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Abstract 

 

The cardiac late sodium current (INa,L) has been in the focus of research in the last decade. The first 

reports on the sustained component of voltage activated sodium current dates back to the early 

seventies, but early observations interpreted this tiny current as a product of a few channels that fail to 

inactivate having neither physiologic nor pathologic implications. INa,L has emerged recently as a 

potentially major arrhythmogenic mechanism in various heart diseases attracting the attention of both 

clinicians and researchers. Research activity on INa,L  has exponentially increased since Ranolazine, an 

FDA-approved antianginal drug was shown to successfully suppress cardiac arrhythmias by inhibiting 

INa,L. This review aims to conclude a series of papers concerned with physiology and regulation of cardiac 

late sodium current. Focusing on some recent development of the field we discuss here critical 

evidences implicating INa,L as a potential target for treating myocardial dysfunction and cardiac 

arrhythmias. 

 

 

1. INTRODUCTION 
Cardiac arrhythmias are the primary cause of death and a major public health problem. However, anti-

arrhythmic drug therapies using ion channel blockers led to conflicting results. Many seemingly 

promising drugs turned out to be proarrhythmic.  Clinical experiences by many physicians sum up to 

two important observations: (1) Ion channels blockers are risky, and some exacerbate arrhythmias.  (2) 

Relatively successful drugs, such as beta blockers and amiodarone, modulate not only ion channels but 

also Ca2+ homeostasis. Implantable cardioverters and catheter ablation opened a new dimension in the 

reduction of arrhythmia related mortality. However, these techniques, being introduced during the last 

decade, are not widely applicable in several cases of life threatening arrhythmias, therefore, 

pharmacological therapy remained the most frequently applied medical intervention in controlling 

arrhythmias. 

The tiny sustained part of sodium current termed as late sodium current (INa,L) was out of the focus of 

research for long time but immediately attained increasing interest since it was linked to cardiac 

diseases. Upregulation of the plateau sodium current has been implicated in multiple inherited or 

acquired arrhythmia syndromes or structural heart diseases. In the same time, inhibition of the currents 

was demonstrated to prevent or reduce arrhythmic activity in multiple pathologic models.  

Exponentially increasing number of research publications and comprehensive reviews [1-6] published in 

the last few years indicate the great expectation on INa,L as a new, potential therapeutic target. At the 

present, one of the greatest limiting factors that delay the progress of the field is the lack of specific INa,L 

inhibitors.  Developing highly specific INa,L blockers would facilitate research and could provide 

archetype for a new class of antiarrhythmic drugs.  

 

 

2. Brief historical remarks on cardiac late sodium current 
Dubois and Bergman reported their observations on a persistent, tetrodotoxin (TTX) sensitive current 

present in frog Ranvier node in 1975. The current was interpreted as a fraction of voltage activated 

sodium current that failed to inactivate [7]. The concept of INa,L has been established with this 

publication. Four years later Coraboeuf et al. observed that low concentration of TTX shortened canine 

Purkinje AP without reducing the amplitude of ‘the normal rapid sodium current’ [8]. The authors 

suggested two critical features for INa,L in their publication: a) there is a sodium current flowing during 

entire plateau of cardiac AP b) involvement of non-cardiac voltage dependent sodium channels. In 

accordance with these results Attwell et al. reported the presence of a TTX sensitive non inactivating 

sodium current at negative membrane potentials in sheep Purkinje fibers [9]. They suggested that 

window mechanism is involved in generation of sustained sodium current and predicted that this 

current might have large effect on AP duration. Ten years later Kiyosue and Makita conducted a 
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systematic study on the plateau sodium current in guinea pig ventricular cells [10]. They identified three 

different types of sodium channel activities, two of them present longer than 100 ms following 

depolarization, thus casted as ‘late’ activity. They characterized both a ‘late scattered mode’ and ‘burst 

mode’ known to be responsible for INa,L (discussed later) and showed the ‘normal’ (today: transient) 

channel activation is followed by late activity in less than 4% of patches. They confirmed Coraboeuf et 

al.’s observation on the AP shortening effect of TTX and suggested INa,L contributes to regulation of the 

AP length. The central question in these early years was whether this relatively small current can play a 

significant role in shaping the AP or not. In the following years INa,L was shown to be upregulated by 

hypoxia, free radicals or ischemic metabolites  [11-13]. The finding that elevated plateau current was 

linked to cardiac diseases especially to an increased propensity of arrhythmias gave a huge boost to INa,L 

research [14-17]. Recent experimental evidences obtained by modern electrophysiology technique 

indicated that earlier observations made under equilibrium voltage conditions significantly 

underestimated the magnitude of INa,L [18, 19]. When INa,L is measured by self action potential clamp 

method, the magnitude of the current is comparable with that of major potassium currents making it a 

cardinal player in shaping AP [20]. 

 

3. The identity of sustained plateau sodium current: one current 

with multiple mechanisms? 
Mammalian cells express several isoforms of voltage-dependent sodium channels distinguishable by 

their kinetics, unit conductance and drug sensitivity. The dominant isoform in cardiac tissues is referred 

as Nav1.5 and characterized by relative insensitivity to tetrodotoxin, saxitoxin and µ-conotoxin [21, 22]. 

Alternative names for this channel encoded by the gene SCN5A are h1 or skm II channels. The pore 

forming, large α subunit is associated with four auxiliary ß1through ß4 subunits which are known to 

modify the kinetics and voltage dependence of the channel. Under resting membrane potential 

conditions the channel is in non-conductive state, but sufficient depolarization (V1/2: -40/-50 mV) 

activates the channel and shifts it to conductive state [23-25]. 

 

3.1. Different channel activity patterns may contribute to INa,L   
Upon changes of membrane potential sodium channels undergo a sequence of conformational changes. 

Following significant depolarization the majority of closed channels opens in less than two milliseconds 

then inactivates within two ms too [26, 27]. Transition from inactivation to closed state is promoted by 

repolarization. If membrane remains depolarized the first opening can be followed by several 

reopening. Maltsev & Undrovinas studying single human cardiac sodium channels observed and 

modelled three distinct types of activity present in human ventricular myocytes [28]. In Transient Mode 

(TM) the first opening is followed by 5-10 rapid reopening resulted by flip-flops between open and 

inactive state of the channel (Figure 1). This repetitive activity is terminated within less than 40 ms 

when channel is absorbed in a second inactive state resulting in rapid decline of ensemble current. The 

current magnitude drops below 10% of the peak within 3 ms. The contribution of TM to peak sodium 

current is ~90%, but 20 ms later it represents less than 1% of the total INa. This gating mode alone 

adequately reproduces the transient phase (0-5 ms) of INa but fails to explain the sustained component 

seen during the AP plateau. The second gating mode that contributes to the early phase or Burst Mode 

(BM) is characterized by sustained openings with brief closing periods (Figure 1). Increased transition 

rate from inactivated to open state and reduced probability toward absorbing second inactivated state 

results in long lasting (100-300 ms) activity before terminated by the absorbing state. These non-

inactivating bursts has been already known from both skeletal and cardiac muscle and were referred as 

slow, non-inactivating, or “cloudburst” currents [29-31]. Facilitation of BM were reported from cardiac 

muscles after chemical intervention and termed ‘failure of inactivation’ [32]. Channels display BM at 

very low probability generating only a tiny current. Hence, its contribution is negligible to INa,L during the 

first 2-5 ms following the upstroke. However, as the TM component of INa decays following the peak, the 

relative contribution of BM to total current can grow as high as 50%. BM current then declines and 200-

300 ms later it is replaced by the third gating mode referred as Late Scattered Mode (LSM). LSM can be 

derived from TM by reducing transition rates from inactive to open and second inactive (absorbing) 

state. It is characterized by sparse reopening for an extended period being as long as 500-1000 ms 

(Figure 1).  
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Figure 1. Schematic illustration for different channel activity patterns contributing to late sodium current. 

The involvement of the three different gating modes in INa changes dynamically during AP. Based on 

their contribution to sodium current it is possible to separate three phases or time period.  The early 

phase of AP (0-5 ms) is dominated exclusively by TM; BM and LSM are negligible. This is followed by an 

intermediate phase of AP (5-20 or 5-40 ms) where all three gating modes are present with steeply 

reducing weight of TM. The late phase of INa (referred as INa,L) starts 20-40 ms after the AP upstroke and 

maintained by BM and LSM. The contribution of BM and LSM to INa,L is equal at the  beginning of this 

phase, then monotonic reduction of BM leaves LSM the only gating mode shaping the plateau sodium 

current. Shifts in the relative magnitudes of the different gating modes caused by channel mutations or 

pathologic conditions have been implicated in cardiac electric disorders [33-42]. Targeted 

pharmacological modulation of different gating modes is hoped to exert cardioprotective and 

antiarrhythmic effects [43-45] . 

 

3.2. Window Currents 
The “window” region is the voltage range where the steady state activation and inactivation curves of 

sodium channels overlap. In the window region channels may recover from inactivation then reopen. 

This flip-flop between active and inactive states can provide a steady-state current if membrane 

potential is held within this sensitive voltage range. When identity of INa,L is discussed in the literature, 

the flip-flopping of the Na channel in the window region is usually the first mechanism used to explain 

the origin of sustained plateau sodium current [1-4]. The window mechanism seems like a plausible 

resolution to seemingly incompatible rapid inactivation of the sodium channels seen in voltage clamp 

experiments under rectangular command steps and the remarkably persistent sodium current during a 

several hundred milliseconds long AP plateau. However, while no experimental observation is known to 

question the existence of window mechanism, its contribution to INa,L might be limited because of the 

voltage range where plateau is found. The center of the window region occurs below -60 mV, far below 

the plateau voltage (about 0 mV) in most species reducing the probability for open state [2, 46]. 

Additionally, the current in the window region is very small in healthy conditions where the crossing 

point is less than 5% of the I/Imax [23, 46-48]. These two factors acting in synergism result in a small 

participation of window mechanisms to INa,L. Furthermore, experimental observations presented by 

Beyder et al.  indicate that shear stress shifts the window significantly to negative direction [49]. Since 
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our present knowledge on the position and with of window is based on electrophysiologic data obtained 

in unloaded cardiomyocytes, we can assume that the contribution of window to INa,L is even less than 

predicted by current models. Nevertheless, mutations or pathologic regulation of the channel might 

shift either steady state activation or inactivation curve altering the position and size of the window 

hence changing its contribution to INa,L [14].  

 

3.3. Non-equilibrium gating  
Different gating modes and the concepts of window current describe well the behavior of sodium 

current elicited with square pulses. However, when sodium channels are positioned in functioning 

cardiac cells they are exposed to dynamically changing voltage. Experimental data show that INa,L is 

facilitated when evoked with repolarizing voltage ramp or AP shape command [18-20]. Traditional 

Markovian models fail to reproduce this phenomenon, but Clancy et al. [18] proposed a new 

mechanism named ‘non-equilibrium gating’ that can explain these observations. According to this 

concept, recovery from inactivation is modulated by dynamically changing (non-equilibrium) voltage. 

The probability for reopening is increased during hyperpolarizing ramps resulting in facilitation of the 

activation transition. The most fascinating novelty in this hypothesis is that the transition rate from a 

given state is modulated by the voltage trajectory the channel experienced beforehand. Hence, kinetic 

parameters of the channel are influenced by its short-time history. Earlier models used simplified 

conditions and did include this ‘history factor’. Magyar et al. provided strong experimental evidence to 

support the non-equilibrium gating hypothesis. They demonstrated that opening probability of the 

sodium channel is higher during voltage ramp than that of observed with constant (rectangular) voltage 

command and sodium current duration depends on the duration of ramp [19]. Further, indirect 

evidence supporting this hypothesis were provided by Horvath et al. when they showed that the 

magnitude of INa,L is comparable with those of major potassium currents and the current profile is 

determined by the voltage profile of AP in ventricular myocytes [20]. These observation led them to the 

conclusion that non-equilibrium gating is the chief factor determining the profile of TTX sensitive 

current during AP [20]. Non-equilibrium gating theory does not preclude the involvement of other 

gating modes to INa,L. All the mechanisms discussed in this session might coexist and contribute to 

shaping the profile of sodium current during AP. Since different gating modes are assumed to have 

different drug sensitivities or affinities [43, 50, 51] understanding the mechanism behind INa,L  can help 

to develop new antiarrhythmic drugs or strategies. 

 

3.4. Non-cardiac sodium channels in the heart 
Association of ECG abnormalities to epilepsy [52, 53] and myotonic disorders [54, 55] raised the 

possibility that the same mutated sodium channels which are responsible for hereditary diseases of 

nervous system or skeletal muscles might cause repolarization abnormalities in the heart. Later, several 

‘non cardiac’ isoforms were identified in cardiac tissue by functional tests based on voltage dependency 

and drug sensitivity in different species [37, 56-58]. Using RT-PCR or immunocytochemistry the 

expression of Nav1.1, Nav1.2, Nav1.3, Nav1.4 and Nav1.6 were detected heart of multiple species [58-63]. 

According to the report of Westenbroek et al., non-cardiac isoforms represents a substantial fraction 

(23%) of the total number of sodium channels in mouse heart [60]. Moreover, the distribution of 

different isoforms show characteristic patterns. While the cardiac isoform Nav1.5 is localized 

preferentially to the sarcolemma including intercalated disks is absent from T-tubules, Nav1.1 and 

Nav1.3 (non-cardiac) isoforms are found to be localized to the T-tubules and absent from the cell 

surface. Nav1.4 and Nav1.6 showed low level surface staining. These data indicate that cardiac and non-

cardiac isoforms of sodium channels have different role in the electrical excitation of cardiac cells. While 

the cardiac isoform is likely responsible for the cell-to-cell propagation of electric signal, the primary 

role of non-cardiac isoforms is to couple the electric signal to calcium dynamics [59, 60]. This sharp 

functional distinction might be questioned by earlier work of Malhotra et al. who observed 

colocalization of Nav1.1 and Nav1.5 isoforms in rat myocardium [64]. 

The presence of non-cardiac isoforms in cardiac muscle naturally raises the question: what is the 

contribution of these non-cardiac sodium channels to total sodium current, especially to INa,L? Biet et al. 

addressed this question and the data they presented suggests that the contribution of non-cardiac 

sodium channels to the peak INa is between 5-10%, but 44% of INa,L is generated by non-cardiac isoforms 

[56]. This observation has been confirmed by Yang et al. reporting that Nav1.8 provide the 38% of INa,L 

[57]. Considering the different kinetics, voltage and drug sensitivity of cardiac and non-cardiac voltage 
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regulated sodium channels, as well as the distinct localization of different isoforms within the cardiac 

cell, these observations open a new direction in the exploration of physiological and pathological roles 

of INa,L. Research for isoform specific sodium channel inhibitors might establish a new strategy in 

antiarrhythmic therapy. 

 

4. The Physiology of plateau sodium current 
Several membrane currents delicately shape the plateau of cardiac action potential. To understand the 

interplay of currents and voltage during the plateau phase it is important to note that (1) the currents 

flowing in this phase are small relative to those that govern the upstroke and terminal repolarization, (2) 

the algebraic sum of the currents is small. The latter accounts for dV/dt being close to zero [65]. 

Because the magnitudes of the currents are inherently small, even subtle changes in any current can 

have a large impact on AP morphology. Additionally, the plateau currents IKr and IKs are sensitive to 

changes in membrane voltage near the plateau voltage. This synergistic interplay between currents and 

voltage during the plateau have significant impact on the time course of terminal repolarization, thus 

duration of the AP [66].  

 

4.1. Contribution of plateau sodium current to cardiac electric activity  
Most of our current knowledge on the electrophysiology of INa,L originates from experiments employing 

rectangular voltage command and computer simulations based on these data. These results predicted a 

tiny flat current present during the whole length of AP. The extent of contribution of INa,L to shaping AP 

under physiologic conditions was a subject of debate because of its small magnitude. Nevertheless two 

complementary lines of experimental evidence indicated that the plateau sodium current affected the 

AP. First, TTX block shortened the AP [8, 10] and second, facilitation of INa,L lengthened the AP [20, 67]. 

Furthermore, an increasing number of observations indicate that the magnitude of INa,L was markedly 

underestimated in earlier reports. When using ramp or AP shape command, there is a substantial 

increase in current magnitude [18, 19]. Recent publication employing self-action potential technique 

indicates that the magnitude of the current during plateau is comparable to those of delayed potassium 

currents [20]. 

We have only a small number of reports displaying direct recording if INa,L during AP where the late 

component is not distinguishable from the early, transient phase. When cardiac sodium current is 

measured by rectangular command, it can be fitted by multiexponential function and the late 

component is a smooth continuation of the decaying early phase. When INa,L is recorded under AP 

command, there are two major type of profiles observed. In the first case the current magnitude decays 

monotonically; this profile was observed in dog and predicted by some of the models [68-70]. In the 

second type, the decay of transient phase is followed by a slow current accumulation during the 

plateau, then it forms a peak before the terminal repolarization of AP and declines rapidly reaching zero 

when membrane potential returns to resting level. This saddle-like profile was reported from human 

[71], canine [72], and guinea pig heart [20, 73]. These differences might arise from interspecies 

variances of AP shape, but the impact of methodological differences cannot be excluded either. 

INa is a key player in propagation of cardiac electric activation in the myocardium [63, 74] and in less 

extent to pacemaker activity especially in young age [75]. Due to the contribution of plateau sodium 

current to AP duration INa,L has strong influence in determining QT distance of the ECG. Increased INa,L is 

associated with lengthened QT interval (Long QT syndrome) and increased risk for arrhythmia [47, 76-

81]. In accordance with this, inhibiting INa,L was shown to shorten QT interval [82, 83]. Mutations 

resulting in facilitation of late sodium current are associated with increased QT dispersion too [52, 82]. 

How increased INa,L leads to increased QT dispersion is not completely understood, but transmural 

heterogeneity of sodium current is probably also involved [72, 84]. QT dispersion is determined 

routinely in clinical cardiology and regarded one of the most valuable predictor for arrhythmias [85, 86]. 

Thus, increased repolarization inhomogeneity due to pathologic INa,L might be the substrate for 

arrhythmias caused by sodium channel mutations. Other forms of electric disturbances are also linked 

to pathologic sodium channel function such as  Brugada syndrome [15, 87-92], slow impulse 

propagation [23, 93, 94], familiar atrial fibrillation [95, 96] and sick sinus syndrome [97, 98]. Cases, 

where sodium channel mutations were associated with cardiomyopathy were reported often with 

electric disturbances [99-101]. The link between altered channel function and structural diseases has 

not been established. However, these cases indicate that altered ionic balance may lead to structural 

heart diseases via modulation of genetic regulation. 
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4.2. Transmural heterogeneity of INa,L  
It is well known that transmural differences in densities of cardiac ionic currents and AP shape are 

present in ventricles [102-105]. Differences in sodium current magnitude between epicardial and 

endocardial cells were also observed in canine and murine heart [72, 84, 106]. According to these 

reports INa,L is larger in M cells than in the epicardial or endocardial region of canine ventricular wall 

contributing to the transmural differences in AP parameters. M cells are also known to display steeper 

rate dependence of AP than either epicardial or endocardial cells [107-109]. This coincidence might 

indicate significant contribution of INa,L to rate adaptation of AP length. This hypothesis is supported by 

earlier observations of Nuyens et al. who reported that increased INa,L results in increased lengthening of 

AP duration at low pacing rate [110]. The issue was addressed by Guo et al. in a systematic study where 

they demonstrated that the AP lengthening induced by low pacing rate was increased when INa,L was 

facilitated with Anemonia toxin (ATX-II). By contrast, inhibition of INa,L with TTX reduced the AP duration 

sensitivity to pacing rate. Based on these data they concluded that INa,L plays a key role in rate 

adaptation of AP duration, conclusion that has been confirmed by others [111, 112]. The involvement of 

late sodium current in rate adaptation could explain why INa,L facilitation caused by mutant sodium 

channel was found to increase the risk for arrhythmias following frequency changes [110].  

The results of Lowe et al. [77] adds support to the connection between INa,L and arrhythmias. Lowe et al. 

reported that INa,L magnitude is higher in female mice compared to males and concluded that this 

difference contributes to higher arrhythmia susceptibility of females.  The increased susceptibility of 

females to arrhythmias may be further compounded by reduced repolarization reserve and larger intra-

myocardial inhomogeneity of calcium and potassium currents in females [113-120]. 

 

4.3. INa,L and calcium homeostasis of cardiac cells 
Sodium channels are cardinal route for Na+ into cardiac cells. In spite of the small magnitude of plateau 

sodium current, there is a consensus that the contribution of the sustained component provides a 

significant fraction (30-50%) of the total sodium entry [3, 6].  It is well documented that INa,L facilitation 

results in increase of cytosolic sodium concentration and it’s specific inhibition can prevent sodium 

accumulation in cardiac myocytes [121-123]. Apart from the impact on the sodium homeostasis of 

cardiac cells, INa,L is implicated in modulation of the calcium homeostasis as well. Increased cytosolic Na+ 

level is translated to elevated cytosolic calcium concentration and known to induce positive inotropic 

response [121, 124].  Calcium homeostasis in linked to INa,L by multiple ways. 

 

4.3.1. INa,L facilitates Ca2+ influx via L-type calcium channels 
As an inward current INa,L lengthens AP and elevates the plateau. The longer depolarization prolongs the 

time while L-type calcium channels remains open and increases the amount of Ca2+ entering to the 

cytoplasm. The profile of L-type calcium current (LTCC) was subject of debate for long time. Model 

studies based on experimental data from traditional voltage clamp experiments employing rectangular 

voltage command predicted divergent dynamics during AP. Some of the models indicated that LTCC is 

present only under early plateau then it declines [125, 126]. According to these models, AP lengthening 

should not alter Ca2+ entry in significant extent. Later, using action potential clamp technique it was well 

documented that LTCC is present during the entire plateau and declines with the terminal repolarization 

in all mammalian models studied [105, 127-130]. Therefore, lengthening the AP adds significant amount 

of Ca2+ to influx via L-type calcium channels. The mechanism what prevent the inactivation of LTCC at 

these positive membrane potential is not completely understood, but reopening of inactivated channels 

has been demonstrated during maintained depolarization [130, 131]. Another possible mechanism for 

sustained LTCC could be the calcium window current. The crossing point for activation and inactivation 

curves is found between -20 and 0 mV allowing a subpopulation of L-type calcium channels to flip-flop 

between open and inactive state [71, 132, 133]. Another mechanism that could maintain LTCC during 

plateau is the non-equilibrium gating mechanism discussed earlier with relation to sustained sodium 

current [2, 18, 19]. However, this possibility has not been tested experimentally. In summary, when INa,L 

prolongs AP, Ca2+ influx is facilitated. 

 

4.3.2. Slip mode conductance: reexamining an old paradigm 
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The Lederer group published an interesting paper in the Science in 1998 where they raised the 

possibility of Ca2+ entry through TTX sensitive sodium channels [134]. They claimed that the selectivity 

of sodium channel can substantially reduce following PKA activation enabling Ca2+ to permeate as 

readily as Na+. The idea was not completely new, Ca2+ permeation through sodium channels in the 

absence of Na+ was reported previously [135]. However, subsequent works produced contradictory 

observations and suggested that TTX sensitive Ca2+ entry following PKA activation involves L-type 

calcium channels but not modulated selectivity of sodium channels [136, 137]. Later, TTX sensitive 

calcium currents were reported from multiple animal models strengthening the evidences against the 

slip mode conductance hypothesis [69, 138-140]. Thus, the slip mode conductance hypothesis has been 

abandoned. Nevertheless, there is a possibility that this mode of Ca2+ entry might need to be revived. It 

has been known for long time that the selectivity of sodium channels is determined by a small number 

of amino acids. In the same time, single mutation in the selectivity filter can decrease the Na+ selectivity 

resulting in a channel permeable for Ca2+ [141-144]. Knowing the increasing number of sodium channel 

mutations [5, 81, 95, 97, 101, 145-147] associated with diverse impact on the electrophysiology and 

deteriorating effects on ionic homeostasis of cardiac myocytes we can postulate that some mutation, 

still not known, might involve altered ion selectivity.  

 

4.3.3. Interaction of INa,L and sodium/calcium exchanger 
The function of NCX in cardiac myocytes is highly complex [148-152]. NCX transports Ca2+ into or out of 

the cell depending on the cell’s thermodynamic state that is the membrane voltage and the gradients of 

Na and Ca2+ across the membrane. Starting at the late systole and through the diastole, NCX removes 

Ca2+ from cytoplasm exchanging it with Na+ (forward mode) [129, 151]. This function is crucial for 

restoration of diastolic Ca2+ level and long term calcium homeostasis. However, when the membrane is 

depolarized and the transient Na current increases the subsarcolemmal Na+ concentration the net 

driving force for the Na+/Ca2+ electrochemical gradient is reversed and NCX transports Ca2+ into the 

cytoplasm while removing Na+ (reverse mode) [129, 151]. Increasing Na+ concentration in the cytoplasm 

shifts the Na+/Ca2+ equilibrium resulting in inhibition of removal and facilitation of calcium entry. The 

mechanism is analogue to the digitalis induced Ca2+ load leading to elevated cytosolic Ca2+ level [149, 

153].  

 

5. Modulation of late sodium current 
The heart adapts to changing conditions, like physical activity, environmental stress or emotional state. 

This adaptation requires moment-to-moment fine tuning of all ion channels and transporters, including 

sodium channels. The sustained component of sodium current is modulated by several physiologic and 

pathologic factor. 

 

5.1. The complex modulation of INa,L by cytosolic Ca2+  
Ca2+ couples electric signal to contraction machinery in cardiac myocytes and provides an important 

feedback signal to ion channels and pumps of sarcolemma. Voltage gated Na+ channels are known to be 

regulated by Ca2+, calmodulin (CaM) and Ca2+ - CaM dependent protein kinase (CaMK). These 

components modulate INa,L individually and cooperatively [154-156]. Though volume of research data on 

Ca2+ - CaM – CaMK dependent regulation of INa,L, accumulates rapidly, the complex mechanism of this 

function is still not understood due to confliction observations. In spite of contradictory data on the 

individual elements, there is a consensus on that Ca2+ - CaM – CaMK signaling facilitates cardiac sodium 

current, especially the late component [36, 154, 157]. The Ca2+ dependent modulation (both direct and 

indirect) modifies the inactivation of sodium channels. The sodium channel inactivation is a very 

complex process, involving cooperation of multiple distant regions (C-terminus, cytoplasmic linker 

between domain II and IV, and S4-S5 linkers of domains III & IV ) [158]. Ca2+ or CaM binding to this 

region is known to induce a small (5-10 mV) shift in the steady-state inactivation (SSI) curve. Because of 

the steepness of the function and the vicinity of resting membrane potential to the midpoint, relatively 

small changes in voltage sensitivity results in significant impact on the availability of sodium channels 

thus in turn on membrane conductance. Since the membrane potential approaches the sodium 

equilibrium potential when sodium conductivity is maximal, we can assume that any change in sodium 

channel availability has stronger impact on the late than that of transient phase of sodium current. 

There are multiple Ca2+ and CaM binding locations identified between c-terminus and domain III  
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allowing highly complex regulation of channel function. Because of this complexity, mutations in the 

Ca2+ sensing region or pathologic conditions altering the Ca2+ sensitivity may lead diverse functional 

disturbances. 

 

 
Figure 2. 

Schematic representation of the structure of the α-subunit of cardiac sodium channel 

Each domain (DI-DIV) consists of six transmembrane segments (S1-S6) interconnected by intracellular 

and extracellular loops. The intracellular loop between DI-DII is the target region for CaMKII, DIII-DIV 

loop serves as inactivation gate and c-terminus is the Ca2+ and CaM sensor.  

 

 

 

 

5.1.1. Sodium channel and Ca2+  
The most ambiguous part of Ca2+ - CaM – CaMK dependent regulation of INa,L is that whether Ca2+ can 

modulate cardiac sodium channel directly or not. The question was addressed by Wingo et al. in 2004 

and based on their observations they proposed that Ca2+ binds directly to a dedicated motif located 

close to c-terminus and modulates Na+ channel function [159]. This conclusion was supported by several 

experimental data. First, a calcium binding motif (referred as EF hand) known from other Ca2+ regulated 

proteins was identified between domain IV and the CaM binding site in the cardiac sodium channel 

(Figure 2). Second, using NMR spectroscopy it was demonstrated that Ca2+ effectively binds to this EF 

hand. Third, voltage clamp experiments revealed that SSI is shifted toward positive voltages in high 

cytosolic Ca2+ even in the presence of a CaM inhibitor peptide. Furthermore, mutations in the EF hand 

prevented both Ca2+ binding to EF motif and high Ca2+ induced SSI shift. These undeniably consistent 

observations led the authors to the conclusion that Ca2+ exerts direct regulatory effect on sodium 

channel. However, confliction observations from several groups supported that CaM is essential to 

mediate Ca2+ effect and Ca2+ does not regulate sodium channel directly [160, 161]. The most important 

criticism against Wingo and co-workers’ conclusion was that it is not known how effectively the 

inhibitory peptide they used prevents binding of CaM to sodium channels within the cell [158]. To 

resolve the conflicting results reported by so many independent experimenters a new model was 

proposed by Shah et al [162]. According to this model, the sodium channel inactivation is modulated by 

the interaction between Ca2+ binding EF hand and CaM binding IQ motif. In diastolic conditions, CaM 

binds to IQ motif of the c-terminus. When cytosolic Ca2+ concentration is high, CaM binds calcium which 

reduces its affinity to IQ segment. In the next step Ca/CaM detaches from IQ motif enabling it to 

interact with the EF hand, which is the critical step in the model: as it is proposed, binging of IQ motif to 

EF hand increases the calcium affinity of the EF hand by three order of magnitude. Later, Biswas and his 

co-workers confirmed the direct Ca2+ regulation of sodium channels, but using truncated mutants they 
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have shown that the IQ motif is not essential for the direct Ca2+ regulatory effect [163]. They also 

proposed that CaM-mediated regulation is latent in cardiac sodium channel unless it is unmasked by 

mutations of the EF hand, or very low Ca2+ level in cytoplasm.  

 

5.1.2. Calmodulin 
Calmodulin (CaM) is a ubiquitous calcium sensing protein that mediates Ca2+ effects within wide variety 

of cells, including cardiac myocytes [160, 161]. CaM was shown to interact with the IQ motif of sodium 

channel and regulate gating mechanism [158, 160, 164]. The three dimensional configuration of CaM 

resembles to a dumbbell; the C and N-terminus of the protein forms two globular structures (referred 

as C-lobe and N-lobe respectively) with two calcium binding regions interconnected with a short flexible 

shaft. Each lobe can bind two Ca2+. At physiologically relevant Ca2+ concentrations the Ca2+/CaM 

complex forms a bridge between IQ motif on C-terminus and the DIII-IV linker region [165]. This linker 

region is considered the inactivation gate of sodium channel [166]. When Ca2+ concentration is low and 

CaM does not bind Ca2+ (apo-CaM), the C-lobe is bound to the IQ motif of C-terminus. In this 

configuration, the N-lobe does not interact with the DIII-IV region and inactivation is not affected [162, 

165, 167]. When Ca2+ is elevated, Ca2+/CaM complex (holo-CaM) is formed with different structure and 

affinity for the IQ motif is reduced by a magnitude [162]. There is a switch between C and N-lobes and 

holo-CaM binds to the IQ motif through N-lobe. According to the model proposed by Sarhan et al, C-

lobe can interact with the DIII-IV linker in this configuration and the interaction results in a shift in SSI 

curve to depolarizing direction. These observations indicate that the interaction between the C-lobe of 

holo-CaM and DIII-IV linker is responsible for the altered voltage sensitivity of inactivation [165]. 

Nevertheless, the holo-CaM/DIII-IV interaction is not the only possible mechanism to induce the 

rightward shift of SSI by high Ca2+, because IQ motif deleted sodium channels retain Ca2+ sensitivity 

[163]. As it was discussed above, Ca2+ can bind to the EF-hand of C-terminus altering the voltage 

sensitivity of inactivation too. Parallel to the direct regulation on sodium channel, CaM activates 

Calmodulin Kinase that also modulates the channel kinetics [168].  

 

5.1.3. Calmodulin Kinase   
Cardiac calmodulin kinase is a serine/threonine kinase implicated in a multitude of cellular function in 

vide variety of cells including cardiac myocytes. Cardiac cells express dominantly two isoforms of 

calmodulin kinase type II (CaMKII) referred as nuclear (δB) and cytoplasmic (δC) types; sodium channels 

are regulated by the cytoplasmic isoform [154, 169, 170]. It is now well established that CaMKII 

phosphorylates sodium channels at multiple sites resulting in complex effects and leading to increase of 

INa,L [164, 171, 172]. Generally, upregulation of CaMKII was shown to induce a shift in SSI to depolarizing 

direction, enhance slow or intermediate inactivation and facilitate recovery from inactivation. Each of 

these effects individually and collectively enhance INa,L. While substantial interspecies differences were 

reported on the impact of CaMKII induced phosphorylation on sodium channel gating, the integrated 

effect is always stimulation of the late component of sodium current, and inhibition of the enzyme 

reduces INa,L. Wagner and his co-workers reported negative shift of SSI in rabbit cardiac myocytes 

following overexpression of CaMKII [171]. This observation was confirmed in expression system using 

HEK293 cells by Ashpole et al and Koval et al [172, 173]. In contrast, when Aiba and his co-workers used 

freshly isolated guinea pig ventricular myocytes and CaMKII was added to the pipette solution, they 

observed a positive shift in SSI [164]. Observations regarding the activation of current are discordant 

too. Young and Caldwell reported a hyperpolarizing shift in the voltage dependence of activation [174], 

whereas no effect was seen by others [164, 171, 172, 175]. Aiba et al also reported increased peak 

amplitude for the transient phase of sodium current [164], while others reported no change in this 

parameter [171-173]. There is little information on inactivation of the transient phase of INa. Wagner at 

al. observed significant deceleration of INa decay in the transient phase, but Aiba et al. observed no 

change [164]. Nevertheless, all reports are consistent in that CaMKII enhances the fraction of channels 

undergoing intermediate or slow inactivation. Resultantly, CaMKII upregulation facilitates INa,L that is 

reversible with CaMKII inhibitors. The link between increased CaMKII activity and facilitated INa,L was 

confirmed in both healthy and diseased myocardium by others [157, 176, 177].  

  

5.2. Cellular Metabolism 
Metabolic activity of cardiac myocytes adapts to the momentary changes of the cardiac output, blood 

pressure or autonomic regulation determined by varying environment, physical activity or even 
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emotional state. Cardiac sodium channels has been shown sensitive to the metabolic state of the cell 

and modulated by pH, oxygen or metabolites. During myocardial hypoxia extracellular pH can drop as 

low as 6.0 [178], and cardiac sodium current is known to be modulated by these substantial increase in 

proton concentration [68, 179-182]. There is a consensus on that acidosis reduces the magnitude and 

the decay of the transient phase. Furthermore, positive shift in voltage dependency of activation and 

inactivation was observed in Xenopus expression system [180-182]. Additionally, Jones et al. 

demonstrated an increase in window current and deceleration of time constant of slow inactivation in 

Xenopus oocytes. Based on these data they predicted AP lengthening at low pH in a computer model 

[180]. Murphy et al. reported depolarizing shift in voltage dependency of activation, but not in SSI in 

freshly isolated canine ventricular myocytes [68, 179]. In agreement with Jones et al., they observed the 

prolongation of AP at low pH, but they found that INa,L was reduced at in both endocardial and epicardial 

cells [68].  

Acute and chronic hypoxia is known to induce electric disturbances in myocardium leading to 

arrhythmia. Several study addressed the effect of hypoxia on INa,L and all observations, employing wide 

variety of experimental model consistently showed that hypoxia increases the late sodium current [11, 

183-187]. Wang et al. studied the mechanism of hypoxia induced INa,L facilitation [183]. Recording single 

channel current they found increased burst mode activity following 15 minutes hypoxia that may 

explain the increased persistent sodium current. They also reported hyperpolarizing shift in SSI curve 

resulting in significant reduction of transient INa and probably attenuating hypoxia induced facilitation of 

INa,L due to reduced window current. Interestingly, Wang et al. found that hypoxia shortens AP duration 

in spite of increased INa,L which indicate that other hypoxia sensitive ion channel(s) also contribute to 

shaping AP in cardiac cells.  

Hydrogen peroxide and free radicals were demonstrated to stimulate INa,L by several team [122, 188-

190]. In accordance with these observations, specific INa,L inhibitor ranolazine or TTX attenuated the AP 

lengthening effect of H2O2 [190]. However, Erickson and his co-workers showed that free radicals can 

directly activate CaMKII [191]; therefore CaMKII might be involved in INa,L facilitation in the presence of 

free radicals.  

INa,L is modulated by wide variety of metabolites and second messengers. Poly-unsaturated fatty acids, 

like docosahexaenoic and eicosapentaenoic acids (DHA, EPA) were shown to substantially reduce both 

transient and late phase of INa [192]. The reduction develops from hyperpolarizing shift in SSI and 

activation curve decreasing the window current. An ischemic metabolite, lysophosphatidylcholine was 

also demonstrated to reduce transient INa, but effects on INa,L has not been addressed in these studies 

[12, 193]. Nitrogen oxide was found to facilitate INa,L by Ahern and co-workers fifteen years ago; they 

proposed that nitrosylation of sodium channels within its own plasma membrane modify the gating of 

cardiac sodium channel [194]. Since then the mechanism has been confirmed by Cheng et al. 

demonstrating that caveolin-3 as mediates sodium channel nitrosylation [195]. 

 

5.3. Mechanical stress 
Myocardial wall tension is subject of moment to moment change during cardiac cycle and ion channels 

embedded into the cell membrane experience variable mechanical stress. It is now well established that 

cardiac sodium channels respond to mechanical stress with altered gating function [49, 196]. Beyder et 

al. investigated the mechanosensitivity of Nav 1.5 in expression model using cell-attached patch clamp 

configuration and characterized the stretch induced modulation of INa [49]. Increased stretch of the 

patch resulted in a negative shift in both SSI and activation curve and decelerated recovery from 

inactivation. Interestingly, the membrane stress increased the number of available channels under the 

patch, leading to increase in peak current. Recently, the same group confirmed these observations on 

freshly isolated mouse ventricular cells [197]. Moreover, in the same publication authors demonstrated 

that ranolazine inhibits the mechanosensitivity of cardiac sodium channels on dose dependent manner. 

Further supporting evidences on inhibitory effect of Ranolazine on mechanosensitivity of Nav 1.5  has 

been obtained in cultured atrial myocytes and published from the same team subsequently [198]. 

Ranolazine is antiarrhythmic drug known to target cardiac sodium channels and inhibiting INa,L with high 

selectivity over INa,T [43, 51, 123, 199, 200]. Considering that myocardial wall stretch is known to play 

key role in arrhythmogenesis [201-203] these data may establish a new therapeutic strategy in 

antiarrhythmic pharmacology. Currently, pharmacological reduction of preload with diuretics and 

vasodilators is the only possibility to reduce wall stress and prevent disease progression in 
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arrhythmogenic right ventricular cardiomyopathy [204, 205]. Reducing mechanical sensitivity of the 

electric system in cardiac myocytes might open a new direction. 

 

6. The plateau sodium current in heart diseases 
It is now well established that the upregulation of INa,L results in pathologic cardiac function including 

contractile dysfunction, arrhythmia and structural heart disease [5, 6, 41, 44, 57, 77, 100]. There are 

several conditions (mutation, hypoxia, ischemia, carbon monoxide, CaMKII or angiotensin II activation, 

etc.) known to facilitate INa,L and leading to cardiac dysfunction [6]. The impact of the sustained sodium 

current on cardiac function is complex. The current flowing through sodium channels during plateau is 

very small relative to the currents causing either the upstroke or terminal repolarization of AP. 

However, to understand the functional relevance of INa,L in cardiac function it is important to understand 

that (1) other currents flowing under the plateau have very low magnitude as well, therefore the 

contribution of INa,L to the profile of plateau is significant. Furthermore, (2) sodium channels are the 

major route for sodium into the cell. The transient phase of INa is short with high peak; the majority (90-

95%) of sodium ions passes the membrane in less than 5 ms. In contrast to that, the magnitude of the 

sustained part is less than 1% of the peak lasting for several hundred ms. Thus, in spite of the 

remarkable difference in the magnitude, the amount of sodium entering into the cardiac myocytes 

during the transient and sustained phase of INa are comparable [206, 207].  

 

6.1. INa,L and the ion homeostasis of cardiac cells 
Plateau sodium current adds substantial amount of sodium to the total entry during electric cycle. 

When INa,L is enhanced, Na+ influx can be increased several fold resulting in increased cytosolic sodium 

concentration. Sodium is extruded from the cells by Na+/K+-ATPase (NKA) with stoichiometry of 3/2 

using one ATP molecule in each pump cycle. The KD for ATP and potassium are 1-2 mM and 80-150 µM 

respectively; therefore, ATP or extracellular K+ concentration is not a limiting factor for NKA activity, 

because intracellular ATP and extracellular K+ concentrations are significantly higher than these values 

[150]. In contrast to these, the KD for Na+ is in the range of 10-20 mM and the intracellular Na+ 

concentration falls to the range of 5-15 mM resulting in high sodium sensitivity for NKA. Thus, increasing 

cytosolic Na+ concentration stimulates NKA and increases ATP catabolism. Considering that, INa,L 

upregulation often coincide with ischemic/hypoxic conditions, the increased ATP utilization can worsen 

the energetic state of cardiac myocytes depleting the ATP pools of the cell. Besides, experimental 

observations indicate that, in spite of the facilitation, NKA cannot keep cytosolic sodium concentration 

in the normal range and increased INa,L results in elevated cytosolic Na+ concentration [121, 122]. 

Elevated cytosolic sodium concentration shifts the equilibrium potential for Na+/Ca2+ exchanger 

facilitating reverse mode and inhibiting forward mode; hence, some of the extra sodium entered is 

converted to calcium [70, 149, 150, 208, 209]. Ca2+ is the key regulator of the majority of functions in 

cardiac myocytes, including metabolism, electric activity, contractility as well as apoptosis [154, 169, 

170, 209-212]. Elevated cytosolic calcium leads to Ca2+ overload in sarcoplasmic reticulum resulting in 

contractile dysfunction and increased risk for arrhythmia [51, 213-217]. 

 

6.2. Role of INa,L in arrhythmogenesis 
Acquired or inherited increase of  INa,L is associated with enhanced risk for cardiac arrhythmia and 

inhibition of INa,L was demonstrated to prevent or abolish arrhythmic electric activity of the heart [1, 3, 

5, 6, 41, 57, 123, 214, 215]. There are multiple mechanisms INa,L might lead to manifest arrhythmic 

activity.  

First, increase of any inward current – like INa,L – during the plateau can cause AP prolongation, 

increasing the risk for early afterdepolarizations (EAD). EADs are documented to occur more frequently 

at long AP duration resulted from either increased inward or decreased outward currents. EADS are 

slow membrane potential oscillations due to reactivation of inward currents during phase two and three 

of AP and implicated in triggered arrhythmias [218, 219]. The possible candidates for the reactivating 

currents are ICa,L, INa,L, and INCX. I has been postulated that augmentation of ICa,L or INa,L occurs by window 

mechanism [9, 96, 133]. Calcium overload was documented also to promote the generation of EAD but 

the mechanism is not completely understood [220, 221]. However, it has been proposed that 

spontaneous calcium release from sarcoplasmic reticulum might facilitate INCX and induce membrane 

oscillations [133, 218, 220, 221]. Horvath and his co-workers recently investigated the role of INa,L in 
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generation of EAD [20]. They showed that facilitation of INa,L  by Anemone toxin II prolonged APD and 

induced Ca2+ oscillations that led to EADs, but  these arrhythmogenic activities were eliminated by 

buffering cytosolic Ca2+  with BAPTA. From these observations they concluded that INa,L may contribute 

to AP prolongation that favors the generation of EAD, but membrane oscillation arise from 

augmentation of INCX due to cytosolic calcium oscillations. 

Second, upregulation of INa,L was shown to facilitate generation of spontaneous depolarizations 

developing at resting membrane potential (between two APs) and referred as delayed 

afterdepolarizations (DAD)  [38, 222]. There is a consensus opinion on that DADs arise from 

spontaneous calcium release from the sarcoplasmic reticulum that facilitate INCX, a similar mechanism 

discussed previously with regard to EADs [223-226]. In this sense, INa,L does not provide the depolarizing 

power for the depolarization, but inducing calcium overload ‘set the stage’ for spontaneous cytoplasmic 

Ca2+ oscillations [6]. 

Third, an increase of INa,L is known to facilitate beat to beat variability and regional inhomogeneity of AP 

duration [8, 84, 189, 227, 228]. Increased beat to beat variability results from reduced repolarization 

reserve and makes the heart more vulnerable to potentially proarrhythmic prolongation of the APD 

[229]. Regional differences in AP duration are generally attributed to asymmetrical distribution of 

various ion channels [105, 230-235]. The transmural heterogeneity of INa,L was discussed previously.  

Increase in both beat to beat variability and transmural heterogeneity may result in increased 

prevalence of cardiac arrhythmias due to increased dispersion under certain (usually pathological) 

conditions [236, 237]. 

 

6.3. INa,L and structural heart disease 
The most argued cardiac disorder linked to INa,L is dilated cardiomyopathy (DCM) a progressive structural 

heart disease characterized by reduced myocardial force generation and enlarged chambers. In spite of 

the increasing volume of evidence that links SCN5A mutations to DCM, the mechanism how a defective 

ion channel function leads to structural disease remains unclear. The first observations that associated 

DCM to SCN5A mutation was published in 2004 and 2005 from two different groups [99, 238]. The 

strikingly new hypothesis that sodium channel gene mutation may lead to structural heart disease was 

challenged by Groenewegen & Wilde suggesting the role of another gene, different from SCN5A in DCM 

phenotype [239]. In the following years new SCN5A mutations were identified in DCM patients 

providing further evidence that sodium chanellopathy can be associated with structural heart disease 

[101, 240]. In 2012 Gosselin-Badaroudine and his coworkers have shown that the mutation in these 

sodium channels resulted in a proton leak through an alternative pore not related to the Na+ path [241]. 

They proposed that acidification of cardiac myocytes may cause the DCM phenotype of these patients.  

 

7. The plateau sodium current as therapeutic target 
Several compounds are known to increase or inhibit INa,L, and a few of them are employed in clinical 

practice as antiarrhythmic drug. Compounds known to facilitate late sodium current are used 

exclusively as pharmacological tool for research because they promote arrhythmogenesis that prevents 

their clinical application [1, 2]. The most frequently used INa,L activators seen in research papers are 

Veratridine and  Sea Anemone Toxin (ATX-II); ATX-II is more specific than Veratridin [20, 121, 123]. 

Other activators like ouabaine or Pyrethroids are also used for research purposes but held more ‘dirty’ 

[6, 121]. 

Pharmacological suppression of plateau sodium current was shown beneficial to reduce contractile 

dysfunction and arrhythmic activity in several pathologic model [45, 197, 214, 242-245]. Since INa,L is the 

non-inactivating component of INa,T, it is inhibited by sodium channel blockers including quinidine, 

mexiletine or local anesthetics like lidocaine. It is very likely that beneficial effects of traditional Class I 

sodium channel blockers are exerted via INa,L inhibition. However, Class I drugs display strong 

proarrhythmic effects and increase mortality; this led to the opinion that treatment of arrhythmias with 

sodium channel blockers is harmful. Thus, research has shifted toward selective INa,L blockers with no 

inhibitory effect on INa,T. Some of the classic sodium channel inhibitors including lidocaine, mexiletine or 

flecainide (Figure 3.) display 5-10-fold INa,L selectivity over INa,T (see Table 1), but these drugs significantly 

suppress conductivity in the therapeutic range promoting reentry type arrhythmia [246-248]. Mixed ion 

channel blocker amiodarone has outstanding INa,L/INa,T selectivity amongst traditional antiarrhythmic 

drugs [249], but chronic amiodarone is documented to carry severe side effects preventing its use in 

long term therapy [250-259].  
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Figure 3.  

Chemical structures of INa,L inhibitors.  

 

 

 

The first, highly selective INa,L blocker with no known adverse effects was Ranolazine, an anti-ischemic, 

antianginal drug [244, 245]. Ranolazine (Figure 3) effectively inhibits late sodium current with 17 and 

1300 µM EC50 for INa,L and INa,T respectively [123]. Apart from the primary INa,L inhibitory effect, 

Ranolazine was also demonstrated to decrease calcium overload, improve mechanical dysfunction and 

reduce mechanosensitivity of sodium channel [197, 198, 214]. However, Ranolazine reduces IKr, INCX and 

ICa,L with EC50 value between 12-90 µM and blocks catecholamine receptors too [260, 261]. The success 

of Ranolazine stimulated research to develop highly selective INa,L blockers with less side effects (see 

Table 1). Recently a new promising molecule, compound GS967 (Figure 3) was shown to attenuate 

ischemia and methoxamine-clofilium induced arrhythmia in rabbit. GS967 is more potent and effective 

inhibitor for INa,L than Ranolazine with higher EC50 for IKr [123].  

An interesting work was published in 2013 by an international team in PACE [262]. Xue at al. studied the 

effect of a Chinese herb extract, Wenxin Keli on ventricular arrhythmias in rabbit model. Wenxin Keli is 

used in traditional medicine as treatment for angina and various arrhythmias. Authors showed in their 

paper that Wenxin Keli suppresses afterdepolarizations and inhibits INa,L in dose dependent manner. 

However, the specific component of the extract responsible for the beneficial effects is not identified. 
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Table I. List of pharmacons reported to inhibit INa,L  

 

Name EC50 Effective cc. Selectivity 

AZD1305 4.3 µM [263]  EC50 for INa,T: 66 µM [263] 

F15845 5.3 µM [264]   

GS967 0.13 µM [123]  INa,T: 7.5% inhibition at 10 µM [123] 

KC 12291 9.6 µM [265]  25% IK1 inhibition at 10 µM;  

42% Ito inhibition at 10 µM [266] 

R 56865 200 nM [267]  Binds to α1-adrenoceptors, 5-HT 

receptors, DHP receptors with Ki 

between 20-340 nM [268] 

RSD1235 

(Vernakalant) 

31 µM [269] 30 nM [270] EC50 for Kv1.5, Kv4.2 and Kv4.3: 

between 10-40 µM; IK1: 1 mM; ICa,L: 220 

µM [269] 

Amiodarone 6.7 µM [249]  EC50 for INa,T: 87 µM [249]; 

IKr: 2.8 µM [271]. Inhibits IK1 and IKs in 

concentration higher than 10 µM [272, 

273]  

Flecainide 3.4 µM [123]  EC50 for INa,T: 84 µM  [123] 

Mexiletine 18 µM [274]  EC50 for INa,T: 35 µM; 

No effect on ICa,L up to 100 µM [274] 

Ranolazine 17 µM [123] 

  6 µM [199]  

 EC50 for INa,T: 1329 µM  [123]; 

EC50 for IKr : 12 µM, INCX : 91 µM, ICa,L : 50 

µM [199] 

Resveratrol 34 µM [275]   

Sophocarpine  30 µM [276] 

20-80 µM [215] 

Inhibits INCX in concentrations higher 

than 20 µM [215] 

Wenxin Keli 4 µM [262]  EC50 for INa,T: 11 µM [262] 
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