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Preface

Coding Theory is one of the youngest theory within the research ar-
eas of mathematics. Its start is considered to be the paper A mathematical
theory of communication by Shannon in 1948 [S]. Since then a lot of re-
searchers contributed to the theory and a very fast development has been
started. First mention of error-correcting codes goes hand in hand with
the invention of Reed-Muller codes in 1953 [MR]. Details on the devel-
opment of Coding Theory in the 1950’s can be found in [R]. In that time
mathematicians like Reed, Muller, Golay and Fano shaped the Theory of
Information and Coding fundamentally. Since then Coding Theory went
through a great development, see for example [MS] and [PH]. Error-
correcting codes build up an important class of codes. They have been
used in digital communication, e.g. on CD’s or other devices for saving
data and information. Coding Theory is a beautiful mathematical the-
ory. Some general surveys of linear codes are for example [AK] and [M].
Even nowadays it is an exciting area of applied mathematics with a lot
of open problems, see for example [JK], [DKS]. In the current thesis we
show some new results on linear codes and convey the theoretical back-
ground which is needed. We deal mainly with some problems on group
codes, i.e. on codes which are ideals of group algebras. We investigate
the properties of these codes related to the structure of modular group
algebras.
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Chapter 1

Introduction

The pictures are there, and you

Jjust take them.

Robert Capa

Let p be a prime number and I be a finite field of characteristic p,
i.e. F = GF(p™) for some integer m. We will use the notation I, for the
field of p elements. Some results in this thesis are concerning the binary
case, i.e. p = 2, but we will also introduce some results for arbitrary prime
numbers p. Further, if not stated otherwise, G is a finite abelian p-group.
Then the group algebra F[G] is modular and F[G] is a commutative ring
of characteristic p. The Jacobson radical is the intersection of all maxi-
mal ideals. The Jacobson radical was only introduced in 1945 in [Jac],
whereas we use some basic theorems of Jennings, which were published
in 1939 in [J]. Jennings then worked with the nilradical, which means
he considered the radical to be an ideal containing all nilpotent elements
of the group algebra. In our case the characteristic of I is p, where p is
prime and G is a finite p-group. Thus the group algebra F[G] is local,
Noetherian and Artinian. By Corollary 8.2 in [AM] the Jacobson radical
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and the nilradical coincide in this case. The codes being constructed in
this thesis are ideals of the underlying modular group algebra.

Definition 1.1. Let G be a finite group of order n, F an arbitrary field. We
denote the elements of G by g1,...,gn. Then the group algebra F|G] is an
algebra over F consisting of all possible linear combinations of g1,. .., 8&n
with coefficients 6; € F. Thus

n
F[G] = {Z 0igi, where 6; € F}.
i=1
If 6;,pj,A € F and gi,gj € G, then we have the following operations in
F[G]:
n n n
Y 6igi+ ) pigi=) (6i+pi)gi,
i=1 i=1 i=1

n

Y 6igi-Y pigi= Y, (6:i-p))gk:
i=1 =1

i,k
8i8 j=8k

A Zn: 0igi = Zn: A6gi.
i=1 i=1

In this dissertation we only consider modular group algebras, i.e. [F is
a finite field of characteristic p and G is a finite abelian p-group.

For an arbitrary integer v we have that F is a vector space with the
usual addition and multiplication. A x-dimensional subspace of FV is
called linear code C of length v and dimension k. If [F has characteristic
2, then C is called binary code. Let C be a linear code and x,y € C two
codewords. The Hamming weight of x is the number of its non-zero co-
ordinates. The Hamming distance of x and y is the weight of x —y. The
Hamming distance (or weight) of a linear code C is the minimum of all
nonzero Hamming distances. A binary code is called doubly even if the



Hamming weight of all its codewords is divisible by 4. If Cis a (v, k,8)-
code, where v is the code length, k its dimension as a vector space and
0 its minimum distance, then we know by the Singleton bound ([MS],
Theorem 11) that 6 < v — xk+ 1. We will use Greek letters convention-
ally in the general case. In many results the code length, dimension and
minimum distance occur to be powers of p. Then we denote the code as
(p", p*, p?)-code. The dual code of a linear code C is denoted by ¢ and
is defined by
ct={xeF¥|{x,c)=0 VYee cl,

where (x,c) =Y., x;c; denotes the usual scalar product. We say that C is
self-orthogonal if ¢ C ¢ and C is self-dual if c = C*.

Throughout the dissertation, we use the notation of C, for the cyclic
group of order n and §,, for the symmetric group on a set with n elements.

A linear code C is called group code if it is an ideal in the group
algebra F[G]. If G is a p-group, then ( is called p-code. If G is abelian,
then C is called abelian group code.

Our work is based on several classical results. Berman showed in
[B] the connection between Reed-Muller codes and the Jacobson radical
of a group algebra F[G], where G is an elementary abelian 2-group and
char(FF) = 2. Later, Charpin proved in [C] this connection for the Gen-
eralized Reed-Muller codes and the Jacobson radical of a group algebra
F[G], where G is a finite p-group and char(IF) = p. Jennings worked out
the structure of the radical of a group algebra IF[G] in [J]. The relation be-
tween Jennings result and the results of Berman and Charpin was shown
by Landrock and Manz in [LM].

If we have two linear codes (¢; and ¢ of length v, then we can com-
pare the two codes in the following sense. If ¢ is a (v, ki, 0 )-code and
G is a (v, K2, 02)-code, then we say that (] has better parameters than &
if K1 < kK and &; = &, orif kK1 = K and &; > 0,.



In this dissertation we consider abelian p-codes. The general case
(when G is also allowed to be non-abelian) was treated by Ward in [W2].
If G is a p-group, then it is known (see [F] and [AK], p. 25-26) that the
best codes arise if G is elementary abelian. In this thesis we also construct
some radical p-codes, where G is not elementary abelian. It is clear that
these codes are mainly theoretically interesting, since they can not have
the “best” parameters, i.e. the dimension of these codes is not optimal
compared to their minimum distance.

This thesis is built up in the following way. In Chapter 2 we introduce
monomial codes and Reed-Muller codes. Although we work with Reed-
Muller codes as monomial codes, we also introduce two other definitions
because these may be more convenient to other equivalent definitions.

In Chapter 3 we construct codes which are powers of the radical of
modular group algebras over abelian 2-groups. In this chapter we answer
a question about self-dual binary abelian group codes with given distance
which was asked by Drensky and Lakatos in [DL].

Afterwards we give new classes of binary abelian group codes which
are self-dual in Chapter 4. These codes are abelian group codes over
elementary abelian 2-groups and they have similarly good parameters as
the Reed-Muller codes.

Finally, we introduce some other new classes of abelian group codes
with special properties and study the automorphism groups of some of
them in Chapter 5. The codes constructed here are ideals in modular
group algebras of elementary abelian p-groups for an arbitrary prime p.

The results of this thesis are published in the following papers:

e Hannusch, Lakatos [HL1], which is the basis for Chapter 3
e Hannusch, Lakatos [HL2], which is the basis for Chapter 4

e Hannusch [H], which is the basis for Chapter 5.



Chapter 2

Linear codes as ideals in group
algebras

2.1 Monomial codes

Jennings investigated in [J] the radical of F[G] when F is a field of
characteristic p and G is a p-group. In this case the group algebra F[G]
is not semi-simple (i.e. it can not be regarded as the direct sum of simple
submodules). We consider modular group algebras IF,[G], where F, de-
notes the field of p elements. We denote the Jacobson radical of F,[G]
by 7 or 7(F,[G]). Jennings gave a generating set of the radical and its
powers. Since we will use this generating set in many places of this the-
sis, we recall some main theorems of [J] here. The main results of this
dissertation are a contribution to the theory of abelian p-codes.

Theorem 2.1 (Theorem 1.2 in [J]). Let G be a group of order p™ and
let IF), be the field of p elements. Then J is of rank p™ — 1, which means
it can be generated by p™ — 1 elements. Further it has a generating set
with all its elements of the form g; — 1, where g; € G, g; # 1. Further let
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Y. 0,8i € F, |G|, where 6; € F),. Then ¥ 0;g; € 7 < Y. 6; =0.

Theorem 2.2 (Theorem 2.2 in [J]). LetM;={g; € G|gj—1=0 mod 5/}.
We denote the nilpotency index of 7 by N, and we have

725925 ... o9V 154N =0,

Then the elements of M ; can be written in the form 1 +n;, where n; € 97,
Further, the M j-s form a decreasing series of characteristic subgroups of
G:
G=M; DM, D...DOMy=1.
The previous series is called the M-series or Jennings-series or Brauer-
Jennings-Zassenhaus-series and it is a chief series of G. The factor groups

M; /M are elementary abelian. Now, we are able to give generating sets
for the M -s and afterwards a generating set for the powers of the radical.

Theorem 2.3 (Theorem 2.8 in [J]). A minimal generating set
{xj1,... ,xj7dj} for M; modulo M\ can be taken as any maximal set of
elements

{xj; € Mj|(xj; — 1) are linearly independent modulo 97 '}.

Theorem 2.4 (Theorem 3.2 in [J]). Let 1 < k < N — 1 and we denote for
fix k the following products

k 0;;
Bj = H(xj’i_ 1) It
,j
where 0 < 0;; < p—1 and Y, j(j0;i) = k. Then the elements B? with
h > k form a generating set of J*.

In Chapter 3 we will construct binary self-dual abelian group codes
of given length for all possible distances. These codes are powers of the



radical of the corresponding modular group algebra F[G], where G is an
abelian p-group, but G is not necessarily elementary abelian. Whereas the
linear codes introduced in Chapter 4 and Chapter 5 are ideals of a group
algebra [F[G], where G is an elementary abelian p-group of rank m. In
order to point out the role of p and m in the second case, we denote the
group algebra F,[C, x ... x Cp] by &), .

N————

m

Let G be an elementary abelian group with generating set {g1,g2,...&m}-
Considering the correspondence (i : g; +— x;, where 1 < j < m, we have
the following algebra isomorphism

Ay ZFpx1,x2, . yxm) /() — 1,25 =1, %8 — 1), (2.1.1)

where F,[x1,x2,...,%,] denotes the algebra of polynomials in m variables
with coefficients from [F),.

We will use the notation of J,, ,, for the radical of .7, ;..

By Theorem 2.4 we know that the set of monomial functions (k; €
NU{0})

{H(x,- —1)%, where 0 < k; < p} (2.1.2)

i=1
form a linear generating set of the radical 7, ,,. Clearly the nilpotency
index of J, ,, (i.e. the smallest positive integer N, such that j;?\,,m =0)is
equal tom(p—1)+ 1.

Introducing the notation
Xi:x,-—l, (ISZSWZ) (213)

(which will be used throughout the dissertation) we have the following



isomorphism
Ay ZFp X1, X0, X)) (XP XD, XD). (2.1.4)

The k-th power of the radical consists of m-variable (non-constant)
polynomials of degree at least k, where 0 <k <m(p—1).

m m
K= <H(Xz-)"f Y ki>k0<k< p> . (2.1.5)
i=1 i=1
Such a basis was exploited by Jennings [J].
By (2.1.5) the quotient space j]ﬁ"m / jl’f,;} has a basis

m m
{Hx{‘"+y,’§jnl |O§k,-<p,Zk,-:k}. (2.1.6)
i=1 i=1
It is known (see [M]) that the dual code ¢t of an ideal C in A m
coincides with the annihilator of C*, where C* is the image of C by the
involution * defined on 7, ,, by

x: grs g | forall g € G from ) m 1o itself. 2.1.7)

Berman introduced abelian group codes in [B] as ideals of modular
group algebras for abelian groups. Further he showed that the Reed-
Muller codes are special cases of abelian group codes. Now, we recall
some main definitions and theorems of [B].

Throughout the dissertation, let G be an abelian p-group, i.e. it is iso-
morphic to a direct product of cyclic groups of prime power order, e.g.

G = (1) X ... X (gm), (2.1.8)

where each (g;) has order p% with a; > ... > a,, > 0. By (2.1.2) we have



a generating set for the radical 7 of the form

(1 — 1)¥ o (0 — 1)*n |, where k; € {0,1,...,p% — 1}, j=1,...,m.
(2.1.9)
Because of (2.1.5) the powers 7% of the radical have a generating set
consisting of all products of the form (2.1.9) with } k; > k.
Landrock and Manz gave a thorough survey of linear codes as ideals
in group algebras in [LM].

Definition 2.5 ([DL]). Let C be an ideal of <), . Then C is a subspace
of Jp.m- We say that C is a monomial code if it can be generated by some

monomials of the form
X{quz .. .X,f{", where 0 <k; < p—1.

Codes which are generated by a single monomial in the algebra of
polynomials corresponding to modular abelian group algebras are stud-
ied in [MM]. In Chapter 5 we investigate codes generated by a single
monomial if G is an elementary abelian p-group.

2.2 Reed-Muller codes

2.2.1 Definition by Boolean functions

First, we introduce Reed-Muller codes (in the sequel denoted by RM -
codes) as vector spaces over [». This definition by Boolean functions
can be found for example in ([MS], Chapter 13). Let B = {0,1} and
m > 0 an integer. A Boolean function is a function which maps B" to
B. Thus any binary sequence of length 2" can be regarded as a Boolean
function f(x1,...,x,) on m variables (which maps from F4' to F,). The
basic representation of f is given by the output columns of its truth table
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(fo,---,fom—1), i.e. its a binary string of length 2. If 0 < i < 2™ — 1 and
i= ka;OI ir412%, then f; = f(iy,...,iy). Operations of these strings are the
following. Addition is defined coordinatewise, as used in the space of [’
and multiplication is defined as the logical conjunction (“and”: A), again
coordinatewise. There are two constant Boolean functions: 0 = (0,...,0)
and1=(1,...,1).

Now, we define v; to be the coordinate function which maps each el-
ement of [}! into the m — i+ 1-th coordinate of (i, ...,i,). For example,
we have vi = (0,...0,1,...1) and v,, = (0,1,0,1,...,0,1).

—— ——
om—1  gm-1
Example 2.6. Let m = 3 and we represent the integers i from 0 to 23 — 1
as binary strings. Then with the notations above we have

i 01 2 3 45 6 7
vif0O 0 0O O I 1 1 1
w|l0 0 1 1 0 0 1 1
v3;\0 1 01 0 1 0 1

Definition 2.7. The linear space generated by the Boolean functions f: F5' —
[Fy of degree at most r are called Reed-Muller codes of degree r, where
0 <r < m and their length is n = 2", thus

RM (r,m) :{v{l...v%’ﬂjl—i—...—i—jmgr},

where ji,...,Jjm € ).

By combinatorial computations, we can get the following properties
of Reed-Muller codes.

L dim(RM (r,m)) = (5) + (7) ++--+ (7)

2. If 1 <r<s<m,then RM(r,m) C RM (s,m)
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3. For each m > 1 and KM (r,m)* = RM (m — r — 1,m), where
RM (r,m)* denotes the dual space of RM (r,m).

Example 2.8. We determine generator matrices for the Reed-Muller
codes RM (k,4) for k € {0,...,4}. First, we define the following matrices

M.

=1 11Tt )=(v ),

vi
V2

v3

S O o O
- o O O
oS = O O
— = O O
S O = O
—_ O = O
S = = O
=)
R R e I
—_— o O ~
S = O -
_— e O =
SO = =
—_ O = =
S = =
— e

V4

viv2
viv3
ViVy
v2v3
VoVy

o O O o o O
oS O O o o O
S O O o o O
- o O O O O
SO O O O o O©
o = O O O O
oS O = O O O
—_— = = O O O
SO O O o o O
S O O = O O
o O O o = O
— o O = = O
S O O o o =
S = O = O =
[ = i
S Yy

V3Vy4

Vivavs
ViVaVy
V1V3Va

B
Il
===}
==« e}
S O O O
=l ele N}
S O O O
(=l ee e}
(===}
— o O O
(=l ele =}
=l =le =}
=l ele e}
S = O O
S O O O
S O = O
==l
—_ e e

VoV3Vy

and

///4=(0 00 0000O0O0O0O0O0O0O0 0 1):(v1vzvm).

Now we can construct generator matrices for the following Reed-Muller codes

from the rows of the matrices M.
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Ao
KM(074):< %() )7KM(174): < 0 )79@‘/[(274)_ %] 3
! %Za
M
Mo ///0
1
RM(3,4) = jl and RM(4,4) = | .,
2
M
M
3 s
2.2.2 Reed-Muller codes as extended cyclic codes
A linear code ( is cyclic, if for each codeword (cg,cy,...,cy—1) € C

we have (cq,...,cy—1,¢0) € C. We get the extended code of ¢ by adding
a parity bit. It was shown by Kasami, Lin and Peterson in [KLP1] that all
Reed-Muller codes can be regarded as extended cyclic codes. They used
an original proof of Zierler [Z] that the first order punctured Reed-Muller
codes are cyclic. Precisely, dropping a digit from a Reed-Muller code
and reordering its coordinates will lead to a cyclic code. Considering
Reed-Muller codes as extended cyclic codes Kasami, Lin and Peterson
introduced a new generalization of these codes over IF),, where p can be
any prime number. They named these codes Generalized Reed-Muller
codes - shortly GRM -codes, which is still the usual notation. Later, Del-
sarte, Goethals and MacWilliams gave a formalization of Kasami’s, Lin’s
and Peterson’s approach and they collected more results on GRM -codes,
see [DGM] for more details. In this section we follow the approach of
RM -codes and GRM -codes as it can be found in [KLP1] and [KLP2]. We
give the generator polynomial of punctured Reed-Muller codes and their
generalizations and we describe Kasami’s, Lin’s and Peterson’s charac-
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terization by Assmus and Key ([AK], Section 4.3).

Let p be a prime number, I, the field of p elements and I = IF ,» for
some m € N. Let F* = F \ {0} be the multiplicative group of F.

Let o be a primitive element of [F, then o € F* is a generator of the

multiplicative group of F.
Setn = p™ —1, then we have F = {0,1,,...,a" " '}.

It is well known that all elements of [F can be expressed as linear com-
binations of 1, ¢, ..., 0" ! with coefficients in Fp. Thus

. m_l .
o/ = Z CiijCl,
i=0

where ¢; j €F),, 0 < j < p™—2and 0 <i<m— 1. Then we can construct
the following matrix

1 1 1 1

00 €01 .- Con—1 Wi

W = C1,0 C1,1 Clu—1 = %)
Cm—1,0 Cm—11 --- Cm—1n-1 Wm

The vector product of two vectors is defined (as in Section 2.2.1) by

the binary operation “and” componentwise. Now, we construct a matrix
1 .

W, for exponents k;, where 0 < k; < p—1 and ZT:O kj < r in the fol-

lowing way:
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1

wi

W, = w2
Ky
wlfowg' ceowyr!

In the binary case we can extend the row vectors of %, by a parity bit.
We will add the parity bit in the last column, and we denote this extended
matrix by #,*. The linear codes generated by #,* will be permutation
equivalent to the linear codes which were described in Section 2.2.1.

For arbitrary p, the extended code generated by #,* is called prim-
itive Generalized Reed-Muller code of order r, denoted GRM -code. Its
dual code is generated by #;, where t = m —r — 1, i.e. the dual code of
GRM (m(p—1) —r—1,m) is GRM (r,m).

The code generated by % is called punctured Generalized Reed-Muller
code. This code is cyclic which is proved in the Propositions 4.8 and 4.9
in [AK]. For our purposes we show the construction of RM (2,4) as ex-
tended cyclic code in the following example.

Example 2.9. Let m =4 and F = GF (2*) = Fy/(x* +-x+ 1), where a is
a primitive element of the multiplicative group of F. Further we fix r = 2.
Then we have
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[
w

5 6

1l a o o o o «o o o o o
1 10 0 0 1 0 0 1 1 0o 1 0 1 1 1
al0O1 0 0o 1 1 0 1 0 1 1 1 1 0 0
e*’{00 1 0 0 1 1 0 1 0 1 1 1 1 0
e\0 0 0 1 0 O 1 1 0 1 0 1 1 1 1

Now, we can construct #> and extend it by a parity bit in the last

column. We obtain

w2
w3
w4
Wy = wiwa =
wiws3
wWiwg

waws3

Wawy

C o0 00000 O~ —
C 0000000 = O =
C 000000 ~O0 o =
C 00000 —~0 0 o =
C 0000~ O O = = =
C O~ 0000 = = O =
- 000 00 =~ O O —
cC— 0~ O =)~ O -, = =
C 000~ 00—~ O = —
O -~ 0000 = O = O =
©C O = O == O === =
_—_—_, 0 OO0 = = = O =
_— e e e e e e e e
—_— 0 0 = = O == O = =
C o0~ 00—~ 0 O = —
coocoocoo0coo0c oo oo —

wW3wy

The linear code generated by W," is permutation equivalent to the
code

RM (2,4). It can be easily verified that applying the permutation
(1,9,11,15,10,6,7,4,2,5,13,16)(8,14,12)

on the columns of W5 leads to the same generator matrix of KM (2,4) as
given in Example 2.8.

More results on the generator polynomial, on the minimum weight
of GRM -codes and on the automorphism groups of GRM -codes can be
found in [KLP1].
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2.2.3 Reed-Muller codes as monomial codes

Reed-Muller codes are binary codes, thus p = 2. With the notations in-
troduced in Section 2.1, we have that %% ,, is the underlying group algebra
and %, , is its radical. The powers of % ,, are monomial codes and the k-th
power of %, ,, coincides with the Reed-Muller code KM (m — k,m), which
was shown in [B]. Thus

m m
.72](7,” = ‘J(M(m—k,m) = <HXl-ki ‘ Zki > k,k; € {O, 1}> .
i=1 i=1

Equivalence of all three definitions

The three introduced definitions of Reed-Muller codes are equivalent.
This can be shown by a one-to-one correspondence between:

coordinate functions <+ powers of primitive element of Fm <>
monomials over [F;

The bijection between the first two is trivial, since the entries of co-
ordinate functions and the powers of primitive elements differ only in a
permutation of entries.

Let ¢ be a map (not necessarily a homomorphism) from F4' to 5 [G],
where G = (x1) X ... X (x,,). With the notation introduced in (2.1.3) we
define

vo = TI0, X[ ki=1
o: N 1, X5 | ki =0,k =1(#1)

k4
vm = 1L X

km:(),kj:uj;'ém)

The coordinatewise multiplication of the elements of % ,, can be writ-
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ten in the following way:
b1 b o
XPX52 X XU'Xy? X =[] X, where ¢; = a; Ab;.
i=1

It can be easily checked that @ is bijective.
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Chapter 3

Self-dual codes with given
distance

3.1 Motivation

In Chapter 2 we summarized how the vectorspace of a modular group
algebra can be associated to a linear code. So it seems natural to ask ques-
tions about these codes and their properties in general. Berman investi-
gated the minimum distance of abelian group codes which are powers of
the radical of modular group algebras in [B]. He gave an algorithm which
enables us to find the minimum distance of a linear code obtained from
such a radical power. One could ask which minimum distances can occur
in abelian group codes. Self-dual codes are a type of codes which are
combinatorically well applicable. It turns out that a power of the Jacob-
son radical of a modular group algebra over an abelian p-group can only
be self-dual if p = 2. The following problem is connected to this question
and it was published by Drensky and Lakatos in [DL].

Problem 3.1 ([DL], Problem 2.6). Let n be an arbitrary positive integer

19
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and d < [5]. Does there exist an abelian 2-group G of order 2", such
that some power of the Jacobson radical of the group algebra F»[G] is a
self-dual (2",2"~,2¢)—code?

The main theorem of this section is the following, which is published
in [HL1].

Theorem 3.2 ([HL1]). Let IF be a field of characteristic 2. Let n be an
arbitrary positive integer. Then for each integer d with 1 <d < [7] there

exists an abelian group G of order 2", such that there exists a power of
J(F[G]) which defines a self-dual (2",2"~",29)-code.

The proof is constructive. The main tool is Berman’s result for the
minimum distance of codes which are powers of the radical (see [B]). We
explain the algorithm of Berman in Section 3.2.

3.2 Minimum distance of abelian group codes (Berman’s

algorithm)

Let G be an abelian p-group of the form (2.1.8). Further let F be a
finite field of characteristic p, F[G] its group algebra and 7 its Jacobson
radical. If the group is

G=Cpu X ... X Cpam,

then the nilpotency index of 7 is p™ +...+ p“ —m+1 = N ([B]). There-
fore it is clear that if p is odd, then N is odd. The dual code of gk is gN—k,
Thus a power of the Jacobson radical can only be a self-dual code if p = 2.
Further, for each possible group G the only power of 7 which will define
a self-dual code is ]%.
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So we use Berman’s algorithm in the case p = 2. For our purposes it
is enough to introduce the algorithm for abelian 2-groups G of the form

— 1 52 S3
G =Cy ><C22 x Gy,
where a; > 0, and 51, 57,53 are non-negative integers.

Theorem 3.3 ([B]). We define two sequences of integers

lal =0, lal—l =581, ..., =581, 11 =51+52, lp =51+ 52+ 53;
m; = 2i1;, where a; > i > 0.
(3.2.1)
After that let r be the unique positive integer with 0 < r < aj; — 1 fulfilling
the following condition:

N
Mg, —1+mg2+...+mg—p < E <Mg—1+...+Mg—r+Mg—r—1
(3.2.2)
Thus the nilpotency index of 7 can be also given by

N =512+ 452" —(s1+...8m) +1=my, +...+mp+1 (3.2.3)

If N is even and N = 2 j for some integer j, then the minimum distance of

the j-th power of 7 is 2¢, where

J— (malfl +"‘+ma1—r> 4om—r=1_
2aj—r—1

d=lgy+...+lgy—r+
(3.2.4)
3.3 Construction of suitable 2-groups

We want to find a way for the construction of G, such that if we change
its parameters slightly, then the minimum distance of the linear self-dual
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code defined by 7/ will also change only slightly. Recall that 1 < d < (1.
It is easy to find such groups for d close to the lower and to the upper
bound. In contrast, it is not easy to find a group G such that the minimum
distance of 4/ is near to 7 Finally it turned out that the following con-
struction of G leads us to our aim and we achieve a code with minimum
distance 2¢ for all integers d between 1 and [5]. The group G is the direct
product of cyclic subgroups which are of three different orders:

G =G, xCS% xCy, (3.3.1)

that is

n=sia)+2s2+s3; s1,52,83 > 0.

In the sequel, the largest integer not exceeding the number a € R is
denoted by [a]. In the sequel I is a field of characteristic 2 and G is an
abelian 2-group of order 2" with decomposition (3.3.1). Set

N
N=s512"—=1)4+3s,+s3+1and j = 7 (3.3.2)

It can be easily verified that N is the nilpotency index of F[G], for G as in
(3.3.1). We assume that N is even. Hence j is an integer.

The two integer sequences in Berman’s theorem have the form

lo, =0, lyy—1 =51, ....b =51, [y = 51 +52, lp =51 + 52+ 53,
m; = 2i1; fora; >i> 0.
(3.3.3)
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By (3.2.2) we get that

r=0 = 0<j<s2a

r=1 = 5207 << a2y,
_ : S g b G634

r=a;—1 < 524 +2s)—251 <],

and the exponent d of Hamming distance is given by (3.2.4) (with the
sequences (3.3.3)).

It was difficult to find direct products of cyclic groups for fixed n such
that changing the cyclic groups slightly, the value of d would change only
by 1. We will see that our construction of G makes it possible to follow
the values 1 < d < [7] divided into four intervals - applying different
changes of parameters in each of them.

3.4 Auxiliary results

In this section we prove some lemmas which will be needed in the
proof of Theorem 3.2. Throughout this chapter we assume that n = a5 +
257 + 53.

Lemma 34. Let N = 51 (2“1 — 1) 4 3s, + 53 + 1 and we assume that N is
even. The congruence
n=s, (mod 2) (3.4.1)

holds if and only if ay is even and s is odd.

Proof. We have

n=ais|+2s2+s3=ays;+s3 (mod 2)



24

and as a; > 0 we have
OEN:S[(Zal—1)+352—|—S3—|—IE—S1—82+S3—|—1 (m0d2).

Thus
s3=s1+s2—1  (mod 2),

n=aysi+s3 (mod?2)=(aj+1)s;+s2—1 (mod 2)

1. If a; is even, then (a; + 1)sy =51 (mod 2), n = s, + (s — 1)
(mod 2) which shows that (3.4.1) holds if and only if s; is odd.

2. If a; is odd, then (a;+1)s; =0 (mod 2),n=s,—1 (mod 2),
hence (3.4.1) cannot hold.

]

Lemma 3.5. Suppose a, is fixed and choose s =0 or sy = 1. Let 5| =
s1+ 1 and choose s, = 0 or s, = 1 so that n = s, if and only if a, is even

and s is odd. Let s = n—ays| —2s}, j is given by (3.3.2)

and
s S —1)+3s,+s5+1
J = > .
Then
1, if ay is odd
) . _ ai+h
j—j=29 . , Where h= < 2. if a; and n+ sy are even

0, if ay is even, n+ s is odd.

(3.4.2)

Proof. According to Lemma 3.4 by the parities of n,ay,s;, (i.e. so =0
if n,a; are even s; is odd, or if n is odd and either a; is odd or s; is
even, and s, = 1 otherwise). By Lemma 3.4 for odd a; we have n #
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s2, n # 55 (mod 2), thus s5 = s5. For even a; we have either n = sp, n #
sh (mod 2) or n # s, n =s5 (mod 2) (as the parities of sy, 5| are different).
Hence s, # ), more precisely s, =0, s5 = 1 if n+s; is odd and s, =
1,55 = 0if n+s) is even. Therefore

;. 201_a1—1+S/2—S2+1 _2a171_a1+S2—S/2—|—1
J —J= =
2 2
and with h = 5, — s, + 1 we get (3.4.2). O

Lemma 3.6. I[fr=a; — 1, then j+d =n+1.

Proof. If r = a; — 1 then using (3.2.4) and (3.2.1)
d=s1(a;—1)+sp+j—s51 (290 —2) —2s,.
Hence, using (3.3.2)
d+j=si(l+a—2Y)—s2+2j=s1a1+2s2+s3+1=n+1.
[

In the next Lemma we choose some particular values for r and a; and
increase either s; by 1 or s by 2, keeping n fixed. We study how this
change influences the value of d.

Lemma 3.7. (a) Let r =2, a; = 3 and s be given. Increasing s, by 2 (if
this is possible) the value of d decreases by 1.

(b) Letr =2, ay =4 and s be given. Increasing s, by 2 (if this is possi-
ble) the value of d increases at most by 1.

(c) Let r =1, a; > 3 be given and choose s, = 0 or s; = 1 according
to Lemma 3.4 by the parities of n,ay,s;. Increasing s; by 1 (if this is
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possible) i.e. sy =51+ 1 s, =0 or s, = 1 according to Lemma 3.4 by
the parities of n,ay,s1. Denote the values of j and d corresponding to
s,s85 by j and d’ respectively. Then either d' =d ord' =d +1.

(d) Let r =0, a; > 3 be given and choose s, = 0 or sp = 1 according
to Lemma 3.4 by the parities of n,ay,s;. Increasing sy by 1 (if this is
possible) i.e. sy =1+ 1 s, =0 or s, = 1 according to Lemma 3.4 by
the parities of n,ay,s1. Then (using the notations of c) either d' = d
ord =d+1.

Proof. (a) If s, is increased by 2 then s3 has to decrease by 4 and by
(3.3.2) the value of j increases by 1. Since r = a; — 1 by Lemma 3.6
d = n— j+ 1. Therefore the increase of j by 1 results the decrease of
dby 1.

(b) We have n = 4s; +2sy +s3 and by (3.2.1) m3 = 8s1, mp = 4s1,m; =
251+ 2s,. From (3.3.4) for r = 2 we have

1251 < j < 14s1 +2s3.
Substituting j by (3.3.2) here and rearranging we get
1351 —s0—1<n<17s1+3s5p— 1.

By (3.2.4) using again (3.3.2) for j we get

(3.4.3)

i — 12 1 — 3 3
d:2S1+[J 2S1-|- }:{ s1+ Si—i—SQ,—l—

We see that increasing s, by 2 the value of s3 has to decrease by 4,
hence the numerator of the last fraction increases by 2 therefore either
d remains unchanged or it increases by 1.
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(c) Asr=1 we have by (3.2.4)

jes2alpom=2
d:s1+ |: 2(,11—2 )
344
, , j/_sll2a171+2a172_1 ( )
d :S1+1+ 2a172 .

By s} =51+ 1 and by (3.4.2) of Lemma 3.5 we can rewrite d’ as

d=s1+1+

e e s el N
2(11—2 -

— 5+ [jfs12“1_1+2“1_271+<1_M>} <d+1,

2a172 2(1171

a1+l’l < a1+2
2(11—2 — 2a1—2

since for a; > 3 we have 0 <
0<1—ath g,

< 1, therefore

261171
(d) Asr=0by (3.2.4) we have
j+2a1—1_1 , j/+2a1—1_1
d: {T , d = T . (345)

By s =51+ 1 and by (3.4.2) of Lemma 3.5 we can rewrite d’ as

d/: |:j.+2a171—] + (1_0521}1)] Sd—f—l,

20171

since, similarly to the proof of (¢), 0 < 1 — ‘g;ﬁh < 1.

3.5 Proof of Theorem 3.2

The main idea of the proof is to fix the values of n, a;, r and sy or s;.
Then we increase (by the smallest possible steps) the value of sy or s;.
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We consider only those situations, when the corresponding value of d is
increasing or decreasing by at most 1.

I) Gfor [4]+t+1<d<[%], wheret=1ifn=3,6 (mod 8), and
t = 0 otherwise

The largest possible distances can be easily constructed by (3.2.2),(3.2.3)
and (3.2.4).

Ifnisevenand G =Cy X Cy X - -+ X (3, thenj:%, andd:%.
Ifnisodd and G = G, X (3 X --- X C, elementary abelian then j = d =
ntl

>

Letaj=3,a0=2,a3=1,r=2and sy =0o0r sy =2 ifnisodd, so =1
and sy, =3 if nis even.

In this case we have r = a; — 1 and by Lemma 3.6, d =n+1— j,
hence from the value of j we can determine d. By (3.3.2) if a; = 3 and
s1 are fixed and we increase s, by 2 then the value of j is increasing by
1. We can use Lemma 3.7/(a) and get all consecutive values of d in the
interval [[4] +¢+1,[%]]. We have to check the possible values of s
for given s; by Lemma 3.7/(a), when r = 2 holds.

By Lemma 3.5 if s) =s;+ 1 and s =0 or s, = 1, then

a1+1_
5 =

j—j=21— 2.
Thus, for given s it is enough to check the value of j for the two smallest
possible values of s,. Accordingly, we consider the value of j for each
s1 only if s = 0,2 or s = 1,3, depending on the parity of n (by Lemma
3.4).

Now with (3.3.2) and s3 = n— 3s; — 255, we have

o Is1+3s0+s3+1 4dsi+so+n+1
]J= = .

5 5 (3.5.1)
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By (3.3.4) (since now r = aj — 1) we get
651 +250 < j= w

or8s;+3sp—1<n,ie.

< n—3s2—|—1.

< g (3.5.2)

S1

If s; and s, satisfy the condition (3.5.2), then we have by Lemma 3.6

n—4s;—sy+1

d=n—j+1=
n—j+ 5

(3.5.3)

Thus, for each s satisfying (3.5.2) and for s, = 0,2 or s, = 1,3 we
apply Lemma 3.7/(a) and see that d decreases at most by 1. If s increases,
then j increases and d decreases.

If n is odd, then for s, = 0 and s, = 2 from the inequality (3.5.2) it
follows that s; < %1 and s; < %. For even n with the values s, = 1
and s, = 3 we get the conditions s; < % and s; < "8;8 similarly. The
smallest s; with r =2 is s5; = 0. If n 1s odd, then for s, = 0 we have
Jj= % by (3.5.1) and d = % If niseven, thens, =1and j = %2 and
d=n+1- # =7.

If s is the maximal value of s; and s, = 0 or s, = 1 satisfy (3.5.2),
then for each 57 < s’1 and for the smallest possible value of s; (s’2 =0,2
or s’2 = 1,3) the condition (3.5.2) is also satisfied.

We list the precise maximum value of j (denoted by j') and by (3.5.2)
the minimum value of d (denoted by d’) in Table 3.1. Thus, we obtain
each d on the interval [[§],d’].
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Table 3.1: Parameters defining the smallest values of d

n s} sh=0 sh =12 sh=1 sh= 1) d

8k [5—1 si="2 3] 3n | 5+1
Bk+1| %t | <2 0 || [4]+1
Bk+2 | 53 s =12 1|22 ) (4] +1
Bk+3| %52 | s <2 0|22 [4]+2
Bk+4 | % s < L3 ]+
8k+5 | 252 sp =15 2 | a4
8k+6 | %50 s <58 1|22 4] 42
8k+7 | = |5 =2 0|38 [4]+1

I Gforl<d<|[%!]

Letr=1and3 < a <[logy(n)|+1aswell as s =0 or s, = 1, depending
on the parity of n.

If G is a cyclic group of order 2" and [ is a field with characteristic 2,
then

ar=n,s1=1,0=53=0,m,_1=j=2""1,_1=1,andd=1,_; = 1.

Thus we have d = 1 (see also [B]).
If G is not a cyclic group, then we get from (3.3.4)

5207 < j<s 0T 2072, (3.5.4)
From the lefthand side of (3.5.4) and from (3.3.2) we have
51291 < S1(2a1 — 1) + 250 +s3+1

hence
—s14+3sp+s53+1>0. (3.5.5)
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Now we use Lemma 3.7/(c) and determine the minimum and maximum
value of 51 (denoting them by s; and by 57).

1. If s =0, then from (3.5.5) we have 51 < s3+4 and from n = s1a; +

s3> s1(ay +1) — 1 the inequality 51 < a”:rll follows.

2. Similarly, if s = 1, then 51 < s3+4 and from n = sja; +2+s3 >

si(a;+1)—2 we have s < (Zfl

512 =51 +n—a;5;+1
2

Substituting j = into (3.4.4) we get

- j—s201-140a1-2 17 _ =51 (1+ay)+n+24- 11
d=751+ a1 -2 s1+ 2a1 -1

By the condition of » = 1 and (3.2.4) we have d > sy, so the equality
d =57 holds.

To find the minimum of d (denoting it by d) from the right-hand side
of (3.5.4) we get 52471 > —5; + 355 + 53+ 1. With 53 =n—ays; —2s»
and so =0 or sy = 1 we get

n+2

§1 > 2a1—1+a1+1'

n+1
21 0TS~

_ n+1 _ n+2
Thus,gl— Sa =1, o1 —|—10r§1— s |+ 1.
291 4ay+1 247 a1 +1

If s = 0, then we have by (3.4.4)

B j_£12a171+2a172_1
4_£1+ |: 2611—2

o al—l a1—1 -
sH_[ si(l+a1+2 za)ljﬁ(z )+n 1}2
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If s, = 1, then we get analogously that d > 2s; — 1.
By Lemma 3.7/(c) for a; > 3 we can construct groups for each d sat-
isfying the inequalities

n+1 n+1
251 —1=2|————| <d < =5.
S1 |:2a11+a1+1:| —= |:a1+1:| S1

If a; > [logy(n)]+1,thenn+1 <241 4+1 <24~ + 4 +1 and we have
s)=1andd =2.
It is easy to see that for aj = 4, 5, ...[logy(n)] + 1 these intervals

overlap the closed interval [2, [%H]].

I Gfor 5] <d < [3] - [%5"]

Letay =4, r=0, so =0 o0r sy =1 (depending on the parity of n).

By the previous part we have the largest d if a; = 4, 5 = [“}] and
d= [”Sil] ord < [”Sﬁ] , corresponding to s = 0 or s = 1. Taking s} =
51+ 1 then j—8s; > j— 8s] we have r = 0, otherwise 5; would not be
the largest at » = 1. Next we show that d’ —d < 1, where d’ denotes the
value of d corresponding to .

If j/ denotes the j corresponding to s}, then in Lemma 3.5 we have
h=0orh=2,and j/=j+5,0r j/=j+6,and j/ = j+8— L < 85| =
851+ 8. Using (3.4.5), we get for d’ that

J - [/%7] < [8s/18+7} _ [851;15} —5 41,

The largest value of sq, for which the condition r = 0 holds, is [§]
or [7] — 1, depending on the parity condition of Lemma 3.4 with s, = 0
or so =1 and 0 < s3 < 3. Since for arbitrary integers a, k > 0 we have
[13k+a] — 2k — [E=4£7] in our case in Table 3.2 we have the following

largest values of d.
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Table 3.2: Parameters for the largest d

n S1 s | 83| Jj d

8k 2k—1[0 [4 | 15k—5 | [BAE2] = [4] - [257]
8k+1| 2k 0 |1 |15k+1 | [BEEB] = [2] - [22]
8k+2 | 2k 1|0 | 15k+2 | [BK£2]) = [4] - [2]f]
8k+3 |2k |0 |3 [15k+2 | [BF2) = [4]—[=p°
Bk+4 | 2k+1 |1 [2 | 15k+3 | [BEHY] = [2] - [2£0
8k+5 | 2k 0 |5 | 15k+3 | [BEHY] = [2] — [23]
8k+6|2k+1|0 |2 |15k+9 | [BHO] = [4] — [2°]
Bk+7 | 2k+1 |1 |1 | 15k+10 | [BEHT] =[] — [253]

Using Lemma 3.7/(d) we have all values of 5; + 1 = [”%1} +1<d<

(3] -]

IV) Gfor [4]+1—[259] <d < [2] +t, wheret = 1,if n=3,6 (mod 8),
otherwiser =0

In Table 3.3 we list the constructed and missing values of d. Here A, =
[2439] —1,r=1ifn=3,6 (mod 8) and t = 0 if n % 3,6 (mod 8).
Leta; = 4,51 = ["fgq r=2.

1. If 14 < n < 23 then for the constructions of d = [4] + 1 we only
need to consider the values of n = 14 and n = 19. One can check easily
that for n = 14, (a; = 4) we have s; = 1, so =4, d = 4 and for n =
19, (a; =4) wehaves; =1, sp =3, d =5.

2. Now we suppose n > 23.

By Lemma 3.7/(b) we have to find at r = 2 the maximum of s, (57)
and minimum of s, (s,) and to estimate the minimum of the maximum of
d (denoted by d) and the maximum of the minimum of d (denote by d)
to cover the missing values of d. By n = 4s; 4+ 252 + 53 and by (3.2.4) the
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Table 3.3: Missing values of d close to §

n missing d constructed in | constructed in
part I part II and II1
n<13 none d§=%=+1 lgde
15<n<23,t=0 | none d§:£_+1 1§d§=g
14<n<23,1=1] [4]+1 d<[4]+2 1<d<|j
24<n<87,t=0| |4 d<[2]+1 1<d<[4]-1
24<n<87,t=1][4],[4]+1 d<[t]+2 |[1<d<[f]-1
n>87,1=0 H+1<d<[f]-A+1|d<[f]l+1 | 1<d<[f]|—A+1
n>87,1=1 H<d<[4] - d<[%+2 |[1<d<[% M
condition r = 2 gives
1251 < ] < 14S1 +2S2. (356)
Substituting j (defined by (3.3.2)) into (3.5.6), we have
1351 —s0 — 1 <n<17s1+3s2 — 1. (3.5.7)

We have to estimate the minimum of the maximum of d (denoted by d)
and the maximum of the minimum of d (denote by d) to cover the missing
values of d. It is easy to see that for n =4 [”+7} + 255 + 53 the left side
of the inequality (3.5.7) holds for all s; > 0. Thus, for the maximum of
s> (denoted by s,) the value of s3 is the smallest possible s3 =0,1,2,3
depending on parities. Clearly % "*7 > 5 > "*7 . and s3 > 0 we have n >
451+ 2s, and 2 4S‘ >8> w . For the minimum of d (at s3 = 3) by
(3.4.3) we get

451 -3 7
= —s1 3546 | [3n—14543 3n—14%43 | 31,8
d=> [ T = 8 > g = [ 120 }

From this and by n > 23 we have
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2> [M5t] 2 el > 1> [3].

The right-hand side of (3.5.7) gives s, > %, thus the nearest

integer is the minimum of s, (denoted by s;),

5y < |:n717351+4} < [n17;f1‘57+4] _ [_2%179}.

Since for n > 23 we have [%} < 3, thus for s, =1 or s, =2
(depending on parity condition) we have r = 2.

In this case d can be calculated by (3.4.3) (d = [W] ). Since
the value d increases if s, increases and s3 decreases, and at s, = 1 or
sy=2wegets3<n—2—4s; <n—2-4%7 < =2 and by (3.4.3) and
n > 23 we have

The last inequality for 23 < n < 28 one can check directly and for

n > 28 follows from

p—

[10n+96] < 10n£96 15124  n3 4 | ntd0 o 2] +

60 = 60 — 64 64 — o [w] :

3 o4
Now, only the construction for d = [4] 4+ 1 if n = 3,6 (mod 8) is left.
If n=8k+3, and k > 5, we have d = [%] + I since [4] = [32] = 2k,
7 =2k+0,75and

T2 [Pt = [P = [2A00] —oie [M58) > (4] 41

holds if 8k 485 > 120, i.e. k > 5, and n > 43.
In similar manner, if n = 8k+6 and k > 6, we get d = [4] + 1. If
(4] =2k+1, then § =2k+1,5 ,ie.

3> [Mgt] = [A4) - [IGEASIE) oy 14 [8] > [2] 41,
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if 8k+58 > 120, and k > 8§, thus n < 70.

If24 <n<43and n =8k+3ie. n=27,35,43 as well as if 24 <
n> 70, and n = 8k + 6 i.e. n = 30,38,46,54 and 62, then for a; = 4,
s1 = [%], r =2 we can get d = [4] + 1 by the constructions listed in
Table 3.4.

Table 3.4: Constructions of d = [ﬂ +1

no|sy|s2|s3|j |d ||n |si|s2|s3|) |d
2712 7 |28 300219 |4 |31|8
35|12 11|33 3812 |11 |8 |36]10
4313 |13 |5 [45|11 |46 |3 |14|6 |47 |12
5414 (1910 |59 |1462|4 |19|8 |63|16

The proof of Theorem 3.2 is completed. U



Chapter 4

Construction of self-dual
(2% 2%~1 2K).codes

4.1 Complement-free sets

In this chapter, we fix G to be an elementary abelian p-group, i.e.

G=Cpx...xCp.
N———

m

Furthermore we will use the notation .27, ,, for the modular group algebra
as defined in equation (2.1.1). Our aim is to find self-dual codes in the
radical of .27, ,,. As it is mentioned in the beginning of Section 3.2 there
is a power of the radical defining a self-dual code, if the nilpotency index
of 7, is even. Since G is elementary abelian, the nilpotency index of
Jp.m 1s even if and only if p =2 and m is odd. Thus a Reed-Muller code
is self-dual if and only if it is an RM ('”T_l,m)-code, i.e. m has to be odd.

It clearly rises the question if there exist binary self-dual codes in the
radical of .2 ,, if m is even. We can give a positive answer to this ques-
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tion and we will introduce a way to construct such codes. The codes
constructed in this chapter are ideals in the radical of 2% ,,, i.e. in this
chapter p = 2.

For m = 2k, where k is an arbitrary integer, we have a new method
to construct a doubly even class of binary self-dual codes with length 2™,
dimension 2"~ ! and minimum distance 2*. For such a code ¢ we have

RM (k—1,2k) C C C RM (k,2k).

In [HL2] we introduce the following sets of binary m-tuples, where
m = 2k for some integer k.

Definition 4.1. Let y be a binary m-tuple. We say that 1 —y is the com-
plement m-tuple of y, where 1 denotes the all-1 tuple (1,...,1).
N——
m
Definition 4.2. Let m = 2k and X be the set of all binary m-tuples with
exactly k °0’-s and ’1°-s. Further, letY be a subset of X such thatify €Y,
then1—y ¢ Y. ThenY is called a complement-free set of binary m-tuples.

Remark 4.3. The cardinality of the set X is (2kk) and the maximum cardi-
nality of Y is %(Zkk)
Example 4.4. If m = 4, then we have exactly eight possible complement-

free sets, which can be seen in Table 4.1 below.

Table 4.1: Complement-free sets for m = 4

1 1.0 0jJO0 1 1 00 1 1 Of1 O O 1
1 01 00O 1 O 11 O 1 OO0 1 O 1
1 00 1)1 1 0 00O O 1 10 0 1 1
01 1 040 01 1441 1 0 O}1 1 0 O
010 191 0 1 00 1 O 11 O 1 O
0 01 141 0 O 141 0 O 10 1 1 O
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It is easy to see that the number of possible complement-free sets in-
creases exponentially when k increases. Imagine we write the elements of
X in two columns such that if y is in the first column, then 1 —y is in the
second column, but in the same row. Then we can get a complement-free
set Y by choosing exactly one element from each row, either from the first

1(2k
or from the second column. Therefore there exist 27(k) different sets Y.

4.2 Description of self-dual (22¢,2%~1 2K).codes
Let us consider the group algebra
Sy ZFo[x1, . X/ (6 — 1,25 — 1,02 — 1)
as a vector space with basis
{x’;lx’gz X | ke {o, 1}} . 42.1)

Applying (2.1.5) for p = 2 we have that the radical % ,, of this group
algebra is generated by the monomials X; = x; — 1 = x; + 1. The codes we
intend to study are monomial codes.

If p = 2, then applying the usual polynomial product on the monomi-
als X{qXé<2 .. Xkn (k; € {0,1}) leads to

XPXR X = (o 4+ DR (1) (1)

and the Hamming weight of this monomial in the basis (4.2.1) equals
m

[T(1+k;). We will denote by 2 the set of monomials corresponding to
i=1

the set of exponents from X.
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Denote the set with maximum number of pairwise orthogonal mono-
mials in 2~ by ¢ and their corresponding exponents in X by Y. The
cardinality of 2" is (2kk) and the cardinality of % is %(Zkk)

Example 4.5. Let <7 ,, be a group algebra (m > 2, see (4.2.1)). Define
the codes C; as ideals in < ,, generated by X; = x; — 1. These codes
are binary self-dual (2™,2"™1,2)-codes and they are self-dual since C =
CjL = (Xj). Further, this code is a direct sum of (2,1,2)-codes. The di-
mension of the code Cj is 2m=1 the same as the dimension of the radical
of the group algebra <5 y,—1. The minimal distance of Cj is d = 2. This
follows from the fact that the element X; = x; + 1 is included in the basis
of Cj. Thus, Cj is a self-dual (2,2™~1,2)-code.

In the case of m = 4, we get two known extremal (16,8,4)-codes
(listed in [P2]) and for m > 4 these codes are not extremal. A doubly
even (i.e. its minimum distance is divisible by 4) self-dual code is called
extremal, if we have for its minimum distance d = 4 [5;] + 4, where n
denotes the code length (see Definition 39 and Lemma 40 in [JK]).

To abbreviate the description of our codes, we will refer to the mono-
mial Xlkl ... X% by the m-tuple (ki,ka,...,ky) € {0,1,...,p—1}" of ex-
ponents.

Using Plotkin’s construction of RM -codes (see [M], Ch.13 §3, Theo-
rem 2) we obtain the following property of RM -codes.

Lemma 4.6. If m is even and m = 2k, then RM (k—1,m) = jﬁ;ll contains
a proper subspace which is isomorphic to RM (k—1,m—1).

Proof. Recall, that the set of monomials in the basis (2.1.5) of jé‘;l is
invariant under the permutations of the variables X;, i.e. the set of binary
m-tuples (ky,kp, ..., k) assigned to the basis (2.1.5) is invariant under the
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permutations of all elements of the symmetric group S,,. Take the basis
elements with k,, = 1. Then the monomials X{q ... X% of degree m can
be projected by

Y[ (k],kz,...,km_l,l) — (k],kz,...,km_l).

In this way we get a basis of 7% 2 &M (k—1,m—1). O

Example 4.7. For m = 6 the quotient space ]23 w/ j24 n has a basis with
(g) = 20 elements, where the binary 6-tuples corresponding to the coset

representative monomials (the set X ) are listed in pairs of complements:

6
3

and we have 22(3) =210 complement-free sets. For example the following

(1,1,1,0,0,0) (0,0,0,1,1,1)
(1,1,0,1,0,0) (0,0,1,0,1,1)
(1,1,0,0,1,0) (0,0,1,1,0,1)
(1,1,0,0,0,1) (0,0,1,1,1,0)
(1,0,1,1,0,0) (0,1,0,0,1,1)
(1,0,1,0,1,0) (0,1,0,1,0,1)
(1,0,1,0,0,1) (0,1,0,1,1,0)
(1,0,0,1,1,0) (0,1,1,0,0,1)
(1,0,0,1,0,1) (0,1,1,0,1,0)
(1,0,0,0,1,1) (0,1,1,1,0,0)
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complement-free set Y and the set %, each consisting of 10 elements:

Y v
(1,1,1,0,0,0), XiXoX3
(0,0,1,0,1,1), X3X5Xq
(1,1,0,0,1,0), XiX>Xs
(0,0,1,1,1,0), X3X4Xs
(1,0,1,1,0,0), XiX3Xs
(0,1,0,1,0,1), X>X4Xs
( )
( )
( )
( )

0,1,0,1,1,0), X>X4Xs
0,1,1,0,0,1), X>X3X¢
1,0,0,1,0,1), X;X4Xe
1,0,0,0,1,1), X;XsX¢

Theorem 4.8. Let C be a binary code with
RM (k—1,2k) C C C RM (k,2k)

and the following basis of the quotient C/RM (k— 1,2k)

m m
{HXZ"' + RM (k — 1,2k), where k; € {0,1} and Zki = k} . (422)
i=1 i=1

where the set of the exponent m-tuples (ky,ka, ... ky) is a maximal (with
2k

cardinality 22(%) ) complement-free subset of X. Then C forms a doubly

even self-dual (22%,22k=1 2K)_code.

Proof. For the group algebra % ,, suppose m is even, i.e. m = 2k for

some positive integer k. By the group algebra representation of RM -

codes and the definition of ¢ we have the relation ]fj;ll CcCccC Jzk e FOT

m = 2k the set 2" is the set of coset representatives of the quotient space

jzkm / ]Zk*n;l, 1.e. the set of monomials satisfying (2.1.6). Clearly, two mono-
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mials X' X52 .. X% and X]' X2 ... X/» are orthogonal, i.e. their product is
zero, if for some i : 1 < i < m we have k; = [;. Thus, the elements in the
radical corresponding to these monomials are orthogonal if their exponent
m-tuples belong to a complement-free set. The m-tuples (ki k;...ky)
have to be complement-free in Y, otherwise the corresponding mono-
mials in ¢ are not orthogonal. Clearly Y is a complement-free subset
of X (given by (4.2.1)) with cardinality 1(%) = (37). By definition,
Cc= jzkjnl U &) is a subspace of the radical % ,, of the group algebra

o generated by the union of 7511

b m and % . For the dimension of ¢ we

have

dim(¢) = dim(RM (k — 1,m)) + % (i") _

k—1
26\ 12k
1 - =221,
2 () +(0)

It follows that C is self-dual. Since a binary self-dual code contains

(4.2.3)

a word of weight 2 if and only if the generator matrix has two equal
columns, we have our self-dual code to be doubly even. Each monomial
in % has the same weight 2¥, that is the minimal distance of . Using the
identities for the monomials involved in the basis of our codes

xi(xj+1) = (5 +1)(xj+ 1)+ (x;+1) and (x;+1)> =0,

we easily obtain that ¢ (which is a subspace of % ;) is an ideal in the
group algebra .22 ,. O]

Theorem 4.9. Let C be the code defined in Theorem 4.8. Suppose that
ki =0 for somei:1 <i<mineach element of the subset Y, (i.e. the vari-

able X; is missing in each monomial of %'). Then we have the following



44

isomorphism
CERM(k—1,2k—1)DRM (k—1,2k—1).

Proof. The elements of % are of the form

m
XX = (o 4+ DR (o 1R (o + 15, where Y ki =k
i=1

and their weight is 2. Project the set of monomials with k; =0 in ¢ =
(]f;;ll U %) onto the monomials Xlkl,...,Xl.k_"’]l,Xﬁﬁ‘,...,X,ﬁm. The im-
age () of this projection is a self-dual RM (k — 1,2k — 1)-code with pa-
rameters (22K—1 22k=2 2k),

Now we consider all those elements of the basis of jzk.j;l which fulfill
ki=1forsomei € {1,...,m}. By Lemma 4.6 we know that the subspace
(> generated by these elements is isomorphic to RM (k — 1,2k —1). The
intersection of ¢ and (& is empty. Therefore C = (1 ® & and the state-

ment follows. []

Properties

In this section we mention briefly some properties of the codes con-
structed in Theorem 4.8 without any claim to completeness.

Remark 4.10. In particular, we get (16, 8,4) self-dual codes for m =4 in
Theorem 4.8. These codes are extremal doubly even codes. One can eas-
ily check the classification of binary self-dual codes listed in [P2]. There
are two cases:

1. If k; =0 for some i : 1 <i < m in each element of the set Y, then
we get the direct sum Eg & Eg, where Eg is the extended Hamming
code.



45

2. otherwise we get an indecomposable (16,8,4)-code (which is de-
noted by Ejg in [P2]).

These codes are formally self-dual. Both classes have the weight func-
tion z'0 +28z'2 + 19828 +28z* + 1, where atz" means there are o code-
words which have weight w.

Remark 4.11. Using the inclusion-exclusion principle a formula can be
given for the dimension of the RM (k + 1,m)-code (see for example in
[AK] Theorem 5.5). If p =2 and 0 < k < m, then we have

m 2k . L. m
dmc=3()+ L L)Y = £ H+30),
i=k+1 j=0 i=k+1

where i —2j > 0. This is the same quantity as in (4.2.3).

The codes constructed in this chapter are worth to be studied further.
Already for k = 2 we get two non-isomorphic codes with the same pa-
rameters. It would be interesting to determine all classes of codes up to
isomorphism for each arbitrary integer k and to determine their automor-
phism group. The code C in Theorem 4.8 is not affine-invariant, i.e. the
automorphism group does not contain the affine group AGL(m,2). For
m < 6 our computations show that the automorphism group of ¢ with
k; = 0 differs from the automorphism group of C with k; = 1 for some
1 <i < m, which implies that these codes are not isomorphic.
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Chapter 5

Monomial group codes with
visible bases

5.1 Linear codes with visible bases

In this chapter, we construct codes which are ideals in the radical of
the modular group algebra .27, ,, for arbitrary prime p. In some places we
want to point out that a code C is an ideal, then we use for generating sets
the () brackets. Let ¢ be a monomial code generated by some monomials
of the form

X]k‘Xé{2 . XEn where 0 <k <p—1.

Similar to the notation in the previous chapters we will refer to the mono-
mial X{‘ ‘Xé‘z ...X%n by the m-tuple of exponents

(kl,kz,...,km) S {0,1,...,p—1}m.

Definition 5.1. Let C be a linear code of length n over ), i.e. we consider
C as a subspace of the vector space F,. We say that a basis of C is a visible

basis if at least one member of the basis has the same Hamming weight
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as C.

It is known (Prop. 1.8 in [DL]) that for p = 2 every monomial code
has a visible basis.

Remark 5.2. This definition of codes with visible bases is different from
the definition of visible codes by Ward in [W2]. He defined that a set V
is visible, if each subspace generated by a non-empty subset of V has the
same weight as the generator set, i.e. the weight of at least one member
of the basis equals the weight of the generated code. Obviously, if a code
is visible in the sense of Ward, then it also has a visible basis.

The class of maximal monomial codes I, in the group algebra <7, ,,
were defined in [DL] as
m m
Li=(T]x%  T[ki+1) =d,0<ki<p|.
i=1 i=1
These codes have length p™. If p = 2, then these codes coincide with
the powers of J; ,,, i.€. they are Reed-Muller codes.

The maximal monomial code is uniquely defined. The minimum dis-
m
tance of I, is d = min{J] (k;+ 1)}, see [DL]. Thus, I, has a visible basis.

i=1
For p > 2 some of the maximal monomial codes have better parame-

ters than the GRM -codes. For example if p =5 and m = 3 the code I is
a (125,63,20) code, and 720 is a (125,53,20)-code.

We will denote the dimension of the ideal I; by dim(/;) and the dimen-
sion of the corresponding GRM code with the same minimum distance by

dim(GRM).

It is not too hard to compute the dimension of the codes /;. For p > d
we have the following relations of dim(1;) and dim(GRM ):
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Table 5.1: Relations of dim(;) and dim(GRM )

d=3 dim(l;) = dim(GRM)

d=4 dim(l;) = dim(GRM) + (%)

d=5 dim(l;) = dim(G&RM) + (7)) + (%) +m(m—1)

d=6 dim(l;) = dim(GRM) + é (") +m(m—1)+m(";")

Monomially equivalent codes were introduced by Drensky and Lakatos
in [DL] as follows:

Definition 5.3. Two codes are monomially equivalent if one code can be

obtained by permuting the variables X1, ..., X, of the other one.

Definition 5.4. A code generated by monomials is called monomially self-
equivalent if it is invariant under all permutations of the variables X; =
xi—1forl <i<m.

Remark 5.5. The maximal monomial codes are monomially self-
equivalent codes.

In the sequel we construct monomial codes in the group algebra 7, ,
by giving one visible basis for each of them.

Theorem 5.6. Let G, x be a monomial code generated by the set
m
By = {H(X,-)k" | Hki >k, where 0 <k;<p, 0<k<(p—1)"}.
i=1
Then B, is a visible basis of Gy k-

Proof. The proof is similar to the proof of Lemma 1.9 in [B], it goes by
induction on the numbers of direct factors in the elementary abelian group
G.
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For m = 1 the statement follows from Theorem 1.1 in [B]. In our case, the
statement of Theorem 1.1 in [B] says if ¢j; = (X'), where  <i<p—1,
then 8 =i+ 1. This 0 equals the minimum of the weights of all elements
from By ;. Thus By ; is a visible basis for (i ;. Suppose that the statement
is true for m = i and we prove it for the case m =i+ 1.

Let x be an arbitrary codeword in G, . Then X can be written in the
form

x= Y Ay k(1= DM (g — D, (5.1.1)
ki, skim

where Ay, .k

~shm

€ F.Ifeach 4,; =0 ora; =0forall j € {1,...,m}, then
Theorem 5.6 holds. Thus we may assume, that x contains terms with
Aa; # 0 and a; # 0 for some j € {1,...,m}. Let (x; — 1)/ be the lowest
power of the element (x,, — 1) in X.

Then we have

x = (o — 1) (Ly, + Ly 1 (om — 1)+ Ly 42 (i — 1)+ Ly e (o — 1)),
(5.1.2)

where 0 <7 < min(p—1,£), Lj € FH], by < j < ln+1, H= (x1) X

(x2) X -+ X (x—1). Since L; is an element of the radical of F[H], we can
write it in the form

le - Z ’}/j17j25~--7.jm71 (X] - l)Jl v (xm—] - l)jm71 7£ 0 R
Jifzsdnt (5.1.3)

(I1<ji<p-1).

Then we have
m—1 k
Hjiz = where 0 <k < (p—1)"
i=1 m

for each term in the equation of the right-hand side of (5.1.3). By the
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induction hypothesis there is a basis element (x; — 1)%1 ... (x,,_ — 1)k
ing, £ such that

S =wit((x1 — )M (2 — 1R (g — Dfn1) <wr (L),
where wt(y) denotes the Hamming weight of the codeword y € Gy -

Express L;, in the monomial basis of F[H], i.e.

_ - . il imfl
le - Z .ull,lz,...,lm_]xl t "xm—l'

i1yeeim—1

Thus for the element x in (5.1.2) we have

X = (d — 1)

1
| < Z 'uil?iz’m’imfl + ui(l 722““".)1171 (xm o 1) .. +‘Lli(1[;)i27""im71 (xm - 1)t> .

01502505 —1

i Im—1 __ ] o . i Im—1
.'xl o 'xm—l - ('xm - 1) " Z 1—‘11712-,“-7177171)61 o 'xm—l ?
0150250 0slm—1

where 17, ;.

seeeslm—1

€ F[(xy)]. By Theorem 1.1 of Berman [B], there exists an

element (x,, — 1)" such that r > [, and
Wt((xm - l)lm]‘—‘ilaiZw--vimfl) Z Wt('xm - l)r
It follows that

Wi (%) = vt (i — 1) = wt (o — 1) (1= D (2 = 1) (g — 1)),
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while

This completes the proof. O

Remark 5.7. The dimension of Gy can be calculated in the following
way. Let Py """ denote the number of permutations on m elements with
ri,...,r repititions. If k=1, -...- L, then

dim(Cch): Z Pr’;llp..,ri'

li<p—1
ll'“-'lmzk

5.2 Principal ideal code

The next theorem is a consequence of Corollary 3.3 in [MM], where
the "monomial-like" abelian code is a principal ideal of a modular groupring
over an arbitrary finite field of characteristic p. At the visibility we restrict
ourself to the group algebra 7, ,, with its radical 7, .

Theorem 5.8. Let p be an arbitrary prime. We fix values ay,...,a,, each
fulfilling 0 < a; < p, where i € {1,...,m}, and at least one of them is
nonzero. Then the principal ideal

Cay,oam = (X[ X532 X5

in 9, m determines a cyclic code. The set

m
B={[]x lai<ki<p, i=12,...,m}
i=1

is a visible basis of Cy,.....a,-
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Furthermore, Cy,...q, isa (p",(p—a1)-(p—a2)-...-(p—am),0)-code,

m
where 8 = [ (a;+1).
=1

1

Proof. Denote the ideal <X;lj ) = ((x; —1)%) in the ring F[x;]/ (x? —1)
for 1 < j<mby Cx;. Then Cy....q, 1s a tensor product C = (x, ® Cx, ®
-+~ ® (¥, (see [MM], Corollary 3.3 ), where Cx; = (X;j) (1< j<m)is
a cyclic code. Each code Cx; has a visible basis, which is the set

k;
{ij|aj <k <p}

with minimal distance a; + 1. By the theorem of Ward [W2], the tensor
product (y, ... 4, 1s visible. Thus, it has a visible basis. ]

Remark 5.9. The codes C,;, ..., are different from the GRM-codes. We
know that the GRM -codes coincide with the powers of the Jacobson rad-
ical ]kfor some 1 <k <m(p—1). We have

Carrnan Z 9 s k=m(p—1)anda;=p—1Vie{1,...,m}.

Corollary 5.10. Let p =2 and C be a (2™,2%,29)-code defined in The-
orem 5.8, where 0 < k < m. Then C is always self-orthogonal and it is
self-dual if and only if k =m — 1.

Proof. The difference of two arbitrary codewords has even weight (see
e.g. the generator matrix .# in the proof of Theorem 5.11). Thus all
codewords are orthogonal to each other. In the example of page 4 in
[HL2] it is shown that if Kk = m — 1, then C is self-dual and it is a direct
sum of (2,1,2)-codes. Further, the dimension of ¢ implies self-duality if
andonly ifk=m—1. O]
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5.3 Automorphism groups of principal ideal codes

In this part of the dissertation we will consider the codes defined in
Theorem 5.8 for p = 2. We will determine their automorphism groups.
In the following we will denote a generator matrix of the code C by ..
An automorphism of a linear code is a permutation of coordinates that
stabilizes the code. In other words, an automorphism of C is a permutation
of the columns of .Z, such that the code generated by the permuted
generator matrix coincides with C. The automorphisms of a code ¢ form
a group and this group is denoted by Aut(C). Let S,, denote the symmetric
group on n elements. It is well known that if C is a code of length v, then
Aut(C) is a subgroup of S,. Automorphism groups of binary codes were
determined by the combinatorial method we use for example in [P2]. The
author used the program packages GAP and MAGMA in order to show
some examples.

Theorem 5.11. Let p = 2 and m be an arbitrary positive integer. Let C
be the code defined in Theorem 5.8 and

C:(Xl"'Xt)7

where 1 <t < m. We will denote the dimension of C by A and its minimum
distance by &. Then C is a (2™,A,8)—code, where A =2""" and § =
2!. Then the automorphism group of C can be written as the following
semidirect product

Aut(C) = Sk xS,

where S% means Sg X ... x Sg and S; (for i = 0, 1) denotes the symmetric

A
group on i elements.

Remark 5.12. From the definition of the wreath product of permutation
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groups (see [KK], or [Cam] Sec. 1.10) follows Aut(C) = Sg 1Sy,

Before we prove Theorem 5.11 and Remark 5.12, let us consider an

example.

Example 5.13. Let m =4 and Ci 100 = (X1X2) . Then

X1X,
X1X2X3
‘%C =
X1 XXy
X1 X>X3X,
1 x1 X XiX2 X3 X|X3 XoX3 X|X2X3 X3X4  X1X3X4  X2X3X4  X|X0X3X4
———

o o o3 oy
1111 00 0 0 00 0 0 00 0 0
S——— S———

o o o3 oy
o1 11 00 0 0 00 0 0
S——— S————

oy [2%) a3 oy
1 1 1 1 0O 0 0 o 1 1 1 1 0O 0 0 o
S——— ——

o o o3 oy
111 1111 111 111
S——— S———

o o o3 oy

is a generator matrix of C11,0.0-

Here 6 =4 and A = 4. We can divide each row into 4 pieces of 4-
tuples, denote these by a1, 0y, 03, 0. Each 4-tuple either consists only of
1-s or only of 0-s. S4 acts on the coordinates of each 4-tuple and Sy acts
on the set {at, 0, 03,0 }. By Theorem 5.11 we have Aut(C) = S§ % Sa,
which can be easily verified by computation with some algebraic program
package like MAGMA or GAP. The construction of the generator matrix
M is also used in the proof of Theorem 5.11.
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Proof. Using the identity
xjli—1) = (=) — 1)+ (x; — 1) = X;X; + X;,

we can see that C is an ideal in <7, ,,. We construct the following matrix
M of size 21 x 2™ which is a generator matrix of the code C. The
rows of .#, are multiples of X;...X;. More precisely we choose each
subset of {X;;1,...,X,} and multiply the variables of these subsets with
the monomial X; ... X;.

X\ X,.. . X,
XiXo. . XX
XiXa.. X Xiin
X1 X2 X Xi 11 X142

XX ... X, Xom

Mo =
X1X2 .o .X[Xt+1Xm
X1X2 .. X[Xt+2Xm
X1 Xy X Xi 11 Xr+2Xm
X] X2 .o .X[Xt+]Xt+2 .o .Xm_QXm
XiXo . XeXe 1 X402 - Xim—2Xim—1Xm
Let x,...,x, be a basis of the elementary abelian 2-group G. We

write the elements of the rows of the binary matrix .# in the basis of G
in lexicographical order. The lexicographical order means that for b;,c; €
{0,1}, 1 <i < m we have

by b b Cc1.C2 C
X1 Xy Xy < XXy Xy = .

J

m
b_,-21*1 < Z Cjzjil.
1 =1

m
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Keeping in mind X; = x; — 1, we can now write down the matrix .Z
as the following binary matrix.
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Mo =
1 1 0 0o 0 0 0 0 0 0o 0 0 0 0
.. 1 1 10 0 0 0 0 0o 0 0 0 0
1 I 0 0 1 1 0 0 0 0o 0 0 0 0
1 1 1 1 1 1 0 0 0 0o 0 0 0 0
1 10 o 0 ... 0 1 1 0 0o 0 (U] 0
1 1 1 1 o ... 0 1 1 0 0o 0 0 0 0
1 10 0 1 1 1 1 0 0o 0 0 0 0
1 1 1 1 1 1 1 1 0 0o 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0o 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
———— SN——— ——— SN——— ——— SN———— N————

A O
That means G¢ is of the form A A for some binary matrix A of

1 0
size 21~ x 2"~ Thus .# is a tensor product of ( . ) and A.

We can see that in .# there is one row of weight 6 = 2/, there are
m —t rows of weight 21, (") rows with weight 22, etc. Finally we
have one row with weight 2. Thus .# has 2"~ rows.

Each row of .#, can be divided into &-tuples of 1-s and 0-s. The
coordinates of each of the §-tuples can be permuted by Sg and the number
of J-tuples in one row is A = 2. Furthermore, the J-tuples can be
permuted as J-tuples by all elements of S .

We still have to show that there are no other automorphisms of C. Let
us suppose that there exists y ¢ Sél xS, which is an automorphism of C.
That means y does not only act on the coordinates of the d-tuples or on
the set of -tuples (which has cardinality A). Thus y cuts apart at least
one of the &-tuples. Thus, if .# is the generator matrix of C, then the
code generated by .Z C"' is not identical to the code C, although they are
permutation equivalent.



59

Now we will show that st“ is normal in Aut(C). Let g € S’; and o €
Aut(C) be arbitrary. Then ¢ = (0y,...,0;,0u), where Oi,...,0; € S5
and o, € S, further g = (g1,...,8) ), where g1,...,84 € S5. We have

-1 -1 -1
0~ g0 = (0] g101,...,0; 8,01)%,

which means that Gi_]giG,' € S5 and o) acts on Gl_lglch...,cr/l_lg,lc,l
as permutation. Thus 6~ 'go € S%.

We also show that S is in general not normal in Aut(C). Let h € Sy,
and we take again ¢ € Aut((C) as previously. Further we will denote the
O-tuples by a,...ay. Then

-1 ~1 ~1 o
6 ho = (0] 0401,...,0, @) 0y)°%,

which means that o, permutes the Gi_locici. Since Gl._laici = Q; in gen-
eral, this element cannot always be expressed as a permutation of ¢, ..., .
Since S’g and S, are both subgroups of Aut(C), we have that the group
Aut(C) is an outer semidirect product of Sg and S . This completes the
proof. []

Example 5.14. We denote a cyclic group of two elements by C, and let C
be the code C = (X1). Then C is a (2",2"!,2)-code. We fix s := 2"~
thus Aut(C) = C5 1 S5, where C5 = Cr % ... X Cs.

N————

N
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Summary

In this dissertation we introduce some new results in the area of Algebraic
Coding Theory. Let p be a prime number and I a field of characteristic
p. If G is a finite abelian p-group, then [F|G] is a modular group algebra.
We use some well-known facts about the Jacobson radical of F[G], which
were proved by Jennings in [J]. Berman [B] proved that Reed-Muller
codes are powers of the radical of F[G] if G is elementary abelian and p =
2. Charpin proved the general case for arbitrary p. Landrock and Manz
showed in [LM] the connection between these results and the classical
result of Jennings related to the structure of the Jacobson radical of F[G],
where G is a finite p-group.

Berman gave an algorithm to determine the minimum distance of
codes which are radical powers. We use this algorithm in Chapter 3 to
construct self-dual codes with given distance.

We denote the Jacobson radical of F[G] by 7. If p is odd and G is
abelian, then the nilpotency index of 7 is odd. It follows that there is
no self-dual code which is a power of the radical. Naturally arises the
question of Drensky and Lakatos [DL]:

Problem 3.1 Let n be an arbitrary positive integer and d < [5]. Does there
exist an abelian 2-group G of order 2", such that some power of the Jacob-
son radical of the group algebra F5[G] is a self-dual (27,2"~!,29) —code?
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The first result of this dissertation is the construction of abelian 2-

groups which are solutions to Problem 3.1. The result is published in
[HL1].
Theorem 3.2 Let IF be a field of characteristic 2. Let n be an arbitrary
positive integer. Then for each integer d with 1 < d <[5 there exists an
abelian group G of order 2", such that there exists a power of 7(F[G])
which defines a self-dual (2",2"1,29)-code.

The proof of this theorem is constructive.

Reed-Muller codes play an important role in connection to our results,
so we introduce three convenient definitions in Chapter 2, but we use and
generalize the monomial representation of these well-known codes in the
Chapters 4 and 5.

If p=2 and G is elementary abelian, then the radical of F[G] has
a power which is a self-dual code if and only if G has odd rank. In
Chapter 4 we construct self-dual binary codes for even rank of G. These
codes are between two consecutive powers of the radical. We introduce
complement-free sets for the construction of these codes.

Let y be a binary m-tuple. We say that 1 —y is the complement m-tuple
of y, where 1 denotes the all-1 tuple (1,...,1). Let m = 2k and X be the
~—

m
set of all binary m-tuples with exactly k ‘0’-s and ‘1’-s. Further, let Y
be a subset of X such thatif y €Y, then 1 —y ¢ Y. Then Y is called a
complement-free set of binary m-tuples.

We prove the following theorem, which gives a construction of self-
dual (22%,2%%=1 2K)_codes.

Theorem 4.8 Let C be a binary code with

RM (k—1,2k) C € C RM (k, 2K)
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and the following basis of the quotient C/RM (k — 1,2k)

m m
{ Xiki + RM (k — 1,2k), where k; € {0,1} and Zk,- = k} , (5.3.1)
i=1 i=1
where the set of the exponent m-tuples (ky,kp, ... ky) is a maximal (with
2k
cardinality 22(%) ) complement-free subset of X. Then C forms a doubly
even self-dual (2°%,2%k=1 2K)_code.

Furthermore we prove that if there exists one element i € {1,...,m},
such that k; = 0 for each element of the maximal complement-free sub-
set, then the constructed self-dual (22%,2%=1 2K)_code is the direct sum
of two copies of the Reed-Muller code RM (k — 1,2k — 1). This is Theo-
rem 4.9 of this dissertation.

The monomial codes introduced in [DL] are ideals generated by mono-
mials in modular group algebras over elementary abelian p-groups. In
Chapter 5 we investigate monomial codes over an elementary abelian p-
group G.

The minimum distance of linear codes is very important for the error
correction capability. It is usually more difficult to determine the min-
imum distance than in Berman’s case, i.e. if the code is a power of the
radical in a modular group algebra. The simplest case is to determine the
minimal distance from its basis if there exists an element in the basis hav-
ing the weight equal to the minimum distance of the code. We introduce
the following group codes which have such a basis.

Theorem 5.6 Let G, x be a monomial code generated by the set

m
By = {[]1X)"% | [Tki = k. where 0 <ki < p, 0 <k < (p—1)"}.
i=1

Then By, i is a visible basis of Gy k-
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Theorem 5.8 Let p be an arbitrary prime. We fix values ay, ..., a;
each fulfilling 0 < a; < p and at least one of them is nonzero. Then the
principal ideal

Cay,am = (X[ X532 X5

in 9y m determines a cyclic code. The set

m

B={[]x |ai<ki<p, i=12,..,m}
i=1

is a visible basis of Cy,.... a,,

Furthermore, Cy,...q, isa (p",(p—a1)-(p—a2)-...- (p—am),0)-code,

m
where & = [ (a;+1).
i=1
The proof of Theorem 5.6 goes by induction on the numbers of direct
factors in the elementary abelian group G. For the proof of Theorem 5.8
we use the fact that ¢ can be regarded as a tensor product of smaller codes.

We also investigate the automorphism groups of the codes defined in
Theorem 5.6 and we prove the following theorem.

Theorem 5.11 Let p = 2 and m be an arbitrary positive integer. Let C
be the code defined in Theorem 5.8 and

C:(Xl"'Xt),

where 1 <t < m. We will denote the dimension of C by A and its minimum
distance by 8. Then C is a (2™,A,0)—code, where A =2""" and § =
2!. Then the automorphism group of C can be written as the following
semidirect product

Aut(C) = S% XSy,
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where S% means Sg X ... x Sg and S; (for i = 8, L) denotes the symmetric
~———
A

group on i elements.
Remark 5.12 From the definition of the wreath product of permutation
groups (see [KK], or [Cam] Sec. 1.10) it follows that Aut(C) = Sg 1S,

The proof of Theorem 5.11 is theoretical, we use a combinatorial
method which was introduced by Pless in [P2] in order to determine the
automorphism group of C.
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Osszefoglalé

Ebben a disszertdciéban moduléris csoportalgebrak radikdljaiban szerep-
16 idedlokat mint linedris kodokat vizsgalunk.

Legyen p egy primszam €s [ egy p-karakterisztikdju test, tovdbba
legyen G egy véges Abel p-csoport. Ekkor az F[G] csoportalgebra mo-
duléris. A dolgozatban a Jacobson radikalra vonatkoz6 Jennings [J] altal
bebizonyitott eredményeket hasznédljuk. Berman [B] mutatta meg, hogy
a Reed-Muller kédok éppen az F[G] radikdljanak hatvényai, ha G elemi
Abel és I = [F,. Charpin bebizonyitotta az dltaldnos esetet tetszdleges p-
re. Berman és Charpin eredményeit felhasznalva dolgozta ki Landrock
és Manz [LM] az F[G] Jacobson radikéljanak struktirdjat. Az elsd két
fejezetben a disszertdciohoz fontos eredményeket, féként a Reed-Muller
koédok leirdsat ismertetjiik.

Az F[G] csoportalgebra radikéljat 7-vel jeloljik. Ha p paratlan prim
€s G Abel csoport, akkor 7 nilpotencia foka paratlan. Ebbdl kovetkezik,
hogy pératlan p-re nincs 6ndudlis kéd, mely radikdlhatvanyként all eld.

A kovetkezd kérdést Drensky és Lakatos tette fel [DL]-ben:

3.1. Probléma Legyen n tetszSleges pozitiv egész szdm, és d < [3].
Létezik-e olyan G Abel 2-csoport, melynek rendje 2" tgy, hogy Fom[G]
Jacobson radikaljanak valamilyen hatvdnya meghatiroz egy (2",2"~129)-
koédot?
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Az elsé eredmény ebben a disszertdcidban olyan Abel 2-csoportok
konstrukcidja, melyek megolddsok a 3.1. Problémara. A harmadik fe-
jezetben a Berman [B] 4ltal megadott algoritmust az adott tdvolsagu On-
dualis kédok konstrukcidjdhoz haszndljuk. Ez az eredmény megjelent a
[HL1] publikéciéban.

3.2. Tétel Legyen I egy 2-karakterisztikdjii test. Ekkor minden n pozitiv
egész szdmhoz és 1 < d <[5 szdmhoz létezik olyan 2"-rendii G Abel
csoport, melyhez tartozé F[G] csoportalgebra J radikdljdnak valamely
hatvdnya egy ondudlis (2",2"~1,29)-kédot hatdroz meg.

A 3.2. Tétel bizonyitdsa konstruktiv.

A Reed-Muller kédok - mint a megfelel6 monomidlis csoportalgeb-
ra radikdlhatvdnyai - fontos szerepet jatszanak a disszertidcidban, ezért
bevezetiink harom jol ismert definiciét a masodik fejezetben. Az ered-
ményeinkkel kapcsolatosan a Reed-Muller kddok monomidlis reprezen-
tacidjat hasznaljuk a negyedik €s 6todik fejezetben.

Ha p = 2 és G elemi Abel csoport, akkor F[G] radikéljanak valamely
hatvanya akkor és csak akkor definidl ondudlis kédot, ha G rangja parat-
lan. A negyedik fejezetben ondudlis binaris kodokat konstrudlunk a radikal-
ban ha G rangja paros. Mivel a konstruélt kédok monomidlisak, a monomok-
ban szerepld kitevok jellemzéséhez bevezetjiik a komplemens-mentes hal-
maz fogalmat.

Legyen y egy bindris m-es. Azt mondjuk, hogy 1 —y az y komple-
mense, ahol 1 jeloli a tiszta 1-es m-es (1,...,1). Legyen m = 2k és X
———

m
legyen az a halmaz, mely az Osszes olyan m-esbdl dll, melyben pontosan
k darab ‘0’ és k darab ‘1’ van. Tovabba legyen Y egy olyan részhalmaza
X-nek, hogy hay € Y, akkor 1 —y ¢ Y. Ekkor Y-t bindris m-esekbdl dll6

komplemens-mentes halmaznak hivjuk.
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A kovetkezd tételt bizonyitjuk be, melyben konstrudlunk 6nduilis
(22k 22k=1 2k)_kédokat.

4.8. Tétel Legyen C egy bindris kod, melyre
RM (k—1,2k) C € C RM (k,2k)

és a C/RM (k — 1,2k) faktortér egy kivetkezd bdzisdval

e m
{HX,.’W + RM(k—1,2k), ahol ki € {0,1} és ¥ k; = k} ,

=1 i=1

ahol a kitevokbél dllo (ky,. .. ky) m-esek halmaza egy maximdlis (tehdt
2k

22(%) ele-mii) komplemens-mentes részhalmaza X -nek. Ekkor C egy dup-

ldn pdros ondudlis (27,221, 2%)-kéd.

A 4.9. Tételben bebizonyitjuk, hogy ha 1étezik olyan i € {1,...,m},
hogy k; = 0 a maximadlis komplemens-mentes halmaz minden elemében,
akkor a konstrudlt 6ndudlis (22F,2%~1 2%)-kéd két RM (k — 1,2k — 1)
Reed-Muller kéd direkt 6sszege.

Monomialis kédokat bevezették [DL]-ben, és ezek a kdédok idealok,
melyeket moduléris csoportalgebrak radikaljaiban 1év6 elemeknek megfe-
lel6 monomok generdlnak. Mi elemi Abel p-csoport feletti monomidlis
kédokat vizsgélunk az 6todik fejezetben.

Egy linedris kod minimélis tdvolsdga nagyon fontos - er6sen befolya-
solja a kéd hibajavitéképességét. Altaldnos esetben nehezebb a mini-
malis tdvolsdgot meghatdrozni, mint Berman esetében, tehat ha a kéd
egy hatvanya a csoportalgebra radikdljanak. A legegyszeriibb eset az,
amikor egy k6d minimadlis tdvolsagit meg lehet hatdrozni egy bazisabol,
tehat ha 1étezik olyan elem a bédzisban, melynek a silya ugyanannyi mint
a kéd minimalis tdvolsdga. Mi olyan csoportkddokat keresiink, melyek



70

rendelkeznek ilyen bazissal.

5.6. Tétel Legyen Gy i egy monomidlis kod, melyet a kévetkezd halmaz

generdl:

m

By = {[1(X)" | [Tki =k, ahol 0 < ki < p, 0 <k < (p—1)"}.
i=1

Ekkor By, ;. a Gk egy ldthato bazisa.
5.8. Tétel Legyen p tetszoleges prim. Legyenek ay,...,a fix szdmok,

melyekre 0 < a; < p és legaldbb az egyik a; nem nulla. Ekkor a kovetkezd
Jp.m-ben 1évd fbidedl

Cay,oam = (X[ X532 .. X5

hatdroz meg egy ciklikus kodot. A kovetkezo halmaz

m
B={[[Xflai<ki<p,i=12,..m}
i=1
a Cq, ..., kodnak egy ldthato bdzisa.
Tovdbbd ¢, ....a, €8y (P, (p—a1)-(p—a2)-...- (p—am),0)-kod, ahol
m

0= 'I_—[l(a[—f— 1)

Az 5.6. Tétel bizonyitdsdban teljes indukciét alkalmazunk a G elemi
Abel csoport direkt faktorainak szdma szerint.

Az 5.8. Tétel bizonyitdsdhoz Ward [W2] eredményét kihasznaljuk,
hogy C elddll ciklikus kédok tenzorszorzataként.

Ezutdn az 5.6. Tétel-ben konstrualt kédok automorfizmus csoportjait
vizsgaljuk és a kovetkezd tételt bizonyitjuk be.
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5.11. Tétel Legyen p =2 és m egy tetszdleges pozitiv egész szam. Legyen
C az 5.8. Tétel-ben definidlt kod és legyen

C:(Xl"'Xt)7

ahol 1 <t <m. A C dimenzidjdt A-val jeliljiik és 6-val a minimdlis tdvol-
sdgdt. Ekkor C egy (2™,A,8)—kdd, ahol A =2~ és & = 2. Ekkor C

automorfizmus csoportjdt felirhatjuk a kovetkezd szemidirekt szorzatként
_ A
Aut(C) = S5 xSy,

ahol Sé jelolje Sg x ... x Sg-t és S; (ha i = 0,A) jeloli az i-edfokii szim-
—_——

A
metrikus csoportot.

5.12. Megjegyzés A koszoriszorzat definiciojabdl (Isd. [KK], vagy [Cam]
Sec. 1.10) azt kapjuk, hogy Aut(C) = S5 1S,

Az 5.11. Tétel bizonyitasa elméleti. A C kod automorfizmus csoportja
meghatdrozdsahoz egy kombinatorikai médszert haszndlunk, melyet Pless
bevezetett [P2]-ben.
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