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Abstract

A family of quantities capable of fully determining every property of a
Coulomb system is defined. Making use of the differential virial theorem of
Nagy and March, a first-order differential equation for the functional deriva-
tive of the kinetic energy functional is derived for spherically symmetric sys-

tems.
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1. INTRODUCTION

The ground-state electron density is a fundamental quantity. It determines every prop-
erty of the electron system [1]. Recently, other quantities have been turned out to be
descriptors of a Coulomb system. The shape function, or density per particle was the first
quantity, that has been shown [2] to provide a full description of a Coulomb system. Accord-
ing to a recent paper [3] such reactivity indicators as Fukui function, local softness, softness
kernel and the electrostatic potential are all capable of fully determining every property of
a Coulomb system. It has recently been presented [4] that local kinetic energy and local
temperature are also adequate for describing a Coulomb system. Here, a broader family of
descriptors of Coulomb systems is presented.

Nowadays, density functional calculations are mainly based on the Kohn-Sham scheme.
There is, however, a growing interest in orbital-free calculations, too. These are inexpensive,
but inaccurate. The main problem is the lack of accurate approximation for the kinetic
energy functional. Making use of the differential virial theorem of Nagy and March [6],
first-order differential equation for the functional derivative of the kinetic energy is derived

for spherically symmetric systems.

2. NEW DESCRIPTORS OF COULOMB SYSTEMS

We start out from the Kohn-Sham equations [7]
Lo
—§V Up, + Vg Uk = €xU (1)

where v, u; and €, are the Kohn-Sham potential, the orbitals and the orbital energies,

KS»)

respectively. Consider the expression
N
E(r) =Y apm, (2)
k
where a;, > 0for 1 <k < N and ay >0 .
ng = [ug|® (3)

2



are the one-partical densities. The sum is going for the occupied orbitals and N is the
number of electrons.

Theorem 1. For any Coulomb system, £ determines the external potential v up to an
additive costant. & also determines the number of electron.

Proof. The external potential of a Coulomb system has the form

v(r) == TRy (4)
where Z3 is the atomic number of the nucleus at the position Rg. Now, we show that the
atomic numbers can be derived from the cusp condition for . The cusp relations for orbitals
are known from earlier studies [8-14] and we can immediatelly obtain the corresponding
relations for £. Expanding the orbital uj around the nucleus g

U = Zaklm'f’lelm(T)Em(f“), (5>

Ilm

where Y}, are the spherical harmonics, the cusp relation for the radial function Yy, is

[11-13]

(R ©)

X;lm(Rﬁ) ==
From Egs. (3), (5) and (6) the relation for spherical average of the orbital density nj can
be obtained. Define the function ~y(r) as

g @)

Ya(r) = I

where [ is the smallest integer for which Yy, is not zero at the nucleus 3 [11-13]. Egs. (3),
(5), (6) and (7) lead to the relation

Tl (Rs) = ~2: 7 (Ry). )

If I =0 Eq. (8) reduces to
i (Rg) = —2Z5n(Ry) - (9)
Turning to the new descriptor £ (Eq. (2)) and defining the function n;(r)
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m(r) =40 (10)
we arrive at the cusp relation
Z
(Rg) = 22 ni(Ryg) . 11
H(Ry) = 27 (Ry) (1)

If | = 0, that is, the factor « is larger than zero for at least one of the s orbitals, Eq. (11)

reduces to

&(Rg) = —27Z5¢(Rp) - (12)

The positions of cusps in & locate the nuclei and Eq. (12) determine the atomic numbers.
To prove that & determines also the number of electrons, we have to keep in mind that

the asymptotic decay of £ is given by the highest occupied orbital [15-18]:

2(Zwlty) . ary
E(r — 00) ~ny(r — o0) ~r \ V2N e HTVEIN (13)

where Iy is the vertical ionization potential of the N-electron system and Z;; = > 573
is the sum of the atomic numbers. Following Ayers [2,3] the number of electrons can be

obtained from the polynomial part of Eq. (13):
dln¢ ) 9?Iné
+ 2 : 14
( or (8’/’8 (2) )

If ay are the occupation numbers: aj = A\; € is the electron density.

1
N:1+(Ztot+i

Ezxamples:

If o, = Ap/N, € is the shape function o: £ =0 =n/N.

If oy =...=any_1=0and ay =1, that is, £ = ngomo ~ f~ is the highest occulied
orbital density which approximates the Fukui function. This result is related to a previous
work of Ayers [5] which showed that the frontier molecular orbitals (highest occupied and
lowest unoccupied orbitals) suffice to determine the electron density, and thus all properties

of a system (even if the system is not Coulombic).



If only a single oy is non-zero: ay, = 1 and oy = 0, | # k, is the case studied in [4]. Tt was
shown that a single Kohn-Sham orbital for a Coulomb system is a descriptor of a Coulomb
system.

In the next section two new quantities g(r) (Eq. (29)) and ¢(r) (Eq. (18)) are introduced
that are examples of ¢ for special choice of ay. These new descriptors, together with the
density appear in the first-order differential equation for the functional derivative of the

kinetic energy.

3. THE FUNCTIONAL DERIVATIVE OF THE KINETIC ENERGY

FUNCTIONAL

In spherically symmetric systems the Kohn-Sham equations take the form

1 d’P, N Le(le + 1)
2 dr? 22

Pk_'_UKSPk:EkPk; (15)

where P, = rR(r) are the radial wave functions.
The differential form of the virial theorem for spherically symmetric Kohn—Sham poten-

tial v, (r) [6] is

/ L, 1 q q

where
G = 4r’*nq (17)
and
1
k

The radial density and the radial kinetic energy density are given by
o = 4r’*mn (19)

and



1 &Po(r',r)
2 or? ,

r=r

r2

respectively.

op = P}

ox(r)

(20)

(21)

are the one-partical radial densities. (For closed shells the functions ¢ and ¢ are spherically

symmetric.)

For particles having zero angular momentum i.e. for s electrons the differential virial

theorem reduces to the special form of March and Young [19]

/ 1/I/_1 !/

T = —gg §QUKS .

The Euler equation of the density functional can be written as

0T,
on

_'_UKS :/’l’7

where p is the chemical potential [20-22].

The radial kinetic energy density can also be written as
7(r) = 4riznt(r),
where
1 *v72
t(’f‘) = —5 Z)\kukv U,
k
Combining Eqgs. (1), (23) and (25) we arrive at the relation:
0T
t(r) = ns- + ) (e — p) .
o

From Eqgs. (24) and (26) we are led to the relation

0T 5
T:Qa—n—/i@‘i‘g?

where

(22)

(23)

(24)

(25)

(27)



*mg(r) (28)
and

Differentiating Eq. (27) with respect to r and substituting it into the differential virial

theorem (16) we obtain

1 (oT,\ 0T,
- = 30
where
r 1 " ~/ / (jl q
f=-go -G tpet 53 (31)
The total non-interacting kinetic energy can be separated as
Ts=T,+1T,, (32)
where the T, is the full Weizsécker kinetic energy [23]
1 |Vn|?
T, =~ 33
S n (33)
and the term 7), is called Pauli energy [24-26] The functional derivatives are
6T, 1 |Vn> 1V . 1
w - | M2 — /2 __VQ) 1/2 34
on n 4 n " ( 2 " (34)
and
0T,
=2 35
Up 5,” ( )

Substituting Eqgs. (32)-(35) into Eq. (30) we arrive at a first-order differential equation for

the functional derivative of the Pauli energy, that is, for the Pauli potential v,:

1 (6T,\" 0T,
e (52) + o5 =1 (30

where



. ¢ q
f:—g’+ug'+ﬁ—ﬁ. (37)
In the knowledge of the functions o(r), g(r) and ¢(r) the differential equation (37) can be

solved and the Pauli potential can be written as

Up = %/@: o(r1) f(ri)dry. (38)

Eq. (38) is the main result of this paper. With Eq. (34) it gives the functional derivative

of the kinetic energy. Then the kinetic energy density 7 can be obtained from Eq. (27) and

the integration of 7 leads to the total kinetic energy.

4. ILLUSTRATIVE EXAMPLES

The simplest examples are, of course, H-atom, H-like ions and He-atom, He-like ions. In
these trivial cases, the total kinetic energy is the Weizsacker kinetic energy and the Pauli
energy and potential are zero. Eq. (37) gives f = 0, because § = pp and ¢ = 0.

As a non-trivial example consider the Be atom and isoelectronic ions. In this case ¢ = 0.

It is instructive to introduce the function § with the Dawson—March transformation [27]:

Py = —— 0% cos 6 (39)

Py=—— 0"%sin6 (40)
Egs. (39) and (40) lead to the relation between the radial electron density and the phase 6:
Ql
0" + =0 = 2( sin(26) (41)
0
where
1
(=5la—e). (42)
After some mathematics Eq. (38) gives
1

w=g (6')% — 2¢ cos? . (43)

In the knowledge of the density, the differential equation (41) can be numerically solved and

the relation (43) gives the Pauli potential.



5. DISCUSSION

In the ground state the density not only determines every property of an electronic system
but there also exists a variational principle [1]. The quantities £ do not obey a variational
principle and are descriptors of a Coulomb system only. This is an important limitation.
Still they can be used in a large number of systems (atoms, molecules, etc.).

We would like to mention that the local ionization potential £(r) = Y, exng(r)/n(r)
introduced by Politzer et al. [28,29] is closely related to the function g: £(r)n(r) = g(r).
The local ionization potential is a measure of chemical reactivity and is linked to the local
temperature, and thus to the local kinetic energy [30]. So there is a very intimite relationship
between the function g and the local kinetic energy ¢. A further study of this relationship
can help finding accurate approximation for the function g and would point toward practical
applications in orbital-free DFT.

In the differential equation (36) derived for the Pauli potential the knowledge of the
functions p, ¢ and g are needed to obtain a solution. Of course, in principle one of them is
enough, as the other two quantities can be given as a functional of the selected descriptor.
To find relations between them will be the subject of further studies.

Finally, we sketch how orbital-free solutions could be obtained based on the results of this
paper provided that the functions ¢ and g can be accurately approximated with a functional
of o.

(i) Starting from an initial “guessed” electron density p, calculate the functions g and g
and ¢ and g using Eqgs. (17), (18), (28) and (29).

(ii) Using Eq. (37) calculate the function f. Note that the asymptotic decay of the
density determines the chemical potential u.

(ili) Solve Eq. (36) for the Pauli potential v, using Eq. (38).

(iv) Solve the Euler equation (23) to obtain the electron density o. Note that one needs
the Kohn-Sham potential to obtain the solution. The accuracy of the results will depend on

the approximate exchange-correlation functional used in solving the Euler equation.



(v) Repeat steps (i)-(iv) until convergence. Then calculate the total non-interacting
kinetic energy from Eq. (27).

Whether this algorithm provides an efficient and accurate way to solve the Euler equation
depends on how accurately the functions ¢ and ¢ are approximated using the density. It

might turn out that it is more appropriate to use the descriptor ¢ or g instead of the density.
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