb /∈ HQ where w ∈ X∗ and a, b ∈ X, then awb /∈ HQ.

Proof Assume that aw /∈ HQ and wb /∈ HQ. Then aw ∈ v ⊗ v ⊗ · · · ⊗ v
and wb ∈ u⊗ u⊗ · · · ⊗ u where u, v ∈ HQ (see Fig. 5.2). We can assume
|u| ≤ |v|. Notice that the proof can be carried out symmetrically for the
case |v| ≤ |u|. Hence u = u′b and vb ∈ X∗u for some u′ ∈ X∗ (see Fig.
5.3). We prove that the first letter after v in every position in Fig. 5.2
becomes b. Then awb = vb ⊗ vb ⊗ · · · ⊗ vb and awb /∈ HQ. To prove
this, we consider the case in Fig. 5.4. In the figure, vv′ ∈ v ⊗ v. Since
|xy| ≤ |u|, |x| ≤ |u|/2 or |y| ≤ |u|/2. In the former case, if x �= ε, then
u = xu′′ = u′′y′ for some u′′, y′ ∈ X+. By Lemma 5.2, this contradicts the
assumption that u ∈ HQ. In the latter case, if y �= ε, then u = yu′′ = u′′y′′

where u′′, y′′ ∈ X+. This contradicts the assumption that u ∈ HQ again.
Thus x = ε or y = ε. Since u = u′b, the first letter after v must be b.
This comletes the proof of the lemma.

Now we are ready to prove the following theorem.

Theorem 5.1 The language HQ is a Marcus external contextual lan-
guage with choice.
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Proof Notice that the theorem holds true for |X| = 1. Hence we assume
that |X| ≥ 2. Define G = (X,A,C, ϕ) in the following way: Let A = X
and let C = {(α, β) : αβ ∈ X+, |αβ| = 1}, Moreover, let for every w ∈
X∗, ϕ(w) = {(α, β) : (α, β) ∈ C, αwβ ∈ HQ}. By the above definition of
the grammar G, it is easy to see that Lex(G) ⊆ HQ. Now we prove that
HQ ⊆ Lex(G) by induction. First, we have (X ∪ X2) ∩ HQ ⊆ Lex(G).
Now, assume that (X ∪ X2 ∪ · · · ∪ Xn) ∩ HQ ⊆ Lex(G) for some n ≥ 2.
Let u ∈ Xn+1 ∩ HQ and let u = awb where a, b ∈ X. By Lemma 5.3, we
have aw ∈ HQ or wb ∈ HQ. Notice that, in this case, aw ⇒ex awb = u
or wb ⇒ex awb = u. Since aw ∈ HQ or wb ∈ HQ, u = wab ∈ Lex(G).
Consequently, u ∈ Lex(G), i.e. HQ ⊆ Lex(G). This completes the proof
of the theorem.

However, the other types of Marcus contextual grammars cannot gen-
erate HQ.
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Theorem 5.2 The language HQ of all hyper primitive words over an
alphabet X with |X| ≥ 2 is not an internal contextual language with
choice.

Proof Suppose that there exists a G = (X,A,C, ϕ) with HQ = Lin(G).
Then there exist u, v,w ∈ X∗ such that uv ∈ X+ and (u, v) ∈ ϕ(w). Let
a, b ∈ X with a �= b. Then it is obvious that a|uwv|b|uwv|wa|uwv|b|uwv|uwv ∈
HQ and a|uwv|b|uwv|wa|uwv|b|uwv|uwv ⇒in (a|uwv|b|uwv|uwv)2. However,
this contradicts the assumption that HQ = Lin(G). Thus the statement
of theorem must hold true.

By the above proof argument, we have the following.

Corollary 5.1 The language HQ of all hyper primitive words over an
alphabet X with |X| ≥ 2 is not an internal contextual language without
choice.

Theorem 5.3 The language HQ of all primitive words over an alphabet
X with |X| ≥ 2 is not an external contextual language without choice.

Proof Assume that G = (X,A,C) with Q = Lex(G). Then there exists
(u, v) ∈ C such that (u, v) �= (ε, ε) and uv /∈ a+ for some a ∈ X. It is
obvious that a|uv|vua|uv| ∈ HQ. Moreover, a|uv|vua|uv| ⇒ex (ua|uv|v)2 /∈
HQ. This contradicts the assumption that HQ = Lex(G). Thus the
statement of the theorem must hold true.
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