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Preface

Coding Theory is one of the youngest theory within the research ar-
eas of mathematics. Its start is considered to be the paper A mathematical
theory of communication by Shannon in 1948 [S]. Since then a lot of re-
searchers contributed to the theory and a very fast development has been
started. First mention of error-correcting codes goes hand in hand with
the invention of Reed-Muller codes in 1953 [MR]. Details on the devel-
opment of Coding Theory in the 1950’s can be found in [R]. In that time
mathematicians like Reed, Muller, Golay and Fano shaped the Theory of
Information and Coding fundamentally. Since then Coding Theory went
through a great development, see for example [MS] and [PH]. Error-
correcting codes build up an important class of codes. They have been
used in digital communication, e.g. on CD’s or other devices for saving
data and information. Coding Theory is a beautiful mathematical the-
ory. Some general surveys of linear codes are for example [AK] and [M].
Even nowadays it is an exciting area of applied mathematics with a lot
of open problems, see for example [JK], [DKS]. In the current thesis we
show some new results on linear codes and convey the theoretical back-
ground which is needed. We deal mainly with some problems on group
codes, i.e. on codes which are ideals of group algebras. We investigate
the properties of these codes related to the structure of modular group
algebras.
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Chapter 1

Introduction

The pictures are there, and you
just take them.

Robert Capa

Let p be a prime number and F be a finite field of characteristic p,
i.e. F = GF(pm) for some integer m. We will use the notation Fp for the
field of p elements. Some results in this thesis are concerning the binary
case, i.e. p= 2, but we will also introduce some results for arbitrary prime
numbers p. Further, if not stated otherwise, G is a finite abelian p-group.
Then the group algebra F[G] is modular and F[G] is a commutative ring
of characteristic p. The Jacobson radical is the intersection of all maxi-
mal ideals. The Jacobson radical was only introduced in 1945 in [Jac],
whereas we use some basic theorems of Jennings, which were published
in 1939 in [J]. Jennings then worked with the nilradical, which means
he considered the radical to be an ideal containing all nilpotent elements
of the group algebra. In our case the characteristic of F is p, where p is
prime and G is a finite p-group. Thus the group algebra F[G] is local,
Noetherian and Artinian. By Corollary 8.2 in [AM] the Jacobson radical
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and the nilradical coincide in this case. The codes being constructed in
this thesis are ideals of the underlying modular group algebra.

Definition 1.1. Let G be a finite group of order n, F an arbitrary field. We
denote the elements of G by g1, . . . ,gn. Then the group algebra F[G] is an
algebra over F consisting of all possible linear combinations of g1, . . . ,gn

with coefficients θi ∈ F. Thus

F[G] = {
n

∑
i=1

θigi, where θi ∈ F}.

If θi,ρ j,λ ∈ F and gi,g j ∈ G, then we have the following operations in
F[G] :

n

∑
i=1

θigi +
n

∑
i=1

ρigi =
n

∑
i=1

(θi +ρi)gi,

n

∑
i=1

θigi ·
n

∑
j=1

ρ jg j =
n

∑
i, j,k

gig j=gk

(θi ·ρ j)gk,

λ

n

∑
i=1

θigi =
n

∑
i=1

λθigi.

In this dissertation we only consider modular group algebras, i.e. F is
a finite field of characteristic p and G is a finite abelian p-group.

For an arbitrary integer ν we have that Fν is a vector space with the
usual addition and multiplication. A κ-dimensional subspace of Fν is
called linear code C of length ν and dimension κ. If F has characteristic
2, then C is called binary code. Let C be a linear code and x,y ∈ C two
codewords. The Hamming weight of x is the number of its non-zero co-
ordinates. The Hamming distance of x and y is the weight of x− y. The
Hamming distance (or weight) of a linear code C is the minimum of all
nonzero Hamming distances. A binary code is called doubly even if the



3

Hamming weight of all its codewords is divisible by 4. If C is a (ν ,κ,δ )-
code, where ν is the code length, κ its dimension as a vector space and
δ its minimum distance, then we know by the Singleton bound ([MS],
Theorem 11) that δ ≤ ν −κ + 1. We will use Greek letters convention-
ally in the general case. In many results the code length, dimension and
minimum distance occur to be powers of p. Then we denote the code as
(pn, pk, pd)-code. The dual code of a linear code C is denoted by C⊥ and
is defined by

C⊥ = {x ∈ Fν | 〈x,c〉= 0 ∀c ∈ C},

where 〈x,c〉= ∑
ν
i=1 xici denotes the usual scalar product. We say that C is

self-orthogonal if C ⊆ C⊥ and C is self-dual if C = C⊥.
Throughout the dissertation, we use the notation of Cn for the cyclic

group of order n and Sn for the symmetric group on a set with n elements.
A linear code C is called group code if it is an ideal in the group

algebra F[G]. If G is a p-group, then C is called p-code. If G is abelian,
then C is called abelian group code.

Our work is based on several classical results. Berman showed in
[B] the connection between Reed-Muller codes and the Jacobson radical
of a group algebra F[G], where G is an elementary abelian 2-group and
char(F) = 2. Later, Charpin proved in [C] this connection for the Gen-
eralized Reed-Muller codes and the Jacobson radical of a group algebra
F[G], where G is a finite p-group and char(F) = p. Jennings worked out
the structure of the radical of a group algebra F[G] in [J]. The relation be-
tween Jennings result and the results of Berman and Charpin was shown
by Landrock and Manz in [LM].

If we have two linear codes C1 and C2 of length ν , then we can com-
pare the two codes in the following sense. If C1 is a (ν ,κ1,δ1)-code and
C2 is a (ν ,κ2,δ2)-code, then we say that C1 has better parameters than C2

if κ1 < κ2 and δ1 = δ2, or if κ1 = κ2 and δ1 > δ2.
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In this dissertation we consider abelian p-codes. The general case
(when G is also allowed to be non-abelian) was treated by Ward in [W2].
If G is a p-group, then it is known (see [F] and [AK], p. 25-26) that the
best codes arise if G is elementary abelian. In this thesis we also construct
some radical p-codes, where G is not elementary abelian. It is clear that
these codes are mainly theoretically interesting, since they can not have
the “best” parameters, i.e. the dimension of these codes is not optimal
compared to their minimum distance.

This thesis is built up in the following way. In Chapter 2 we introduce
monomial codes and Reed-Muller codes. Although we work with Reed-
Muller codes as monomial codes, we also introduce two other definitions
because these may be more convenient to other equivalent definitions.

In Chapter 3 we construct codes which are powers of the radical of
modular group algebras over abelian 2-groups. In this chapter we answer
a question about self-dual binary abelian group codes with given distance
which was asked by Drensky and Lakatos in [DL].

Afterwards we give new classes of binary abelian group codes which
are self-dual in Chapter 4. These codes are abelian group codes over
elementary abelian 2-groups and they have similarly good parameters as
the Reed-Muller codes.

Finally, we introduce some other new classes of abelian group codes
with special properties and study the automorphism groups of some of
them in Chapter 5. The codes constructed here are ideals in modular
group algebras of elementary abelian p-groups for an arbitrary prime p.

The results of this thesis are published in the following papers:

• Hannusch, Lakatos [HL1], which is the basis for Chapter 3

• Hannusch, Lakatos [HL2], which is the basis for Chapter 4

• Hannusch [H], which is the basis for Chapter 5.



Chapter 2

Linear codes as ideals in group
algebras

2.1 Monomial codes

Jennings investigated in [J] the radical of F[G] when F is a field of
characteristic p and G is a p-group. In this case the group algebra F[G]

is not semi-simple (i.e. it can not be regarded as the direct sum of simple
submodules). We consider modular group algebras Fp[G], where Fp de-
notes the field of p elements. We denote the Jacobson radical of Fp[G]

by J or J (Fp[G]). Jennings gave a generating set of the radical and its
powers. Since we will use this generating set in many places of this the-
sis, we recall some main theorems of [J] here. The main results of this
dissertation are a contribution to the theory of abelian p-codes.

Theorem 2.1 (Theorem 1.2 in [J]). Let G be a group of order pm and
let Fp be the field of p elements. Then J is of rank pm− 1, which means
it can be generated by pm− 1 elements. Further it has a generating set
with all its elements of the form gi−1, where gi ∈ G, gi 6= 1. Further let

5
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∑θigi ∈ Fp[G], where θi ∈ Fp. Then ∑θigi ∈ J ⇔ ∑θi = 0.

Theorem 2.2 (Theorem 2.2 in [J]). Let M j = {g j ∈G|g j−1≡ 0 mod J j}.
We denote the nilpotency index of J by N, and we have

J ⊃ J 2 ⊃ . . .⊃ J N−1 ⊃ J N = 0.

Then the elements of M j can be written in the form 1+η j, where η j ∈ J j.

Further, the M j-s form a decreasing series of characteristic subgroups of
G:

G = M1 ⊇M2 ⊇ . . .⊇MN = 1.

The previous series is called the M-series or Jennings-series or Brauer-
Jennings-Zassenhaus-series and it is a chief series of G. The factor groups
Mi/Mi+1 are elementary abelian. Now, we are able to give generating sets
for the M j-s and afterwards a generating set for the powers of the radical.

Theorem 2.3 (Theorem 2.8 in [J]). A minimal generating set
{x j,1, . . . ,x j,d j} for M j modulo M j+1 can be taken as any maximal set of
elements

{x j,i ∈M j|(x j,i−1) are linearly independent modulo J j+1}.

Theorem 2.4 (Theorem 3.2 in [J]). Let 1≤ k ≤ N−1 and we denote for
fix k the following products

Bk
j = ∏

i, j
(x j,i−1)θ j,i,

where 0 ≤ θ j,i ≤ p− 1 and ∑i, j( jθ j,i) = k. Then the elements Bh
j with

h≥ k form a generating set of J k.

In Chapter 3 we will construct binary self-dual abelian group codes
of given length for all possible distances. These codes are powers of the
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radical of the corresponding modular group algebra F[G], where G is an
abelian p-group, but G is not necessarily elementary abelian. Whereas the
linear codes introduced in Chapter 4 and Chapter 5 are ideals of a group
algebra F[G], where G is an elementary abelian p-group of rank m. In
order to point out the role of p and m in the second case, we denote the
group algebra Fp[Cp× . . .×Cp︸ ︷︷ ︸

m

] by Ap,m.

Let G be an elementary abelian group with generating set {g1,g2, . . .gm}.
Considering the correspondence µ : g j 7→ x j, where 1 ≤ j ≤ m, we have
the following algebra isomorphism

Ap,m ∼= Fp[x1,x2, . . . ,xm]/(x
p
1 −1,xp

2 −1, . . . ,xp
m−1), (2.1.1)

where Fp[x1,x2, . . . ,xm] denotes the algebra of polynomials in m variables
with coefficients from Fp.

We will use the notation of Jp,m for the radical of Ap,m.

By Theorem 2.4 we know that the set of monomial functions (ki ∈
N∪{0}) {

m

∏
i=1

(xi−1)ki, where 0≤ ki < p

}
(2.1.2)

form a linear generating set of the radical Jp,m. Clearly the nilpotency
index of Jp,m (i.e. the smallest positive integer N, such that J N

p,m = 0) is
equal to m(p−1)+1.

Introducing the notation

Xi = xi−1, (1≤ i≤ m) (2.1.3)

(which will be used throughout the dissertation) we have the following
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isomorphism

Ap,m ∼= Fp[X1,X2, . . . ,Xm]/(X
p
1 ,X

p
2 , . . . ,X

p
m). (2.1.4)

The k-th power of the radical consists of m-variable (non-constant)
polynomials of degree at least k, where 0≤ k ≤ m(p−1).

J k
p,m =

〈
m

∏
i=1

(Xi)
ki |

m

∑
i=1

ki ≥ k, 0≤ ki < p

〉
. (2.1.5)

Such a basis was exploited by Jennings [J].
By (2.1.5) the quotient space J k

p,m/J k+1
p,m has a basis{

m

∏
i=1

Xki
i + J k+1

p,m | 0≤ ki < p,
m

∑
i=1

ki = k

}
. (2.1.6)

It is known (see [M]) that the dual code C⊥ of an ideal C in Ap,m

coincides with the annihilator of C∗, where C∗ is the image of C by the
involution ∗ defined on Ap,m by

∗ : g 7→ g−1 for all g ∈ G from Ap,m to itself. (2.1.7)

Berman introduced abelian group codes in [B] as ideals of modular
group algebras for abelian groups. Further he showed that the Reed-
Muller codes are special cases of abelian group codes. Now, we recall
some main definitions and theorems of [B].

Throughout the dissertation, let G be an abelian p-group, i.e. it is iso-
morphic to a direct product of cyclic groups of prime power order, e.g.

G = 〈g1〉× . . .×〈gm〉, (2.1.8)

where each 〈gi〉 has order pai with a1 ≥ . . .≥ am > 0. By (2.1.2) we have
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a generating set for the radical J of the form

(x1−1)k1 · · ·(xm−1)km , where k j ∈ {0,1, . . . , pa j −1}, j = 1, . . . ,m.

(2.1.9)
Because of (2.1.5) the powers J k of the radical have a generating set

consisting of all products of the form (2.1.9) with ∑k j ≥ k.
Landrock and Manz gave a thorough survey of linear codes as ideals

in group algebras in [LM].

Definition 2.5 ([DL]). Let C be an ideal of Ap,m. Then C is a subspace
of Jp,m. We say that C is a monomial code if it can be generated by some
monomials of the form

Xk1
1 Xk2

2 . . .Xkm
m , where 0≤ ki ≤ p−1.

Codes which are generated by a single monomial in the algebra of
polynomials corresponding to modular abelian group algebras are stud-
ied in [MM]. In Chapter 5 we investigate codes generated by a single
monomial if G is an elementary abelian p-group.

2.2 Reed-Muller codes

2.2.1 Definition by Boolean functions

First, we introduce Reed-Muller codes (in the sequel denoted by RM -
codes) as vector spaces over F2. This definition by Boolean functions
can be found for example in ([MS], Chapter 13). Let B = {0,1} and
m ≥ 0 an integer. A Boolean function is a function which maps Bm to
B. Thus any binary sequence of length 2m can be regarded as a Boolean
function f (x1, . . . ,xm) on m variables (which maps from Fm

2 to F2). The
basic representation of f is given by the output columns of its truth table
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( f0, . . . , f2m−1), i.e. its a binary string of length 2m. If 0≤ i≤ 2m−1 and
i=∑

m−1
k=0 ik+12k, then fi = f (i1, . . . , im). Operations of these strings are the

following. Addition is defined coordinatewise, as used in the space of Fm
2

and multiplication is defined as the logical conjunction (“and”: ∧), again
coordinatewise. There are two constant Boolean functions: 0 = (0, . . . ,0)
and 1 = (1, . . . ,1).

Now, we define vi to be the coordinate function which maps each el-
ement of Fm

2 into the m− i+1-th coordinate of (i1, . . . , im). For example,
we have v1 = (0, . . .0︸ ︷︷ ︸

2m−1

,1, . . .1︸ ︷︷ ︸
2m−1

) and vm = (0,1,0,1, . . . ,0,1).

Example 2.6. Let m = 3 and we represent the integers i from 0 to 23−1
as binary strings. Then with the notations above we have


i 0 1 2 3 4 5 6 7

v1 0 0 0 0 1 1 1 1
v2 0 0 1 1 0 0 1 1
v3 0 1 0 1 0 1 0 1


Definition 2.7. The linear space generated by the Boolean functions f : Fm

2 →
F2 of degree at most r are called Reed-Muller codes of degree r, where
0≤ r ≤ m and their length is n = 2m, thus

RM (r,m) = {v j1
1 . . .v jm

m | j1 + . . .+ jm ≤ r},

where j1, . . . , jm ∈ F2.

By combinatorial computations, we can get the following properties
of Reed-Muller codes.

1. dim(RM (r,m)) =
(m

0

)
+
(m

1

)
+ · · ·+

(m
r

)
2. If 1≤ r ≤ s≤ m, then RM (r,m)⊆ RM (s,m)
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3. For each m≥ 1 and RM (r,m)⊥ = RM (m− r−1,m), where
RM (r,m)⊥ denotes the dual space of RM (r,m).

Example 2.8. We determine generator matrices for the Reed-Muller
codes RM (k,4) for k ∈ {0, . . . ,4}. First, we define the following matrices
Mk.

M0 =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
)
=
(

v0

)
,

M1 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

=


v1

v2

v3

v4

 ,

M2 =



0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


=



v1v2

v1v3

v1v4

v2v3

v2v4

v3v4


,

M3 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

=


v1v2v3

v1v2v4

v1v3v4

v2v3v4

 ,

and

M4 =
(

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
)
=
(

v1v2v3v4

)
.

Now we can construct generator matrices for the following Reed-Muller codes

from the rows of the matrices Mk.
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RM (0,4) =
(

M0

)
, RM (1,4) =

(
M0

M1

)
, RM (2,4) =

 M0

M1

M2,

 ,

RM (3,4) =


M0

M1

M2

M3

 and RM (4,4) =


M0

M1

M2

M3

M4

 .

2.2.2 Reed-Muller codes as extended cyclic codes

A linear code C is cyclic, if for each codeword (c0,c1, . . . ,cν−1) ∈ C
we have (c1, . . . ,cν−1,c0) ∈ C . We get the extended code of C by adding
a parity bit. It was shown by Kasami, Lin and Peterson in [KLP1] that all
Reed-Muller codes can be regarded as extended cyclic codes. They used
an original proof of Zierler [Z] that the first order punctured Reed-Muller
codes are cyclic. Precisely, dropping a digit from a Reed-Muller code
and reordering its coordinates will lead to a cyclic code. Considering
Reed-Muller codes as extended cyclic codes Kasami, Lin and Peterson
introduced a new generalization of these codes over Fp, where p can be
any prime number. They named these codes Generalized Reed-Muller
codes - shortly GRM -codes, which is still the usual notation. Later, Del-
sarte, Goethals and MacWilliams gave a formalization of Kasami’s, Lin’s
and Peterson’s approach and they collected more results on GRM -codes,
see [DGM] for more details. In this section we follow the approach of
RM -codes and GRM -codes as it can be found in [KLP1] and [KLP2]. We
give the generator polynomial of punctured Reed-Muller codes and their
generalizations and we describe Kasami’s, Lin’s and Peterson’s charac-
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terization by Assmus and Key ([AK], Section 4.3).

Let p be a prime number, Fp the field of p elements and F = Fpm for
some m ∈ N. Let F? = F\{0} be the multiplicative group of F.

Let α be a primitive element of F, then α ∈ F? is a generator of the
multiplicative group of F.

Set n = pm−1, then we have F= {0,1,α, . . . ,αn−1}.

It is well known that all elements of F can be expressed as linear com-
binations of 1,α, . . . ,αm−1 with coefficients in Fp. Thus

α
j =

m−1

∑
i=0

ci, jα
i,

where ci, j ∈ Fp, 0≤ j≤ pm−2 and 0≤ i≤m−1. Then we can construct
the following matrix

W =


1 1 . . . 1

c0,0 c0,1 . . . c0,n−1

c1,0 c1,1 . . . c1,n−1
...

cm−1,0 cm−1,1 . . . cm−1,n−1

=


1

w1

w2
...

wm

 .

The vector product of two vectors is defined (as in Section 2.2.1) by
the binary operation “and” componentwise. Now, we construct a matrix
Wr for exponents kλ , where 0 ≤ kλ ≤ p− 1 and ∑

m−1
λ=0 kλ ≤ r in the fol-

lowing way:
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Wr =


1

w1

w2
...

wk0
1 wk1

2 . . .wkm−1
m

 .

In the binary case we can extend the row vectors of Wr by a parity bit.
We will add the parity bit in the last column, and we denote this extended
matrix by W ?

r . The linear codes generated by W ?
r will be permutation

equivalent to the linear codes which were described in Section 2.2.1.

For arbitrary p, the extended code generated by W ?
r is called prim-

itive Generalized Reed-Muller code of order r, denoted GRM -code. Its
dual code is generated by Wt , where t = m− r− 1, i.e. the dual code of
GRM (m(p−1)− r−1,m) is GRM (r,m).

The code generated by Wr is called punctured Generalized Reed-Muller
code. This code is cyclic which is proved in the Propositions 4.8 and 4.9
in [AK]. For our purposes we show the construction of RM (2,4) as ex-
tended cyclic code in the following example.

Example 2.9. Let m = 4 and F= GF(24) = F2/(x4 + x+1), where α is
a primitive element of the multiplicative group of F. Further we fix r = 2.
Then we have


w1

w2

w3

w4

=
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
1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
α 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
α2 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
α3 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1



Now, we can construct W2 and extend it by a parity bit in the last
column. We obtain

W ?
2 =



1
w1

w2

w3

w4

w1w2

w1w3

w1w4

w2w3

w2w4

w3w4



=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0



.

The linear code generated by W ?
2 is permutation equivalent to the

code
RM (2,4). It can be easily verified that applying the permutation

(1,9,11,15,10,6,7,4,2,5,13,16)(8,14,12)

on the columns of W ?
2 leads to the same generator matrix of RM (2,4) as

given in Example 2.8.

More results on the generator polynomial, on the minimum weight
of GRM -codes and on the automorphism groups of GRM -codes can be
found in [KLP1].
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2.2.3 Reed-Muller codes as monomial codes

Reed-Muller codes are binary codes, thus p = 2. With the notations in-
troduced in Section 2.1, we have that A2,m is the underlying group algebra
and J2,m is its radical. The powers of J2,m are monomial codes and the k-th
power of J2,m coincides with the Reed-Muller code RM (m−k,m), which
was shown in [B]. Thus

J k
2,m = RM (m− k,m) =

〈
m

∏
i=1

Xki
i |

m

∑
i=1

ki ≥ k,ki ∈ {0,1}

〉
.

Equivalence of all three definitions

The three introduced definitions of Reed-Muller codes are equivalent.
This can be shown by a one-to-one correspondence between:

coordinate functions↔ powers of primitive element of F2m ↔
monomials over F2

The bijection between the first two is trivial, since the entries of co-
ordinate functions and the powers of primitive elements differ only in a
permutation of entries.

Let ϕ be a map (not necessarily a homomorphism) from Fm
2 to F2[G],

where G = 〈x1〉× . . .×〈xm〉. With the notation introduced in (2.1.3) we
define

ϕ :

v0 7→ ∏
m
i=1 Xki

i ki = 1
v1 7→ ∏

m
i=1 Xki

i k1 = 0,ki = 1(i 6= 1)
...

vm 7→ ∏
m
i=1 Xki

i km = 0,k j = 1( j 6= m)

The coordinatewise multiplication of the elements of J2,m can be writ-
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ten in the following way:

Xa1
1 Xa2

2 . . .Xam
m ·X

b1
1 Xb2

2 . . .Xbm
m =

m

∏
i=1

Xci
i , where ci = ai∧bi.

It can be easily checked that ϕ is bijective.
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Chapter 3

Self-dual codes with given
distance

3.1 Motivation

In Chapter 2 we summarized how the vectorspace of a modular group
algebra can be associated to a linear code. So it seems natural to ask ques-
tions about these codes and their properties in general. Berman investi-
gated the minimum distance of abelian group codes which are powers of
the radical of modular group algebras in [B]. He gave an algorithm which
enables us to find the minimum distance of a linear code obtained from
such a radical power. One could ask which minimum distances can occur
in abelian group codes. Self-dual codes are a type of codes which are
combinatorically well applicable. It turns out that a power of the Jacob-
son radical of a modular group algebra over an abelian p-group can only
be self-dual if p = 2. The following problem is connected to this question
and it was published by Drensky and Lakatos in [DL].

Problem 3.1 ([DL], Problem 2.6). Let n be an arbitrary positive integer

19
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and d ≤ dn
2e. Does there exist an abelian 2-group G of order 2n, such

that some power of the Jacobson radical of the group algebra F2[G] is a
self-dual (2n,2n−1,2d)−code?

The main theorem of this section is the following, which is published
in [HL1].

Theorem 3.2 ([HL1]). Let F be a field of characteristic 2. Let n be an
arbitrary positive integer. Then for each integer d with 1≤ d ≤ dn

2e there
exists an abelian group G of order 2n, such that there exists a power of
J (F[G]) which defines a self-dual (2n,2n−1,2d)-code.

The proof is constructive. The main tool is Berman’s result for the
minimum distance of codes which are powers of the radical (see [B]). We
explain the algorithm of Berman in Section 3.2.

3.2 Minimum distance of abelian group codes (Berman’s
algorithm)

Let G be an abelian p-group of the form (2.1.8). Further let F be a
finite field of characteristic p, F[G] its group algebra and J its Jacobson
radical. If the group is

G =Cpa1 × . . .×Cpam ,

then the nilpotency index of J is pa1 + . . .+ pam−m+1 = N ([B]). There-
fore it is clear that if p is odd, then N is odd. The dual code of J k is J N−k.

Thus a power of the Jacobson radical can only be a self-dual code if p= 2.
Further, for each possible group G the only power of J which will define
a self-dual code is J

N
2 .



21

So we use Berman’s algorithm in the case p = 2. For our purposes it
is enough to introduce the algorithm for abelian 2-groups G of the form

G =Cs1
2a1 ×Cs2

22×Cs3
2 ,

where a1 > 0, and s1,s2,s3 are non-negative integers.

Theorem 3.3 ([B]). We define two sequences of integersla1 = 0, la1−1 = s1, . . . , l2 = s1, l1 = s1 + s2, l0 = s1 + s2 + s3;

mi = 2ili, where a1 ≥ i≥ 0.
(3.2.1)

After that let r be the unique positive integer with 0≤ r≤ a1−1 fulfilling
the following condition:

ma1−1 +ma1−2 + . . .+ma1−r ≤
N
2
< ma1−1 + . . .+ma1−r +ma1−r−1

(3.2.2)
Thus the nilpotency index of J can be also given by

N = s12a1 + . . .+ sm2am− (s1 + . . .sm)+1 = ma1 + . . .+m0 +1 (3.2.3)

If N is even and N = 2 j for some integer j, then the minimum distance of
the j-th power of J is 2d, where

d = la1 + . . .+ la1−r +

[
j− (ma1−1 + . . .+ma1−r)+2a1−r−1−1

2a1−r−1

]
.

(3.2.4)

3.3 Construction of suitable 2-groups

We want to find a way for the construction of G, such that if we change
its parameters slightly, then the minimum distance of the linear self-dual



22

code defined by J j will also change only slightly. Recall that 1≤ d ≤dn
2e.

It is easy to find such groups for d close to the lower and to the upper
bound. In contrast, it is not easy to find a group G such that the minimum
distance of J j is near to n

4 . Finally it turned out that the following con-
struction of G leads us to our aim and we achieve a code with minimum
distance 2d for all integers d between 1 and dn

2e. The group G is the direct
product of cyclic subgroups which are of three different orders:

G =Cs1
2a1 ×Cs2

22×Cs3
2 , (3.3.1)

that is

n = s1a1 +2s2 + s3; s1,s2,s3 ≥ 0.

In the sequel, the largest integer not exceeding the number a ∈ R is
denoted by [a]. In the sequel F is a field of characteristic 2 and G is an
abelian 2-group of order 2n with decomposition (3.3.1). Set

N = s1(2a1−1)+3s2 + s3 +1 and j =
N
2
. (3.3.2)

It can be easily verified that N is the nilpotency index of F[G], for G as in
(3.3.1). We assume that N is even. Hence j is an integer.

The two integer sequences in Berman’s theorem have the formla1 = 0, la1−1 = s1, . . . , l2 = s1, l1 = s1 + s2, l0 = s1 + s2 + s3,

mi = 2ili for a1 ≥ i≥ 0.
(3.3.3)
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By (3.2.2) we get that

r = 0 ⇐⇒ 0 < j < s12a1−1,

r = 1 ⇐⇒ s1 ·2a1−1 ≤ j < s1 · (2a1−1 +2a1−2),
...

...
r = a1−1 ⇐⇒ s12a1 +2s2−2s1 ≤ j,

(3.3.4)

and the exponent d of Hamming distance is given by (3.2.4) (with the
sequences (3.3.3)).

It was difficult to find direct products of cyclic groups for fixed n such
that changing the cyclic groups slightly, the value of d would change only
by 1. We will see that our construction of G makes it possible to follow
the values 1 ≤ d ≤ dn

2e divided into four intervals - applying different
changes of parameters in each of them.

3.4 Auxiliary results

In this section we prove some lemmas which will be needed in the
proof of Theorem 3.2. Throughout this chapter we assume that n= a1s1+

2s2 + s3.

Lemma 3.4. Let N = s1(2a1−1)+3s2 + s3 +1 and we assume that N is
even. The congruence

n≡ s2 (mod 2) (3.4.1)

holds if and only if a1 is even and s1 is odd.

Proof. We have

n = a1s1 +2s2 + s3 ≡ a1s1 + s3 (mod 2)
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and as a1 > 0 we have

0≡ N = s1(2a1−1)+3s2 + s3 +1≡−s1− s2 + s3 +1 (mod 2).

Thus
s3 ≡ s1 + s2−1 (mod 2),

n≡ a1s1 + s3 (mod 2)≡ (a1 +1)s1 + s2−1 (mod 2)

1. If a1 is even, then (a1 + 1)s1 ≡ s1 (mod 2), n ≡ s2 + (s1 − 1)
(mod 2) which shows that (3.4.1) holds if and only if s1 is odd.

2. If a1 is odd, then (a1 + 1)s1 ≡ 0 (mod 2), n ≡ s2− 1 (mod 2),
hence (3.4.1) cannot hold.

Lemma 3.5. Suppose a1 is fixed and choose s2 = 0 or s2 = 1. Let s′1 =

s1 +1 and choose s′2 = 0 or s′2 = 1 so that n≡ s2 if and only if a1 is even
and s′1 is odd. Let s′3 = n−a1s′1−2s′2, j is given by (3.3.2)
and

j′ =
s′1(2

a1−1)+3s′2 + s′3 +1
2

.

Then

j′− j = 2a1−1− a1 +h
2

, where h =


1, if a1 is odd

2, if a1 and n+ s1 are even

0, if a1 is even, n+ s1 is odd.
(3.4.2)

Proof. According to Lemma 3.4 by the parities of n,a1,s1, (i.e. s2 = 0
if n,a1 are even s1 is odd, or if n is odd and either a1 is odd or s1 is
even, and s2 = 1 otherwise). By Lemma 3.4 for odd a1 we have n 6≡
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s2, n 6≡ s′2 (mod 2), thus s′2 = s2. For even a1 we have either n ≡ s2, n 6≡
s′2 (mod 2) or n 6≡ s2, n≡ s′2 (mod 2) (as the parities of s1,s′1 are different).
Hence s2 6= s′2, more precisely s2 = 0, s′2 = 1 if n+ s1 is odd and s2 =

1,s′2 = 0 if n+ s1 is even. Therefore

j′− j =
2a1−a1−1+ s′2− s2 +1

2
= 2a1−1−

a1 + s2− s′2 +1
2

and with h = s2− s′2 +1 we get (3.4.2).

Lemma 3.6. If r = a1−1, then j+d = n+1.

Proof. If r = a1−1 then using (3.2.4) and (3.2.1)

d = s1(a1−1)+ s2 + j− s1(2a1−2)−2s2.

Hence, using (3.3.2)

d + j = s1(1+a1−2a1)− s2 +2 j = s1a1 +2s2 + s3 +1 = n+1.

In the next Lemma we choose some particular values for r and a1 and
increase either s1 by 1 or s2 by 2, keeping n fixed. We study how this
change influences the value of d.

Lemma 3.7. (a) Let r = 2, a1 = 3 and s1 be given. Increasing s2 by 2 (if
this is possible) the value of d decreases by 1.

(b) Let r = 2, a1 = 4 and s1 be given. Increasing s2 by 2 (if this is possi-
ble) the value of d increases at most by 1.

(c) Let r = 1, a1 > 3 be given and choose s2 = 0 or s2 = 1 according
to Lemma 3.4 by the parities of n,a1,s1. Increasing s1 by 1 (if this is
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possible) i.e. s′1 = s1 +1 s′2 = 0 or s′2 = 1 according to Lemma 3.4 by
the parities of n,a1,s1. Denote the values of j and d corresponding to
s′1,s

′
2 by j′ and d′ respectively. Then either d′ = d or d′ = d +1.

(d) Let r = 0, a1 > 3 be given and choose s2 = 0 or s2 = 1 according
to Lemma 3.4 by the parities of n,a1,s1. Increasing s1 by 1 (if this is
possible) i.e. s′1 = s1 +1 s′2 = 0 or s′2 = 1 according to Lemma 3.4 by
the parities of n,a1,s1. Then (using the notations of c) either d′ = d
or d′ = d +1.

Proof. (a) If s2 is increased by 2 then s3 has to decrease by 4 and by
(3.3.2) the value of j increases by 1. Since r = a1−1 by Lemma 3.6
d = n− j+1. Therefore the increase of j by 1 results the decrease of
d by 1.

(b) We have n = 4s1 +2s2 + s3 and by (3.2.1) m3 = 8s1, m2 = 4s1,m1 =

2s1 +2s2. From (3.3.4) for r = 2 we have

12s1 ≤ j < 14s1 +2s2.

Substituting j by (3.3.2) here and rearranging we get

13s1− s2−1≤ n < 17s1 +3s2−1.

By (3.2.4) using again (3.3.2) for j we get

d = 2s1 +

[
j−12s1 +1

2

]
=

[
−s1 +3s2 + s3 +3

4

]
. (3.4.3)

We see that increasing s2 by 2 the value of s3 has to decrease by 4,
hence the numerator of the last fraction increases by 2 therefore either
d remains unchanged or it increases by 1.
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(c) As r = 1 we have by (3.2.4)

d = s1 +

[
j− s12a1−1 +2a1−2−1

2a1−2

]
,

d′ = s′1 +1+
[

j′− s′12a1−1 +2a1−2−1
2a1−2

]
.

(3.4.4)

By s′1 = s1 +1 and by (3.4.2) of Lemma 3.5 we can rewrite d′ as

d′ = s1 +1+
[

j+2a1−1− a1+h
2 −(s1+1)2a1−1+2a1−2−1

2a1−2

]
=

= s1 +
[

j−s12a1−1+2a1−2−1
2a1−2 +

(
1− a1+h

2a1−1

)]
≤ d +1,

since for a1 > 3 we have 0 < a1+h
2a1−2 ≤ a1+2

2a1−2 < 1, therefore

0 < 1− a1+h
2a1−1 < 1.

(d) As r = 0 by (3.2.4) we have

d =

[
j+2a1−1−1

2a1−1

]
, d′ =

[
j′+2a1−1−1

2a1−1

]
. (3.4.5)

By s′1 = s1 +1 and by (3.4.2) of Lemma 3.5 we can rewrite d′ as

d′ =
[

j+2a1−1−1
2a1−1 +

(
1− a1+h

2a1

)]
≤ d +1,

since, similarly to the proof of (c), 0 < 1− a1+h
2a1 < 1.

3.5 Proof of Theorem 3.2

The main idea of the proof is to fix the values of n, a1, r and s1 or s2.

Then we increase (by the smallest possible steps) the value of s1 or s2.
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We consider only those situations, when the corresponding value of d is
increasing or decreasing by at most 1.

I) G for
[n

4

]
+ t +1≤ d ≤

[n+1
2

]
, where t = 1 if n≡ 3,6 (mod 8), and

t = 0 otherwise

The largest possible distances can be easily constructed by (3.2.2), (3.2.3)
and (3.2.4).
If n is even and G =C4×C2×·· ·×C2, then j = n+2

2 , and d = n
2 .

If n is odd and G = C2 ×C2 × ·· · ×C2 elementary abelian then j = d =
n+1

2 .

Let a1 = 3, a2 = 2, a3 = 1, r = 2 and s2 = 0 or s2 = 2 if n is odd, s2 = 1
and s2 = 3 if n is even.

In this case we have r = a1− 1 and by Lemma 3.6, d = n+ 1− j,
hence from the value of j we can determine d. By (3.3.2) if a1 = 3 and
s1 are fixed and we increase s2 by 2 then the value of j is increasing by
1. We can use Lemma 3.7/(a) and get all consecutive values of d in the
interval

[[n
4

]
+ t +1,

[n+1
2

]]
. We have to check the possible values of s2

for given s1 by Lemma 3.7/(a), when r = 2 holds.
By Lemma 3.5 if s′1 = s1 +1 and s2 = 0 or s2 = 1, then

j′− j = 23−1− a1 +1
2

= 2.

Thus, for given s1 it is enough to check the value of j for the two smallest
possible values of s2. Accordingly, we consider the value of j for each
s1 only if s2 = 0,2 or s2 = 1,3, depending on the parity of n (by Lemma
3.4).

Now with (3.3.2) and s3 = n−3s1−2s2, we have

j =
7s1 +3s2 + s3 +1

2
=

4s1 + s2 +n+1
2

. (3.5.1)
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By (3.3.4) (since now r = a1−1) we get

6s1 +2s2 ≤ j = 4s1+s2+n+1
2

or 8s1 +3s2−1≤ n, i.e.

s1 ≤
n−3s2 +1

8
. (3.5.2)

If s1 and s2 satisfy the condition (3.5.2), then we have by Lemma 3.6

d = n− j+1 =
n−4s1− s2 +1

2
. (3.5.3)

Thus, for each s1 satisfying (3.5.2) and for s2 = 0,2 or s2 = 1,3 we
apply Lemma 3.7/(a) and see that d decreases at most by 1. If s1 increases,
then j increases and d decreases.

If n is odd, then for s2 = 0 and s2 = 2 from the inequality (3.5.2) it
follows that s1 ≤ n+1

8 and s1 ≤ n−5
8 . For even n with the values s2 = 1

and s2 = 3 we get the conditions s1 ≤ n−2
8 and s1 ≤ n−8

8 similarly. The
smallest s1 with r = 2 is s1 = 0. If n is odd, then for s2 = 0 we have
j = n+1

2 by (3.5.1) and d = n+1
2 . If n is even, then s2 = 1 and j = n+2

2 and
d = n+1− n+2

2 = n
2 .

If s′1 is the maximal value of s1 and s2 = 0 or s2 = 1 satisfy (3.5.2),
then for each s1 < s′1 and for the smallest possible value of s2 (s′2 = 0,2
or s′2 = 1,3) the condition (3.5.2) is also satisfied.

We list the precise maximum value of j (denoted by j′) and by (3.5.2)
the minimum value of d (denoted by d′) in Table 3.1. Thus, we obtain
each d on the interval

[
[n

2 ],d
′] .
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Table 3.1: Parameters defining the smallest values of d

n s′1 s′2 = 0 s′2 = 2 s′2 = 1 s′2 = 3 s′2 j′ d′

8k n
8 −1 s′1 =

n−8
8 3 3

4 n n
4 +1

8k+1 n−1
8 s′1 <

n+1
8 0 3n+1

4

[ n
4

]
+1

8k+2 n−2
8 s′1 =

n−2
8 1 3n+2

4

[ n
4

]
+1

8k+3 n−3
8 s′1 <

n+1
8 0 3n−3

4

[ n
4

]
+2

8k+4 n−4
8 s′1 <

n+1
8 1 3n

4

[ n
4

]
+1

8k+5 n−5
8 s′1 =

n−5
8 2 3n+1

4

[ n
4

]
+1

8k+6 n−6
8 s′1 <

n−2
8 1 3n−2

4

[ n
4

]
+2

8k+7 n+1
8 s′1 =

n+1
8 0 3n+3

4

[ n
4

]
+1

II) G for 1≤ d ≤
[n+1

5

]
Let r = 1 and 3< a1≤ [log2(n)]+1 as well as s2 = 0 or s2 = 1, depending
on the parity of n.

If G is a cyclic group of order 2n and F is a field with characteristic 2,
then

a1 = n, s1 = 1, s2 = s3 = 0, mn−1 = j = 2n−1, ln−1 = 1, and d = ln−1 = 1.

Thus we have d = 1 (see also [B]).
If G is not a cyclic group, then we get from (3.3.4)

s12a1−1 ≤ j < s1(2a1−1 +2a1−2). (3.5.4)

From the lefthand side of (3.5.4) and from (3.3.2) we have

s12a1 ≤ s1(2a1−1)+2s2 + s3 +1

hence
−s1 +3s2 + s3 +1≥ 0. (3.5.5)
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Now we use Lemma 3.7/(c) and determine the minimum and maximum
value of s1 (denoting them by s1 and by s1).

1. If s2 = 0, then from (3.5.5) we have s1 ≤ s3+4 and from n = s1a1+

s3 ≥ s1(a1 +1)−1 the inequality s1 ≤ n+1
a1+1 follows.

2. Similarly, if s2 = 1, then s1 ≤ s3 + 4 and from n = s1a1 + 2+ s3 ≥
s1(a1 +1)−2 we have s1 ≤ n+2

a1+1 .

Substituting j = s12a1−s1+n−a1s1+1
2 into (3.4.4) we get

d = s1 +
[

j−s12a1−1+2a1−2−1
2a1−2

]
s1 +

[
−s1(1+a1)+n+2a1−1−1

2a1−1

]
≤ s1 +

[
2a1−1−2

2a1−1

]
= s1.

By the condition of r = 1 and (3.2.4) we have d ≥ s1, so the equality
d = s1 holds.

To find the minimum of d (denoting it by d) from the right-hand side
of (3.5.4) we get s12a1−1 > −s1 +3s2 + s3 +1. With s3 = n−a1s1−2s2

and s2 = 0 or s2 = 1 we get

s1 >
n+1

2a1−1+a1+1
or s1 >

n+2
2a1−1+a1+1

.

Thus, s1 =
[

n+1
2a1−1+a1+1

]
+1 or s1 =

[
n+2

2a1−1+a1+1

]
+1.

If s2 = 0, then we have by (3.4.4)

d = s1 +

[
j− s12a1−1 +2a1−2−1

2a1−2

]
=

s1 +

[
−s1(1+a1 +2a1−1)+ s1(2

a1−1)+n−1
2a1−1

]
≥

s1 +

[
s12a1−1−2

2a1−1

]
= 2s1−1.



32

If s2 = 1, then we get analogously that d ≥ 2s1−1.
By Lemma 3.7/(c) for a1 > 3 we can construct groups for each d sat-

isfying the inequalities

2s1−1 = 2
[

n+1
2a1−1 +a1 +1

]
≤ d ≤

[
n+1
a1 +1

]
= s1.

If a1 > [log2(n)]+1, then n+1 < 2a1−1+1 < 2a1−1+a1+1 and we have
s′1 = 1 and d = 2.

It is easy to see that for a1 = 4, 5, . . . [log2(n)] + 1 these intervals
overlap the closed interval

[
2,
[n+1

5

]]
.

III) G for
[n+1

5

]
< d ≤

[n
4

]
−
[n+40

64

]
Let a1 = 4, r = 0, s2 = 0 or s2 = 1 (depending on the parity of n).

By the previous part we have the largest d if a1 = 4, s1 =
[n+1

5

]
and

d =
[n+1

5

]
or d ≤

[n+2
5

]
, corresponding to s2 = 0 or s2 = 1. Taking s′1 =

s1 + 1 then j− 8s1 ≥ j− 8s′1 we have r = 0, otherwise s1 would not be
the largest at r = 1. Next we show that d′− d ≤ 1, where d′ denotes the
value of d corresponding to s′1.

If j′ denotes the j corresponding to s′1, then in Lemma 3.5 we have
h = 0 or h = 2, and j′ = j+5, or j′ = j+6, and j′ = j+8− 4+h

2 < 8s′1 =
8s1 +8. Using (3.4.5), we get for d′ that

d′ =
[

j′+7
8

]
<
[

8s′1+7
8

]
=
[

8s1+15
8

]
= s1 +1.

The largest value of s1, for which the condition r = 0 holds, is [n
4 ]

or [n
4 ]− 1, depending on the parity condition of Lemma 3.4 with s2 = 0

or s2 = 1 and 0 ≤ s3 ≤ 3. Since for arbitrary integers a, k ≥ 0 we have[15k+a
8

]
= 2k−

[k−a+7
8

]
in our case in Table 3.2 we have the following

largest values of d.
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Table 3.2: Parameters for the largest d

n s1 s2 s3 j d
8k 2k−1 0 4 15k−5

[15k+2
8

]
=
[n

4

]
−
[n+40

64

]
8k+1 2k 0 1 15k+1

[15k+8
8

]
=
[n

4

]
−
[n−9

64

]
8k+2 2k 1 0 15k+2

[15k+9
8

]
=
[n

4

]
−
[n−18

64

]
8k+3 2k 0 3 15k+2

[15k+9
8

]
=
[n

4

]
−
[n−19

64

]
8k+4 2k+1 1 2 15k+3

[15k+10
8

]
=
[n

4

]
−
[n+26

64

]
8k+5 2k 0 5 15k+3

[15k+10
8

]
=
[n

4

]
−
[n+35

64

]
8k+6 2k+1 0 2 15k+9

[15k+16
8

]
=
[n

4

]
−
[n−14

64

]
8k+7 2k+1 1 1 15k+10

[15k+17
8

]
=
[n

4

]
−
[n−23

64

]

Using Lemma 3.7/(d) we have all values of s1 + 1 =
[n+1

5

]
+ 1 ≤ d ≤[n

4

]
−
[n+40

64

]
.

IV) G for
[n

4

]
+1−

[n+40
64

]
≤ d≤

[n
4

]
+t, where t = 1, if n≡ 3,6 (mod 8),

otherwise t = 0

In Table 3.3 we list the constructed and missing values of d. Here λn =[n+40
64

]
−1, t = 1 if n≡ 3,6 (mod 8) and t = 0 if n 6≡ 3,6 (mod 8).

Let a1 = 4,s1 =
[n+7

15

]
, r = 2.

1. If 14 ≤ n ≤ 23 then for the constructions of d =
[n

4

]
+ 1 we only

need to consider the values of n = 14 and n = 19. One can check easily
that for n = 14, (a1 = 4) we have s1 = 1, s2 = 4, d = 4 and for n =

19, (a1 = 4) we have s1 = 1, s2 = 3, d = 5.
2. Now we suppose n > 23.
By Lemma 3.7/(b) we have to find at r = 2 the maximum of s2 (s2)

and minimum of s2 (s2) and to estimate the minimum of the maximum of
d (denoted by d) and the maximum of the minimum of d (denote by d)
to cover the missing values of d. By n = 4s1 +2s2 + s3 and by (3.2.4) the



34

Table 3.3: Missing values of d close to n
4

n missing d constructed in constructed in
part I part II and III

n≤ 13 none d ≤
[ n

4
]
+1 1≤ d ≤

[ n
4
]

15≤ n < 23, t = 0 none d ≤
[ n

4
]
+1 1≤ d ≤

[ n
4
]

14≤ n≤ 23, t = 1
[ n

4
]
+1 d ≤

[ n
4
]
+2 1≤ d ≤

[ n
4
]

24≤ n≤ 87, t = 0
[ n

4
]

d ≤
[ n

4
]
+1 1≤ d ≤

[ n
4
]
−1

24≤ n≤ 87, t = 1
[ n

4
]
,
[ n

4
]
+1 d ≤

[ n
4
]
+2 1≤ d ≤

[ n
4
]
−1

n≥ 87, t = 0
[ n

4
]
+1≤ d <

[ n
4
]
−λn +1 d ≤

[ n
4
]
+1 1≤ d ≤

[ n
4
]
−λn +1

n≥ 87, t = 1
[ n

4
]
≤ d <

[ n
4
]
−λn d ≤

[ n
4
]
+2 1≤ d ≤

[ n
4
]
−λn

condition r = 2 gives

12s1 ≤ j < 14s1 +2s2. (3.5.6)

Substituting j (defined by (3.3.2)) into (3.5.6), we have

13s1− s2−1≤ n < 17s1 +3s2−1. (3.5.7)

We have to estimate the minimum of the maximum of d (denoted by d)
and the maximum of the minimum of d (denote by d) to cover the missing
values of d. It is easy to see that for n = 4

[n+7
15

]
+ 2s2 + s3 the left side

of the inequality (3.5.7) holds for all s2 ≥ 0. Thus, for the maximum of
s2 (denoted by s2) the value of s3 is the smallest possible s3 = 0,1,2,3
depending on parities. Clearly n+7

15 ≥ s1 ≥ n+7
15 . and s3 ≥ 0 we have n ≥

4s1 +2s2 and n−4s1
2 ≥ s2 ≥ n−4s1−3

2 . For the minimum of d (at s3 = 3) by
(3.4.3) we get

d ≥
[
−s1+3 n−4s1−3

2 +6
4

]
=
[

3n−14s1+3
8

]
≥
[

3n−14 n+7
15 +3

8

]
=
[31n−8

120

]
.

From this and by n > 23 we have
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d ≥
[31n−8

120

]
≥ 31n−127

120 > n
4 ≥

[n
4

]
.

The right-hand side of (3.5.7) gives s2 > n−17s1+1
3 , thus the nearest

integer is the minimum of s2 (denoted by s2),

s2 ≤
[

n−17s1+4
3

]
≤
[

n−17 n−7
15 +4

3

]
=
[−2n+179

45

]
.

Since for n > 23 we have
[−2n+179

45

]
< 3, thus for s2 = 1 or s2 = 2

(depending on parity condition) we have r = 2.
In this case d can be calculated by (3.4.3) (d =

[
−s1+3s2+s3+3

4

]
). Since

the value d increases if s2 increases and s3 decreases, and at s2 = 1 or
s2 = 2 we get s3 ≤ n−2−4s1 ≤ n−2−4n−7

15 ≤
11n−2

15 , and by (3.4.3) and
n > 23 we have

d ≤
[
− n+7

15 +6+ 11n−2
15 +3

4

]
=
[10n+96

60

]
≤
[n

4

]
+1−

[n+40
64

]
.

The last inequality for 23 < n ≤ 28 one can check directly and for
n > 28 follows from[10n+96

60

]
≤ 10n+96

60 ≤ 15n−24
64 ≤ n−3

4 +1− n+40
64 ≤

[n
4

]
+1−

[n+40
64

]
.

Now, only the construction for d =
[n

4

]
+1 if n≡ 3,6 (mod 8) is left.

If n = 8k+ 3, and k ≥ 5, we have d =
[n

4

]
+ 1 since

[n
4

]
=
[8k+3

4

]
= 2k,

n
4 = 2k+0,75 and

d ≥
[31n−8

120

]
=
[

31·4 n
4−8

120

]
=
[

124(2k+0,75)−8
120

]
= 2k+

[8k+85
120

]
≥
[n

4

]
+1

holds if 8k+85≥ 120, i.e. k ≥ 5, and n≥ 43.
In similar manner, if n = 8k + 6 and k ≥ 6, we get d =

[n
4

]
+ 1. If[n

4

]
= 2k+1, then n

4 = 2k+1,5 , i.e.

d ≥
[31n−8

120

]
=
[

31·4 n
4−8

120

]
=
[

124(2k+1,5)−8
120

]
= 2k+1+

[8k+58
120

]
≥
[n

4

]
+1,
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if 8k+58≥ 120, and k ≥ 8, thus n≤ 70.
If 24 ≤ n < 43 and n = 8k+ 3 i.e. n = 27,35,43 as well as if 24 ≤

n > 70, and n = 8k + 6 i.e. n = 30,38,46,54 and 62, then for a1 = 4,
s1 =

[n+4
15

]
, r = 2 we can get d =

[n
4

]
+ 1 by the constructions listed in

Table 3.4.

Table 3.4: Constructions of d =
[n

4

]
+1

n s1 s2 s3 j d n s1 s2 s3 j d

27 2 8 7 28 7 30 2 9 4 31 8

35 2 8 11 33 9 38 2 11 8 36 10

43 3 13 5 45 11 46 3 14 6 47 12

54 4 19 0 59 14 62 4 19 8 63 16

The proof of Theorem 3.2 is completed. �



Chapter 4

Construction of self-dual
(22k,22k−1,2k)-codes

4.1 Complement-free sets

In this chapter, we fix G to be an elementary abelian p-group, i.e.

G =Cp× . . .×Cp︸ ︷︷ ︸
m

.

Furthermore we will use the notation Ap,m for the modular group algebra
as defined in equation (2.1.1). Our aim is to find self-dual codes in the
radical of Ap,m. As it is mentioned in the beginning of Section 3.2 there
is a power of the radical defining a self-dual code, if the nilpotency index
of Jp,m is even. Since G is elementary abelian, the nilpotency index of
Jp,m is even if and only if p = 2 and m is odd. Thus a Reed-Muller code
is self-dual if and only if it is an RM (m−1

2 ,m)-code, i.e. m has to be odd.

It clearly rises the question if there exist binary self-dual codes in the
radical of A2,m if m is even. We can give a positive answer to this ques-

37
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tion and we will introduce a way to construct such codes. The codes
constructed in this chapter are ideals in the radical of A2,m, i.e. in this
chapter p = 2.

For m = 2k, where k is an arbitrary integer, we have a new method
to construct a doubly even class of binary self-dual codes with length 2m,
dimension 2m−1 and minimum distance 2k. For such a code C we have

RM (k−1,2k)⊂ C ⊂ RM (k,2k).

In [HL2] we introduce the following sets of binary m-tuples, where
m = 2k for some integer k.

Definition 4.1. Let y be a binary m-tuple. We say that 1− y is the com-
plement m-tuple of y, where 1 denotes the all-1 tuple (1, . . . ,1︸ ︷︷ ︸

m

).

Definition 4.2. Let m = 2k and X be the set of all binary m-tuples with
exactly k ’0’-s and ’1’-s. Further, let Y be a subset of X such that if y ∈Y ,
then 1−y /∈Y. Then Y is called a complement-free set of binary m-tuples.

Remark 4.3. The cardinality of the set X is
(2k

k

)
and the maximum cardi-

nality of Y is 1
2

(2k
k

)
.

Example 4.4. If m = 4, then we have exactly eight possible complement-
free sets, which can be seen in Table 4.1 below.

Table 4.1: Complement-free sets for m = 4
1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1
0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0
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It is easy to see that the number of possible complement-free sets in-
creases exponentially when k increases. Imagine we write the elements of
X in two columns such that if y is in the first column, then 1− y is in the
second column, but in the same row. Then we can get a complement-free
set Y by choosing exactly one element from each row, either from the first
or from the second column. Therefore there exist 2

1
2(

2k
k ) different sets Y.

4.2 Description of self-dual (22k,22k−1,2k)-codes

Let us consider the group algebra

A2,m ∼= F2[x1, . . .xm]/(x2
1−1,x2

2−1, . . . ,x2
m−1)

as a vector space with basis{
xk1

1 xk2
2 . . .xkm

m | ki ∈ {0,1}
}
. (4.2.1)

Applying (2.1.5) for p = 2 we have that the radical J2,m of this group
algebra is generated by the monomials Xi = xi−1 = xi+1. The codes we
intend to study are monomial codes.

If p = 2, then applying the usual polynomial product on the monomi-
als Xk1

1 Xk2
2 . . .Xkm

m (ki ∈ {0,1}) leads to

Xk1
1 Xk2

2 . . .Xkm
m = (x1 +1)k1(x2 +1)k2 . . .(xm +1)km

and the Hamming weight of this monomial in the basis (4.2.1) equals
m
∏
i=1

(1+ ki). We will denote by X the set of monomials corresponding to

the set of exponents from X .
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Denote the set with maximum number of pairwise orthogonal mono-
mials in X by Y and their corresponding exponents in X by Y. The
cardinality of X is

(2k
k

)
and the cardinality of Y is 1

2

(2k
k

)
.

Example 4.5. Let A2,m be a group algebra (m ≥ 2, see (4.2.1)). Define
the codes C j as ideals in A2,m generated by X j = x j − 1. These codes
are binary self-dual (2m,2m−1,2)-codes and they are self-dual since C j =

C⊥j = 〈X j〉. Further, this code is a direct sum of (2,1,2)-codes. The di-
mension of the code C j is 2m−1, the same as the dimension of the radical
of the group algebra A2,m−1. The minimal distance of C j is d = 2. This
follows from the fact that the element X j = x j +1 is included in the basis
of C j. Thus, C j is a self-dual (2m,2m−1,2)-code.

In the case of m = 4, we get two known extremal (16,8,4)-codes
(listed in [P2]) and for m > 4 these codes are not extremal. A doubly
even (i.e. its minimum distance is divisible by 4) self-dual code is called
extremal, if we have for its minimum distance d = 4

[ n
24

]
+ 4, where n

denotes the code length (see Definition 39 and Lemma 40 in [JK]).

To abbreviate the description of our codes, we will refer to the mono-
mial Xk1

1 . . .Xkm
m by the m-tuple (k1,k2, . . . ,km) ∈ {0,1, . . . , p−1}m of ex-

ponents.

Using Plotkin’s construction of RM -codes (see [M], Ch.13 §3, Theo-
rem 2) we obtain the following property of RM -codes.

Lemma 4.6. If m is even and m = 2k, then RM (k−1,m) = J k+1
2,m contains

a proper subspace which is isomorphic to RM (k−1,m−1).

Proof. Recall, that the set of monomials in the basis (2.1.5) of J k+1
2,m is

invariant under the permutations of the variables Xi, i.e. the set of binary
m-tuples (k1,k2, . . . ,km) assigned to the basis (2.1.5) is invariant under the
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permutations of all elements of the symmetric group Sm. Take the basis
elements with km = 1. Then the monomials Xk1

1 . . .Xkm
m of degree m can

be projected by

π : (k1,k2, . . . ,km−1,1) 7→ (k1,k2, . . . ,km−1).

In this way we get a basis of J k
2,m−1

∼= RM (k−1,m−1).

Example 4.7. For m = 6 the quotient space J 3
2,m/J 4

2,m has a basis with(6
3

)
= 20 elements, where the binary 6-tuples corresponding to the coset

representative monomials (the set X) are listed in pairs of complements:

(1,1,1,0,0,0) (0,0,0,1,1,1)
(1,1,0,1,0,0) (0,0,1,0,1,1)
(1,1,0,0,1,0) (0,0,1,1,0,1)
(1,1,0,0,0,1) (0,0,1,1,1,0)
(1,0,1,1,0,0) (0,1,0,0,1,1)
(1,0,1,0,1,0) (0,1,0,1,0,1)
(1,0,1,0,0,1) (0,1,0,1,1,0)
(1,0,0,1,1,0) (0,1,1,0,0,1)
(1,0,0,1,0,1) (0,1,1,0,1,0)
(1,0,0,0,1,1) (0,1,1,1,0,0)

and we have 2
1
2(

6
3) = 210 complement-free sets. For example the following
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complement-free set Y and the set Y , each consisting of 10 elements:

Y Y

(1,1,1,0,0,0), X1X2X3

(0,0,1,0,1,1), X3X5X6

(1,1,0,0,1,0), X1X2X5

(0,0,1,1,1,0), X3X4X5

(1,0,1,1,0,0), X1X3X4

(0,1,0,1,0,1), X2X4X6

(0,1,0,1,1,0), X2X4X5

(0,1,1,0,0,1), X2X3X6

(1,0,0,1,0,1), X1X4X6

(1,0,0,0,1,1), X1X5X6

Theorem 4.8. Let C be a binary code with

RM (k−1,2k)⊂ C ⊂ RM (k,2k)

and the following basis of the quotient C/RM (k−1,2k){
m

∏
i=1

Xki
i +RM (k−1,2k), where ki ∈ {0,1} and

m

∑
i=1

ki = k

}
, (4.2.2)

where the set of the exponent m-tuples (k1,k2, . . . ,km) is a maximal (with
cardinality 2

1
2(

2k
k )) complement-free subset of X . Then C forms a doubly

even self-dual (22k,22k−1,2k)-code.

Proof. For the group algebra A2,m suppose m is even, i.e. m = 2k for
some positive integer k. By the group algebra representation of RM -
codes and the definition of C we have the relation J k+1

2,m ⊂ C ⊂ J k
2,m. For

m = 2k the set X is the set of coset representatives of the quotient space
J k

2,m/J k+1
2,m , i.e. the set of monomials satisfying (2.1.6). Clearly, two mono-
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mials Xk1
1 Xk2

2 . . .Xkm
m and X l1

1 X l2
2 . . .X lm

m are orthogonal, i.e. their product is
zero, if for some i : 1 ≤ i ≤ m we have ki = li. Thus, the elements in the
radical corresponding to these monomials are orthogonal if their exponent
m-tuples belong to a complement-free set. The m-tuples (k1,k2 . . .km)

have to be complement-free in Y, otherwise the corresponding mono-
mials in Y are not orthogonal. Clearly Y is a complement-free subset
of X (given by (4.2.1)) with cardinality 1

2

(2k
k

)
=
(2k−1

k−1

)
. By definition,

C = 〈 J k+1
2,m

⋃
Y 〉 is a subspace of the radical J2,m of the group algebra

A2,m generated by the union of J k+1
2,m and Y . For the dimension of C we

have

dim(C) = dim(RM (k−1,m))+
1
2

(
2k
k

)
=

1+
k−1

∑
i=1

(
2k
i

)
+

1
2

(
2k
k

)
= 22k−1.

(4.2.3)

It follows that C is self-dual. Since a binary self-dual code contains
a word of weight 2 if and only if the generator matrix has two equal
columns, we have our self-dual code to be doubly even. Each monomial
in Y has the same weight 2k, that is the minimal distance of C . Using the
identities for the monomials involved in the basis of our codes

xi(x j +1) = (xi +1)(x j +1)+(x j +1) and (xi +1)2 = 0,

we easily obtain that C (which is a subspace of J2,m) is an ideal in the
group algebra A2,m.

Theorem 4.9. Let C be the code defined in Theorem 4.8. Suppose that
ki = 0 for some i : 1≤ i≤m in each element of the subset Y, (i.e. the vari-
able Xi is missing in each monomial of Y ). Then we have the following
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isomorphism

C ∼= RM (k−1,2k−1)⊕RM (k−1,2k−1).

Proof. The elements of Y are of the form

Xk1
1 . . .Xkm

m = (x1 +1)k1(x2 +1)k2 . . .(xm +1)km, where
m

∑
i=1

ki = k

and their weight is 2k. Project the set of monomials with ki = 0 in C =

〈 J k+1
2,m

⋃
Y 〉 onto the monomials Xk1

1 , . . . ,Xki−1
i−1 ,X

ki+1
i+1 , . . . ,X

km
m . The im-

age C1 of this projection is a self-dual RM (k− 1,2k− 1)-code with pa-
rameters (22k−1,22k−2,2k).

Now we consider all those elements of the basis of J k+1
2,m which fulfill

ki = 1 for some i ∈ {1, . . . ,m}. By Lemma 4.6 we know that the subspace
C2 generated by these elements is isomorphic to RM (k− 1,2k− 1). The
intersection of C1 and C2 is empty. Therefore C ∼= C1⊕C2 and the state-
ment follows.

Properties

In this section we mention briefly some properties of the codes con-
structed in Theorem 4.8 without any claim to completeness.

Remark 4.10. In particular, we get (16,8,4) self-dual codes for m = 4 in
Theorem 4.8. These codes are extremal doubly even codes. One can eas-
ily check the classification of binary self-dual codes listed in [P2]. There
are two cases:

1. If ki = 0 for some i : 1 ≤ i ≤ m in each element of the set Y , then
we get the direct sum E8⊕E8, where E8 is the extended Hamming
code.
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2. otherwise we get an indecomposable (16,8,4)-code (which is de-
noted by E16 in [P2]).

These codes are formally self-dual. Both classes have the weight func-
tion z16 + 28z12 + 198z8 + 28z4 + 1, where αzw means there are α code-
words which have weight w.

Remark 4.11. Using the inclusion-exclusion principle a formula can be
given for the dimension of the RM (k + 1,m)-code (see for example in
[AK] Theorem 5.5). If p = 2 and 0≤ k ≤ m, then we have

dimC = 1
2

(2k
k

)
+

m
∑

i=k+1

2k
∑
j=0

(−1) j(2k
j

)(2k−2 j+i−1
i−2 j

)
=

m
∑

i=k+1

(2k
i

)
+ 1

2

(2k
k

)
,

where i−2 j ≥ 0. This is the same quantity as in (4.2.3).

The codes constructed in this chapter are worth to be studied further.
Already for k = 2 we get two non-isomorphic codes with the same pa-
rameters. It would be interesting to determine all classes of codes up to
isomorphism for each arbitrary integer k and to determine their automor-
phism group. The code C in Theorem 4.8 is not affine-invariant, i.e. the
automorphism group does not contain the affine group AGL(m,2). For
m ≤ 6 our computations show that the automorphism group of C with
ki = 0 differs from the automorphism group of C with ki = 1 for some
1≤ i≤ m, which implies that these codes are not isomorphic.
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Chapter 5

Monomial group codes with
visible bases

5.1 Linear codes with visible bases

In this chapter, we construct codes which are ideals in the radical of
the modular group algebra Ap,m for arbitrary prime p. In some places we
want to point out that a code C is an ideal, then we use for generating sets
the () brackets. Let C be a monomial code generated by some monomials
of the form

Xk1
1 Xk2

2 . . .Xkm
m , where 0≤ ki ≤ p−1.

Similar to the notation in the previous chapters we will refer to the mono-
mial Xk1

1 Xk2
2 . . .Xkm

m by the m-tuple of exponents

(k1,k2, . . . ,km) ∈ {0,1, . . . , p−1}m.

Definition 5.1. Let C be a linear code of length n over Fp, i.e. we consider
C as a subspace of the vector space Fn

p. We say that a basis of C is a visible
basis if at least one member of the basis has the same Hamming weight

47
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as C .

It is known (Prop. 1.8 in [DL]) that for p = 2 every monomial code
has a visible basis.

Remark 5.2. This definition of codes with visible bases is different from
the definition of visible codes by Ward in [W2]. He defined that a set V
is visible, if each subspace generated by a non-empty subset of V has the
same weight as the generator set, i.e. the weight of at least one member
of the basis equals the weight of the generated code. Obviously, if a code
is visible in the sense of Ward, then it also has a visible basis.

The class of maximal monomial codes Id in the group algebra Ap,m

were defined in [DL] as

Id =

(
m

∏
i=1

Xki
i |

m

∏
i=1

(ki +1)≥ d,0≤ ki < p

)
.

These codes have length pm. If p = 2, then these codes coincide with
the powers of J2,m, i.e. they are Reed-Muller codes.

The maximal monomial code is uniquely defined. The minimum dis-

tance of Id is d = min{
m
∏
i=1

(ki+1)}, see [DL]. Thus, Id has a visible basis.

For p > 2 some of the maximal monomial codes have better parame-
ters than the GRM -codes. For example if p = 5 and m = 3 the code I20 is
a (125,63,20) code, and J 20 is a (125,53,20)-code.

We will denote the dimension of the ideal Id by dim(Id) and the dimen-
sion of the corresponding GRM code with the same minimum distance by
dim(GRM ).

It is not too hard to compute the dimension of the codes Id. For p > d
we have the following relations of dim(Id) and dim(GRM ):
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Table 5.1: Relations of dim(Id) and dim(GRM )

d = 3 dim(Id) = dim(GRM )

d = 4 dim(Id) = dim(GRM )+
(m

2

)
d = 5 dim(Id) = dim(GRM ) +

(m
2

)
+
(m

3

)
+m(m−1)

d = 6 dim(Id) = dim(GRM ) +
4
∑

i=2

(m
i

)
+m(m−1)+m

(m−1
2

)

Monomially equivalent codes were introduced by Drensky and Lakatos
in [DL] as follows:

Definition 5.3. Two codes are monomially equivalent if one code can be
obtained by permuting the variables X1, . . . ,Xm of the other one.

Definition 5.4. A code generated by monomials is called monomially self-
equivalent if it is invariant under all permutations of the variables Xi =

xi−1 for 1≤ i≤ m.

Remark 5.5. The maximal monomial codes are monomially self-
equivalent codes.

In the sequel we construct monomial codes in the group algebra Ap,m

by giving one visible basis for each of them.

Theorem 5.6. Let Cm,k be a monomial code generated by the set

Bm,k = {∏(Xi)
ki |

m

∏
i=1

ki ≥ k, where 0≤ ki < p, 0 < k ≤ (p−1)m}.

Then Bm,k is a visible basis of Cm,k.

Proof. The proof is similar to the proof of Lemma 1.9 in [B], it goes by
induction on the numbers of direct factors in the elementary abelian group
G.
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For m = 1 the statement follows from Theorem 1.1 in [B]. In our case, the
statement of Theorem 1.1 in [B] says if C1,i =

(
X i) , where 1≤ i≤ p−1,

then δ = i+1. This δ equals the minimum of the weights of all elements
from B1,i. Thus B1,i is a visible basis for C1,i. Suppose that the statement
is true for m = i and we prove it for the case m = i+1.

Let x be an arbitrary codeword in Cm,k. Then x can be written in the
form

x = ∑
k1,...,km

λk1,...,km(x1−1)k1 · · ·(xm−1)km, (5.1.1)

where λk1,...,km ∈ F. If each λa j = 0 or a j = 0 for all j ∈ {1, . . . ,m}, then
Theorem 5.6 holds. Thus we may assume, that x contains terms with
λa j 6= 0 and a j 6= 0 for some j ∈ {1, . . . ,m}. Let (xm−1)lm be the lowest
power of the element (xm−1) in x.

Then we have

x = (xm−1)lm(Llm +Llm+1(xm−1)+Llm+2(xm−1)2+ . . .Llm+t(xm−1)t),

(5.1.2)
where 0 ≤ t ≤ min(p− 1, k

lm
), L j ∈ F[H], lm ≤ j ≤ lm + t, H = 〈x1〉 ×

〈x2〉×· · ·×〈xm−1〉. Since Llm is an element of the radical of F[H], we can
write it in the form

Llm = ∑
j1, j2,..., jm−1

γ j1, j2,..., jm−1(x1−1) j1 . . .(xm−1−1) jm−1 6= 0 ,

(1≤ ji ≤ p−1).
(5.1.3)

Then we have

m−1

∏
i=1

ji ≥
k
lm
, where 0 < k ≤ (p−1)m

for each term in the equation of the right-hand side of (5.1.3). By the
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induction hypothesis there is a basis element (x1−1)k1 . . .(xm−1−1)km−1

in Cm−1, k
lm

such that

δm = wt((x1−1)k1(x2−1)k2 . . .(xm−1−1)km−1)≤ wt(Lim),

where wt(y) denotes the Hamming weight of the codeword y ∈ Cm,k.

Express Llm in the monomial basis of F[H], i.e.

Llm = ∑
i1,...im−1

µi1,i2,...,im−1xi1
1 . . .xim−1

m−1.

Thus for the element x in (5.1.2) we have

x = (xm−1)lm·

·

(
∑

i1,i2,...,im−1

µi1,i2,...,im−1 +µ
(1)
i1,i2,...,im−1

(xm−1)+ . . .+µ
(t)
i1,i2,...,im−1

(xm−1)t

)
·

·xi1
1 . . .xim−1

m−1 = (xm−1)lm ∑
i1,i2,...,im−1

Γi1,i2,...,im−1xi1
1 . . .xim−1

m−1,

where Γi1,i2,...,im−1 ∈ F[〈xm〉]. By Theorem 1.1 of Berman [B], there exists an

element (xm−1)r such that r ≥ lm and

wt((xm−1)lmΓi1,i2,...,im−1)≥ wt(xm−1)r.

It follows that

wt(x)≥ dmwt(xm−1)r = wt
(
(xm−1)r(x1−1)k1(x2−1)k2 . . .(xm−1−1)km−1

)
,
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while

r
m−1

∏
i=1

(ki)≥ r
k
lm
≥ k.

This completes the proof.

Remark 5.7. The dimension of Cm,k can be calculated in the following
way. Let Pr1,...,ri

m denote the number of permutations on m elements with
r1, . . . ,ri repititions. If k = l1 · . . . · lm, then

dim(Cm,k) = ∑

li≤p−1

l1·...·lm≥k

Pr1,...,ri
m .

5.2 Principal ideal code

The next theorem is a consequence of Corollary 3.3 in [MM], where
the "monomial-like" abelian code is a principal ideal of a modular groupring
over an arbitrary finite field of characteristic p. At the visibility we restrict
ourself to the group algebra Ap,m with its radical Jp,m.

Theorem 5.8. Let p be an arbitrary prime. We fix values a1, . . . ,am each
fulfilling 0 ≤ ai < p, where i ∈ {1, . . . ,m}, and at least one of them is
nonzero. Then the principal ideal

Ca1,...,am =
(
Xa1

1 Xa2
2 . . .Xam

m
)

in Jp,m determines a cyclic code. The set

B = {
m

∏
i=1

Xki
i | ai ≤ ki < p, i = 1,2, . . . ,m}

is a visible basis of Ca1,...,am .
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Furthermore, Ca1,...,am is a (pm,(p−a1) · (p−a2) · . . . · (p−am),δ )-code,

where δ =
m
∏
i=1

(ai +1).

Proof. Denote the ideal
(

Xa j
j

)
=
(
(x j−1)a j

)
in the ring F[x j]/(x

p
j − 1)

for 1 ≤ j ≤ m by CX j . Then Ca1,...,am is a tensor product C ∼= CX1 ⊗CX2 ⊗
·· ·⊗CXm (see [MM], Corollary 3.3 ), where CX j =

(
Xa j

j

)
(1 ≤ j ≤ m) is

a cyclic code. Each code CX j has a visible basis, which is the set

{Xk j
j |a j ≤ ki < p}

with minimal distance a j + 1. By the theorem of Ward [W2], the tensor
product Ca1,...,am is visible. Thus, it has a visible basis.

Remark 5.9. The codes Ca1,...,am are different from the GRM -codes. We
know that the GRM -codes coincide with the powers of the Jacobson rad-
ical J k for some 1≤ k ≤ m(p−1). We have

Ca1,...,am
∼= J k⇔ k = m(p−1) and ai = p−1 ∀i ∈ {1, . . . ,m}.

Corollary 5.10. Let p = 2 and C be a (2m,2k,2d)-code defined in The-
orem 5.8, where 0 ≤ k ≤ m. Then C is always self-orthogonal and it is
self-dual if and only if k = m−1.

Proof. The difference of two arbitrary codewords has even weight (see
e.g. the generator matrix MC in the proof of Theorem 5.11). Thus all
codewords are orthogonal to each other. In the example of page 4 in
[HL2] it is shown that if k = m− 1, then C is self-dual and it is a direct
sum of (2,1,2)-codes. Further, the dimension of C implies self-duality if
and only if k = m−1.
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5.3 Automorphism groups of principal ideal codes

In this part of the dissertation we will consider the codes defined in
Theorem 5.8 for p = 2. We will determine their automorphism groups.
In the following we will denote a generator matrix of the code C by MC .

An automorphism of a linear code is a permutation of coordinates that
stabilizes the code. In other words, an automorphism of C is a permutation
of the columns of MC , such that the code generated by the permuted
generator matrix coincides with C . The automorphisms of a code C form
a group and this group is denoted by Aut(C). Let Sn denote the symmetric
group on n elements. It is well known that if C is a code of length ν , then
Aut(C) is a subgroup of Sν . Automorphism groups of binary codes were
determined by the combinatorial method we use for example in [P2]. The
author used the program packages GAP and MAGMA in order to show
some examples.

Theorem 5.11. Let p = 2 and m be an arbitrary positive integer. Let C
be the code defined in Theorem 5.8 and

C = (X1 · · ·Xt) ,

where 1≤ t ≤m. We will denote the dimension of C by λ and its minimum
distance by δ . Then C is a (2m,λ ,δ )−code, where λ = 2m−t and δ =

2t . Then the automorphism group of C can be written as the following
semidirect product

Aut(C) = Sλ

δ
oSλ ,

where Sλ

δ
means Sδ × . . .×Sδ︸ ︷︷ ︸

λ

and Si (for i = δ ,λ ) denotes the symmetric

group on i elements.

Remark 5.12. From the definition of the wreath product of permutation
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groups (see [KK], or [Cam] Sec. 1.10) follows Aut(C) = Sδ oSλ .

Before we prove Theorem 5.11 and Remark 5.12, let us consider an
example.

Example 5.13. Let m = 4 and C1,1,0,0 = (X1X2) . Then

MC =


X1X2

X1X2X3

X1X2X4

X1X2X3X4

=



1 x1 x2 x1x2︸ ︷︷ ︸
α1

x3 x1x3 x2x3 x1x2x3︸ ︷︷ ︸
α2

. . .︸ ︷︷ ︸
α3

x3x4 x1x3x4 x2x3x4 x1x2x3x4︸ ︷︷ ︸
α4

1 1 1 1︸ ︷︷ ︸
α1

0 0 0 0︸ ︷︷ ︸
α2

0 0 0 0︸ ︷︷ ︸
α3

0 0 0 0︸ ︷︷ ︸
α4

1 1 1 1︸ ︷︷ ︸
α1

1 1 1 1︸ ︷︷ ︸
α2

0 0 0 0︸ ︷︷ ︸
α3

0 0 0 0︸ ︷︷ ︸
α4

1 1 1 1︸ ︷︷ ︸
α1

0 0 0 0︸ ︷︷ ︸
α2

1 1 1 1︸ ︷︷ ︸
α3

0 0 0 0︸ ︷︷ ︸
α4

1 1 1 1︸ ︷︷ ︸
α1

1 1 1 1︸ ︷︷ ︸
α2

1 1 1 1︸ ︷︷ ︸
α3

1 1 1 1︸ ︷︷ ︸
α4



is a generator matrix of C1,1,0,0.

Here δ = 4 and λ = 4. We can divide each row into 4 pieces of 4-
tuples, denote these by α1,α2,α3,α4. Each 4-tuple either consists only of
1-s or only of 0-s. S4 acts on the coordinates of each 4-tuple and S4 acts
on the set {α1,α2,α3,α4}. By Theorem 5.11 we have Aut(C) = S4

4 o S4,

which can be easily verified by computation with some algebraic program
package like MAGMA or GAP. The construction of the generator matrix
MC is also used in the proof of Theorem 5.11.
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Proof. Using the identity

x j(xi−1) = (x j−1)(xi−1)+(x j−1) = X jXi +X j,

we can see that C is an ideal in Ap,m. We construct the following matrix
MC of size 2m−t × 2m, which is a generator matrix of the code C . The
rows of MC are multiples of X1 . . .Xt . More precisely we choose each
subset of {Xt+1, . . . ,Xm} and multiply the variables of these subsets with
the monomial X1 . . .Xt .

MC =



X1X2 . . .Xt

X1X2 . . .XtXt+1

X1X2 . . .XtXt+2

X1X2 . . .XtXt+1Xt+2
...
X1X2 . . .XtXm

X1X2 . . .XtXt+1Xm

X1X2 . . .XtXt+2Xm

X1X2 . . .XtXt+1Xt+2Xm
...
X1X2 . . .XtXt+1Xt+2 . . .Xm−2Xm

X1X2 . . .XtXt+1Xt+2 . . .Xm−2Xm−1Xm


Let x1, . . . ,xm be a basis of the elementary abelian 2-group G. We

write the elements of the rows of the binary matrix MC in the basis of G
in lexicographical order. The lexicographical order means that for bi,ci ∈
{0,1}, 1≤ i≤ m we have

xb1
1 xb2

2 . . .xbm
m < xc1

1 xc2
2 . . .xcm

m ⇐⇒
m

∑
j=1

b j2 j−1 <
m

∑
j=1

c j2 j−1.
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Keeping in mind Xi = xi−1, we can now write down the matrix MC

as the following binary matrix.
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MC =



1 . . . 1 0 . . . 0 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 0 . . . 0 1 . . . 1 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1 1 . . . 1 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
1 . . . 1 0 . . . 0 0 . . . 0 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1 0 . . . 0 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 0 . . . 0 1 . . . 1 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
1 . . . 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 0 . . . 0 1 . . . 1
1 . . . 1︸ ︷︷ ︸

δ

1 . . . 1︸ ︷︷ ︸
δ

1 . . . 1︸ ︷︷ ︸
δ

. . . 1 . . . 1︸ ︷︷ ︸
δ

. . . 1 . . . 1︸ ︷︷ ︸
δ

1 . . . 1︸ ︷︷ ︸
δ

1 . . . 1︸ ︷︷ ︸
δ



That means GC is of the form

(
A 0
A A

)
for some binary matrix A of

size 2m−t−1×2m−1. Thus MC is a tensor product of

(
1 0
1 1

)
and A.

We can see that in MC there is one row of weight δ = 2t , there are
m− t rows of weight 2t+1,

(m−t
2

)
rows with weight 2t+2, etc. Finally we

have one row with weight 2m. Thus MC has 2m−t rows.

Each row of MC can be divided into δ -tuples of 1-s and 0-s. The
coordinates of each of the δ -tuples can be permuted by Sδ and the number
of δ -tuples in one row is λ = 2m−t . Furthermore, the δ -tuples can be
permuted as δ -tuples by all elements of Sλ .

We still have to show that there are no other automorphisms of C . Let
us suppose that there exists ψ 6∈ Sλ

δ
oSλ , which is an automorphism of C .

That means ψ does not only act on the coordinates of the δ -tuples or on
the set of δ -tuples (which has cardinality λ ). Thus ψ cuts apart at least
one of the δ -tuples. Thus, if MC is the generator matrix of C , then the
code generated by M ψ

C is not identical to the code C , although they are
permutation equivalent.
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Now we will show that Sλ

δ
is normal in Aut(C). Let g ∈ Sλ

δ
and σ ∈

Aut(C) be arbitrary. Then σ = (σ1, . . . ,σλ ,σµ), where σ1, . . . ,σλ ∈ Sδ

and σµ ∈ Sλ , further g = (g1, . . . ,gλ ), where g1, . . . ,gλ ∈ Sδ . We have

σ
−1gσ = (σ−1

1 g1σ1, . . . ,σ
−1
λ

gλ σλ )
σµ ,

which means that σ
−1
i giσi ∈ Sδ and σµ acts on σ

−1
1 g1σ1, . . . ,σ

−1
λ

gλ σλ

as permutation. Thus σ−1gσ ∈ Sλ

δ
.

We also show that Sλ is in general not normal in Aut(C). Let h ∈ Sλ

and we take again σ ∈ Aut(C) as previously. Further we will denote the
δ -tuples by α1, . . .αλ . Then

σ
−1hσ = (σ−1

1 α1σ1, . . . ,σ
−1
λ

αλ σλ )
σµ ,

which means that σµ permutes the σ
−1
i αiσi. Since σ

−1
i aiσi 6= αi in gen-

eral, this element cannot always be expressed as a permutation of α1, . . . ,αλ .

Since Sλ

δ
and Sλ are both subgroups of Aut(C), we have that the group

Aut(C) is an outer semidirect product of Sλ

δ
and Sλ . This completes the

proof.

Example 5.14. We denote a cyclic group of two elements by C2 and let C
be the code C = (X1) . Then C is a (2m,2m−1,2)-code. We fix s := 2m−1,

thus Aut(C) =Cs
2 oSs, where Cs

2 =C2× . . .×C2︸ ︷︷ ︸
s

.
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Summary

In this dissertation we introduce some new results in the area of Algebraic
Coding Theory. Let p be a prime number and F a field of characteristic
p. If G is a finite abelian p-group, then F[G] is a modular group algebra.
We use some well-known facts about the Jacobson radical of F[G], which
were proved by Jennings in [J]. Berman [B] proved that Reed-Muller
codes are powers of the radical of F[G] if G is elementary abelian and p =

2. Charpin proved the general case for arbitrary p. Landrock and Manz
showed in [LM] the connection between these results and the classical
result of Jennings related to the structure of the Jacobson radical of F[G],

where G is a finite p-group.
Berman gave an algorithm to determine the minimum distance of

codes which are radical powers. We use this algorithm in Chapter 3 to
construct self-dual codes with given distance.

We denote the Jacobson radical of F[G] by J . If p is odd and G is
abelian, then the nilpotency index of J is odd. It follows that there is
no self-dual code which is a power of the radical. Naturally arises the
question of Drensky and Lakatos [DL]:

Problem 3.1 Let n be an arbitrary positive integer and d≤dn
2e. Does there

exist an abelian 2-group G of order 2n, such that some power of the Jacob-
son radical of the group algebra F2[G] is a self-dual (2n,2n−1,2d)−code?
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The first result of this dissertation is the construction of abelian 2-
groups which are solutions to Problem 3.1. The result is published in
[HL1].
Theorem 3.2 Let F be a field of characteristic 2. Let n be an arbitrary
positive integer. Then for each integer d with 1≤ d ≤ dn

2e there exists an
abelian group G of order 2n, such that there exists a power of J (F[G])

which defines a self-dual (2n,2n−1,2d)-code.

The proof of this theorem is constructive.

Reed-Muller codes play an important role in connection to our results,
so we introduce three convenient definitions in Chapter 2, but we use and
generalize the monomial representation of these well-known codes in the
Chapters 4 and 5.

If p = 2 and G is elementary abelian, then the radical of F[G] has
a power which is a self-dual code if and only if G has odd rank. In
Chapter 4 we construct self-dual binary codes for even rank of G. These
codes are between two consecutive powers of the radical. We introduce
complement-free sets for the construction of these codes.

Let y be a binary m-tuple. We say that 1− y is the complement m-tuple
of y, where 1 denotes the all-1 tuple (1, . . . ,1︸ ︷︷ ︸

m

). Let m = 2k and X be the

set of all binary m-tuples with exactly k ‘0’-s and ‘1’-s. Further, let Y
be a subset of X such that if y ∈ Y , then 1− y /∈ Y. Then Y is called a
complement-free set of binary m-tuples.

We prove the following theorem, which gives a construction of self-
dual (22k,22k−1,2k)-codes.

Theorem 4.8 Let C be a binary code with

RM (k−1,2k)⊂ C ⊂ RM (k,2k)
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and the following basis of the quotient C/RM (k−1,2k){
m

∏
i=1

Xki
i +RM (k−1,2k), where ki ∈ {0,1} and

m

∑
i=1

ki = k

}
, (5.3.1)

where the set of the exponent m-tuples (k1,k2, . . . ,km) is a maximal (with
cardinality 2

1
2(

2k
k )) complement-free subset of X . Then C forms a doubly

even self-dual (22k,22k−1,2k)-code.

Furthermore we prove that if there exists one element i ∈ {1, . . . ,m},
such that ki = 0 for each element of the maximal complement-free sub-
set, then the constructed self-dual (22k,22k−1,2k)-code is the direct sum
of two copies of the Reed-Muller code RM (k−1,2k−1). This is Theo-
rem 4.9 of this dissertation.

The monomial codes introduced in [DL] are ideals generated by mono-
mials in modular group algebras over elementary abelian p-groups. In
Chapter 5 we investigate monomial codes over an elementary abelian p-
group G.

The minimum distance of linear codes is very important for the error
correction capability. It is usually more difficult to determine the min-
imum distance than in Berman’s case, i.e. if the code is a power of the
radical in a modular group algebra. The simplest case is to determine the
minimal distance from its basis if there exists an element in the basis hav-
ing the weight equal to the minimum distance of the code. We introduce
the following group codes which have such a basis.

Theorem 5.6 Let Cm,k be a monomial code generated by the set

Bm,k = {∏(Xi)
ki |

m

∏
i=1

ki ≥ k, where 0≤ ki < p, 0 < k ≤ (p−1)m}.

Then Bm,k is a visible basis of Cm,k.
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Theorem 5.8 Let p be an arbitrary prime. We fix values a1, . . . ,am

each fulfilling 0 ≤ ai < p and at least one of them is nonzero. Then the
principal ideal

Ca1,...,am =
(
Xa1

1 Xa2
2 . . .Xam

m
)

in Jp,m determines a cyclic code. The set

B = {
m

∏
i=1

Xki
i | ai ≤ ki < p, i = 1,2, . . . ,m}

is a visible basis of Ca1,...,am .
Furthermore, Ca1,...,am is a (pm,(p−a1) · (p−a2) · . . . · (p−am),δ )-code,

where δ =
m
∏
i=1

(ai +1).

The proof of Theorem 5.6 goes by induction on the numbers of direct
factors in the elementary abelian group G. For the proof of Theorem 5.8
we use the fact that C can be regarded as a tensor product of smaller codes.

We also investigate the automorphism groups of the codes defined in
Theorem 5.6 and we prove the following theorem.

Theorem 5.11 Let p = 2 and m be an arbitrary positive integer. Let C
be the code defined in Theorem 5.8 and

C = (X1 · · ·Xt) ,

where 1≤ t ≤m. We will denote the dimension of C by λ and its minimum
distance by δ . Then C is a (2m,λ ,δ )−code, where λ = 2m−t and δ =

2t . Then the automorphism group of C can be written as the following
semidirect product

Aut(C) = Sλ

δ
oSλ ,
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where Sλ

δ
means Sδ × . . .×Sδ︸ ︷︷ ︸

λ

and Si (for i = δ ,λ ) denotes the symmetric

group on i elements.

Remark 5.12 From the definition of the wreath product of permutation
groups (see [KK], or [Cam] Sec. 1.10) it follows that Aut(C) = Sδ oSλ .

The proof of Theorem 5.11 is theoretical, we use a combinatorial
method which was introduced by Pless in [P2] in order to determine the
automorphism group of C .
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Összefoglaló

Ebben a disszertációban moduláris csoportalgebrák radikáljaiban szerep-
lő ideálokat mint lineáris kódokat vizsgálunk.

Legyen p egy prímszám és F egy p-karakterisztikájú test, továbbá
legyen G egy véges Abel p-csoport. Ekkor az F[G] csoportalgebra mo-
duláris. A dolgozatban a Jacobson radikálra vonatkozó Jennings [J] által
bebizonyított eredményeket használjuk. Berman [B] mutatta meg, hogy
a Reed-Muller kódok éppen az F[G] radikáljának hatványai, ha G elemi
Abel és F= F2. Charpin bebizonyította az általános esetet tetszőleges p-
re. Berman és Charpin eredményeit felhasználva dolgozta ki Landrock
és Manz [LM] az F[G] Jacobson radikáljának struktúráját. Az első két
fejezetben a disszertációhoz fontos eredményeket, főként a Reed-Muller
kódok leírását ismertetjük.

Az F[G] csoportalgebra radikálját J -vel jelöljük. Ha p páratlan prím
és G Abel csoport, akkor J nilpotencia foka páratlan. Ebből következik,
hogy páratlan p-re nincs önduális kód, mely radikálhatványként áll elő.

A következő kérdést Drensky és Lakatos tette fel [DL]-ben:

3.1. Probléma Legyen n tetszőleges pozitív egész szám, és d ≤ dn
2e.

Létezik-e olyan G Abel 2-csoport, melynek rendje 2n úgy, hogy F2m [G]

Jacobson radikáljának valamilyen hatványa meghatároz egy (2n,2n−12d)-
kódot?
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Az első eredmény ebben a disszertációban olyan Abel 2-csoportok
konstrukciója, melyek megoldások a 3.1. Problémára. A harmadik fe-
jezetben a Berman [B] által megadott algoritmust az adott távolságú ön-
duális kódok konstrukciójához használjuk. Ez az eredmény megjelent a
[HL1] publikációban.

3.2. Tétel Legyen F egy 2-karakterisztikájú test. Ekkor minden n pozitív
egész számhoz és 1 ≤ d ≤ dn

2e számhoz létezik olyan 2n-rendű G Abel
csoport, melyhez tartozó F[G] csoportalgebra J radikáljának valamely
hatványa egy önduális (2n,2n−1,2d)-kódot határoz meg.

A 3.2. Tétel bizonyítása konstruktív.

A Reed-Muller kódok - mint a megfelelő monomiális csoportalgeb-
ra radikálhatványai - fontos szerepet játszanak a disszertációban, ezért
bevezetünk három jól ismert definíciót a második fejezetben. Az ered-
ményeinkkel kapcsolatosan a Reed-Muller kódok monomiális reprezen-
tációját használjuk a negyedik és ötödik fejezetben.

Ha p = 2 és G elemi Abel csoport, akkor F[G] radikáljának valamely
hatványa akkor és csak akkor definiál önduális kódot, ha G rangja párat-
lan. A negyedik fejezetben önduális bináris kódokat konstruálunk a radikál-
ban ha G rangja páros. Mivel a konstruált kódok monomiálisak, a monomok-
ban szereplő kitevők jellemzéséhez bevezetjük a komplemens-mentes hal-
maz fogalmát.

Legyen y egy bináris m-es. Azt mondjuk, hogy 1− y az y komple-
mense, ahol 1 jelöli a tiszta 1-es m-es (1, . . . ,1)︸ ︷︷ ︸

m

. Legyen m = 2k és X

legyen az a halmaz, mely az összes olyan m-esből áll, melyben pontosan
k darab ‘0’ és k darab ‘1’ van. Továbbá legyen Y egy olyan részhalmaza
X-nek, hogy ha y ∈ Y, akkor 1− y /∈ Y. Ekkor Y -t bináris m-esekből álló
komplemens-mentes halmaznak hívjuk.
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A következő tételt bizonyítjuk be, melyben konstruálunk önduális
(22k,22k−1,2k)-kódokat.

4.8. Tétel Legyen C egy bináris kód, melyre

RM (k−1,2k)⊂ C ⊂ RM (k,2k)

és a C/RM (k−1,2k) faktortér egy következő bázisával{
m

∏
i=1

Xki
i +RM (k−1,2k), ahol ki ∈ {0,1} és

m

∑
i=1

ki = k

}
,

ahol a kitevőkből álló (k1, . . . ,km) m-esek halmaza egy maximális (tehát
2

1
2(

2k
k ) ele-mű) komplemens-mentes részhalmaza X-nek. Ekkor C egy dup-

lán páros önduális (22k,22k−1,2k)-kód.

A 4.9. Tételben bebizonyítjuk, hogy ha létezik olyan i ∈ {1, . . . ,m},
hogy ki = 0 a maximális komplemens-mentes halmaz minden elemében,
akkor a konstruált önduális (22k,22k−1,2k)-kód két RM (k− 1,2k− 1)
Reed-Muller kód direkt összege.

Monomiális kódokat bevezették [DL]-ben, és ezek a kódok ideálok,
melyeket moduláris csoportalgebrák radikáljaiban lévő elemeknek megfe-
lelő monomok generálnak. Mi elemi Abel p-csoport feletti monomiális
kódokat vizsgálunk az ötödik fejezetben.

Egy lineáris kód minimális távolsága nagyon fontos - erősen befolyá-
solja a kód hibajavítóképességét. Általános esetben nehezebb a mini-
mális távolságot meghatározni, mint Berman esetében, tehát ha a kód
egy hatványa a csoportalgebra radikáljának. A legegyszerűbb eset az,
amikor egy kód minimális távolságát meg lehet határozni egy bázisából,
tehát ha létezik olyan elem a bázisban, melynek a súlya ugyanannyi mint
a kód minimális távolsága. Mi olyan csoportkódokat keresünk, melyek



70

rendelkeznek ilyen bázissal.

5.6. Tétel Legyen Cm,k egy monomiális kód, melyet a következő halmaz
generál:

Bm,k = {∏(Xi)
ki |

m

∏
i=1

ki ≥ k, ahol 0≤ ki < p, 0 < k ≤ (p−1)m}.

Ekkor Bm,k a Cm,k egy látható bázisa.

5.8. Tétel Legyen p tetszőleges prím. Legyenek a1, . . . ,am fix számok,
melyekre 0≤ ai < p és legalább az egyik ai nem nulla. Ekkor a következő
Jp,m-ben lévő főideál

Ca1,...,am =
(
Xa1

1 Xa2
2 . . .Xam

m
)

határoz meg egy ciklikus kódot. A következő halmaz

B = {
m

∏
i=1

Xki
i |ai ≤ ki < p, i = 1,2, . . . ,m}

a Ca1,...,am kódnak egy látható bázisa.
Továbbá Ca1,...,am egy (pm,(p− a1) · (p− a2) · . . . · (p− am),δ )-kód, ahol

δ =
m
∏
i=1

(ai +1).

Az 5.6. Tétel bizonyításában teljes indukciót alkalmazunk a G elemi
Abel csoport direkt faktorainak száma szerint.

Az 5.8. Tétel bizonyításához Ward [W2] eredményét kihasználjuk,
hogy C előáll ciklikus kódok tenzorszorzataként.

Ezután az 5.6. Tétel-ben konstruált kódok automorfizmus csoportjait
vizsgáljuk és a következő tételt bizonyítjuk be.
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5.11. Tétel Legyen p = 2 és m egy tetszőleges pozitív egész szám. Legyen
C az 5.8. Tétel-ben definiált kód és legyen

C = (X1 · · ·Xt) ,

ahol 1≤ t ≤m. A C dimenzióját λ -val jelöljük és δ -val a minimális távol-
ságát. Ekkor C egy (2m,λ ,δ )−kód, ahol λ = 2m−t és δ = 2t . Ekkor C
automorfizmus csoportját felírhatjuk a következő szemidirekt szorzatként

Aut(C) = Sλ

δ
oSλ ,

ahol Sλ

δ
jelölje Sδ × . . .×Sδ︸ ︷︷ ︸

λ

-t és Si (ha i = δ ,λ ) jelöli az i-edfokú szim-

metrikus csoportot.

5.12. Megjegyzés A koszorúszorzat definíciójából (lsd. [KK], vagy [Cam]
Sec. 1.10) azt kapjuk, hogy Aut(C) = Sδ oSλ .

Az 5.11. Tétel bizonyítása elméleti. A C kód automorfizmus csoportja
meghatározásához egy kombinatorikai módszert használunk, melyet Pless
bevezetett [P2]-ben.
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