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Abstract

The Pauli potential VP in DFT is known to be the difference between the

functional derivative of the single-particle kinetic energy Ts[n] with respect

to the electron density n and its von Weizsäcker counterpart. For the lead-

ing Coulombic term in the 1/Z expansion for spherical atomic ions, VP [n]

is written in terms of the kinetic energy density plus n(r) and its low-order

derivatives. For comparison, the example of an arbitrary number of closed

shells with purely harmonic confinement is also treated.

In a recent article in this Journal [1] the differential virial theorem has been written in

single-particle DFT in terms of the first derivative of the Pauli potential VP for spherical

atomic densities n(r). This allows the so-called force-balance equation to be written in the

form

−n(r)
∂V

∂r
= −

h̄2

4m

∂

∂r
∇

2n(r) + 4
tW (r)

r
+ 2

∂tW (r)

∂r
+ n(r)

∂VP

∂r
, (1)

where tW (r) is the von Weizsäcker kinetic energy density: h̄2

8m
(∇n)2/n.
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Here, to make further analytical progress in understanding the Pauli potential we shall

obtain V ′

P (r) from Eq. (1) for the leading Coulombic term in the important 1/Z expansion

[2] for spherical atomic ions. In other words, we are considering a bare Coulomb field

approximation, where the generalized form of Kato’s theorem is valid. In this Coulomb

problem, with V (r) in Eq. (1) becoming V (r) = −Ze2/r, one of us [3] has derived the

spatial generalization of Kato’s theorem [4] as

∂n(r)

∂r
= −

2Z

a0

n0(r), (2)

where n0(r) is the s-wave (l = 0) component of the total density n(r), for an arbitrary

number of closed shells. Inserting Eq. (2) in Eq. (1) for the Coulomb potential, we readily

obtain

n(r)V ′

P (r) + 4
tW (r)

r
+ 2

∂tW (r)

∂r
= −n(r)

Ze2

r2
−

h̄2

2m

Z

a0

∂

∂r

[

n′

0(r) +
2

r
n0(r)

]

(3)

If we denote the kinetic energy density of this problem by tG(r) where G denotes the

wave function form (gradψ)2, we next employ the result of Amovilli and March [5], namely

readily obtain

∂tG(r)

∂r
=

h̄2

8m
n′′′(r) −

3h̄2

4mr2
n′(r) −

3Ze2

2r2
n(r). (4)

Using Eq. (4) in Eq. (3) to remove the term −n(r)Ze2

r2 , it follows that

n(r)V ′

P (r) + 4
tW (r)

r
+ 2

∂tW (r)

∂r
=

2

3

∂tG(r)

∂r
−

1

3
n′′

0(r)
Z

a0

h̄2

m
−

Z

a0r

h̄2

m
n′

0(r). (5)

While it is convenient, especially for a large number of closed shells, to work with the s-state

density n0(r), in fact use again of Eq. (2) gives back the more compact DFT-like formula

that

n(r)V ′

P (r) + 4
tW (r)

r
+ 2

∂tW (r)

∂r
=

2

3

∂tG(r)

∂r
+

h̄2

6m
n′′′(r) +

h̄2

2m

n′′(r)

r
. (6)

Since it is known from the theorems of DFT [6] that tG is a functional of the density n(r),

it is to be emphasized that Eq. (6) gives, at least in principle, V ′

P (r) as a functional of the

electron density n. This is, of course, a central objective of DFT for the Pauli potential.

2



Heilmann and Lieb [7] have shown what to us is the remarkable fact that if we sum

specifically the squares of the hydrogenic wave functions over the entire bound-state level

spectrum we obtain a density, say, n∞, which is everywhere finite. Of course, it is so long

range that it is naturally not normalizable, the density n∞ as r → ∞ giving the semiclassical

Thomas-Fermi result

n∞ = κr−3/2 r → ∞, (7)

where κ = 21/2(3π2)−1 [8]. ( Also n∞(0) = 1

π

∑

∞

n=1 n
−3 ≈ 0.383.) Inserting this into Eq. (4)

we find in this asymptotic limit

∂tG∞

∂r
= −33

h̄2

64m

κ

r9/2
−

3e2

2

κ

r7/2
r → ∞. (8)

Combining Eqs. (1) and (7) we arrive at the result

V ′

P∞
= −

e2

r2
+

3h̄2

16m

1

r3
r → ∞, (9)

or

VP∞ =
e2

r
−

3h̄2

32m

1

r2
r → ∞, (10)

Having demonstrated this DFT result for the leading term in the 1/Z expansion for spher-

ical atomic ions, we shall explore below a corresponding form to Eq. (6) for closed shells

generated by three-dimensional harmonic confinement, which is also analytically tractable.

It is worthy of note that magnetically trapped dilute ultracold Fermion vapours are now

studied experimentally starting with the pioneering work of DeMarco and Jin [9]. This al-

lows, in fact, harmonically confined Fermions to be studied as a function of dimensionality

d ≤ 3. The theoretical work of Howard et al. [10] has been motivated by the above experi-

mental progress. In [10] and in d dimensions, the functional derivative of the single-particle

kinetic energy Ts[n] of DFT is obtained in their Eq. (19) as

δTs

δn(r)
=
n2/d(r)

4d

h̄2

m

∫ r 1

n1+2/d(s)

∂∇2n(s)

∂s
ds. (11)
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The Pauli potential VP can then be obtained, as mentioned already in the Abstract, as

VP (r) =
δTs

δn(r)
−

δTW

δn(r)
. (12)

Since TW =
∫

tW (r)dr, we know the last term in Eq. (12) explicitly. Also, from Eq. (10) of

[10], but now specialized to d = 3,

∂tG
∂r

= −
3

2
n
∂V

∂r
. (13)

Returning to Eq. (1) above, we can use this 3D result (13) for harmonic confinement to

remove the term n∂V
∂r

to yield

2

3

∂tG
∂r

+
h̄2

4m

∂∇2n

∂r
= 4

tW (r)

r
+ 2

∂tW (r)

∂r
+ n(r)

∂VP

∂r
. (14)

The resemblance of Eq. (14) to Eq. (6) is remarkable though they are not identical.

In conclusion, it is stated that for the leading Coulombic term in the 1/Z expansion for

spherical atomic ions, the Pauli potential is written in terms of the kinetic energy density,

the electron density and its low-order derivatives. It is also demonstrated that the equation

derived for the Pauli potential of an arbitrary number of closed shells with purely harmonic

confinement has a very similar form.
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