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Chapter 1

Introduction

The present dissertation demonstrates three new entity authentication
schemes and a user registration protocol, which is necessary before the
first identity verification. Distributed identity verification is carried out by
multiple participants to secure cloud computing services and smart home
environments. Via formal analysis we demonstrate that the protocols fulfil
the necessary security requirements. Our solutions are more efficient than
the current practical and theoretical schemes.

One of the essential issues during online communication is the secure
authentication between the participants. The proper authentication serves
to avoid the different attacks (e.g. impersonation attack). However, in the
case of inproper authentication, user access control, confidentiality and in-
tegrity of user data are not provided. The authentication schemes require
several security properties, which depend on the attributes of environ-
ments. One of the most widely used authentication methods is based on
short secrets like passwords. The registration process (the initial phase of
the protocol) must be executed before the authentication, but it receives
insufficient attention in the scientific literature.

1.1 Historical background

Information systems are only as secure as their weakest point. One of
the essential security issues during online communication is the secure
authentication between the participants. Entity authentication is based
on the possession of secret information, which is known and verified only
by the entities participating in the process.

In scientific papers, one-factor and two-factor authentication solutions
are used primarily. In the case of one-factor authentication, the user is
usually protected only by a password, which is a string of characters used

2
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to verify the identity of a user. Since it is easy to use and deploy, password
usage is a widespread form of user authentication. Passwords are applied
in many cryptographic schemes and systems, e.g., password authentication
schemes or Password-Based Key Derivation Function (PBKDF) ([97, 118,
29, 74]).

The password is also often used as authentication information in key
exchange protocols. In the case of a password-authenticated key exchange
(PAKE), a user and a server establish a session key for a secure channel
after user registration ([16, 27, 28, 85, 68]). In [28] a Diffie-Hellman-based
password-authenticated key exchange protocol is proposed. Their protocol
provides formal security proof in the random oracle model against passive
and active adversaries. Two-factor authentication provides a higher level
of security than one-factor authentication, as it provides an extra security
factor for the login process. Two-factor authentication forces the adversary
to expand the implementation of his attacks even if the username and
the password are known. Several two-factor authentication schemes have
been proposed that depend on a long cryptographic secret and a short
password ([96, 79]). In 2011, Choudhury et al. demonstrated a two-factor
authentication protocol ([40]) for cloud computing where one of the factors
is the smart card, and the other one is the password. They applied an out-
of-band channel. Later, Chen and Jiang detected an impersonation attack
against the scheme of Choudhury et al. and proposed a new authentication
framework which did not use the out-of-band channel ([33]). Compared to
[33], we proposed a more efficient authentication solution which only uses
fast cryptographic operations (hash, xor). Our authentication protocol
for a cloud environment ([58]) applies two-factor authention based on a
Merkle tree.

Furthermore, forward secrecy is crucial and appears in several schemes
([55, 66, 98]). Pointcheval and Zimmer ([98]) demonstrated a multi-factor
authentication scheme applying a password, a long cryptographic secret,
and biometric data as well.

In a multi-server environment usually, threshold password-authenticated
key exchange protocols are designed. First, the threshold variant of PAKE
was recommended in [86]. They apply multiple servers in a threshold
scheme to prevent server corruption and handle password vulnerability.
These solutions assume that threshold-number servers may become cor-
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rupt, and not all servers are colluding. Devriş Işler and Alptekin Küpçü in-
troduced a scheme ([62]) where the protocol ensures that multiple storage
providers can be employed, and the adversary needs to corrupt the login
server and threshold-many storage providers to be able to mount an offline
dictionary attack. Later, they proposed a new framework ([63]) for dis-
tributed single password protocols (DiSPP). In their protocol, users store
the secret among storage providers (e.g. personal devices, online storage
providers) and access it by using their password. Mario Di Raimondo and
Rosario Gennaro recommended two threshold password-authenticated key
exchanges ([99]) where the protocols require n > 3t servers to work. They
enforce a transparency property: from the point of view of the client,
the protocol should look exactly like a centralized KOY protocol ([67]).
Password-Protected Secret Sharing (PPSS) scheme with parameters (t, n)
was formalized by Bagherzandi et al. ([9]). Jarecki et al. ([65]) presented
the first round-optimal PPSS scheme, requiring just one message from user
to server and from server to user, and proved its security in the challenging
password-only setting where users do not have access to an authenticated
public key. The scheme uses an Oblivious Pseudorandom Function (PRF)
and builds the first single-round password-only Threshold-PAKE proto-
col in the Common Reference String model (CRS) and Random Oracle
Model (ROM). In [59], we designed a scalable and distributed authenti-
cation protocol for cloud services, which applies parallel multiple servers
for the user authentication. We introduced the new threshold hibrid cor-
ruption model for analyzing corrupt participants on the system and our
solution provides the property of robustness. Compared to our earlier
proposed protocol ([58]), we use secret splitting technique and we also
achieved the scalable property.

The vulnerabilities of password schemes are well-known. Users may
choose ”weak” passwords or not change the default passwords, which are
accessible for attackers to guess. Another criticism of passwords is that
if any site where a specific password is reused becomes compromised and
the system administrators do not follow the best industry practices, the
participants’ other accounts may also become compromised by the attacker
who can guess the password with an offline attack. Several attacks aim
to figure out passwords, applying dictionary, rainbow tables or brute-force
attacks. The ”password-cracking tools” can be very efficient (such as
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Hashcat [54] and John the Ripper [95]), and it can be assumed that the
hash values of the leaked password are not safer than plain passwords
when compromised by an attacker ([44, 84, 26]).

Before the authentication, the remote registration of passwords is one
of the most important security aspects and the initial step of all remote
password-based protocols, but does not get enough attention. In crypto-
graphic password-based protocols, password registration is often skipped
assuming that the passwords are set securely and known to the parties
before the protocol is executed and implemented. During the implemen-
tation of registration, the chosen passwords are transmitted to the server
through a secure channel (e.g. Transport Layer Security (TLS) channel)
and users create or activate their account with their password through the
verification email. Hence the client’s password is revealed to the server.
However, the TLS implementations are rather complex with the use of
certificates, as the users need to manage and update them. Registrations
may be incomplete, and one of the shortcomings is when the TLS chan-
nel is not used, it may lead to a breach and leakage of confidential data
(which conflicts with the General Data Protection Regulation (GDPR)).
During login, passwords usually appear in cleartext at the server, and
security can be harmed if the TLS channel is established with a compro-
mised server’s public key (a major concern given today’s common Public
Key Infrastructure failures). To improve the security of password registra-
tion, Kiefer and Manulis introduced a new family of protocols called Blind
Password Registration (BPR) for Verifier-Based Password-Authenticated
Key Exchange (VPAKE) ([71]) and two-server PAKE ([72]). They pro-
posed Zero-Knowledge Password Policy Checks (ZKPPC), which enables
blind registration. BPR protocol can be executed over the TLS chan-
nel established between the client and the server. They define a security
model for stand-alone blind password registration protocols, which meets
the requirements of compliance with regulations and resistance to dictio-
nary attacks. We proposed a new password registration protocol, which
is more cost-effective than the above-mentioned TLS-based and the other
blind solutions ([71], [72]). It is not necessary to manage certificates or ex-
ecute Zero-Knowledge (ZK) proof. During our registration, we apply the
bilinear mapping, MAC and hash function, hence we achieve a favorable
computational time.
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Identity-Based Cryptography (IBC) is an alternative to Certificate-
Based Cryptography, which was first proposed by Shamir in 1984 ([108]).
The basic idea of identity-based cryptography involves an identity-based
asymmetric key pair where an arbitrary string can be used as a user pub-
lic key. For this, a trusted authority or Private Key Generator (PKG) is
needed to generate private keys from public keys and a master secret key.
The PKG also publishes public information required for all encryption, de-
cryption, signature, and verification algorithms in the system. Boneh and
Franklin ([24]) formalized the notion of Identity-Based Encryption (IBE),
which uses bilinear pairings over elliptic curve groups. In the IBE setting,
a user’s public key can be any arbitrary string, which is typically an e-mail
address. There is no need for Bob to go to the Certificate Authority to
verify Alice’s public key. In this way, an IBE can greatly simplify cer-
tificate management. However, IBC has a well-known disadvantage. If
the PKG is corrupted and its secret key is revealed, all messages and se-
cret keys are compromised. A cross-platform identity-based system using
WebAssembly is proposed in [114]. They recommend an efficient library
called CryptID, which is an open-source IBC implementation for desk-
tops, mobiles, and Internet of Things (IoT) platforms. In the case of IoT
devices, they are often very vulnerable due to weak protection (weak or
default passwords) and poor maintenance. Numerous studies have ad-
dressed the security vulnerabilities of IoT devices ([73, 70, 2]). Bugs have
been found in a wide range of devices, including routers ([116]), smart
cams ([106]), baby monitors ([18]) and smart plugs ([82]). We proposed
a new threshold and password-based, distributed, mutual authenticated
key agreement with key confirmation protocol designed for a smart home
environment. The proposed protocol is an identity-based, scalable and ro-
bust scheme that forces the adversary to corrupt l−1 smart home devices
to perform an offline dictionary attack, where l is the password threshold.
Short-lived identity-based key pair and bilinear pairing are applied in our
protocol.

Proving the security requirements of cryptographic protocols is a chal-
lenging issue. Several protocols had been thought to be secure until a
simple attack was found. We apply different security analysis methods for
our protocols. We use the AVISPA tool to analyse the smart home sys-
tem, which applies High-Level Protocol Specification Language (HLPSL).
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HLPSL is based on a fragment of the Temporal Logic of Actions and a
translation into the rewrite-based formalism Intermediate Format (IF). We
also use the ProVerif tool to analyse a cloud authentication protocol based
on applied Pi calculus. Moreover, we provide provable security analysis
based on the polynomial reduction technique for the recommended regis-
tration and a cloud authentication protocols.

1.2 Presentation overview and our results

The present work consists of three authentication schemes and a user
registration protocol.

The first chapter contains the scientific background of the user authen-
tication schemes and solutions.

In the second chapter, we detail the cryptographic primitives applied
in our protocols and the necessary preliminaries.

Chapter 3 covers automated security analysis tools and give the details
of the concept of provable security.

In Chapter 4, two distributed authentication are proposed for cloud
services. In the Chapter 4.1, we demonstrate a two-factor authentica-
tion scheme for cloud computing services using a Merkle tree ([57]). We
have extended the scheme in [58] and also provided a security analysis in
applied-pi calculus. A leaf of the Merkle tree is the hash of a password
share, and the root element is verified in order to confirm the correct-
ness of the whole one-time password. In the registration phase, the secret
keys are exchanged generating a large amount of one-time passwords be-
tween the user and the cloud servers. In the authentication phase, a
distributed authentication is applied where the randomly chosen server
verifies the correctness of the one-time password with the usage of the
Merkle tree. Comparing the efficiency of our authentication phase to the
work of [33, 40], we found that our scheme is more efficient, since only
hash calculations are performed. A message authentication key (MAC)
exchange is also provided to guarantee data origin integrity for the latter
interactive communication.

In Chapter 4.2, we recommend a mutual authentication protocol with
key agreement ([59]), where the identity verification is carried out by mul-
tiple servers applying secret splitting technology on server side. The pro-
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tocol results in a session key, which provides the confidentiality of the
subsequent messages between the participants. In our solution, we also
achieve robustness and scalability. To show that the proposed protocol
is provably secure, we apply the threshold hybrid corruption model. We
assume that among the randomly chosen k servers, there is always at least
one uncorrupted server and the authentication server reveals only the long-
lived keys. We prove that the protocol is secure in the random oracle model
if MAC is universally unforgeable under an adaptive chosen-message at-
tack, the symmetric encryption scheme is indistinguishable under chosen
plaintext attack, moreover, ECCDH assumption holds in the elliptic curve
group.

In Chapter 5, a password registration scheme is demonstrated based
on the identity-based cryptography, i.e. both the user and the service
provider are authenticated by their short-lived identity-based secret key.
For secure storage, a bilinear map with a salt is applied, therefore in case
of an offline attack the adversary is forced to calculate a computationally
expensive bilinear map for each password candidate and salt, which slows
down the attack. We introduce a new adversarial model with a new se-
cure password registration scheme. We show that the proposed protocol is
based on the assumptions that the Bilinear Diffie-Hellman problem is com-
putationally infeasible, the bilinear map is a one-way function and MAC
is existentially unforgeable under an adaptive chosen-message attack. The
proposed protocol suits our smart home user authentication scheme where
the values of the bilinear map are stored on the IoT devices. Our cloud
scheme ([58]) can also be easily modified with the proper long-lived key
setting to be compatible with our registration scheme.

In Chapter 6, we present a threshold and password-based, distributed,
mutual authenticated key agreement with key confirmation protocol for
a smart home environment ([60]). In our proposed cloud authentication
schemes ([57], [58], [59]), we assume that the cloud servers are always avail-
able. However, the devices can be of various types in smart home systems,
which means some devices are battery-powered or resource-constrained
and might not be available. We need to consider this property of smart
homes, and we propose a new smart home user authentication scheme
with a secret sharing technique, where we require k devices to be available
out of n ones, which can be chosen dynamically. The proposed protocol
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is a scalable and robust scheme, which forces the adversary to corrupt
l− 1 smart home devices, where l is the threshold, in order to perform an
offline dictionary attack. The protocol is designed to achieve password-
only setting, and end-to-end security if the chosen IoT devices are also
authenticated besides the user. We also provide a security analysis of
the protocol in AVISPA. We apply the On-the-fly Model-Checker and
the Constraint-Logic-Based Attack Searcher to perform the protocol ver-
ification for bounded numbers of sessions. We show that the proposed
protocol provides secrecy of the session key and mutual authentication of
the user and the device manager. Since efficiency is a crucial aspect, we
implemented our protocol to measure the computation and communica-
tion costs. We demonstrate that our solution is appropriate and eligible
for smart homes.

1.3 Credits

Results of Ditributed Cloud Authentication Protocols are based on

A. Huszti, N. Oláh, A simple authentication scheme for
clouds, In Proceedings of 2016 IEEE Conference on Communi-
cations and Network Security (CNS), IEEE, (2016), 565–569.,

A. Huszti, N. Oláh, Security analysis of a cloud authenti-
cation protocol using applied pi calculus, International Journal
of Internet Protocol Technology, vol. 12, no. 1, (2019), 16 –
25. SJR: Q4 and

A. Huszti, N. Oláh, Provably Secure Scalable Distributed
Authentication for Clouds, Lecture Notes In Computer Science
12579., Chapter 10, (2020), 188–210. CORE: B

Results of Scalable, password-based and threshold authentication for Smart
Homes are based on

A. Huszti, Sz. Kovács, N. Oláh, Scalable, password-based
and threshold authentication for Smart Homes, Int. J. Inf. Se-
cur. 21, https://doi.org/10.1007/s10207-022-00578-7, (2022),
707— 723. SJR: Q2, IF: 2.067
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Results of Provably Secure Identity-Based Remote Password Registration
are based on

Cs. Bertók, A. Huszti, Sz. Kovács, N. Oláh, Provably
Secure Identity-Based Remote Password Registration, to ap-
pear in Publicationes Mathematicae Debrecen. SJR: Q2, IF:
0.636



Chapter 2

Cryptographic Protocol
Building Blocks

This chapter details the cryptographic primitives applied in our pro-
tocols and the necessary preliminaries. We specify, inter alia, the Merkle
tree, the types of communication channels, review the theory of elliptic
curves and the related bilinear pairings. Furthermore we define the cryp-
tographic primitives and provide the message authentication code and
encryption scheme definitions. As a first step, let’s check the Merkle tree.

2.1 Merkle Tree

In Chapter 4.1, we recommend a two-factor authentication scheme for
cloud computing used by a Merkle tree. The main idea is to provide
shared responsibility of handling the one-time password, i.e. the one-
time password is stored and shared among the cloud servers. We apply
a Merkle tree or hash tree ([90]) for verifying the correctness of the one-
time password. A Merkle tree is a binary tree where each non-leaf node
is labeled with the hash value of the concatenation of the labels of its two
children.

Let H() and || denote a hash calculation and a concatenation opera-
tion, respectively. We extend the general Merkle tree with an extra level
(Kij ). This level contains the shares of the one-time password, and the
servers update these values later in the synchronization phase. There
are 2n values denoted by Kij , where i ∈ {1, . . . , 2n−1} and j ∈ {1, 2},
the Merkle tree leaf node labels Tij are the hash values of Kij , i.e.
Tij = H(Kij ). All the other node values Yk are calculated as a hash
of two concatenated children labels (e.g. Y1 = H(T11 ||T12)). Eventually,
a tree with 2n leaves and all together with 2n+1 − 1 nodes is built up.

11
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Especially, we label the root node by Yr and its two children values by Yd1
and Yd2 . You can see an example of our Merkle tree in Figure 2.1.

Figure 2.1. A Merkle tree with 8 leaves

The most important advantage of the Merkle tree is the low modifi-
cation cost of a leaf value. In our protocol, after each authentication, the
values Tij , for a given i and j = 1, 2 need to be updated, consequently
all the node values in the path to the root are modified (including the
root node value). The new node labels can be computed with the help
of the actual siblings, thus we do not have to rebuild the whole tree.
Let us see the example of Figure 2.1. We suppose that T11 and T12 are
reset and we would like to compute the new Yr. We can calculate the
new Y1 = H(T11 ||T12), then we get Yd1 and Yr via Yd1 = H(Y1||Y2) and
Yr = H(Yd1 ||Yd2), where Y2, Yd2 are the siblings. We emphasize that in
case of 2n leaves, only n hash calculations are needed for computing the
new root node value.

The Merkle tree construction is applied to obtain efficient one-time
password verification. For each user there is a Merkle tree, where the
values Tij yield the one-time password shares, therefore we get the whole
one-time password as T = T11 ||T12 ||T21 || . . . ||T2n−1

2
. The Merkle tree is

stored on user and server sides as well. On server side the one-time pass-
word is stored distributed among the cloud servers.
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2.2 Elliptic Curves Cryptography

We review some of the theory of elliptic curves over finite fields, further
details can be found in [89]. Let Fq denote the finite field of q elements,
where q is a prime or a prime power. We apply E to define elliptic curve
over Fq, where q = pm and p is the characteristic of Fq. If p > 3, then
E(Fq) is the set of all solutions in Fq × Fq to an affine equation

y2 = x3 + ax+ b,

with a, b ∈ Fq and the 4a3 + 27b2 6= 0, together with an extra point O,
called the point at infinity. One can equip E(Fq) with a binary opera-
tion by using the ”chord and tangent” process. On this way one gets an
Abelian group, where the point at infinty is the neutral element. The
main advantage of applying elliptic curves in cryptography is that the
same level of security is ensured with shorter key lengths comparing to
other public-key systems.

Elliptic Curve Cryptography (ECC) is based on the infeasibility of
Elliptic Curve Discrete Logarithm Problem, where the definition is the
following:

2.2.1 Definition. Let G ∈ E(Fq) be a point of order n, and let < G >
be the subgroup of E(Fq) generated by G. The Elliptic Curve Discrete
Logarithm Problem is to determine the value of a ∈ Zn in the equation
A = aG, for a given point A ∈< G >.

One of the most often used key agreement protocol is the Diffie-
Hellman protocol ([41]). The purpose of the Diffie-Hellman protocol is
to enable two parties to securely exchange a session key which can then
be used for encrypting and authenticating messages. The security of the
Elliptic Curve Diffie-Hellman protocol is based on the infeasibility of cal-
culating elliptic curve discrete logarithms. The algorithm works as follows:

� Alice and Bob select random secret values a, b ∈ Z∗n, respectively.

� Alice and Bob calculate aG and bG, respectively, where G is a gen-
erator in E(Fq) and send their values to each other.

� Both of them compute the shared secret K = a(bG) = a(bG) = abG.
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Our password hashing scheme in Chapter 5 and the long-lived keys in
Chapter 6 based on the bilinear pairings on elliptic curves. Let us review
the definition of the admissible bilinear map ([24]).

2.2.2 Definition. Let G be an additive group and GT be a multiplicative
group of order q for some large prime q. A map ê : G × G → GT is an
admissible bilinear map if satisfies the following properties:

1. Bilinear: We say that a map ê : G×G→ GT is bilinear if ê(aP, bQ) =
ê(P,Q)ab for all P,Q ∈ G and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G × G to the
identity in GT. Since G, GT are groups of prime order, if P is a
generator of G then ê(P, P ) is a generator of GT.

3. Computable: There is an efficient algorithm to compute ê(P,Q) for
any P,Q ∈ G.

The Weil and Tate pairings are examples of such constructions. Typi-
cally, G is an elliptic-curve group and GT is the multiplicative group of a
finite field. The Bilinear Diffie-Hellman Problem is strongly related to the
bilinear map.

We also use the following hard problem as well and give formalization
of the definitions:

2.2.3 Definition. Bilinear Diffie-Hellman Problem. Let ê : G×G→ GT
be a bilinear map on (G,GT). Given (P, aP, bP, cP ) for some a, b, c ∈ Z∗q ,

compute ê(P, P )abc.

2.2.4 Definition. One-way Pairing [50]. Let ê : G × G → GT be a
bilinear map on (G,GT). We say that ê is a one-way pairing if for any
polynomial time (in a security parameter κ) algorithm A that takes as
input G ∈ G and g ∈ GT and produces as output an element of G the
probability Pr[ê(G,A(G, g)) = g] is negligible. The probability is taken
over the possible values of G and g.

2.2.5 Definition. (Computational Diffie-Hellman Problem) Let q
be a prime a, b ∈ Z∗q and G be a cyclic multiplicative group of order q. For

a given (g, ga, gb) (with g ∈ G) compute gab.
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2.2.6 Lemma. Let ê : G × G → GT be a bilinear map defined as in
Definition 2.2.2. If the Computational Diffie-Hellman (CDH) Problem is
infeasible in GT then ê is a one-way pairing.

Proof: Let G be a generator of G. Then it can be seen that ê(G,G) =
g ∈ GT is also a generator of GT . Suppose now that ê is not one-
way, thus for every given ga, gb ∈ GT we can find (in polynomial time)
aG, bG ∈ G such that ê(G, aG) = ga and ê(G, bG) = gb. However in this
case ê(aG, bG) = ê(G,G)ab = gab which contradicts the infeasibility of the
CDH problem. �
In the case of password hashing scheme we need an efficient way to map
passwords first into Zp (with p given in the Section 6.4), then these ele-
ments of Zp into a point on the curve. Mapping passwords into Zp can
be done easily by concatenating the ASCII value of each character, then
taking the result mod p. For mapping messages (passwords) from Zp
to an elliptic curve over Zp it is desirable to choose an ”almost always”
injective encoding. A similarly good property would be that the map-
ping is efficiently computable and reversible, so we can easily obtain both
the encoded message from an (almost) arbitrary element of Zp and also
our initial message (password) from (almost) any given curve point. Fi-
nally for cryptographic algorithms it is also desirable that the mapping is
surjective, since otherwise our possible message (password) space is un-
necessarily limited. Unfortunately general encodings which fulfills these
requirements are very scarce, however in [48] the authors provide such a
mapping.

Since the results in [48] are formulated in a more general form, stating
them here is out of the scope of the present dissertation, thus we only
provide their main result in a simplified form and for the exact technical
details we refer to [48] Sections 1 and 2. For this paragraph, let q be an
odd prime congruent to 3 modulo 4, g a positive integer and E : y2 =

x2g+1 + a1x
2g−1 + · · · + agx an elliptic curve over Zq. Denote by

(
·
q

)
and

√
· the Legendre symbol and the square root over Zq. Finally let
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ε(x) =
(
f(x)
q

)
. The proposed encoding is

tr : Zq −→ E

x 7→
(
ε(x) · x, ε(x)

√
ε(x) · f(x)

)
Since ε(x) ∈ {−1, 0, 1} and for every x ∈ Zq f(−x) = −f(x) then it is
clear that (ε(x)

√
ε(x) · f(x))2 = f(ε(x) ·x) holds. Let T denote the set of

roots in Zq of f(x) and W the set consisting of the points of E in the form
of (x, 0), and the point at infinity. In [48] the authors proved that the
encoding tr induces a bijection Zq \ T −→ E \W . In our case the elliptic
curve is E : y2 = x3 + x over Zq, where the prime q is given in Section
5.4 and Section 6.4. It can be verified that both requirements stated in
[48] are fulfilled thus the theorem holds for E. Thus based on the results
stated in [48] tr is ”almost always” a bijection.

It can also be seen that this mapping is efficiently reversible, because
for any point P = (x, y) ∈ E the numerical value of the original message
(password) is either x or −x.

2.2.1 Shamir’s Secret Sharing

In Chapter 6, we also apply secret sharing where we using a (k, n) threshold
scheme. A secret S can be divided into n shares in a way that k ≤ n will
be the threshold number of the shares and we must be able to compute S.
Thus k − 1 or fewer shares leave S completely undetermined. We apply
secret sharing for the IoT devices to construct the password.

Shamir’s Secret Sharing threshold scheme is based on polynomial in-
terpolation. We need at least k points to define a polynomial of k − 1
degree. We set a polynomial of k − 1 degree to divide a secret S into
shares: f(x) = a0 + a1x + ... + ak−1x

k−1, where ai ∈ Fq are chosen ran-
domly for i = 1, . . . , k − 1. Secret S = f(0) = a0 and the shares will be:
s1 = f(1), . . . , sn = f(n).

To find the secret S, Lagrange polynomials are applied. There is an
optimized approach, where

S = f(0) =
k−1∑
j=0

f(xj)
k−1∏
m=0
m6=j

xm
xm − xj

.
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2.2.2 Description of Cryptographic Primitives

In this part we define the cryptographic primitives, which are used in our
solutions:

2.2.7 Definition. A message authentication code (or MAC) is a tuple of
polynomial-time algorithms (KeyM ,MAC,V er) such that:

1. The key-generation algorithm KeyM takes as input the security pa-
rameter 1κ and outputs a key K with |K| ≥ κ. KeyM is probabilis-
tic.

2. The tag-generation algorithm MAC takes as input a key K and a
message m ∈ {0, 1}∗, and outputs a tag t. We write this as t :=
MACK(m). We assume that MAC is deterministic.

3. The verification algorithm V er takes as input a key K, a message
m, and a tag t. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. We assume without loss of generality that
V er is deterministic, and so write this as b := V erK(m, t).

Consider the experiment for a message authentication code (KeyM ,
MAC, V er), an adversary A, and security parameter κ, as follows. The

message authentication experiment ExpeforgeMAC (A) is the following:

1. A random key K is generated by running KeyM (1κ).

2. The adversary A is given input 1κ and oracle access to MACK(.).
The adversary eventually outputs a pair (m, t).

3. The output of the experiment is defined to be 1 if and only if
V erK(m, t) = 1 and m was never asked from the oracle MACK(.)
before.

2.2.8 Definition. A message authentication code (KeyM ,MAC, V er) is
existentially unforgeable under an adaptive chosen-message attack, if for
all probabilistic polynomial-time adversaries A, Pr[ExpeforgeMAC (A) = 1] is
negligible.

In Chapter 4.1, servers should be able to use a secret channel to ex-
change data in an encrypted manner.
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2.2.9 Definition. A symmetric encryption scheme is a tuple of proba-
bilistic polynomial-time algorithms (KeyE , Enc,Dec).

1. The key-generation algorithm KeyE takes as input the security pa-
rameter 1κ and outputs a random key K ∈ {0, 1}κ.

2. Enc is an encryption algorithm that takes inputs key K and plain-
text m ∈ {0, 1}∗, and outputs a ciphertext c = EncK(m).

3. Dec is a deterministic decryption algorithm that takes inputs key K
and ciphertext c, and outputs the plaintext m = DecK(m).

To define secure encryption, let A be an adversary and consider the
experiment Expind−cpaEnc (A) as follows.

1. A random key K is generated by running KeyE(1κ).

2. The adversary A is given input 1κ and oracle access to EncK(.), and
A outputs m0,m1 ∈ {0, 1}∗ with |m0| = |m1|.

3. A random bit b is chosen and a ciphertext EncK(mb) is computed
and given to A.

4. A continues to have oracle access to EncK(.), and outputs a bit b′.

5. We define A’s advantage to be Advind−cpaEnc (A) = |Pr[b′ = b]− 1/2|.

2.2.10 Definition. We say that a symmetric encryption scheme is indis-
tinguishable under chosen plaintext attack if Advind−cpaEnc (A) is negligible in
κ for any Probabilistic Polynomial Time (PPT) adversary A.

2.3 Communication Channels

In the case of cryptographic protocols, the parties involved exchange in-
formation through various types of communication channels.

Public channel. Public channels transmit all information without
applying cryptographic algorithms. Attackers are able to tap the message,
and the identity of the sender can be traced back.
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Authenticated channel. An authenticated channel is resistant to
unauthorized tampering but it does not provide condentiality against the
eavesdropper adversary.

Secure authenticated channel. A secure authenticated channel is
resistant to unauthorized tampering and provides confidentiality as well.
In order to realize a secure channel between two parties, first the partic-
ipants run a key-exchange protocol to obtain a session key. The sender
encrypts the message and concatenates it with a tag computed by ap-
plying a message authentication function to the ciphertext. Encryption
and authentication are performed via keys derived from the session key.
Verification and decryption are executed analogously.



Chapter 3

Background of the Security
Analysis Techniques

This section covers the various security techniques we use to analyze
our proposed protocols. We present two automated tools and give the
details of the concept of provable security.

A protocol verification aims to prove that the protocol is secure. How-
ever, the complexity of security protocols makes it challenging to analyse
them. Informal arguments about the security of protocols are not reliable.
There are many formal methods for analysing the security protocols, and
this topic remains very active in the research community. Formal methods
for analysing security protocols fall into two main categories.

Model-checking methods consider a finite number of possible protocol
behaviours, allowing you to check whether the protocol meets the specified
security conditions. These methods are sound but not complete, i.e. they
are generally more suitable for finding attacks against protocols than for
proving their security.

Theorem-proving methods consider all possible protocol behaviours
and check whether they meet a set of security conditions. These methods
are generally more suitable for proving the security protocols.

Lowe ([83]) has developed an effective method which has been used to
find a previously unknown attack on the Needham-Schroeder public key
protocol ([92]). This method is applied for verifying security protocols us-
ing Failures Divergences Refinement Checker (FDR), a model checker for
the process algebra (Communicating Sequential Processes - CSP) ([103]).
A comprehensive introduction to the method can be found in [104], includ-
ing the background of CSP. In the protocol, each participant is modelled
as a CSP process representing the protocol steps performed by the partic-
ipant, and communication is modelled by the notion of channels.

20
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The US Naval Research Laboratory (NRL) developed a special-purpose
software tool known as the Analyzer ([88]), which is a Prolog program
for cryptographic protocol analysis. The Analyzer is hybrid, possessing
features of both a model checker and a theorem prover. Searching begins
from an insecure state, examining if that state can be reached from the
initial state and if so, an explicit attack has been found. Lemmas may
be proven to demonstrate that infinite classes of states are unreachable,
which can prove that all paths to the insecure state start in unreachable
states.

The Burrows-Abadi-Needham (BAN) logic ([30]) is one of the most
popular protocol logics, which is an early formal method for analyzing au-
thentication and key establishment protocols. Proofs constructed in the
BAN logic tend to be short and easily obtained. For analysing a proto-
col, one must transform the actual or concrete protocol into an idealised
protocol. We distinguish three types of primitive objects in the syntax of
the BAN logic: principals, keys and nonces, and we express the protocol
messages as a logic formula. While several researchers have proposed ex-
tensions or improvements over the BAN logic, others criticised it because
it may not accurately reflect the protocols ([93, 91]).

3.1 AVISPA

In this section the necessary informations are provided which are required
to understand the AVISPA Automated Validation of Internet Security
Protocols and Applications) tool. In AVISPA, we can define protocols and
their security properties. It applies the High-Level Protocol Specification
Language (HLPSL) which is a modular, role-based language. AVISPA
contains two types of roles where basic roles represent each participant
role and composition roles act for scenarios of basic roles. The roles are
independent of the other roles. In the initial step, roles get information
by parameters and communicate with each other’s used by the channels.
With the use of HLPSL correct protocol behavior described in the speci-
fication is achieved.

For implementing distinct state-of-the-art automated analysis tech-
niques, we also integrate various back-ends. AVISPA contains four
different formal verification approaches (i.e., On-the-fly Model-Checker,
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Constraint-Logic-based Attack Searcher, SAT based Model-Checker and
Tree Automata-based Protocol Analyser) that can formally validate secu-
rity properties of a protocol.

The On-the-fly Model-Checker (OFMC) ([10, 11, 12, 43]) executes pro-
tocol forgery and bounded session verification as well, where OFMC con-
siders both typed and untyped protocol models. OFMC’s effectiveness
is due to the integration of a number of symbolic, constraint-based tech-
niques, which are correct and complete, in the sense that no attacks are
lost nor new ones are introduced by them. These techniques are the lazy
intruder technique or the constraint differentiation technique. OFMC also
implements a number of efficient search heuristics. It also provides support
for modeling an intruder who is capable of performing guessing attacks on
weak passwords, and for the specification of algebraic properties of crypto-
graphic operators. OFMC can be employed for protocol falsification and
also for verification for a bounded numbers of sessions - without bounding
the messages an intruder can generate.

The Constraint-Logic-based Attack Searcher (CL-AtSe) is different
from the OFMC since it uses constraint solving to perform the proto-
col falsification and verification for bounded numbers of sessions ([34, 35,
36, 37, 38]). The protocol messages can be typed or untyped, and the
pairing can be considered to be associative or not. It is significant that
several properties of the XOR operator can be handled as well. CL-AtSe
is built in a modular way and is thus open to extensions for handling
algebraic properties of cryptographic operators. CL-AtSe performs sev-
eral kinds of optimizations to reduce, and often eliminate redundancies or
useless branches in the protocol’s symbolic execution.

In AVISPA the SAT-based Model-Checker (SATMC) ([4, 5, 6, 7]) could
be also applied which considers the typed protocol model and performs
both protocol falsification and bounded session verification by reducing
the input problem to a sequence of invocations and state-of-the-art SAT
solvers. Finally, the TA4SP (Tree Automata based on Automatic Ap-
proximations for the Analysis of Security Protocols) back-end ([22, 23])
performs unbounded protocol verification by approximating the intruder
knowledge with the help of regular tree languages and rewriting. Genet
and Klay introduced an extension of an approximation method based on
tree automata ([51, 52]) for verifying security protocols.
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Internally, the attack conditions are specified in terms of temporal
logic, but useful and concise macros are provided for the two most fre-
quently used security goals, authentication and secrecy. When as we
give the goal predicates declaration which is explicitly on the right-hand
sides of HLPSL transitions and are translated into corresponding IF facts,
these are applied to specify secrecy and different forms of authentication.
Among the goal facts secrecy declares which values should be kept se-
cret. This goal declaration in the goal section describes that anytime the
intruder learns a secret value, even if it is not explicitly given, then it
should be considered an attack. The evaluation of secrecy remains in ef-
fect until the end of the protocol run. Since it has effect only after the
events have been issued, secrecy events should be defined at the earliest
possible time, when the secret term has been generated in the respective
role(s).

The witness and request predicates are goal facts related to authenti-
cation. They are used to check whether a participant is right in believing
that its intended peer is present in the current session, has reached a cer-
tain state, and agrees on a certain value, which typically is fresh. They
always appear in pairs with identical third parameter. Further information
about the AVISPA can be found in [3, 8].

3.2 ProVerif

In this section we present the ProVerif software package (actual version is
2.04). ProVerif is another tool in which we can formalize our cryptographic
protocols and automatically analyse their security. The following crypto-
graphic primitives are provided symmetric and asymmetric encryptions;
digital signatures; hash functions; bit-commitments; and non-interactive
zero-knowledge proofs. It is notable that the analysis of formalized pro-
tocol is evaluated in point of an unbounded number of sessions and an
unbounded message space in ProVerif.

3.2.1 Applied π Calculus

Term and process grammar

In this section we briefly review the applied π calculus that is based
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on the π calculus. Detailed description of this topic can be found in [1]. A
signature

∑
is a set of function symbols, each with an arity. A function

symbol f with arity 0 is a constant symbol. The set of terms is built from
names, variables, and function symbols. Let us denote channel names by
a, b, c, and names of any sort by m,n. Also, let x, y, z range over variables.
L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, ...,Ml) function application

The grammar for processes is the following:

P,Q,R ::= processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (new)
if M = N then P else Q conditional
u(x).P message input
u〈N〉.P message output

Replication of process !P means infinite number of copies of P running
in parallel. Name restriction process νn.P creates a new, private name
and behaves as P . Finally, process u(x).P is ready to input from channel
u, then to run P with the message replaced for the formal parameter x,
and process u〈N〉.P is ready to output N on channel u, then to run P .
We extend processes with active substitution. We denote the substitution
that replaces the variable x with the term M by {M/x}.
Operational semantics

Given a signature
∑

we equip it with an equational theory, i.e. an
equivalence relation on terms that is closed under substitution of terms
for variables. We write E ` M = N for equality and E 6` M = N for
inequality in the theory associated with

∑
. Operational semantics of the

applied-pi calculus is defined in terms of structural equivalence (≡) and
internal reduction (→). Structural equivalence captures rearrangements
of parallel compositions and restrictions, and the equational rewriting of
the terms in a process. Internal reduction defines the semantics of process
synchronizations and conditionals. Observational equivalence (≈) cap-
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tures the equivalence of processes with respect to their dynamic behavior.

3.2.2 ProVerif

ProVerif handles input files encoded in a variant of the applied π calculus
which supports types. ProVerif takes the model of the protocol and the
security properties that we want to prove as input. ProVerif supports cryp-
tographic primitives, modeled by rewrite rules or by equations. By using
constructors and destructors with rewrite rules cryptographic primtives
can be represented (see next section). Constructors and destructors can-
not model all cryptographic operations, therefore to deal with these limi-
tations (e.g. modelling modular exponentiation) ProVerif uses equational
theory. For example, the Diffie-Hellman key agreement can be modelled
by using equations:

exp(exp(g, x), y) = exp(exp(g, y), x)

where g : G is a constant and exp(G,Z) : G is modular exponentiation.
Symmetric encryption schemes can be modelled by equations as well. In
this model decryption always succeeds. However, rewrite rules should be
preferred when they are sufficient to give the security property, ProVerif
handles them more efficiently.

It is important to mention that ProVerif does not support all equa-
tional theories. For some equations infinite number of rewrite rules are
generated and ProVerif does not terminate. A typical example for this is
the associativity, which prevents the modeling of primitives such as XOR
or groups. Another one is the equation of f(g(x)) = g(f(x)). The so-
lution for this problem is considering the extensions of ProVerif ([78]),
or there are other protocol verifiers, e.g. Maude-NPA ([88], [45]) and
Tamarin([107]), that support more equational theories, at the cost of a
more computationally expensive verification or by requiring user interven-
tion.

ProVerif is able to verify security properties, including secrecy, mutual
authentication and observational equivalence properties. The adversary
intercepts all messages, computes, and sends all messages it has, follow-
ing the Dolev-Yao model. ProVerif translates the protocol into a set of
Horn clauses, and the security properties into derivability queries on these
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clauses and determines whether a fact is derivable from the clauses. Horn
clauses are first order logic formulas of the form F1 ∧ · · · ∧ Fn =⇒ F ,
where F1, . . . , Fn, F are facts. An algorithm based on resolution with free
selection is applied. If the fact is not derivable, then the security property
holds, otherwise there might be an attack. The derivation may give a false
attack, because the Horn clause representation makes some abstractions.
One can find more details in [21] and [20].

Cryptographic primitives

We give formalization for cryptographic primitives as follows:

� Hash function, message authentication code
We represent a one-way hash function as a unary function symbol
H with no rewrite rules. The absence of an inverse for H models the
onewayness of H. Similarly we denote a one-way Mac function as a
binary function symbol mac, where the first argument corresponds
to the secret key of Mac.

fun H(bitstring) : bitstring.
fun mac(bitstring, bitstring) : bitstring.

� Symmetric encryption
We take binary function symbols encrypt and decrypt for en-
cryption and decryption, respectively, with the rewrite rule:
decrypt(encrypt(M,k), k) = M . Here M represents the plaintext
and k is the secret key.

fun encrypt(bitstring, bitstring) : bitstring.
reduc forall M : bitstring, k : bitstring;
decrypt(encrypt(M,k), k) = M.

� Asymmetric encryption
In the case of asymmetric encryption, we have to generate a key-
pair, a public and a secret key. We have an unary function symbol
pk for generating the public key, where the secret key is the argu-
ment. Similarly to symmetric encryption, we represent asymmetric
encryption and decryption with binary function symbols aenc and
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adec with the rewrite rule of adec(aenc(M,pk(k)), k) = M , where
M denotes the plaintext and k is the secret key.

type skey.
type pkey.
fun pk(skey) : pkey.
fun aenc(bitstring, pkey) : bitstring.
reduc forall m : bitstring, k : skey;
adec(aenc(M,pk(k)), k) = M.

� Digital signatures
In order to formalize digital signatures that also employ secret and
public keys, we use function symbol spk for generating public keys,
and binary function symbols sign, checksign. Digital signatures rely
on a pair of signing keys of types sskey (private signing key) and
spkey (public signing key). We interpret digital signatures with mes-
sage recovery, meaning we have checksign(sign(M,k), spk(k)) = M ,
where M is the message and k is the secret key.

Security properties

type sskey.
type spkey.
fun spk(sskey) : spkey.
fun sign(bitstring, sskey) : bitstring.
reduc forall M : bitstring, k : sskey;
checksign(sign(M,k), spk(k)) = M.

ProVerif is capable of analyzing properties reachability, correspondence
assertions and observational equivalences. These capabilities are demon-
strated to permit the analysis of secrecy and authentication properties.
Furthermore, in the analysis other properties can be considered like pri-
vacy, traceability, and verifiability. When a property cannot be proved,
ProVerif can reconstruct the attack and try to reconstruct an execution
trace that falsifies the desired property. We mention that ProVerif is
sound, but not complete. If ProVerif results that a property is satisfied,
the model guarantees the property, but ProVerif may not be able to prove
a property that holds.
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For security evaluations ProVerif uses queries that might be a fact or
a correspondence. In the case of reachability, the query is a fact, we test
whether the fact holds. Especially, we query whether a term m is secret
for the attacker: query attacker : m.

A correspondence is a form of F =⇒ H, which means if F holds,
then H also holds. We define events in the model as important stages
and we test whether if event a has been executed, then event b has been
previously executed. The query ev : a(x, y) =⇒ ev : b(y, z). means that
for all x, y, for each occurrence of a(x, y), there is a previous occurrence of
b(y, z) for some z. For proving one-to-one relationship we apply injective
correspondences. The query evinj : a(x, y) =⇒ evinj : b(y, z). means
that for each occurrence of the event a(x, y), there is a distinct earlier
occurrence of the event b(y, z) for some z.

The notion of indistinguishability is called observational equivalence
in the formal model, denoted by P ≈ Q. Two processes are observation-
ally equivalent if an active adversary cannot distinguish them. Further
information can be found in [21].

3.3 The Concept of Provable Security

In Chapter 4.2 and Chapter 5, we present two provably secure protocols.
The first protocol provides secure password registration, while the second
ensures mutual key authentication and mutual key confirmation. Our
security models are based on the indistinguishability-based model (see
[14], [15]) proposed by M. Bellare and P. Rogaway in 1993.

In Chapter 5 we also apply the generic bilinear group (GBG) model,
which was introduced by D. Boneh and et. al. in [25]. In the GBG model,
two random encodings Ω0,Ω1 of the additive group Z+

q are considered.
Let Z+ denote the positive integers, q is a large prime and injective maps
Ω0,Ω1 : Z+

q → Θ are employed, where Θ is a bitstring set and |Θ| = q. We
assume that G = {Ω0(x)|x ∈ Z+

q } and GT = {Ω1(x)|x ∈ Z+
q }. In the GBG

model, an oracle executes the group operation and takes two encodings
of group elements as input, then outputs an encoding of a third element.
The group is allowed for a pairing operation, which is an additional oracle.
We give oracles QG, QGT to execute the group operation on G,GT and an
oracle QP to calculate a bilinear map ê : G×G→ GT. For any operations
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on groups, the adversary must issue the associated group queries to the
polynomial time adversary F to get the results.

For any a, b ∈ Zq, queries QG, QGT and QP possess the following prop-
erties:

� QG(Ω0(a),Ω0(b))→ Ω0(a+ b mod q)

� QGT(Ω1(a),Ω1(b))→ Ω1(a+ b mod q)

� QP(Ω0(a),Ω0(b))→ Ω1(ab mod q)

We detail the security model. Let 1κ denote the string consisting of κ
consecutive 1 bits, where κ ∈ N is a security parameter. ID is the union
of the finite, disjoint, nonempty sets of Client = {1, 2, . . . , T1(κ)} and
Server = {1, 2, . . . , T2(κ)}, where Ti(κ), i ∈ 1, 2 is a polynomial bound
on the number of participants in κ for some polynomial function Ti. Each
participant is modelled by an oracle

∏l
I,J , which simulates a participant

I executing a protocol session in the belief that it is communicating with
another participant J for the lth time, where l ∈ {1, . . . , T3(κ)} for some
polynomial function T3. Oracles keep transcripts, which contain all mes-
sages they have sent and received and the queries they have answered.
The oracles are available to the adversaries, and we can model the various
kinds of attacks via the queries to these oracles. In the concept of the ap-
plied proof technique, we assume that a problem is hard to solve and prove
that the solution is secure under this assumption. The proof that a given
cryptographic protocol is secure as long as an underlying problem is hard
proceeds by presenting an explicit polynomial reduction. This reduction
shows how to convert an adversary A that succeeds in ”breaking” the con-
struction with non-negligible probability into an efficient algorithmA′ that
succeeds in solving the problem we assumed to be hard. It contradicts the
initial assumption if an efficient algorithm solves the hard problem with
non-negligible probability. We state that our protocol is computationally
secure since no efficient adversary A can succeed in breaking protocol with
probability that is not negligible.



Chapter 4

Distributed Cloud
Authentication Protocols

In this chapter, we propose two distributed authentication protocols
for cloud services. Our solutions apply multiple servers for user authenti-
cation. In both solutions, we put great emphasis on the handle of corrupt
participants. In the first solution, we present a two-factor authentication
protocol based on Merkle tree, however, it does not provide the scalability.
In our second protocol we focus on robustness and scalability, where we
apply secret sharing technique. First, let’s check the distributed system
and the cloud computing definitions.

Distributed systems play an essential role in our daily lives, making
them more efficient and convenient. Several definitions of distributed sys-
tems have been formalized in the literature, and we use the definition
specified in [111]:

4.0.1 Definition. A distributed system is a collection of independent
computers that appears to its users as a single coherent system.

A distributed system consists of multiple, autonomous computers that
communicate through a network even while completing their task. The
goal of a distributed system is to solve a single problem by breaking it
down into several tasks where each task is computed by a computer of
the system. Distributed systems can run in a cloud infrastructure as well.
Secure user authentication is an important issue of cloud services. If it
is breached, confidentiality and integrity of the data or services may be
compromised. In the case of Software as a Service model, the cloud service
provider takes responsibility for securing all the data from unauthorized
access.

4.0.2 Definition. Cloud computing is a model for enabling ubiquitous,

30
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convenient, on-demand network access to a shared pool of configurable
computing resources (e.g. networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal man-
agement effort and service provider interaction.

4.1 Cloud Authentication Protocol Using a Merkle
Tree

In this section, a two-factor authentication scheme is proposed for cloud
environments. Besides a static password, a one-time password is suggested
by applying a Merkle tree for identity verification. A security analysis is
carried out in the case of outsider adversaries, and the protocol is formal-
ized in applied pi calculus. In the ProVerif framework, we show that our
authentication protocol meets the standard security requirements of a key
exchange protocol.

The results of this section are contained in our papers [57], [58]. This
paper is a joint work with Andrea Huszti.

4.1.1 Our Contribution and Literature

In scientific papers, one-factor and two-factor authentication solutions are
being used in general. In 2000, Hwang and Li suggested a new remote user
authentication scheme ([61]), which is based on smart cards. Instead of a
password verification table they applied the ElGamal encryption scheme,
but an impersonation attack was found. In 2002, Chien, Jan and Tsien
proposed a password-based authentication ([39]), which does not use a ver-
ification table and the passwords were chosen freely. Ku and Chen proved
that Chien et al ’s scheme was vulnerable to several attacks ([76]). In [46]
an asymmetric authentication system is proposed, where a USB drive is
used as a hardware key, and it is combined with asymmetric cryptography.

Two-factor authentication provides higher security level than one-
factor authentication, because it provides an extra security factor for the
login process. In 2011, Choudhury et al showed a two-factor authentica-
tion protocol ([40]) for cloud computing where one of the factors is the
smart card and the other one is the password. They applied an out of
band channel. Later, Chen and Jiang detected an impersonation attack
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in Choudhury et al ’s scheme and proposed a new authentication frame-
work which did not use the out of band channel ([33]).

In practice, OpenStack is one of the most popular cloud computing
software. The OpenStack Identity service ([94]) supports multiple meth-
ods of authentication, including user name and password, Lightweight
Directory Access Protocol (LDAP), and external authentication methods
(e.g. Kerberos). LDAP provides simple and SASL ([102]) authentication
for users. In general, either the clear-text password is sent through TLS
or a password-based challenge-response mechanism is applied.

Another popular application is called Kerberos ([101]), which was de-
veloped at MIT to provide secure authentication for UNIX networks. User
authentication is based on secret keys stored on the Kerberos Key Distri-
bution Center (KDC) server. Kerberos uses temporary certificates called
tickets, which contain the credentials that identify the user to the servers
on the network. There are concerns about Kerberos, including Golden
Ticket Attack ([77, 110]), presented on the 2015 RSA Conference slide
deck. Let’s suppose an adversary has a domain or local admin access
on an Active Directory domain. In that case, he might be able to get
the secret key for the KDC server, a golden ticket, and this way, he can
manipulate Kerberos tickets to get unauthorized access. This is a vul-
nerability due to the centralized structure of the Kerberos protocol. It
shows the weakness of the centralized KDC server against attacks when
an adversary becomes a full system administrator.

Instead of a centralized structure of authentication, a distributed au-
thentication system is recommended. The advantage of a shared system
is that external attackers need to attack multiple servers simultaneously,
which increasing the attack cost. Companies that store passwords for a
large number of enterprises are primary targets for hackers. The recent
hack of OneLogin, an IAM (Identity and Access Management) provider,
proves that the credentials may not be as safe as we are led to believe. Our
design goal is to increase security level against these attacks by providing
shared responsibility.

First, we review our basic protocol [57] (Figures 4.1 - 4.3). We differ-
entiate three participants in the scheme. Users (U) ask for services from
the cloud service provider. The cloud service provider consists of several
cloud servers (Ci) and an authentication server (AS). A cloud server
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which is chosen randomly proceeds the steps of the user authentication.
The authentication server manages the cloud servers. Each cloud server
Ci possesses shares Ti1 and Ti2 , where Ti1 is used for user authentication,
Ti2 is necessary for calculating the MAC key. The node values Yk are
stored separately by a dedicated cloud server called authentication server.
The correctness of the root node value Yr verifies the correctness of the
whole one-time password.

One cloud server is chosen randomly to proceed the authentication
with the user. Let Ci denote this randomly chosen server. The user
provides the one-time password share Ti1 and the two-child-node values
of the root node: Yd1 , Yd2 . Since Ci stores the values Ti1 , Ti2 and Yr,
the correctness of the share Ti1 and Yd1 , Yd2 can be verified via Yr =
H(Yd1 ||Yd2).

After each login, the shares Ti1 , Ti2 are reset to get the new one-time
password. The efficient root path modification is applied with the help of
the existing siblings, therefore a new root node value is also calculated.
Please notice, during the authentication process only Ti1 is revealed, the
remaining part of the one-time password is not disclosed, accordingly only
one of the Ydj , j ∈ {1, 2} values is recalculated. If i ≤ 2n−2 (i.e. Ti1 is in
the subtree corresponding to Yd1), Yd1 is changed, if i > 2n−2 (i.e. Ti1 is
in the subtree corresponding to Yd2), Yd2 is modified.

By employing 2n−1 cloud servers we get a Merkle tree with height n.
Altogether 2n + 2n+1− 1 hash calculations are necessary to build the tree
and in n steps the Merkle tree update is completed. Computing the hash
values is efficient if the number of hashes is less than 240. This limit means
application of millions of servers in the authentication process, which is
not necessary.

In our solution in [57] several cloud servers are applied, and the one-
time password is stored distributed. In contrast to that, in [33] and in [40]
and in case of the practical solution above only one cloud server verifies
users’ authenticity. In our protocol an attack can be successful only if the
adversary possesses all password shares known by the servers.

We propose a two-factor authentication scheme in [57], which is based
on a static password and a one-time password generated by a smart card.
A Merkle tree is applied, where a leaf is the hash of a password share,
and the root element is verified in order to confirm the correctness of the
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whole password. In the registration phase the secret keys are exchanged
generating large amount of one-time passwords between the user and the
cloud servers. Comparing the efficiency of our authentication phase to the
work of [33, 40], it is showed that the scheme is more efficient since only
hash calculations are performed. A message authentication key (MAC)
exchange is also provided for guaranteeing data origin integrity for the
latter interactive communication.

In [58] the extended scheme is given and also provided a security anal-
ysis in applied-pi calculus.

In the registration phase an index value is added to the static salted
password sent and stored hashed, resulting different hash values for dif-
ferent servers. The protocol is formalized in applied-pi calculus and the
Proverif framework is used. With Proverif events and injective queries,
we have proved that the protocol provides secure key exchange, i.e. pro-
vides secure mutual authentication, key secrecy, key freshness and proof
of knowledge of the new key on both server and user sides during the
authentication phase. We consider outsider adversaries in the Dolev-Yao
model.

4.1.2 The Proposed Scheme

Users (U), 2n−1 cloud servers (Ci, where i ∈ {1, . . . , 2n−1}) and an au-
thentication server (AS) contribute to the scheme. We assume that
each cloud server possesses an asymmetric key pair: SKCi = (yi, zi),
PKCi = (gyi , gzi), where g is a generator element of a cyclic group, and we
randomly choose yi, zi ∈ Zq, where q is a prime. Either the multiplicative
group of a finite field or the elliptic curve additive group can be chosen
where the discrete logarithm or the elliptic curve discrete logarithm prob-
lem, respectively, is hard. The three phases: registration, authentication
and synchronization are as follows.

Registration

Registration is the first phase of the protocol (Figure 4.1). During the
registration all keys and the system parameters are generated. We assume
that each user U possesses a smart card that is protected by a PIN code.
Besides the static password, secret Diffie-Hellman keys are also exchanged
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between the user and the cloud servers. The Merkle tree is built up on the
user and server sides as well. It is important to mention that each cloud
server receives only a secret share, hence neither of the servers knows the
whole secret.

U Ci AS

ID, PW, X salt (yi, zi) secret key
(ri, si) secret (gyi , gzi) public key
(gri , gsi)
Ki1=griyi , Ki2=gsizi

Ti=(Ti1 ,Ti2)=(H(Ki1), H(Ki2))
building the Merkle tree

ID, (gri ,gsi ), H(PW ||X)−−−−−−−−−−−−−−−−−−−−−→ Ki=(griyi , gsizi)

Yi=H(H(Ki1)||H(Ki2))

Yi−−−−→ Yr
building the
Merkle tree

Yr←−−−−

< ID,Ki,H(PW ||X),Yr >

Figure 4.1. Registration

Let g denote a generator element in a cyclic group G. U chooses a
username (ID), a static password (PW ), two secret random values (ri, si)
for each cloud server and calculates (gri , gsi). U computes the Diffie-
Hellman keys Ki = (Ki1 = griyi ,Ki2 = gsizi) that are stored securely on
the smart card and calculates Ti = (Ti1 = H(Ki1), Ti2 = H(Ki2)). In the
next step U creates the Merkle tree from the leaves Ti and stores it on the
smart card.

We assume that a secret random valueX, which is different for different
cards, is also stored securely on this card. This value X is considered to
be a salt for the static password, which protects against dictionary and
rainbow table attacks. U sends (ID, (gri , gsi), H(PW ||X||i)) through an
authenticated channel to Ci, where i ∈ {1, . . . , 2n−1}.
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Ci also computes the Diffie-Hellman key Ki = (Ki1 = griyi ,Ki2 =
gsizi) and the value Yi = H(H(Ki1)||H(Ki2)). Ci sends ID, Yi to AS
through a secret, authenticated channel. The secret, authenticated chan-
nel is necessary, since Yi should be kept secret, otherwise the verification
values Yd1 and Yd2 can be calculated easily. AS creates the Merkle tree
from the values Yi and computes Yr. AS sends Yr to every cloud server
through authenticated channels.

Cloud servers store the username (ID), the seeds of the one-time pass-
word share (Ki), the root node of the Merkle tree (Yr) and the hash of
the salted static password with the server index (H(PW ||X||i)) for each
user.

Authentication

In the second phase (Figure 4.2) the mutual authentication between the
user and a randomly chosen cloud server, furthermore a MAC key ex-
change are processed. The cloud server verifies the correctness of the
static password, the share of and also the whole one-time password.

U Cv
v ∈ {1, ..., 2n−1} random gen. v ∈ {1, ..., 2n−1} random gen.

ID,Tv1 ,Yd1 ,Yd2 ,H(Yr||H(PW ||X))
−−−−−−−−−−−−−−−−−−−−−−−−−−→ Checking:

Tv1
Yd1 , Yd2 −−−−→ Yr ver.
H(Yr||H(PW ||X)) ver.

H(SK),m←−−−−−−−−−−−−−−−−−−−−−−−−− SK= H(Yr||Tv2), m rand.

ID, SK, m storage
H(SK) verification

ID,MAC(m,SK)−−−−−−−−−−−−−−−−−−−−−−−−−→
MAC verification

Figure 4.2. Authentication

As a first step, a random public value v ∈ {1, . . . , 2n−1} based on the
actual time is generated on both sides. This value is known by the user
and each cloud server. The value v denotes the index of the cloud server
that executes the authentication.

U sends his username ID, the corresponding one-time password share
Tv1 and the two child nodes of the root node Yd1 , Yd2 to the chosen cloud
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server Cv. U also computes and sends the value H(Yr||H(PW ||X||v)),
where Yr is the actual root node value and H(PW ||X||v) is the hash
of the salted static password concatenated with the chosen server in-
dex. Since Yr is different for each authentication run, a different
hash value H(Yr||H(PW ||X||v) is sent. Calculating H(PW ||X||v) from
H(Yr||H(PW ||X||v)) is hard, therefore H(PW ||X||v) is kept secret. The
value Tv1 and either Yd1 , or Yd2 are recalculated after each login, hence
they are different for different authentication run.

Cv authenticates the user by verifying the correctness of the one-
time password share Tv1 , the validity of the whole one-time password via
Yd1 , Yd2 , by comparing the stored Yr to H(Yd1 ||Yd2). Cv also verifies the
static password by checking the correctness of H(Yr||H(PW ||X||v)).

The MAC secret key SK = H(Yr||Tv2) is computed by Cv if all in-
put values are valid. After each authentication phase both Yr and Tv2
are modified, thus SK is different for each login. The server generates a
random message m and (H(SK),m) is sent back to U . Cv stores ID, m
and SK for verification purposes.

U also computes SK = H(Yr||Tv2) and checks the correctness of the
received H(SK). If the hash value is correct, the mutual authentication
of U and Cv is completed and U is assured that Cv knows the secret MAC
key SK.

In the following step U calculates MAC(m,SK) and sends ID,
MAC(m,SK) to Cv.

Cv is also informed that U knows SK by verifying the correctness of
the MAC value received with the help of the previously stored SK and m.

Since during the mutual authentication and MAC key exchange only
hash values are calculated, good efficiency results have been achieved.

Synchronization

In the synchronization phase (Figure 4.3) the Merkle tree is updated by
modifying the secret shares of Cv, on both the user and the server sides.
Cv sends the new node Y ′v to the authentication server. AS calculates the
new root node Y ′r , and sends the new root value to all servers.

U calculates K ′v = (Kv1 ∗ g,Kv2 ∗ g), where g is the generator el-
ement. Therefore, the number of keys Kv that can be generated is
|G|, where |G| denotes the size of G. By calculating the new leaves
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U Cv AS
K ′v1=Kv1 ∗ g=grvyv+1 K ′v1=Kv1*g

K ′v2=Kv2 ∗ g=gsvzv+1 K ′v2=Kv2*g

T ′v1=H(K ′v1) T ′v2=H(K ′v2) T ′v1=H(K ′v1) T ′v2=H(K ′v2)

Tv path update Y ′v=H(H(T ′v1) || H(T ′v2))

ID,Y ′v−−−−−→ Yr
′

update
Y ′r←−−−−−

<ID,K ′v,H(PW ||X),Yr
′>

Figure 4.3. Synchronization

T ′v = (H(K ′v1), H(K ′v2)), the user U computes the new internal nodes
of the root path.

Cv also calculates K ′v and T ′v in the same way and computes Y ′v =
H(T ′v1 ||T

′
v2), then sends ID, Y ′v to AS through a secret, authenticated

channel. The secret, authenticated channel is essential since Y ′v should be
kept secret, otherwise Y ′d1 or Y ′d2 can be calculated.

AS computes the new internal nodes of the root path and sends ID,
Y ′r to all cloud servers through authenticated channels.

During the phase of synchronization due to the Merkle-tree structure
the new one-time password is set efficiently, the new root node value is
calculated in n steps.

The most challenging issue for the user and the cloud servers is to be
correctly synchronized. The cloud servers and also the user should store
the same root value. It is essential to update secret values right after a
successful authentication on both sides. If a server is unavailable or the
user loses his/her smartcard, a new registration is needed.

4.1.3 Security Analysis

In this section we present the security analysis of the protocol. We de-
fine the security requirements and the adversarial model and provide an
analysis in applied pi calculus with the help of the Proverif tool.
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Security Requirements

We analyse the protocol as a key exchange scheme, hence the typical
security requirements for mutual entity authentication schemes and also
the key related requirements are considered. We prove the following four
properties:

1. Authentication of both parties

(a) Authentication of users: Adversaries should not be able to im-
personate a legal user and achieve illegal access to the user
data.

(b) Authentication of the server: Adversaries should not be able to
impersonate a legal cloud server.

2. Secrecy of the MAC key: During the key exchange the newly gener-
ated key is a confidential datum and an adversary should not have
any information about the new key.

3. Key freshness: During a protocol run a new, randomly chosen key
should be exchanged so that a protocol execution could not be suc-
cessfully finished with an old, already used key exchanged.

4. Both parties should verify that the other party knows and is able to
use the new MAC key.

Adversarial Model

The goals of the adversary are to successfully exchange a key with the
server or to get an illegal access to the cloud services. In our security
analysis we consider only outsider attacks.

An outsider attack means that an adversary does not collude with any
of the cloud servers, the authentication server or a user. It means the
legal participants of the protocol do not reveal secret information to the
adversary. We apply the Dolev-Yao model ([42]) for our analysis. In the
Dolev- Yao model an adversary has the following properties:

1. The adversary has complete control over the entire network.
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2. He acts as a legitimate participant, can intercept and compose any
message and is limited by the constraints of the cryptographic meth-
ods used.

3. An adversary can initiate the protocol with any party, and can be a
receiver to any party.

Mutual Authentication and Key Secrecy

Let us examine the requirements of user and server authentication and
key secrecy at first. For the security analysis of mutual authentication
and key secrecy concerning outsider attacks we use the ProVerif ([21])
software package.

Formal Model

We formalize the protocol, as follows. We differentiate three processes. In
the main process (Figure 4.4) identification numbers for the participants,
secret and public keys are generated. In the appendix (Chapter 7), there
are two sub-processes representing the protocols for the user (Figure 7.1)
and the server (Figure 7.2). An unbounded number of sub-processes run-
ning in parallel are considered. We model the interactions between the
user and the server chosen randomly, we omit formalizing the communi-
cation among the authentication server and the cloud servers.

During the registration phase both the user and the server calculate
the Merkle tree from the leaves that are randomly generated by the user
and exchanged securely. We have set an authenticated, secure channel by
applying an asymmetric encryption and a digital signature.

We have formalized the authentication phase in a way that the user
authenticates himself to the same cloud server twice. After the first au-
thentication, the Merkle-tree is updated on server and user sides, and the
second authentication is performed. All the additional authentications
happen in the same way.

Security Properties

In Section 3.2 the Proverif properties are presented and for security anal-
ysis we concentrate on the authentication phase. To follow interactions
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Figure 4.4. Main process

between the participants during the authentication phase, please check
Figure 4.5.

In order to run the security queries, eight events are defined. Events
User auth start and Server auth start show the end of the registration
phase for the user and the server, respectively. Events User auth end
and Server auth end are executed at the end of the first authentica-
tion. The other four events: User auth2 start, Server auth2 start,
User auth2 end, Server auth2 end refer to the beginning and the end
of the second authentication on user and server sides.

We apply injective correspondences for the security analysis of the user
and server authentication. We prove user authentication in a way that we
test whether for each occurrence of the event User auth end there is a
distinct earlier occurrence of the event User auth start.

query sk:bitstring; inj-event(User auth end(sk))==>
inj-event ( User auth start(sk)).

In a similar way we show the authentication of the server. We check
whether for each occurrence of Server auth end there is a distinct occur-
rence of Server auth start.

query sk:bitstring; inj-event(Server auth end(sk)) ==>
inj-event(Server auth start(sk)).
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Figure 4.5. Events

By running the following queries we test whether the adversary is able
to gain enough information to successfully proceed a man-in-the-middle
attack by eavesdropping all messages sent during the first authentication.

query sk:bitstring; inj-event(User auth2 end(sk))==>
inj-event(User auth2 start(sk)).
query sk:bitstring; inj-event(Server auth2 end(sk)) ==>
inj-event(Server auth2 start(sk)).

Secrecy of the MAC key is also evaluated with the query query at-
tacker(SK). by testing whether the key SK is reachable by the adversary.

All the queries above return with the value true, therefore user and
server authentications and key secrecy hold in our model.
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Key Freshness and Confirmations

Assuming a successful mutual authentication, key freshness holds. The
MAC key SK, which is modified after each authentication execution during
the synchronization phase, is the hash of the concatenation of Yr and Tv2 .

The last requirement, i.e. both parties confirm that the other party
knows the new MAC key, also holds. During the authentication phase the
user verifies the correctness ofH(SK) after receiving message (H(SK),m).
If H(SK) is valid, U calculates the MAC value for m applying SK,
MAC(m,SK). The server checks whether the MAC value is correct. If
it is valid, the server confirms that SK is known by the user. Applying
challenge and response technology, the protocol finishes successfully only
if the parties receive correct replies.
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4.2 Scalable Distributed Authentication for Cloud
Services

In this section, we present a mutual authentication protocol with key
agreement, where the identity verification is carried out by multiple servers
applying secret splitting technology on server side. The protocol results in
a session key, which provides the confidentiality of the subsequent messages
between the participants. In our solution, we also achieve robustness and
scalability. To show that the proposed protocol is provably secure, we
apply the threshold hybrid corruption model. We assume that among the
randomly chosen k servers, there is always at least one uncorrupted server
and the authentication server reveals only the long-lived keys.

The results of this chapter are contained in our paper [59]. This paper
is a joint work with Andrea Huszti.

4.2.1 Our Contribution and Literature

In a multi-server environment usually, threshold password-authenticated
key exchange protocols are designed. First, the threshold variant of PAKE
was recommended in [86]. Devriş Işler and Alptekin Küpçü introduced a
scheme [62] where the protocol ensures that multiple storage providers
can be employed, and the adversary needs to corrupt the login server and
threshold-many storage providers to be able to mount an offline dictionary
attack. Later, they proposed a new framework [63] for distributed single
password protocols (DiSPP). Mario Di Raimondo and Rosario Gennaro
recommended two threshold password-authenticated key exchanges [99]
where the protocols require n > 3t servers to work. They enforce a trans-
parency property: from the point of view of the client, the protocol should
look exactly like a centralized KOY protocol [67]. Password-Protected
Secret Sharing (PPSS) scheme with parameters (t, n) was formalized by
Bagherzandi et al. [9]. Jarecki et al. [65] presented the first round-optimal
PPSS scheme, requiring just one message from user to server and from
server to user, and proved its security in the challenging password-only
setting where users do not have access to an authenticated public key.
A secure distributed password verification protocol is presented in [31].
This scheme applies the verifiability of the V-OPRF (verifiable oblivious
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pseudorandom function) and supports thresholds and robustness.

We give the details and the novelty of our solution, compared to the
previous propositions. The main goal of key exchange protocols is to set up
a shared secret key between two or more entities. In case of key agreement,
both entities contribute to the joint secret key by providing information
from which the key is derived. In mutual authentication parties who
engage in a conversation in which each gains confidence that it is the other
with whom he speaks. In protocols providing implicit key authentication,
each participant is assured that no one other than the intended parties
can learn the value of the session key. A key agreement protocol that
provides mutual implicit key authentication is called an authenticated key
agreement protocol (or AK protocol). A key agreement protocol provides
key confirmation (of B to A) if A makes sure that B possesses the secret
key.

Our main goal is to design an authenticated key agreement with key
confirmation protocol (AKC) which takes advantage of distributed sys-
tems. Our protocol would fit into these systems and takes advantage of
the capabilities of these systems like robustness, scalability and greater
availability. We assume there are thousands of servers in a cloud system
therefore we reject the single-server authentication (e.g. Kerberos) and in-
stead we propose the multi-server authentication. It is important to note
that a single point of failure occurs typically in single-server solutions. If
the server is unavailable, the provider usually needs to ensure replication
to tackle the failure of their servers. Our scheme consists of n servers and
the user randomly selects k ≤ n ones for each authentication. Besides the
randomly chosen k servers a server called authentication server is also cho-
sen randomly in our solution. In the authentication phase, the k servers
use their long-lived keys and the user’s authentication is verified by the
chosen server via the correct MAC values. Even if one or more servers fail
out of the n servers, the client can still choose k servers randomly. So if
one or more servers break down or become corrupt, the service provider
will be able to service and authenticate the users securely. Compared to
our earlier proposed protocol ([58]), we use secret splitting technique and
we also achieved the scalable property.

During authentication, instead of securely constructing the secret pass-
word from its shares, a random challenge generated by the client is con-
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structed and verified by the authentication server. The randomly chosen
participating servers are able to compute their challenge shares with the
help of the password-based long-lived key set during registration and send
them to the authentication server. In this way, the confidentiality of the
password is assured. We focused heavily on making the protocol effec-
tive and we achieved promising efficiency results. The related protocols
in the literature in several cases employ asymmetric cryptographic primi-
tives which are considered slow compared to symmetric solutions and hash
functions. The results of our protocol can be led back to the facts that
the session key is generated by Elliptic Curve Diffie-Hellman (ECDH) key
exchange, moreover MAC, xor operations and symmetric encryption are
applied.

Finally, we also provide the security proof of the protocol and we
demonstrate that the protocol is provably secure. For our protocol, we
extended the Bellare and Rogaway security model in [19] to prove that
our multi-device scheme is secure and we introduced the threshold hy-
brid corruption model. We assume that among the randomly chosen k
servers, there is always at least one uncorrupted and the authentication
server reveals at most the long-lived keys. We prove that the proposed
protocol is a secure AKC protocol in the random oracle model, assuming
the Elliptic Curve Computational Diffie-Hellman (ECCDH) assumption
holds in the elliptic curve group, if MAC is universally unforgeable under
an adaptive chosen-message attack and the symmetric encryption scheme
is indistinguishable under chosen plaintext attack.

4.2.2 The Proposed Scheme

In this section we propose a multi-server authenticated key agreement
protocol with key confirmation. We assume that a secret symmetric,
long-lived key is exchanged between each client and server during client
registration. In the authentication phase, a client chooses several servers
randomly to participate. The client verifies the identity of each server and
one of the randomly chosen servers, the authentication server, proceeds
the steps of the client authentication. Mutual authentication of the par-
ticipants is based on the correctness of a calculation, where the secret,
long-lived symmetric key is used. Besides the mutual authentication of
the participants a secret, session key is exchanged between the client and
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the authentication server.

During registration, the client sets password-based long-lived keys with
all the n servers. In such a system, in addition to the aspect of robustness,
the property of scalability is also important. To achieve this, we propose
a simple solution in which the client accesses the long-lived keys by using
a password. We assume that a client software is running on the client
device (e.g. smartcard, mobile phone etc.) that requires a password from
the user to initiate the authentication process. After the client gives the
password the client software generates the long-lived keys and the execu-
tion of authentication begins. The correctness of the password is verified
by the servers not the client software, hence a client device does not store
any information about the password.

During authentication a server only with the knowledge of the sym-
metric, long-lived key Ki, where i ∈ {1, . . . , k} generated from the client
password, is able to calculate the challenge value given by the client. The
authentication server authenticates the client by verifying the correctness
of all the k challenge values received from the participating servers.

In the proposed protocol servers communicate on secure channels to
each other. We prefer one server chosen randomly that communicates to
the client, hence the client does not need to communicate to all the k
servers in parallel and build secure channels.

During the design of the protocol, the efficiency of authentication is
ensured by MAC and other fast cryptographic algorithms (hash, xor op-
eration, symmetric encryption). The protocol is provably secure and the
necessary model and the formal proof are given. We apply distributed
authentication, thus we extend the model with the concept of threshold
hybrid corruption.

Setup

In the setup phase the system parameters are generated and the registra-
tion is executed between the client and the servers. We differentiate two
participants: A client (I) asks for services and the servers (J1, . . . , Jn).
We denote by {0, 1}∗ the set of all binary strings of finite length. If x, y
are strings, then x||y denotes the concatenation of x and y. Let ⊕ de-
note a bitwise xor calculation. During setup all system parameters and
keys are generated. Let E denote an elliptic curve defined over a finite
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field Fq and G ∈ E(Fq) a point of order n. Elliptic curve parameters
are chosen in a way that the system resists all known attacks on the
elliptic curve discrete logarithm problem in < G >. Let σ denote the
length of an elliptic curve point binary representation. We also repre-
sent n servers (Ji, i ∈ {1, . . . , n}) as a bitstring with length σ. Sys-
tem parameters par are given by par = (E, q,n, G,H,H0,MAC), where
H : {0, 1}∗ → {0, 1}ν , H0 : {0, 1}∗ → {0, 1}ι are cryptographic hash
functions and ν, ι are not necessarily different, ι is the size of the secret
session key being exchanged. MAC : {0, 1}∗ → {0, 1}ν is a MAC func-
tion. System parameters are publicly known. Password-based long-lived
secret symmetric keys (K1, . . . ,Kn) between the client and each server
are exchanged securely. To provide message confidentiality between the
servers each server possesses n − 1 symmetric encryption keys for secure
communication and Server Ji, i ∈ {1, . . . , n} stores Kj , j ∈ {1, . . . , n− 1}.
These keys are short-term and exchanged securely.

Scalability

In this section, we present an algorithm providing scalability of our pro-
tocol. Let KKDF denote a Keyed Key Derivation Function that for a
message m and a key generates a secret key K, i.e. K = KKDFkey(m).
Let the message be the password psw and the key = H(salt||psw), and
c be the number of iteration. Salt is a short (12 - 48 bits) random piece
of data that is concatenated with the password before hashing to increase
resistance against offline attacks. In case of a weak password the randomly
chosen salt value significantly slows down the offline attacks (e.g. brute
force attacks). Value KKDFkey(psw), and secret shares

KKDF ckey(psw),KKDF c+1
key(psw), . . . ,KKDF c+n−2

key(psw)

are calculated for the n− 1 servers. Finally let

Kn = KKDFkey(psw)⊕KKDF ckey(psw)⊕ · · · ⊕KKDF c+n−2
key(psw)

for the nth server. If the number of servers are increased in the cloud, we
take the secret part of one of the servers and divide it into as many parts
as the number of new servers we want to add to the system. In general,
for increasing n servers with k new ones, a KKDF lkey(psw) is chosen to
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be scaled and KKDF tkey(psw), where t = c + n, . . . , c + n + k − 1 are
calculated. The secret share for the chosen server is modified to

Knew = KKDF lkey(psw)⊕KKDF c+nkey(psw)⊕. . .⊕KKDF c+n+k−1
key(psw).

The device stores for each server a list of numbers of iteration. The list has
either one element, or if it is scaled by k new ones, than k + 1 elements.
If we decrease the number of servers, we take the iteration numbers of
the deleted servers and add them to the stored list of a remaining server.
Observe, that to calculate a secret share from another share the key of the
KKDF, the salt and the password are needed. Hence even if we scale a
corrupted share, the new shares cannot be calculated. The salt is stored
only on the client device and the password is known only by the client.

Authentication Phase

In the authentication phase, we utilize the benefits of the distributed sys-
tem to perform multiple server authentication. In this phase, mutual au-
thentication between a client and the randomly chosen servers is processed
with a key agreement. Client I randomly chooses k servers out of the n.
The k servers verify whether I possesses the long-lived symmetric keys
(K1, . . . ,Kk). At the end of the authentication, a secret session key ssk is
exchanged. Figures 4.6, 4.7 and 4.8 show the processes of authentication.

As the first step of the authentication, I selects k servers that are in-
volved in the authentication. A v ∈ {1, . . . , k} value is generated by a time-
based pseudorandom number generator. Let Jv denote the authentication
server, which performs the authentication on server side. Jv communicates
with the client and server Ji, where i = 1, . . . , k−1. After entering the cor-
rect password, the client software calculates the long-lived keys from the
password and the salt that is stored on the device. I generates random bit-
strings t1, . . . , tk and calculates hash values w1 = H(t1), . . . , wk = H(tk)
and w, such that w = H(w1||w2|| . . . ||wk). Random values r1, . . . , rk ∈
{0, 1}σ and x ∈ Z∗n are generated, too. Subsequently, I creates the first
message M1, which is sent to the chosen authentication server Jv. I
computes m0 = H(w) and mv = (MACKv(rv ⊕ xG ⊕ Jv) ⊕ wv)||rv||xG,
where MAC is calculated with the long-lived symmetric key Kv. More-
over, mv comprises xG, which is an elliptic curve point and represented
by a bitstring that is necessary for the key agreement, it is the client
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I Jv
(K1,. . . , Kk), G Kv, G

Ki = KKDF c+ikey (psw), where key = H(salt||psw)

Kn = KKDFkey(psw)⊕ · · · ⊕KKDF c+n−2
key(psw)

t1, . . . , tk−1, tv ; r1, . . . , rk−1, rv; x random

w1 = H(t1), . . . , wv = H(tv)

w = H(w1|| . . . ||wk−1||wv)
m0 = H(w)

mi = (MACKi(ri ⊕ Ji)⊕ wi)||ri
mv = (MACKv(rv ⊕ xG⊕ Jv)⊕ wv)||rv||xG

M1=I||J1||...||Jk||m0||...||mk−−−−−−−−−−−−−−−−−−−→
public channel

Figure 4.6. Authentication - Client process

message of the ECDH key exchange. The first message also consists of
mi = (MACKi(ri ⊕ Ji) ⊕ wi)||ri. Authentication of the participants is
based on the correct calculation of the MAC values.

Jv receives message M1 and forwards each mi together with I to server
Ji. Each server receives I||mi, where mi = p||o. Server Ji calculates
MACKi(o ⊕ Ji), where Ki is the long-lived key exchanged between the
client and the server. Each server calculates w′i = p ⊕MACKi(o ⊕ Ji).
Therefore, a server is able to calculate a valid w′i only with the knowledge
of Ki, the secret, long-lived key exchanged with I before. Value w′i is sent
back to Jv encrypted. Jv calculates w′ from all w′i received, and checks
whether H(w) = H(w′) holds. If they are equal, then Jv makes sure
about the authenticity of the client. Thereafter Jv generates a random
value y ∈ Z∗n and computes the secret session key ssk = H0(yxG). Jv
calculates response M2 = h||yG, where h = H(ssk||yG||xG||w) and yG is
the server message of the EC Diffie-Hellman key exchange.

I receives M2 = h||yG and calculates the secret session key ssk =
H0(yxG) and h′ = H(ssk||yG||xG||w). If h = h′, then I is confirmed that
server Jv knows the secret session key, and the randomly chosen servers
know the secret long-lived keys, hence their identity is verified. As a last
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Jv Servers

K1, . . . ,Kk−1 short-lived keys
I||mi−−−−−−−−−−−→ Ji

Ki, Ki

mi = p||o
w′i = p⊕MACKi(o⊕ Ji)

EncKi
(w′i)←−−−−−−−−−−−−

mv = u||s||z
w′v = u⊕MACKi(s⊕ z ⊕ Jv)
w′ = H(w′1|| . . . ||w′k−1||w′v)

m0 = H(w)
?
= H(w′)

y random value

ssk=H0(yxG)

h = H(ssk||yG||xG||w′)

Figure 4.7. Authentication - Cloud servers communication

I Jv
M2=h||yG←−−−−−−−−−−−−−−−−−−−−−

public channel

ssk’=H0(yxG)

h
?
= H(ssk′||yG||xG||w)

M3=H(ssk||yG||xG)−−−−−−−−−−−−−−−−−−−−→
public channel

M3
?
= H(ssk||yG||xG)

Figure 4.8. Authentication - Final process

step M3 = H(ssk||yG||xG) is computed and sent to Jv. Jv verifies the
message received from the client and if it is correct, Jv confirms that I
knows the secret session key.

In the authentication phase, the random value w can be calculated on
server side only if the servers know the long-lived symmetric keys, hence
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the client is able to verify the identity of multiple servers by checking h.
On the other hand after calculating w on server side involving keys Ki, m0

is checked. Correct m0 proves that the client possesses Ki, hence identity
of the client is verified as well. Value ri ensures that the MAC value mi is
fresh for every authentication in order to avoid replay attack. Basically,
the secret session key is created via an authenticated key agreement proto-
col based on random values (x, y) generated by the client and the selected
server. These values are sent securely so the attackers cannot gain any
information about them. Considering the time complexity, the authenti-
cation phase is very efficient, since there is only one scalar multiplication
on both sides besides the hash, MAC and xor operations.

4.2.3 Security Analysis

In this section we provide a formal security proof of the proposed protocol.
Basic requirements of the proposed protocol are mutual authentication of
the participants, key secrecy, key freshness and key confirmation. Secure
mutual authentication of participants prevents impersonation attack, the
new key should be kept secret, and an old key shouldn’t be exchanged
successfully. At the end parties should confirm that the other party is
able to use the new session key.

Known-key security and forward secrecy are also considered. If known-
key security holds, disclosure of a session key does not jeopardize the
security of other session keys. Forward secrecy holds if long-term secrets
of one or more entities are compromised and the secrecy of previous session
keys is not affected.

In 4.2.3 section, we specify the base concept of our cloud authentication
security model. We also give the notions of partnering, reveal, corrupt
queries and model semantic security of the session key via Test query.
Here, we extend and generalize the security model as follows.

Cloud Authentication Security Model

The mutual key authentication with mutual key confirmation protocols
are called an authenticated key agreement with key confirmation protocol
(or an AKC protocol)[13], which fulfill the above. We have extended the
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indistinguishability-based model proposed by M. Bellare and P. Rogaway
in 1993 (see [14], [15], [19], [13]). Our goal of applying multiple servers
is to take into account the situation when the verifier server is corrupted,
i.e. the long-lived keys and other login information stored in the server
database are hacked. Multiple servers together provide secure user au-
thentication, if at least one of the verifier servers is uncorrupted.

We detail the security model in the case of our cloud protocol, where
each protocol run k servers are chosen. We assume that at least one of
the k servers is not corrupted. Participant Jv chosen randomly out of the
k servers conducts the protocol on server side, Jv communicates with I
and the other k − 1 servers. We assume that each participant I ∈ Client
holds long-lived symmetric keys exchanged with each server Ji ∈ Server,
i ∈ {1, 2, . . . , n} during previous registration.

Adversarial model

The adversary A is neither a client nor a server. A is a probabilistic
polynomial time Turing Machine with a query tape where oracle queries
and their answers are written. A is able to relay, modify, delay or delete
messages. We assume that A is allowed to make the following queries.

Send(
∏l
I,J ,M) : This oracle query models an active attack, allows A to

send the message M to oracle
∏l
I,J , and the oracle returns a message

(m) that the user instance sends in response to the message M .
∏l
I,J

following the protocol steps also provides information whether the
oracle is in state (δ) Accepted, Rejected or ∗. The query enables
A to initiate a protocol run between participants I and J by query
Send(

∏l
I,J , λ). The oracle replies: m, δ.

Reveal(
∏l
I,J) : This models an insecure usage of a session key. If oracle∏l

I,J is in state accepted, holding a secret session key ssk, then
this query returns ssk to A. The oracle replies: ssk.

Corrupt(
∏
I,J ,K

′
I,J) : This oracle query models the corruption of par-

ticipant I. Replying to this oracle query a participant oracle
∏
I,J

replies long-lived keys KI,J and I’s state, i.e. all the values stored
by the participant I, moreover A is allowed to replace the stored
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long-lived keys with any valid keys of A’s choice K ′I,J . The oracle
replies: KI,J , stateI .

Test(
∏l
I,J) : This oracle query models the semantic security of the secret

session key. It is allowed to be asked only once in a protocol run. If
participant I has accepted holding a secret session key ssk, then a
coin b is flipped. If b = 1, then ssk is returned to the adversary, if
b = 0, then a random value from the distribution of the session keys
is returned.

We define A’s advantage, the probability that A can distinguish
the session key held by the queried oracle from a random string, as
follows:

AdvA(κ) = |Pr[guess correct]− 1/2|.

Participants’ oracle instances are terminated when they finish a pro-
tocol run. They are in state accepted, if they decide to accept holding
a secret session key denoted by ssk, after receipt of properly formulated
messages. An oracle can be in state accepted before it is terminated. An
oracle is opened or corrupted, if it has answered a query Reveal(

∏l
I,J)

or Corrupt(
∏
I,J ,K

′
I,J), respectively.

Moreover adversary A is given access to MAC(.) and Enc(.) oracles
as well.

The threshold hybrid corruption model

A model is a strong corruption model ([13]), if long-lived keys KI,J and all
the values stored (e.g. randomly chosen secret values) by the participant
I during the protocol run are transferred to A. In case of the weak cor-
ruption model only the long-lived keys KI,J are transferred or replaced,
the adversary does not completely compromise the machine. Other values
generated and stored during the protocol run are not revealed.

4.2.1 Definition. We call a model threshold hybrid corruption model, if
we assume that the client is uncorrupted and there are at least n− k + 1
uncorrupted servers out of the n servers, if k servers are chosen randomly
for AKC. Moreover, the server chosen to communicate with the client is

1. uncorrupted, or
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2. corrupted weakly and among the remaining servers there is at least
one uncorrupted.

During the attack an experiment of running the protocol with an ad-
versary A is examined. After generating the keys and system parameters,
A initializes all participant oracles and asks polynomially number of oracle
queries including Send(

∏l
I,J ,M), Reveal(

∏l
I,J), Corrupt(

∏
I,J ,K

′
I,J) to

the participant oracles. Finally A asks a Test(
∏l
I,J) query.

In order to give the definition of a secure AKC protocol, we need to
review the definition of conversation and matching conversation from [19].
They were also formalized in [14].

4.2.2 Definition. Consider an adversary A and a participant oracle∏s
I,J . We define the conversation CsI,J of

∏s
I,J as a sequence of

CsI,J = (τ1, α1, β1), (τ2, α2, β2), . . . , (τm, αm, βm),

where τi denotes the time when oracle query αi and oracle reply βi are
given (i = 1, . . . ,m).

Naturally τi > τj , iff i > j. A terminates after receiving the reply βm,
i.e. does not ask more oracle queries. During a conversation the initiator
and responder oracles are differentiated.

∏s
I,J is an initiator oracle if

α1 = λ, otherwise it is a responder. Consider the definition for matching
conversation when the number of protocol flows is odd.

4.2.3 Definition. Running protocol P in the presence of A, we assume
that the number of flows is R = 2ρ− 1,

∏s
I,J is an initiator and

∏t
J,I is a

responder oracle that engage in conversations C and C ′, respectively.
C ′ is a matching conversation to C, if there exist τ0 < τ1 < · · · < τR−1

and α1, β1, . . . , βρ−1, αρ such that C is prefixed by:

(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ),

and C ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1).
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C is a matching conversation to C ′, if there exist τ0 < τ1 < · · · < τR and
α1, β1, . . . , βρ−1, αρ such that C ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1), (τ2ρ−1, αρ, ∗),

and C is prefixed by:

(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ).

If C is a matching conversation to C ′ and C ′ is a matching conversation
to C, then

∏s
I,J and

∏s
J,I are said to have had matching conversation.

Matching conversation formalizes real-time communication between
entities I and J , it is necessary to define authentication property of an
AKC protocol. We give the definition of the event No-MatchingA(κ)
that is a modified version of the definition given in [19]. We leave out the
requirement that J ∈ Server is uncorrupted. In our multi-server setting
each client communicates with a server that can be corrupted weakly, if
there is at least one uncorrupted server from the k servers.

4.2.4 Definition. No-MatchingA(κ) denotes an event when in a protocol
P in the presence of an adversary A assuming a threshold hybrid corrup-
tion model, there exist

1. a client oracle
∏s
I,J which is accepted, but there is no server oracle∏t

J,I having a matching conversation with
∏s
I,J , or

2. a server oracle
∏s
I,J which is uncorrupted and accepted, but there is

no client oracle
∏t
J,I having a matching conversation with

∏s
I,J , or

3. a server oracle
∏s
I,J which is corrupted weakly and accepted, but

there is no client or no uncorrupted server oracle having a matching
conversation with

∏s
I,J .

In order to give the definition of a secure AKC, it is essential to define
the notion of freshness and benign adversary.

4.2.5 Definition. A k + 1-tuple of oracles containing one client and k
server oracles is fresh, if in the threshold hybrid corruption model the client
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oracle and the server oracle with which it has had a matching conversation
are unopened. We call an oracle fresh, if it is an element of a fresh k + 1-
tuple.

4.2.6 Definition. An adversary is called benign if it is deterministic, and
restricts its action to choosing a k+1 tuple of oracles containing one client
and k server oracles, and then faithfully conveying each flow from one
oracle to the other, with the client oracle beginning first.

4.2.7 Definition. A protocol is a secure AKC protocol if,

1. In the presence of the benign adversary the client and the server
oracle communicating with the client always accept holding the same
session key ssk, and this key is distributed uniformly at random on
{0, 1}κ.

and if for every adversary A

2. If in a threshold hybrid corruption model there is a server oracle∏l
I,J having matching conversations with a client oracle and if

∏l
I,J

is weakly corrupted,
∏l
I,J has matching conversation with an un-

corrupted server oracle, then the client oracle and oracle
∏l
I,J both

accept and hold the same session key ssk.

3. The probability of No-MatchingA(κ) is negligible.

4. If the tested oracle is fresh, then AdvA(κ) is negligible.

4.2.8 Theorem. The proposed protocol is a secure AKC protocol in the
random oracle model, assuming MAC is universally unforgeable under an
adaptive chosen-message attack and symmetric encryption scheme is in-
distinguishable under chosen plaintext attack, moreover ECCDH assump-
tion holds in the elliptic curve group.

Proof: The conditions 1 and 2 hold, since the steps of the protocol
are followed and with the assumption that the MAC and the encryption
scheme provides correct verification and decryption, respectively. More-
over the hash function is a random oracle.
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Let’s look at condition 3. Consider an adversary A and suppose that
Pr[No-MatchingA(κ)] is non-negligible. There are two cases: either the
server, or the client oracle is accepted.

� Case 1.

Let A succeeds denote the event that in A’s experiment there is
a server oracle

∏t
Jv ,I

that is accepted, but there is no client oracle∏
I,Jv

having matching conversation to
∏t
Jv ,I

.

We assume that
Pr[A succeeds] = nS(κ),

where nS(κ) is non-negligible.

We construct a polynomial time adversary F that is able to pro-
ceed an existential forgery against MAC under an adaptive chosen
message attack. F ’s task is to generate a valid (m, t) message-tag
pair, where m was never asked from the oracle MACK(.) for a secu-
rity parameter κ. F simulates the key generation Γ and answers A’
oracle queries.

F randomly picks I ∈ Client and J1, . . . , Jk ∈ Server, moreover
randomly chooses Jv ∈ {J1, . . . , Jk} and Ju ∈ {J1, . . . , Jk}. Let
∆ = {I, J1, . . . , Jk} denote identities of protocol participants.

∏
Jv ,I

denotes the server oracle that communicates to the client I,
∏
Ju,Jv

oracle denotes the uncorrupted server oracle that is in connection
with server Jv. If u = v, then the server communicating with the
client is uncorrupted. F also chooses randomly a particular ses-
sion l ∈ {1, . . . , T3(κ)}. Given security parameter κ, adversary F
randomly chooses values K1, . . . ,Kk as long-lived keys exchanged
between client I and servers J1, . . . , Jk, and K1, . . . ,Kk−1 as en-
cryption keys exchanged between Jv and J1, . . . , Jk−1. F runs A
and answers A’s queries as follows.

1. F answers H0, H hash oracle queries at random (like a real
random oracle would).

2. F answers Corrupt queries according to Π, reveals long-lived
keys Ki, internal states and encryption keys Ki for corrupted
servers. Queries to the uncorrupted server and the client oracles
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are refused. If u 6= v, then Jv is corrupted weakly, hence to the
corrupt query F answers only Ki and Ki.

3. F answers Reveal queries as specified in Π. This query is
refused if it is asked from

∏
I,Jv

or
∏
Jv ,I

.

4. F answers Send queries according to Π with the knowledge of
the keys, if they are not sent to

∏
Jv ,I

and
∏
Ju,Jv

. F answers

queries to
∏
Ju,Jv

by choosing Ku randomly. If A does not
involve

∏
Jv ,I

as a server oracle which communicates to the
client oracle

∏
I,Jv

and other server oracles
∏
I,Ji

, then F gives
up. If A involves

∏
Jv ,I

as an initiator oracle, then F gives up.
Otherwise A asks query Send(

∏
Jv ,I

,M1), where

M1 = I||J1|| . . . ||Jk||m0|| . . . ||mk,

where mj = (MACKj (rj ⊕ Jj) ⊕ wj)||rj for corrupted servers,
rj ∈ {0, 1}σ are chosen randomly, mv = (MACKv(rv ⊕ xG ⊕
Jv) ⊕ wv)||rv||xG for random x ∈ Z∗q and mu for uncorrupted
Ju.

A asks hash oracle queries H(.) to get wi, F answers these
queries. If there is a Jt, t = 1..k in M1 such that Jt /∈ ∆,
then F gives up. A asks MAC oracle queries to calculate
mu, F answers these queries using his/her oracle MACK(.).
Eventually A creates a valid mu. F calculates the valid (m, t)
MAC forgery, where t = MACK(m), as follows. If u = v,
then mu = p||o||f , t = p ⊕ wu and m = o ⊕ f ⊕ Ju,
where wu is generated via oracle H(.). If u 6= v, then
mu = p||o, t = p ⊕ wu, m = o ⊕ Ju. If m was asked to
oracle MACK(.) before, then F gives up. F answers query
Send(

∏
Jv ,I

,M1) with H(H0(yxG)||yG||xG||w)||yG, where y ∈
Z∗q randomly chosen and w is calculated from wi values of the
corrupt servers and wu. If some later time A does not asks
Send(

∏
Jv ,I

, H(H0(xyG)||yG||xG)), then F gives up, otherwise∏
Jv ,I

gets accepted.

F answers query Send(
∏
I,Jv

,M2), as follows. If M2 6=
H(H0(yxG)||yG||xG||w)||yG, then F gives up, otherwise
replies H(H0(yxG)||yG||xG).
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Finally, F responses (m, t) to the challenger. If A succeeds
with non-negligible probability, then F outputs a valid forgery
(m, t), where m was never asked to oracle MACK(.) before.

Assume that A is successful, event A succeeds happens with nS(κ)
non-negligible probability. Hence following the algorithm above F
calculates a valid (m, t) pair. We show that F wins its experiment
with non-negligible probability. The probability that F chooses cor-
rect participants ∆, session l and succeeds is

ξ1(κ) =
nS(κ)

T1(κ)T2(κ)
(T2(κ)−1

k−1

)
T3(κ)

− λ(κ), (4.2.1)

where λ(κ) denotes the probability that F previously calculated the
flow. Since nS(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial
in κ and λ(κ) is negligible and

ξ1(κ) ≥ nS(κ)

T1(κ)T2(κ)T2(κ)k−1T3(κ)
− λ(κ),

thus ξ1(κ) is non-negligible. That contradicts the security assump-
tion of MAC, hence nS(κ) must be negligible.

� Case 2.

Let A succeeds denote the event that in A’s experiment there is
a client oracle

∏s
I,Jv

that is accepted, but there is no server oracle∏
Jv ,I

having matching conversation to
∏s
I,Jv

. We assume that

Pr[A succeeds] = nC(κ),

where nC(κ) is non-negligible.

We can construct a polynomial time adversary that is able to dis-
tinguish two plaintexts under chosen plaintext attack against the
symmetric encryption scheme.

Challenger generates a key K and flips a bit b. F is given an oracle
access to EncK(.). F ’s task is to output a bit b′ on inputs m0,m1

chosen by F and mb. F picks the protocol participants and a ses-
sion l ∈ {1, . . . , T3(κ)}, let ∆ = {I, J1, . . . , Jk} denote the identities.
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Similarly to Case 1,
∏
I,Jv

denotes the client,
∏
Jv ,I

the communi-
cating server and

∏
Ju,Jv

the uncorrupted server oracle. If u = v,
then the server communicating with the client is uncorrupted. F
simulates the key generation Γ in the same way as in Case 1. F
generates long-lived keys Ki and symmetric encryption keys Ki for
corrupted servers for the security parameter κ. F answers A’s oracle
queries as follows.

F answers queries to oracles H(.), H0(.), Corrupt, Reveal in the
same way as in Case 1. F answers Send queries according to Π
with the knowledge of the keys of corrupted servers, if they are
not sent to

∏
I,Jv

,
∏
Jv ,I

or
∏
Ju,Jv

. If A does not involve
∏
Jv ,I

as
a server oracle which communicates to the client oracle

∏
I,Jv

and
other server oracles

∏
I,Ji

, then F gives up. We consider the case
when

∏
Jv ,I

is weakly corrupted (u 6= v). If A does not invoke
∏
I,Jv

as an initiator oracle, then F gives up, otherwise A asks oracle query
Send(

∏s
I,Jv

, λ). F responses M1 = I||J1|| . . . ||Jk||m0|| . . . ||mk, with
mj = (MACKj (rj ⊕ Jj) ⊕ wj)||rj and mv = (MACKv(rv ⊕ xG ⊕
Jv) ⊕ wv)||rv||xG, where ri ∈ {0, 1}σ, x ∈ Z∗n, wi and the MAC key
Ku for the uncorrupted server are randomly chosen by F . Some
time later A asks oracle queries to Enc(.) and eventually asks query
Send(

∏
Ju,Jv

, I||mu).

F answers with EncK(mb). F perfectly simulates uncorrupted
server

∏
Ju,Jv

to A, since without the knowledge of the MAC
key A cannot verify correctness of mu. A some time later asks
xyG to oracle H0(.) and H0(xyG)||yG||xG||w to oracle H(.) and
asks query Send(

∏
I,Jv

, H(H0(xyG)||yG||xG||w)||yG). F answers
queries, replies H(H0(xyG)||yG||xG), gets accepted and checks
whether w = H(w1|| . . . ||m0|| . . . ||wk−1), where w1, . . . , wk−1 denote
the random values generated for corrupted servers. If the equality
holds, then F outputs bit b′ = 0, otherwise b′ = 1.

Assume that A is successful, event A succeeds happens with nC(κ)
non-negligible probability. F outputs the correct b′. We show that F
wins its experiment with non-negligible probability. For the analysis
the probability that F chooses the correct participants ∆, session l
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and succeeds is calculated:

ξ2(κ) =
nC(κ)

T1(κ)T2(κ)
(T2(κ)−1

k−1

)
T3(κ)

− λ(κ), (4.2.2)

where λ(κ) denotes the probability that F previously calculated the
flow, including the case of uncorrupted

∏
Jv ,I

, when F calculates cor-
rect MAC message-tag pair for

∏
Jv ,I

. Similarly to Case 1. ξ2(κ) is
non-negligible, if nC(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is poly-
nomial in κ and λ(κ) is negligible. That contradicts the security
assumption of the symmetric encryption, hence nC(κ) must be neg-
ligible.

We turn to condition 4. Consider an adversary A and suppose that
AdvA(κ) is non-negligible.

� Case 3.

Let A succeeds against
∏s
I,J denote the event that A asks

Test(
∏s
I,J) query and outputs the correct bit. Hence

Pr[A succeeds] =
1

2
+ n(κ),

where n(κ) is non-negligible.

Let Aκ denote the event that A picks either a server or a client
oracle

∏s
I,J and asks its Test query such that oracle

∏s
I,J has had

a matching conversation to
∏t
J,I .

Pr[A succeeds] = Pr[A succeeds|Aκ]Pr[Aκ]+

Pr[A succeeds|Aκ]Pr[Aκ]

According to the previous section Pr[Aκ] = µ(κ), where µ(κ) ∈
{nC(κ), nS(κ)} and Pr[Aκ] = 1 − µ(κ), where µ(κ) is negligible,
hence

1

2
+ n(κ) ≤ Pr[A succeeds|Aκ]Pr[Aκ] + µ(κ)

and we get
1

2
+ n1(κ) = Pr[A succeeds|Aκ],
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for a non-negligible n1(κ). Let Bκ denote the event that for given
aG, bG adversary A or any other oracle besides

∏s
I,J or

∏t
J,I asks

abG to oracle H0(.). Pr[A succeeds|Aκ] = Pr[A succeeds|Aκ ∧
Bκ]Pr[Bκ|Aκ] + Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ].
Since Pr[A succeeds|Aκ ∧Bκ] = 1

2 ,

1

2
+ n1(κ) ≤ Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ] +

1

2
, (4.2.3)

hence Pr[Bκ|Aκ] is non-negligible.

We construct a polynomial time adversary F that for given aG, bG
calculates ECCDH(aG, bG) = abG. F picks the protocol par-
ticipants, ∆ = {I, J1, . . . , Jk} denotes the identities. Similarly
to Case 1,

∏
I,Jv

denotes the client,
∏
Jv ,I

the communicating
server and

∏
Ju,Jv

the uncorrupted server oracle. If u = v, then
the server communicating with the client is uncorrupted. F sets
par = (E, q,n, G,H,H0,MAC) public parameters, where G ∈ E(Fq)
is a generator of order n. F also simulates the key generation Γ in
the same way as in Case 1.

F answers queries to oracles H(.), H0(.), Corrupt, Reveal in the
same way as in Case 1. Let T4(κ) denote the polynomial bound on
the number of queries allowed to ask to oracle H0(.). F randomly
picks j ∈ {1, . . . , T4(κ)}, assuming that jth query will be on abG. F
answers Send queries according to Π except for queries to

∏s
I,Jv

and∏t
Jv ,I

. F generates messages to
∏s
I,Jv

and
∏t
Jv ,I

in a way that in-
stead of choosing x, y randomly inserts aG, bG as inputs. The MAC
computations of message M1 are calculated by the randomly chosen
keys Ki and aG or bG is inserted. M2 sent to

∏s
I,Jv

is constructed as
a concatenation of h and bG or aG, respectively, where h is a freshly
generated random value. If A does not ask j queries to H0(.), then
F gives up. After the jth query F stops and outputs the jth query.
If
∏s
I,Jv

and
∏t
Jv ,I

do not have matching conversation, then F gives
up.

The probability that F succeeds is at least

ξ3(κ) =
n1(κ)

T1(κ)T2(κ)
(T2(κ)−1

k−1

)
T3(κ)2T4(κ)

− µ(κ),
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that is non-negligible. This contradicts to the ECCDH assumption,
hence n1(κ) and AdvA(κ) must be negligible.

�
The proposed AKC scheme possesses known-key and forward secrecy.

Key parameters xG and yG for each run are chosen independently and
randomly, hence session keys are also independent and random. The ad-
versary is able to calculate the session key from xG and yG only if he or
she computes ECCDH function.

If the adversary asks Reveal(
∏l
I,J) and receives a session key, the ses-

sion keys of the subsequent runs are independent from the revealed session
key, hence the scheme is known-key secure with the ECCDH assumption.

In the proposed AKC values x, y are not transmitted for key param-
eters xG and yG, hence if long-term secret keys are compromised, the
adversary faces ECCDH assumption for the previous session keys.

Practical Issues

Efficiency was an important aspect during the design of our protocol. In
the protocol, the session key is generated by ECDH key exchange, and
the other operations are hash and xor operations, which are extremely
fast. After the security analysis, a java application was created to simu-
late the protocol in a real environment. The system is divided into two
applications, the first one is the client, and the other one is the application
for implementing the servers. Both applications were run in a microsoft
azure cloud environment for authentic simulation. We worked with con-
stant parameters in the simulation, because the difference in user names
and passwords was negligible in terms of performance. Clients and the
selected server communicate on the public channel. The communication
between the servers occurs through a encrypted channel. In connection
with their operation, it should be noted that the server programs monitor
the incoming authentication requests in the background. Furthermore,
when running the client program, the user selects the servers that will
perform the authentication. After calculating the first message, the user
sends it to the server that communicates with the service provider and
communicates with the other servers. During the connection, the steps
described in the protocol are implemented. If the connection fails, the
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server rejects the connection request and keeps track of the channel.

Java Simulation Result

Java simulation was tested with six servers, one of which received the
client authentication request and the remaining five servers were required
for authentication. Time means the time interval from the first step of the
protocol to the successful connection. The average connection time was
then calculated based on the received time results. For the cloud environ-
ment, we tested the standard package and the p3v2 package. The Standard
Package contains 100 Azure compute units [56] and the p3v2 package in-
cludes 840 Azure compute units. The concept of the Azure Compute Unit
(ACU) provides a way of comparing compute (CPU - Central Process-
ing Unit) performance across Azure SKUs (Stock-keeping-Units). This
will help you to identify easily the SKU which is the most likely to sat-
isfy your performance needs. ACU is currently standardized on a Small
(Standard A1) VM (Virtual Machine) being 100 and all other SKUs then
represent approximately how much faster that SKU can run a standard
benchmark.
Figure 4.9 demonstrates the results:

Figure 4.9. Average connection times of the successful authentications
between the client and the servers.
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The average connection time is 0,1092 second per connection when
we use the p3v2 package. In the standard package the result of average
connection time is 0,1537 second per connection. This time contains the
mutual authentication including the authentication of selected servers and
generating a session key. Table 4.1 shows the result of the comparison,
where the performance evaluation is based on the running time of the pro-
tocol compared to two other available solutions: the Optimal Distributed
Password Verification used by three cloud servers (ODPV ([31])) and a
password-authenticated key exchange protocol (KOY protocol) by Katz
et al. ([67]).

Scheme Login Total

KOY protocol 1,063s

ODPV (3 cloud servers) 0,285 s

Our proposition 0,1092 s

Table 4.1. Average execution time of protocols

It is an important issue in our protocol that the user gives his/her pass-
word and after that the long-lived keys are available. The static password
is comfortable for the user and the long-lived keys provide the appropriate
security level. Since in each authentication the values are random and
fresh, the key freshness holds and the protocol execution could not be
successfully finished with old, already used values and keys.



Chapter 5

Provably Secure
Identity-Based Remote
Password Registration

In this chapter, we demonstrate the Certificate-Less Secure Blind Reg-
istration Protocol (CLS-BPR), which can be an ideal alternative for the
traditional registration methods (email or TLS/SSL connection). During
the registration, we apply the bilinear mapping, MAC and hash function,
hence we achieve a favorable computational time. The proposed protocol
suits our smart home user authentication scheme ([60]) where the values of
the bilinear map are stored on the IoT (Internet of Things) devices. Our
cloud scheme ([58]) can also be easily modified with the proper long-lived
key setting to be compatible with our registration scheme. We also pro-
vide a detailed security analysis and prove that our registration protocol
is based on the assumptions that solving the Bilinear Diffie-Hellman prob-
lem is computationally infeasible, the bilinear map is a one-way function
and MAC is existentially unforgeable under an adaptive chosen-message
attack, where the bilinear map is considered in the generic bilinear group
model and the hash functions are random oracles.

The results of this chapter are contained in our paper [17]. This paper
is a joint work with Csanád Bertók, Andrea Huszti and Szabolcs Kovács.

5.1 Our Contribution and Literature

The remote registration of passwords is one of the most important se-
curity aspects and the initial step of all remote password-based proto-
cols,but does not get enough attention. To improve the security of pass-
word registration, Kiefer and Manulis introduced a new family of protocols

67
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called Blind Password Registration (BPR) for Verifier-Based Password-
Authenticated Key Exchange (VPAKE) [71] and two-server PAKE [72].
They proposed Zero-Knowledge Password Policy Checks (ZKPPC) which
enables blind registration. Users register their chosen password with a
server and prove that it suits the password policy without revealing any
information about the password, which prevents password leakage from
the server. BPR protocol can be executed over the TLS channel estab-
lished between the client and the server. They define a security model for
stand-alone blind password registration protocols which fulfil the require-
ments of policy compliance and dictionary attack resistance. OPAQUE
[75] is an asymmetric PAKE protocol containing a password registration
scheme as well. Password registration can be offline, PKI-based or out-of-
band. Blindness and resistance against offline attacks are considered.

Most registration processes are based on passwords where the vul-
nerabilities are well-known. Users may choose ”weak” passwords or not
change the default passwords, which are easy for attackers to guess. An-
other criticism of passwords is that if any site where a certain password
is reused becomes compromised and the system administrators do not fol-
low the best industry practices, the participants’ other accounts may also
become compromised by the attacker who can guess the password with
an offline attack. Several attacks aim to figure out passwords, applying
dictionary, rainbow tables or brute-force attack. An attacker conducting
an offline attack hashes each password guess. While many standard hash-
ing algorithms were designed to make execution quicker, certain ones were
deliberately designed to be slow to hinder attackers from conducting an
offline attack. For example, the bcrypt hashing scheme [113] can be con-
figured with a cost factor that exponentially increases its execution time
by requiring a sequential series of computations. Besides the password,
usually a salt value is also used. Salt is a short (12 - 48 bits) random
piece of data that is concatenated with the password before hashing. It is
then stored with the hash of the password information. An attacker who
successfully steals the password file or database is forced to run an exhaus-
tive, computationally expensive offline attack to find the users’ passwords
from the salted hashes.

In our solution, Identity-Based Cryptography is only used for password
registration, where the master secret key is changed daily. This way,
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the new entrant receives a short-lived secret key from the Private Key
Generator (PKG) server, thus eliminating vulnerability of the secret key
in Identity-Based Cryptography. Corruption of the secret key does not
result in the change of the public key, with new system parameters new
secret keys are generated.

We assume that the server has an extra secret key besides the identity-
based key pair. This secret key ensures secrecy and prevents the attacker
from accessing the password information from the earlier registration even
when the PKG becomes corrupt. In this system, PKG may be distributed,
which can further increase security and applying the scheme can suit dis-
tributed systems.

In our scheme, a device (e.g. smart card) or an application is required,
which generates the salt value. It also checks the password which is chosen
by the user. We assume that the password policy, which is demanded, is
applied on the client side (such as JavaScript API or other application).
This device is used by the user only once during the process of regis-
tration. During transmission, mutual authentication of participants and
confidentiality of the password and the salt are ensured by applying the
temporary identity-based key pair. The server calculates the result of the
bilinear map of the password and the salt, and stores the calculated value
along with the salt.

Our registration scheme can be applied for standard user login appli-
cations, the server receives the password in the usual way, then performs
the bilinear mapping with the salt and compares it with the stored value.
Our scheme also fits to those authentication processes, when the bilin-
ear mapping is performed on the client side, and the value is sent to the
server for verification. The proposed protocol is suitable for the registra-
tion phase of the two-factor or one-factor password-based authentication
process, depending on whether the device is used for authentication or
not.

Note that our proposed registration is also fully blind, as users’ pass-
words and temporary PKG secret key are not known by the server during
the registration and subsequent authentication.

In contrast to traditional registration solutions, our solution does not
require a TLS channel and can also omit the associated certificate man-
agement, which can be efficiently implemented in a corporate or educa-
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tional institution. According to our implementation, our protocol is more
cost-effective than the above-mentioned TLS-based and the other blind
solutions ([71], [72], [75]). It is not necessary to manage certificates or
execute costly digital signature.

For password verification and storage, bilinear mapping is used, which
meets the requirements of password storage (one-way function). In addi-
tion, the bilinear mapping applied for password storage is a ”slow” function
and it can be extended for multi-rounds.

The registration we recommend is flexible, which is optimal for SSO
and Kerberos, but it is also suitable for systems where different passwords
must be applied for each service. The bilinear map of the password and
the salt can be used as a long-lived symmetric key and applied for entity
authentication or session key generation.

Comparison Certificates Blind Interactions Online

BPR - two server yes yes 3 yes

BPR - VPAKE yes yes 3 yes

TLS-based yes no 4 yes

OPAQUE (offline) no yes 2 no

OPAQUE (PKI-based) yes yes 3 yes

Our proposition no yes 2 yes

We have also formalized the security analysis of the registration proto-
col. Unlike other schemes ([71], [72]) besides the password hashing scheme
we also consider the interactions, when the password information is sent
securely. Consequently, we prove that our solution is secure against online
attacks as well. We introduce the definition for a secure password regis-
tration scheme, provide an adversarial model and show that our scheme is
provably secure. Security of the proposed registration protocol is based on
the assumptions that solving the Bilinear Diffie-Hellman problem is com-
putationally infeasible, the bilinear map is a one-way function and MAC is
existentially unforgeable under an adaptive chosen-message attack, where
the bilinear map is considered in the generic bilinear group model and the
hash functions are random oracles.

Comparing the offline part of our scheme to [71] and [72], our protocol
is still resistant against offline attacks even when the server is corrupted
and the client is weakly corrupted.
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5.2 Our Proposed Registration Protocol

In this section, we introduce a password registration protocol with pass-
word and salt confirmation, i.e. the client is able to confirm that the
server knows the map of the correct password and the salt.

The protocol consists of a Setup and a Registration phase. During
the Setup system parameters and keys are generated for the participants,
during the Registration phase the client sends its password information
to the server and confirms that the server has received the verification
value. The protocol fulfils all the necessary requirements, such as password
secrecy, mutual authentication and resistance against offline attacks.

5.2.1 Setup

We differentiate two participants: A client (C) requesting registration
and a server (S). During the setup, all system parameters and keys are
generated for the identity-based environment. A Private Key Generator
(PKG) generates the identity-based secret keys for the participants. We
denote the set of all binary strings of finite length by {0, 1}∗. A security
parameter k and the descriptions of groups G,GT of order q are given,
where q is a large prime, and the bilinear map ê : G × G → GT and the
function tr from Section 2.2 are made publicly available. The descriptions
include polynomial time (in k) algorithms to compute the group operations
in G,GT as well as ê.

We build up the identity-based environment as follows. Let P be a
generator of G. PKG chooses a random α ∈ Z∗q and generates parameters
P, αP . The master secret key (msk) for the system is α and the system
parameters par are given by par = (G,GT, ê, tr, P, αP,H,MAC), where
H : {0, 1}∗ → {0, 1}ι is a cryptographic hash function, and ι is the size of
the long-lived key being exchanged. MAC : {0, 1}∗ → {0, 1}ν is a Mes-
sage Authentication Code function, where ν, ι are not necessarily different.
System parameters par are publicly known.

Identities (e.g. e-mail address) denoted by IDC and IDS are generated
for the participants. Public keys are derived, i.e. PKC = QC = tr(IDC)
and PKS = QS = tr(IDS). The PKG calculates the participants’ secret
keys SKC = αQC and SKS = αQS . The server randomly generates x ∈
Z∗q , and then sends (QS , xαP ) to the PKG.
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5.2.2 Registration Phase

In the registration phase, a client (C) registers to the server (S) and sends
the chosen salted password securely with the salt. An identity-based set-
ting is applied, all the benefits of Identity-Based Cryptography are utilized,
i.e. we leave the chain of trust (long certificate chains) and the Public Key
Infrastructure. We take advantages of the characteristics of the bilinear
map ê including bilinearity and one-way function. In this phase, mutual
authentication between the client and the server is processed. Moreover,
at the end of this phase S stores the identity of C, the salt and the salted
password securely received from C. A long-lived key K is also exchanged.
Figure 5.1. and Figure 5.2 show setup and the process of registration
between the client and the server.

Client (C) PKG Server (S)
α ∈ Z∗q (msk) x ∈ Z∗q secret key

Public information:
P, αP, xαP

QC = tr(IDC) (PKC) QS = tr(IDS)(PKS)
αQC (SKC) αQS (SKS)

Figure 5.1. Setup

During the setup, system parameters including P, αP , the public keys
QC , QS and (QS , xαP ) are made public.

� C chooses a random value z ∈ Z∗q which serves as a salt and a
password psw. C computes the encoding from Section 2.2 to get
R = tr(psw). Subsequently, C creates a message m = ê(QS , zxαP +
αQC) · ê(zP,R) and a verification value V = H(ê(QS , zxαP +
αQC)||K), where || denotes the concatenation of the messages.
K = H(ê(zP,R)) serves as a key that is transferred with the server.
Values QC , m, V and zP are sent to server S. Value zP is the salt
and stored in the server’s password database. The salt is needed for
S to verify the validity of ê(zP,R). Authentications of the client
and the message are based on the short-lived identity-based secret
key αQC and the correctness of V .

� After receiving the registration request message (QC ,m, V, zP ) from



5.2. OUR PROPOSED REGISTRATION PROTOCOL 73

Client (C) Server (S)
z ∈ Z∗q random, psw password

R = tr(psw)
m = ê(QS , zxαP + αQC) · ê(zP,R)
K = H(ê(zP,R))
V = H(ê(QS , zxαP + αQC)||K)

QC ,zP,m,V−−−−−−−−−−−−−→
x · zP
K = m · ê(αQS , xzP +QC)

K ′ = H(K)

V
?
= H(ê(αQS , xzP +QC)||K ′)

r ∈ Z∗q random

MACK′(r)
QS ,MACK′ (r),r←−−−−−−−−−−−−−−−

MACK′(r)
?
= MACK(r)

Store: QC , ê(zP,R), zP

Figure 5.2. Password registration protocol

C, S computes K = m · ê(αQS , xzP +QC), where αQS is S’s short-
lived secret key. Then S computes the value V ′ = H(ê(αQS , xzP +
QC)||K ′), where K ′ = H(K) and checks whether V = V ′ holds. If
they are equal, then S is sure of the authenticity of the client and
the validity of the other values K and zP . S stores QC , ê(zP,R)
and zP in the database. Thereafter S generates a random value
r ∈ Z∗q and computes a MAC value MACK′(r). S sends a response
(QS ,MACK′(r), r).

� C receives the S message and calculates the MAC value applying
K = H(ê(zP,R)). If MACK(r) is correct, then C is successfully au-
thenticated by S, and C also confirms that server S knows ê(zP,R).

In the proposed password registration protocol, the client chooses a
password (psw) and the salt (z) is generated. The bilinear map - a one-
way map - of the password and the salt (ê(zP,R)) is securely sent and
stored on server side. The authenticity of message ê(zP,R) and zαP is
verified by the server as follows. The identity of the sender is verified by
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calculating ê(zP,R) from message m and xzP , applying secret server key
αQS . Data integrity of the messages is verified by checking the correctness
of V . The salt information (zP ) is sent randomized to provide its confiden-
tiality. Confidentiality of ê(zP,R) is assured. Value ê(QS , zxαP + αQC)
randomized by x is multiplied by ê(zP,R).

The client is able to confirm that the server has received and stored
the correct password and salt information by checking the correctness of
the MACK′(r) value. In order to prevent replay attacks, value r ensures
that the MAC value is fresh for every registration. Considering the time
complexity, this password registration is very efficient, since there is only
one bilinear map calculation on user side and one bilinear mapping on
server side besides the MAC, hash operations and point multiplication by
a scalar.

5.3 Security Analysis

In this section we state that our proposed scheme is a secure password reg-
istration protocol. First we review informally the security requirements.

For a secure password registration protocol basic requirements are mu-
tual authentication of the participants, password secrecy during transmis-
sion and resistance against offline attacks. Secure mutual authentication
of participants prevents adversaries to impersonate a legal user or server.
During the password registration, the newly generated password is con-
fidential, an adversary should not have any information about it. It is
essential that password information should be stored on server side in a
way that it should be secure against offline attacks (e.g. dictionary attack,
rainbow tables). By the end of the protocol the client is able to verify that
the server knows and stores the proper password information.

5.3.1 Registration Security Model

In [71] authors consider the dictionary attack resistance property, i.e.
server learns nothing about the password in the verifier. Passive attacks
are considered in which the adversary must not be able to retrieve the
password from the password verifier faster than with a brute-force attack.
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In their security model three oracles are listed. The Execute(C,S) oracle
models a passive attack that executes the protocol. It returns the proto-
col transcript and the state of the server instance S. Oracle Send(C, S,m)
models an active attack that sends message m from client instance C, to
server instance S. It returns the server’s answer m if there exists any. Or-
acle Finalise(C,S,psw) takes a client, server pair (C, S) and a password
psw as input, and returns 1 iff there exists a server instance that accepted
password verifier information for psw.

In [72] the adversary has access to oracles Setup, Send, Execute

and Corrupt for interaction with the protocol participants. Password
blindness is defined by a distinguishing experiment where the attacker,
after interacting with the oracles, outputs a challenge comprising of two
passwords, two clients, and a pair of servers. After a random assignment
of passwords to the two clients, the adversary interacts with the oracles
again and has to decide which client possesses which password.

We provide a security model that considers online attacks in addition
to resistance against offline attacks. Our proposed model takes the whole
registration process into account unlike [72] and [71]. We have regard to all
communication messages between the client and the server as well. Hence
mutual authentication of the participants and password secrecy are also
studied during transmission. We define security goals for password reg-
istration protocols that consider the whole registration process assuming
the minimum requirements.

Each participant holds an identity-based key pair generated by the
PKG oracle during the setup. The final output of the registration is the
password information denoted by psw dataC that is necessary to verify
the identity of C.

A registration protocol run is considered to be successful, if the par-
ticipants confirm the password information. Participants’ oracle instances
are terminated when they finish a protocol run. An oracle can be in state
accepted before it is terminated. The server is in state accepted, if it de-
cides to store the password information psw dataC . The client is in state
accepted, if it confirms that server stores the correct psw dataC , after
receipt of properly formulated messages.

We give the definition of a registration protocol as follows. In general
a protocol determines what step a participant instance should take as a
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response to the adversarial message.

5.3.1 Definition. A registration protocol is a pair P = (Π,Γ) of prob-
abilistic polynomial time (in the security parameter κ) computable func-
tions, where Π specifies how (honest) players behave and Γ generates key
pairs for the participants.
Π takes as input:
κ: the security parameter;
I: identity of the sender;
J : identity of the intended recipient;
pkI , skI : identity based key pair of I;
pkJ : identity based public key of J ;
tran: ordered set of messages transmitted and received

by I in this run of the protocol;

Π(κ, I, J, pkI , skI , pkJ , tran) outputs a triple (m, δ, η), where:
m ∈ {0, 1}∗ ∪ {∗}: the next message to be sent from I

to J (∗ indicates no message is sent);
δ ∈ {Accept, Reject, ∗}: C ′s current decision

(∗ indicates no decision yet reached);
η ∈ {psw dataC , ∗}: client’s password information

stored by the server,
(∗ indicates no password information is stored);

Adversarial Model
We assume that the adversary is A /∈ ID, i.e. neither a user nor

a server. A is a probabilistic polynomial time Turing Machine with an
access to the participants’ oracles, i.e. it has a query tape where oracle
queries and their answers are written. A is able to relay, modify, delay or
delete messages. A is allowed to make the following queries that model
adversarial attacks.

Send(
∏i
I,J ,M) : This oracle query models an active attack. A sends the

message M to oracle
∏i
I,J that returns a message m, which is sent

by the user instance as a response to M . Besides m oracle
∏i
I,J also

provides information whether the oracle is in state (δ) Accepted,
Rejected or ∗. The query enables A to initiate a protocol run
between participants I and J by query Send(

∏i
I,J , κ).
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Corrupt(
∏i
I,J) : This oracle query models the corruption of participant

I. This oracle query models an adversary hacks into the machine.
Replying to this oracle query a participant oracle

∏i
I,J provides in-

formation about I’s asymmetric secret keys and state, i.e. all the
values calculated and stored by participant I. If I is a server, then
both its secret key and psw dataC are returned. If I is a client, the
password itself and the salt are given as well.

Reveal(
∏i
I,J) : This models an insecure usage of a password. If oracle∏i

I,J is in state accepted, holding a password psw, then this query
returns psw to A. This query models the attacks, when the adver-
sary persuades a participant to leak the password, e.g. via a social
engineering attack.

Test(
∏i
I,J) : This oracle query models the semantic security of the pass-

word. It is allowed to be asked only once in a protocol run. If
participant I is in state accepted, then a coin b is flipped. If b = 1,
then psw is returned to the adversary, if b = 0, then a random value
from the distribution of the password is returned.

We define A’s advantage, the probability that A can distinguish the
password held by the queried oracle from a random string, as follows:

AdvA(κ) = |Pr[guess correct]− 1/2|.

Execute(C, S) : This oracle models a passive attack. It takes new un-
opened client and server instances and proceeds honest executions
of the protocol. If there is a record for client C on server S then it
aborts, otherwise it outputs the transcript of the protocol and S’s
states after the execution, i.e. all values including password verifi-
cation information and the salt are stored.

Finalise(C, S, psw) : This oracle query models the verification of a pass-
word psw. Takes a client, server pair (C, S) and a password psw as
input, and returns 1 iff there exists a server instance that is in state
accepted and stores (C, psw dataC), where psw dataC is the verifi-
cation data of the input psw. We assume that no Send was queried
for (C, S). Otherwise, return 0.
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An oracle is opened or corrupted, if it has answered a query
Reveal(

∏i
I,J) or Corrupt(

∏i
I,J), respectively. We differentiate strong and

weak corruption models. In the case of the weak corruption model only
the asymmetric keys are transferred, the adversary does not completely
compromise the machine. Other values generated and stored during the
protocol run are not revealed. A model is called strong corruption model
if asymmetric keys and the state (including the password) are also re-
vealed. This is the case when the state is revealed via a malware installed
on the machine. Applying these secret values the adversary is able to
calculate messages that might be sent to a participant oracle with query
Send(

∏i
I,J ,M).

The output of the oracle Execute with query Finalise makes it possi-
ble to model dictionary-like attacks. Oracle Finalise models the attack,
when the adversary verifies a client’s password stored on server side. We
emphasize that Send is not queried, since a passive attack is formalized.
This refers to the attack when an adversary has access to the transcripts
of the protocol and the password database or files. Oracle Execute is
queried to model the generation of transcript and password data. We
consider honest executions, but participants might be corrupted. While
modelling offline attacks we assume that the client is weakly corrupted.
We note that the success of a password extraction via an online attack is
measured by oracle Test.

There are concurrent and non-concurrent security models. The con-
current model assumes that several copies of the protocol can be processed
concurrently, i.e. several instances of the same participant can be active
simultaneously. For the non-concurrent model at most one participant
instance can be active per participant.

During the attack an experiment of running a protocol P = (Π,Γ) in
the presence of an adversary A is examined. First Γ is run to generate
keys, system parameters for all participants, then A initializes all partic-
ipant oracles and asks polynomially number of oracle queries including
Send(

∏i
I,J ,M), Reveal(

∏i
I,J), Corrupt(

∏i
I,J) to the participant oracles

and queries Execute(C, S) and Finalise(C, S, psw). Finally A asks a
Test(

∏i
I,J) query.

In order to give the definition of a secure registration protocol, we need
to review the definition of conversation and matching conversation from
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[19]. They were also formalized in [14].

Matching conversation and formalizes real-time communication be-
tween entities I and J , it is necessary to define authentication property
of a protocol. We refer to definitions Matching conversation and the
event No-MatchingA(κ) in Chapter 4.2 (Section 4.2.2, 4.2.4).

We review the definition of min-entropy for a dictionary from [71].
Passwords are considered as character strings, where the distribution of
characters depends on the used character set Σ, character positions and
the password string itself.

5.3.2 Definition. Let Dn denote the dictionary, from which the pass-
words with length n are chosen. Let DΣ denote the probability distribu-
tion in password psw of characters from a character set Σ. Min-entropy
for Dn containing passwords psw = (c0, . . . , cn−1) is defined as

βDn = − max
psw∈Dn

n−1∑
i=0

DΣ(ci)log2DΣ(ci)

A password registration scheme is secure if the values stored on the
server-side leak as little information as possible on the password, i.e. an
attacker can not retrieve the password from the password verification value
more efficiently than by performing a brute-force attack over the dictio-
nary.

We need to define the benign adversary, which is the following.

5.3.3 Definition. An adversary is called benign if it is deterministic, and
restricts its action to choosing a tuple of oracle containing one client and
one server oracle, and then faithfully conveying each flow from one oracle
to the other, with the client oracle beginning first.

Before proving the security of our protocol, we need to formalize what
we consider a secure registration.

5.3.4 Definition. A protocol is a secure registration protocol if

� Online resistance:
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1. In the presence of the benign adversary the client oracle and the
server oracle communicating with the client oracle are always
accepted. The server stores the password verification value con-
firmed by the client.

and for every adversary A

2. If there is an uncorrupted client oracle having matching con-
versations with an uncorrupted server oracle, then they always
accept. The server stores the password verification value con-
firmed by the client;

3. For uncorrupted server and client oracles the probability of
No-MatchingA(κ) is negligible;

4. For the tested oracle AdvA(κ) is negligible. If it is a client
oracle, then it is unopened;

� Offline resistance:

5. If for all dictionaries Dn adversary A generates at most t tuples
(C, S, psw), then

Pr[Finalise(C, S, psw) = 1] ≤ t

2βDn · tpre
+ µ(κ),

where µ(κ) is negligible, t

2βDn ·tpre
denotes the probability that

A finds psw by trying t number of (C, S, psw) tuples, βDn is the
min-entropy for dictionary Dn and tpre denotes the computa-
tional cost to calculate the input value of the one-way function
from the password.

A function µ is negligible if for every positive polynomial p(.) there
exists an N such that for all integers n > N it holds that µ(n) < 1

p(n) . In
the definition above, only the necessary security assumptions are given.
According to element three, we assume that participants do not disclose
their secret keys in order to assure mutual authentication. To provide
semantic security of the password, it is assumed that the client does not
reveal the password. In the case of offline attacks, we assume that besides
having access to the transcripts and the password information stored on
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the server-side, the adversary gains the secret key of the server and the
client. We do not assume that the server and the client are uncorrupted.
We only assume that the client is unopened and does not reveal the pass-
word.

We define two security models. In the case of client-server protocols,
clients are usually assumed to be malicious, i.e. they deviate form the
steps of the protocol and they can apply any type of strategy to attack.
The servers providing some service are usually considered to be honest,
meaning they do not launch any attack or honest-but-curious model, i.e.
they initiate only passive attacks, not leaving any trace of the attack.
Depending on whether the server is honest or honest-but-curious, we dif-
ferentiate honest and honest-but-curious models. In [72] and [71] an
honest model is used.

5.3.2 Security Proof

Protocol security is considered in an extended random-oracle model, hash
functions and the bilinear map are replaced with random mapping.

5.3.5 Theorem. The proposed password registration protocol is resistant
against online attacks in the honest-but-curious model, assuming MAC is
existentially unforgeable under an adaptive chosen-message attack, solving
the Bilinear Diffie-Hellman problem is computationally infeasible, more-
over, the bilinear map is considered in the generic bilinear group model
and the hash functions are random oracles.

Proof: Proving conditions (1) and (2) of Definition 6. is trivial, since
the steps of the protocol are followed by the client and the server and
they are always accepted. The server stores the password verification
value confirmed by the client. Let us consider condition (3), which holds
if the assumption that the MAC is existentially unforgeable under an
adaptive chosen-message attack and the Bilinear Diffie-Hellman Problem
holds. Moreover the hash functions are random oracles. Let us see it in
details.

Consider an adversary A and suppose that Pr[No-MatchingA(κ)] is
non-negligible. There are two cases: either the server, or the client oracle
is accepted.
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� Case 1
Let A succeeds denote the event that in A’s experiment there is
a server oracle

∏
S,C that is accepted, but there is no client oracle∏

C,S having matching conversation to
∏
S,C .

We assume that

Pr[A succeeds] = nS(κ),

where nS(κ) is non-negligible. We construct a polynomial time ad-
versary F that for given aP, bP, cP,P calculatesBDH(aP,bP,cP,P)
= ê(P,P)abc. F randomly picks C ∈ Client and S ∈
Server. Let ∆ = {C, S} denote the identities of protocol par-
ticipants.

∏
S,C denotes the server oracle that communicates to

the client C. F also chooses randomly a particular session t ∈
{1, . . . , T3(κ)}. Given security parameter κ, adversary F sets par =
(G,GT,QP, tr,P, cP, H,MAC), for calculating hash values, encod-
ings and bilinear map F calls hash, tr and QP oracles, respectively.
To make the proof easier to follow let aP denote the value returned
by oracle QG as a result of applying group operation a times for
any a ∈ Zq and the answer of oracle query QGT for inputs c, d is
denoted by c · d. F also sets public keys QS = aP, QC = bP, when-
ever tr(IDS) or tr(IDC) are asked F answers QS = aP, QC = bP,
respectively. F randomly chooses value x̄ ∈ Z∗q and sets x̄cP as a
server public value. Value x̄cP is sent to oracle PKG. F runs A and
answers A’s queries as follows.

1. F answers H hash and tr encoding oracle queries at random
(like a real random oracle would), except if IDS or IDC is
asked.

2. F answers Corrupt queries according to Π, reveals secret keys,
internal states and secret values. Queries to the current server
and the client oracles are refused.

3. F answers Reveal queries as specified in Π. This query is
refused if it is asked from

∏
S,C , since

∏
S,C does not hold the

password.

4. If A does not involve
∏
C,S as a client oracle which commu-

nicates to the server oracle
∏
S,C , then F gives up. If A
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does not invoke
∏
C,S as an initiator oracle, then F gives

up. Otherwise A generates a password psw and a random
t̄ value, and calculates zP and R. Eventually A asks bilin-
ear map oracle queries QP(.) to get ê(QS , zx̄cP + cQC) and
ê(zP,R), F answers these queries. A calculates m, where
m = ê(QS , zx̄cP + cQC) · ê(zP,R). A asks hash oracle query
H(.) of ê(zP,R) from F to get key K. If K is a previously
used value, then F gives up. A asks hash oracle query H(.) to
get V , where V = H(ê(QS , zx̄cP + cQC)||K). F answers the
hash query and if V is a previously used value, then F gives
up. A asks query Send(

∏
S,C ,M), where

M = QC ||zP||m||V.

Since F knows ê(zP,R), F calculates K and answers QS ||
MACK(r)||r, where r is random. If some later time A does
not ask the Send(

∏
C,S , QS || MACK(r)||r), then F gives up,

otherwise
∏
S,C gets accepted. F calculates and outputs

ê(QS , zx̄cP + cQC) · ê(QS , cP)−zx̄) = ê(P,P)abc.

5. F answers Execute and Finalise queries as specified in Π.
Query Finalise is refused if Send was queried before.

Assume that A is successful, event A succeeds happens with
nS(κ) non-negligible probability. We show that F wins its ex-
periment with non-negligible probability. For the analysis the
probability that F chooses the correct participants ∆, session
t and succeeds is:

ξ1(κ) =
nS(κ)

T1(κ)T2(κ)T3(κ)
− λ(κ),

where λ(κ) denotes the probability that F previously calcu-
lated the flow. ξ1(κ) is the multiplication of probabilities
which contains the nS(κ) probability of that A succeeds,

1
T1(κ) ,

1
T2(κ) ,

1
T3(κ) denote the probability that the correct client,

server participants and the appropriate session are chosen.
The ξ1(κ) is non-negligible, if nS(κ) is non-negligible, Ti(κ)
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(i=1,. . . ,3) is polynomial in κ and λ(κ) is negligible. That con-
tradicts the security assumption of the BDH problem, hence
nS(κ) must be negligible.

� Case 2.
Let A succeeds denote the event that in A’s experiment there is a
client oracle

∏
C,S that is accepted, but there is no server oracle

∏
S,C

having matching conversation to
∏
C,S . There are two cases: either

F is able to proceed an existential forgery against MAC under an
adaptive chosen message attack, or we will show how to construct
BDH problem solver F that uses an adversary A.

– Case 2.1

We assume that

Pr[A succeeds] = nC21
(κ),

where nC21
(κ) is non-negligible. We construct a polynomial

time adversary F that is able to proceed an existential forgery
against MAC under an adaptive chosen message attack. F ’s
task is to generate a valid (m, t) message-tag pair, where m
was never asked from the oracle MACK(.). F picks the protocol
participants and a session t ∈ {1, . . . , T3(κ)}, let ∆ = {C, S} de-
note identities. Let

∏
C,S denote the client and

∏
S,C the server

oracle. F sets par = (G,GT,QP, tr, P, αP,H,MAC), where α
chosen randomly. To make the proof easier to follow let aP
denote the value returned by oracle QG as a result of apply-
ing group operation a times for any a ∈ Zq and the answer
of oracle query QGT for inputs c, d is denoted by c · d. The
key generation Γ is simulated as follows. F sets public keys
as QS = tr(IDS), QC = tr(IDS), and αtr(IDS) or αtr(IDC),
respectively. F answers A’s oracle queries as follows.

1. F answers queries to oracles H(.), tr(.),QP, Corrupt,
Reveal in the same way as in Case 1.

2. F answers Send queries according to Π with the gener-
ated random values z, s. If A does not involve

∏
S,C as a

server oracle which communicates to the client oracle
∏
C,S ,
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then F gives up. If A does not invoke
∏
C,S as an initia-

tor oracle, then F gives up, otherwise A asks oracle query
Send(

∏
C,S , λ). F responses

M1 = QC ||zP ||m||V

with m = ê(QS , zxαP + αQC) · ê(zP,R) and V =
H2(ê(QS , zxαP + αQC)||K), where z is random and R is
generated with the tr oracle. The αQC secret key is calcu-
lated by F .
If some later time A does not ask the MACK(.) oracle
queries, then F gives up. Otherwise F answers these
queries using oracle MACK(.). Eventually A creates

M2 = QS ||t||m

and calls Send(
∏
C,S ,M2). If m was asked to oracle

MACK(.) before, then F gives up. If t 6= MACK(r), then
F gives up, otherwise

∏
C,S gets accepted. F responses

(m, t) to the challenger. If A succeeds with non-negligible
probability, then F outputs a valid forgery (m, t), where m
was never asked to oracle MACK(.) before.
Assume that A is successful, event A succeeds happens
with nC21

(κ) non-negligible probability. Hence following
the algorithm above F calculates a valid (m̄, t̄) pair. We
show that F wins its experiment with non-negligible prob-
ability. The probability that F chooses correct participants
∆, session t and succeeds is

ξ21(κ) =
nC21

(κ)

T1(κ)T2(κ)T3(κ)
− λ(κ),

where λ(κ) denotes the probability that F previously cal-
culated the flow. Since nC21

(κ) is non-negligible, Ti(κ)
(i=1,. . . ,3) is polynomial in κ and λ(κ) is negligible thus
ξ21(κ) is non-negligible. That contradicts the security as-
sumption of MAC, hence nC21

(κ) must be negligible.
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– Case 2.2

Let A succeeds denote the event that in A’s experiment there
is a client oracle

∏
C,S that is accepted, but there is no server

oracle
∏
S,C having matching conversation to

∏
C,S . We assume

that
Pr[A succeeds] = nC22

(κ),

where nC22
(κ) is non-negligible. In this case we can construct

a polynomial time adversary that for given P, aP, bP, cP, cal-
culates ê(P,P)abc.

F picks the protocol participants and a session t ∈ {1, . . . , T3(κ)},
let ∆ = {C, S} denote identities.

∏
C,S denotes the client

and
∏
S,C the server oracle. F sets par = (G,GT, QP, tr,

P, cP, H,MAC). To make the proof easier to follow let aP
denote the value returned by oracle QG as a result of apply-
ing group operation a times for any a ∈ Zq and the answer of
oracle query QGT for inputs c, d is denoted by c · d. The key
generation Γ is simulated similarly to Case 1., hence QS = aP,
QC = bP and randomly chooses values x̄, z̄ ∈ Z∗q and sets x̄cP
as a server public value and computes z̄P. Value x̄cP is sent
to oracle PKG. F answers A’s oracle queries as follows.

F answers queries to oracles H(.), tr(.),QP, Corrupt, Reveal
in the same way as in Case 1.

F answers Send queries as follows. If A does not involve
∏
S,C

as a server oracle which communicates to the client oracle
∏
C,S

or
∏
C,S is not an initiator oracle, then F gives up. Otherwise

A asks oracle query Send(
∏
C,S , λ). F responses

M1 = QC ||z̄P||m1||V1

with m1 ∈ GT chosen randomly and V1 is a fresh random value
chosen by the random oracle as a hash value.

A eventually asks oracle QP to calculate values ê(aP, z̄x̄cP +
cbP) and ê(z̄P, R) for some random value R and the hash
oracle for ê(z̄P, R). If these oracle queries were asked be-
fore, then F gives up, otherwise answers the queries. F mul-
tiplies ê(aP, z̄x̄cP + cbP) and ê(z̄P, R) and verifies whether
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the result is m1. If the result is not m1, then F gives
up. Otherwise if some time later oracle H(.) is asked for
ê(aP, z̄x̄cP + cbP)||H(ê(z̄P, R)), then V1 is answered. A gen-
erates a random value rS and calculates MACK(rS) and asks
query Send(

∏
C,S ,M2), where

M2 = QS ||MACK(rS)||rS .

If M2 is not valid or not asked, then F gives up, otherwise
∏
C,S

gets accepted.

Since A asked ê(z̄P, R) from oracle H(.), F is able to output
m1 · ê(z̄P, R)−1 · ê(aP, cP)−z̄x̄ = ê(P,P)abc.

Assume that A is successful, event A succeeds happens with
nC22

(κ) non-negligible probability. F outputs the solution of
BDHP. We show that F wins its experiment with non-negligible
probability. The probability that F chooses the correct partic-
ipants ∆, session t and succeeds is:

ξ3(κ) =
nC22

(κ)

T1(κ)T2(κ)T3(κ)
− λ(κ)

where λ(κ) is the probability that the flow was already cal-
culated before. Similarly to Case 2.1 ξ3(κ) is non-negligible,
if nC22

(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in
κ. That contradicts the assumption of Bilinear Diffie-Hellman,
hence nC22

(κ) must be negligible.

We turn to condition (4). Consider an adversary A and suppose
that AdvA(κ) is non-negligible.

� Case 3.

Let A succeeds against
∏s
C,S denote the event that A asks

Test(
∏s
C,S) query and outputs the correct bit. Hence

Pr[A succeeds] =
1

2
+ n(κ),

where n(κ) is non-negligible.
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Let Aκ denote the event that A picks either a server or a client
oracle

∏s
C,S and asks its Test query such that oracle

∏s
C,S has had

a matching conversation to
∏t
S,C .

Pr[A succeeds] = Pr[A succeeds|Aκ]Pr[Aκ]

+Pr[A succeeds|Aκ]Pr[Aκ]

According to the previous section Pr[Aκ] = µ(κ), where µ(κ) ∈
{nC21

(κ), nC22
(κ), nS(κ)} and Pr[Aκ] = 1 − µ(κ), where µ(κ) is

negligible, hence

1

2
+ n(κ) ≤ Pr[A succeeds|Aκ]Pr[Aκ] + µ(κ)

and we get
1

2
+ n1(κ) = Pr[A succeeds|Aκ],

for a non-negligible n1(κ). We have two cases.

Let Bκ denote the event that for given QC , QS , xαP, zP, αP, P,m, V
adversary A asks K to oracle H(.), where K = e(zP,R) with R =
tr(psw) for password psw. This is the case of 2.2 (nC22

(κ)), where
we showed how to construct BDH problem solver F that uses an
adversary A. Moreover F also breaks the one-wayness of the bilinear
map given in Definition 2.2.4 with A, since R is asked from oracle
QP(.).

Pr[A succeeds|Aκ] = Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ]

+Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ]

Since Pr[A succeeds|Aκ ∧Bκ] = 1
2 ,

1

2
+ n1(κ) ≤ Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ] +

1

2
,
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hence Pr[Bκ|Aκ] is non-negligible. We construct a polynomial time
adversary F that for given QC , QS , xαP , zP , αP , P,m, V calculates
psw.

ξ4(κ) =
n1(κ)

T1(κ)T2(κ)T3(κ)

that is non-negligible if n1(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is
polynomial in κ and denotes the same as in Case 2.2. This contra-
dicts to the BDHP assumption, hence n1(κ) and AdvA(κ) must be
negligible.

Let see the other case when Cκ denotes the event that A is able to
recover K itself, and thus carries out MAC existential forgery. This
is the case of 2.1. Moreover A also calculates psw having K and zP ,
i.e. breaks one-wayness of the bilinear map.

Pr[A succeeds|Aκ] = Pr[A succeeds|Aκ ∧ Cκ]Pr[Cκ|Aκ]

+Pr[A succeeds|Aκ ∧ Cκ]Pr[Cκ|Aκ]

Since Pr[A succeeds|Aκ ∧ Cκ] = 1
2 ,

1

2
+ n1(κ) ≤ Pr[A succeeds|Aκ ∧ Cκ]Pr[Cκ|Aκ] +

1

2
,

hence Pr[Cκ|Aκ] is non-negligible. F proceeds MAC existential
forgery non-negligibly and also breaks F one-wayness of the bilinear
map with non-negligible probability.

We construct a polynomial time adversary F that for given QC , QS ,
xαP , zP, αP, P,m, V calculates K and psw.

ξ5(κ) =
n1(κ)

T1(κ)T2(κ)T3(κ)

that is non-negligible if n1(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is
polynomial in κ and denotes the same as in Case 2.1. This contra-
dicts to the MAC or the one-way pairing assumption, hence n1(κ)
and AdvA(κ) must be negligible.
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�

5.3.6 Theorem. The proposed password registration protocol is resistant
against offline attacks in the random oracle model, if the bilinear map is
a one-way pairing and the client is weakly corrupted.

Proof: Let A succeeds against
∏
S,C denote the event that

∏
S,C is

accepted and A is able to output a valid (S,C, psw) tuple. Hence

Pr[A succeeds] = nd(κ),

where nd(κ) is non-negligible. We construct an efficient algorithm that
breaks one-wayness of the bilinear map, for given P, zP, ê(zP, R) outputs
R.

We construct a polynomial time adversary F , which picks the pro-
tocol participants ∆ = {C, S} and a session s ∈ {1, . . . , T3(κ)}. F sets
par = (G,GT,QP, tr,P, αP, H,MAC) and simulates the key generation Γ
similarly to Case 1. of the proof of Theorem 2. F answers A’s oracle
queries as follows.

Adversary F answers H(.) hash oracle query at random. For Corrupt
query F answers secret keys of the participant oracles and the state of the
server oracle. Adversary F refuses oracle queries Reveal and Send.

Adversary F answers to the Execute oracle the transcripts generated
by honest executions of the protocol with the help of the secret keys and
reveals password information and the salt values stored by the server ora-
cle. After polynomial number of executions, either for the given transcript
values (αQS , x, zP,m = ê(QS , zxαP + αQC) · ê(zP, R)) or for the given
password information stored by the server (ê(zP, R), zP) adversary A
eventually generates valid (C, S, psw). Adversary F outputs R = tr(psw).
The following probability is calculated

ξ6(κ) =
nd(κ)

T1(κ)T2(κ)T3(κ)
− t

2βDn · tpre
,

where t

2βDn ·tpre
denotes the probability that A finds psw by trying t

number of (C, S, psw) tuples, where βDn is the min-entropy for dictionary
Dn and tpre denotes the computational cost to calculate the input value
of the bilinear map from the password. Since t is polynomially bounded
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in κ and nd(κ) is non-negligible ξ6(κ) is non-negligible, that contradicts
to the bilinear pairing one-wayness assumption. �

5.4 Efficiency

In order to confirm the results obtained, we implemented the protocol for
performance evaluation. The implementation was created in Python 3.9,
and performed on an average personal computer with an AMD Ryzen 5
2600 processor, which has 6 cores and 12 threads with a clock rate of 3.4
GHz to 3.9GHz, 16 GB of 3600MHz RAM, and an M.2 NVMe SSD with
3200 MB/s writing and 3500 MB/s reading speed. The elliptic curve and
its parameters can be checked:

� The used elliptic curve: y2 = x3 +x which is a supersingular curve over Zp

with p = 7313295762564678553220399414112155363840682896273128302543
10277821058411810144462486413246228592183502383911176278505421042
5140241018649354445745491039387

� In Z∗
q and in G,GT we use

q = 730750818665451459101842416358141509827966402561

Computation Cost

Table 5.1 summarizes the numbers of the main operations on both server
and client side. We can realize that the most applied operation - the hash -
is also the fastest operation in the registration. We note that our registra-
tion implementation is single threaded. The reason for not implementing
a multithreaded version is that the bottleneck in the implementation of
the underlying computation of Tate pairings and scalar multiplications,
which we did not focus in our work. However, even so the runtime of our
protocol is convincing and registering multiple users at the same time can
be extremely fast.

Table 5.2 shows the average execution time of the protocol’s main
operations. The operations run 10000 times to make the run time more
accurate. The bilinear pairing is the most expensive operation, but still
its run time is under 0.01 seconds.
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Operation User Server

Hash 5 3

EC scalar mult. 3 2

Bilinear pairing 3 2

Table 5.1. Number of operations

Operation Time

HMAC 0,0000011

EC scalar mult. 0,002880

Bilinear pairing 0,007043

Table 5.2. Execution time of protocol’s operation)

Comparison with Other Schemes

The performance evaluation is based on the running time of the protocol
compared to three other available solutions: the Blind Password Reg-
istration Protocol Verifier Password-Authenticated Key Exchange (BPR
VPAKE), the two-server version of BPR and the Transport Layer Security
(TLS) handshake. Table 5.3 shows the result of comparison. All of our
tests are repeated 100 times to make sure to get a precise result. The
performance tests of the BPR protocols were completed on a laptop with
an Intel Core Duo P8600 at 2.40GHz. We provide the computational time
for only the TLS protocol run, the registration process takes more time,
since an e-mail-based verification is also needed. Our registration protocol
achieves better results in term of efficiency.

Scheme Client Server Full

BPR- two server 1,4 s 0,68 s 2,76 s

BPR - VPAKE 0,72 s 0,67 s 1,5 s

TLS 0,168 s

Our proposition 0,072 s 0,023s 0,095 s

Table 5.3. Execution time of protocols



Chapter 6

Scalable, Password-Based
and Threshold
Authentication for Smart
Homes

In this chapter a threshold and password-based, distributed, mutual
authenticated key agreement with key confirmation protocol described for
a smart home environment. The proposed protocol is a scalable and robust
scheme that forces the adversary to corrupt l − 1 smart home devices to
perform an offline dictionary attack, where l is the threshold. The protocol
was designed to achieve password-only setting, and end-to-end security if
both the user and the chosen IoT devices are authenticated. We also
provide a security analysis of the smart home protocol in the AVISPA
framework.

The results of this chapter is contained in our paper [60]. This paper
is a joint work with Andrea Huszti and Szabolcs Kovács.

6.1 Our Contribution and Literature

Wireless physical communication attackers can intercept communications
more easily, channels may reveal sensitive information regarding user in-
teraction, behavior, lifestyle or physical activity. IoT devices are often
very vulnerable due to weak protection (weak or default passwords) and
poor maintenance. Numerous studies have addressed the security vulner-
abilities of IoT devices [73, 70, 2]. Bugs have been found in a wide range of
devices, including routers [116], smart cams [106], baby monitors [18] and
smart plugs [82]. However, there are many propositions and ideas which
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try to fix these vulnerabilities.

6.1.1 Definition. IoT is a network of devices containing the hardware,
software, firmware, and actuators which allows the devices to connect,
interact, and freely exchange data and information.

Smart homes are a special use case of the IoT paradigm.

6.1.2 Definition. A smart home is a home equipped with lighting, heat-
ing, and electronic devices that can be controlled remotely on a smart-
phone or computer.

As the definition shows, users can control their home’s electronic sys-
tems (smart bulbs, smart locks, sensors, etc.) even from remote loca-
tions by using smartphone applications. In smart homes, a large variety
of devices interact over the local network using different communication
technologies (e.g., Wi-Fi, Bluetooth, Zigbee, Z-Wave, LoRa, cellular net-
work) to allow data flow between other devices [87]. Zigbee or Z-Wave
IoT devices are usually connected to a smart home hub constructing a
mesh network [87] and accessing LAN through the hub. IoT devices are
connected directly to the home Internet router and communicate with the
smart home hub via the LAN or the cloud.

Smart home systems also have other unique features that place addi-
tional design requirements. Since most devices have limited computing
resources and lack or have minimal security functionalities (no authen-
tication and plain text data transmission) several recommendations are
available to handle these aspects, such as Software Defined Networking
(SDN), which offers programmability, agility and centralized management.
In [64] a privacy-preserving communication scheme is proposed for SDN
enabled smart homes (PCSS), which aims to ensure user and smart device
authentication, privacy for data and user queries. In most cases, there is a
central node or a smart home hub which is responsible for managing com-
munications with the other nodes of the local network and outside. This
proposition applies lightweight cryptography (xor, hash function, AES) for
the authentication between the user and the smart device using a central
controller, focuses on data storage and provides privacy to the searchable
encrypted user queries. Moreover, this scheme does not use the distributed
properties of the smart home and addresses other issues that we consider.



6.1. OUR CONTRIBUTION AND LITERATURE 95

Smart devices send sensitive data via a wireless connection to the cen-
tral node, where immediate analysis and decision are performed to send
back control commands [81], [112]. In smart homes EdgeOS H [32] and
HomePad [119] are two solutions to address edge-based IoT issues.

Recently several security vulnerabilities have been exploited in smart
home hub devices. The smart home hub is an appealing target for cy-
bercriminals as they can serve as an entry point for remote attacks. In
July 2019, researchers at BlackMarble found a weakness with Zipato’s
ZipaMicro smart hubs where exploiting Pass-the-Hash security flaws, an
adversary could open a smart lock connected to the hub [80]. ESET IoT
Research has also found several vulnerabilities in three different hubs [49].
Attackers were able to gain hardcoded passwords or change passwords.

Jian Shen et.al. [109] proposed a one-to-many group authentication
protocol with a group key establishment between personal digital assis-
tance and each sensor node. They demonstrated a certificateless authen-
tication protocol without pairings based on certificateless cryptography
between PDA and application provider, using ECC algorithms. A novel
security protocol is introduced by Mazhar Rathore et.al. [100], which sim-
plifies the mutual authentication and key exchange among smart home
devices. The protocol leverages Identity-Based Cryptography (IBC), thus
alleviating the requirement of storing and managing public key certificates.
The protocol maintains the security of the honest devices’ private keys,
even when the admin device is compromised. They used a secret sharing
technique for the new device registration and applied bilinear pairing in
the authentication phase. Formal Language Identity-Based Cryptography
is provided the finegrained cryptographic access control practical in [115].

Our goal is to propose a password-based multi-device authentication
scheme for smart homes to reduce security vulnerabilities.

The proposed protocol is designed typically for smart home environ-
ment (Figure 6.1). There are several IoT devices and at least one central
node or edge, therefore instead of centralized authentication (e.g., Ker-
beros) we propose a multi-device authentication. The central node or edge
is called the device manager. If one or more devices break down or become
compromised, the system will still be able to authenticate the user in a
secure way. Hence we thoroughly utilize the capabilities of these systems
like robustness and greater availability. In our proposed cloud authentica-
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tion scheme ([59]), we assume that the cloud servers are always available.
However, the devices can be of various types in smart home systems,
which means some devices are battery-powered or resource-constrained
and might not be available. We need to consider this property of smart
homes, and we propose a new smart home user authentication scheme
with a secret sharing technique, where we require k devices to be available
out of n ones, which can be chosen dynamically.

Figure 6.1. Smart Home

The scheme is an authenticated key exchange protocol with key confir-
mation (AKC) which takes advantage of the distributed IoT system. The
client’s password is shared among the smart home devices. Thus, several
sensors and devices together verify the correctness of the user password.
Attackers need to attack multiple devices simultaneously in order to imper-
sonate the user successfully. Distributed storage of the passwords provides
resistance against offline attacks as well. We accomplish the password-only
setting, hence a user needs to know only a password. Since smart home
devices (e.g., cameras) generate a lot of sensitive data, confidentiality of
data needs to be ensured during the communication between the parties,
and besides the identity verification of the user and the smart home a
session key is also generated.

Our scheme is designed to be an AKC between the user and the device
manager. However if the user would like to connect to an IoT device
directly, the proposed protocol provides end-to-end security as well.

Since there are resource constrained devices, we put a great emphasis
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on efficiency during the design. The session key is generated by Elliptic
Curve Diffie-Hellman key exchange, moreover hash, MAC, xor operations
are applied. The device manager and other devices use only one exponen-
tiation.

The protocol consists of two phases: setup and authentication. During
the setup phase the password is chosen by the user and split among the
devices. Whenever the user logs in to the smart home system the authen-
tication phase is run, the password given by the user is verified by the
devices.

The number of devices in a smart home system is changing. The
more devices there are, the higher security the system should provide,
i.e., the password verification should be processed by more devices. The
proposed protocol is scalable in an efficient way. The password is not
necessarily changed every time the number of devices is increased, hence
the shares already set for the installed devices are not changed. For the
newly registered devices new shares of the same password are set.

To provide higher security level, during the authentication phase the
user chooses a random value called authentication value, which is securely
split among the devices. For the authentication value a threshold based
on the number of devices, called authentication threshold is set. At least
threshold number of devices are necessary to construct the authentica-
tion value from its shares. The authentication threshold is greater than
or equal to the password threshold. A device calculates its authentication
share with the help of its symmetric key based on its password share. Con-
sequently, the smart home system authenticates the user successfully only
if the authentication value is calculated, i.e., only if at least authentication
threshold number of devices participate. Increasing the number of devices
results in a larger authentication threshold, hence greater security level is
achieved. Similarly, the number of devices can be decreased. Reregistra-
tion is required only if it goes below the threshold of the password secret
sharing.

The smart home is also authenticated. The user verifies whether the
devices are able to correctly calculate the password and the authentication
value. Valid verification value is constructed only if the devices possess
valid password shares.

Secret sharing algorithm and bilinear map are adopted to provide resis-
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tance against offline attacks. To construct the password at least threshold
number of shares are necessary. Let l denote the password threshold and
assume that l− 1 devices are compromitted. With the knowledge of l− 1
password shares the adversary can launch a dictionary attack. For each
possible password the authentication value should be constructed from its
shares for the verification. Besides the hash, these calculations are also
required for each dictionary element that slows down the attack. We ap-
ply a bilinear map for storing the hash value of the password and the salt.
A hash and a bilinear map calculation together should be carried out for
each possible password that also slows down the attack.

We have validated the security properties of the proposed protocol by
using an automated, security protocol validation tool, named AVISPA.
We show that our protocol provides mutual authentication of the partici-
pants and the generated fresh session key is kept secret. We formalize the
protocol in HLPSL and also define the above security goals for the anal-
ysis. AVISPA supports three types of goal predicates:witness (for weak
authentication), request (for strong authentication), and secret.

6.2 The Proposed Scheme

In this section an AKC protocol is proposed that is carried out between a
user and a smart home environment including a device manager connected
to the IoT devices. During the setup phase the user sets up his smart
home system, chooses a password that is split into shares. The shares are
securely stored on each device including the device manager. From the
stored value a password share-based long-lived symmetric secret key Ki is
calculated, where i = 1, . . . , n, where n is the number of devices.

A share-based long-lived key Ki depends on a secret share of the pass-
word and the salt value. The shares are static until the password is valid.
Whenever the password is changed new shares are generated. If the num-
ber of devices is increased, the user with the help of the setup module
sets a new share of the same password for the new device. The stored
values, hence the long-lived keys of the other IoT devices that are already
installed are not modified, i.e., by increasing the number of devices the
password threshold is still the same.

In the authentication phase mutual authentication of the user and the
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smart home system is processed. The authentication is run by the user
and o randomly chosen devices, where k ≤ o ≤ n (k is the authentication
threshold, i.e., at least k devices are necessary for calculating the authen-
tication value). The authentication threshold is based on the number of
devices and set by the device manager. Hence by increasing the number of
devices the authentication threshold is also increased. In case the number
is decreased, the authentication threshold can also be decreased. The au-
thentication threshold is greater than or equal to the password threshold.

At the beginning of the authentication phase short-lived symmetric
keys (Ki) are exchanged securely between the edge and each device, more-
over the user chooses a random authentication value that is split among
all the devices. The secret shares of the authentication value are sent
securely to the edge that randomly chooses o devices, where o is greater
than or equal to the authentication threshold. The edge transmits the
authentication shares securely to the devices, which are able to calculate
the authentication share only with the password share-based long-lived
keys. The o devices together calculate a value which depends on the
user’s password, the salt and the chosen authentication value and send it
to the user. If this value is correct, devices prove the knowledge of the
password share-based long-lived keys, hence the smart home system is au-
thenticated. Moreover, the hash of this value is also transmitted to the
edge. If it is correct, then the password and the salt are also valid, hence
the user is authenticated as well.

In addition to mutual authentication of the participants, a secret ses-
sion key is also exchanged between the user and the device manager ap-
plying Elliptic Curve Diffie-Hellman key exchange.

It is assumed that a client software is running on the client device (e.g.,
laptop, mobile phone etc.) that requires the password from the user to
initiate the authentication process. Having the password, the share-based
long-lived keys Ki are calculated with the help of a salt value stred by the
client sofware and the execution of authentication begins.

6.2.1 Setup Phase

There are two participants in our protocol. One of them is the IoT system
including the manager device and the IoT devices (J1, . . . , Jn) and the
other one is the user (I), which queries services and data. The set of
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all binary strings of arbitrary length is denoted by {0, 1}∗. If x, y are
strings, then x||y denotes the concatenation of x and y. Let ⊕ denote an
exclusive or calculation. During setup, all system parameters and long-
lived keys are generated. Let E denote an elliptic curve defined over a finite
field F and G ∈ E(F) be a point of order n. Elliptic curve parameters
are chosen in a way that the system resists all known attacks on the
elliptic curve discrete logarithm problem in < G >. Let G and GT be
two groups of order q for some large prime q, map ê : G × G → GT be
an admissible bilinear map. System parameters par are given by par =
(E,F,n, G,G,GT , ê, H,H0, H1,MAC), where H : {0, 1}∗ → {0, 1}ν , H0 :
{0, 1}∗ → {0, 1}ι, H1 : {0, 1}∗ → {0, 1}σ are cryptographic hash functions
and ν, ι, σ are not necessarily different, ι is the size of the secret session
key being exchanged. MAC : {0, 1}∗ → {0, 1}ν is a MAC function. The
system parameters are publicly known.

During the setup phase the user chooses a password psw, the client
software generates and securely stores a random salt value z and a
random polynomial for the Shamir secret sharing of psw. The secret
shares si, where i = 1, . . . , n are generated and values ê(P,Qz), where
Qz = H(psw||z) and ê(siP,Qz) are sent and stored by the devices. The
password share-based long-lived symmetric secret keysKi =H(ê(siP,Qz))
are calculated for the authentication during the authentication scheme. If
a user wants to set new devices to the smart home system, they need to
give the password to the client software, which generates new extra shares
si for the same polynomial, where i > n. This way the construction
includes the property of scalability.

6.2.2 Authentication Phase

We assume that ê(P,Qz) and ê(siP,Qz) are stored by the devices and
Ki = H(ê(siP,Qz)) are calculated by the client software whenever the
password is given. Moreover all IoT devices possess symmetric encryption
keys (K1, . . . ,Kn) for authenticated encryption of the messages sent to
the manager device. These are short-term keys and exchanged securely in
the beginning of the authentication phase.

The authentication phase consists of three main subphases. The first
subphase is carried out by the client software. A secret, random authenti-
cation value w is chosen and split into shares with Shamir Secret Sharing.
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These shares and a hash value m0 based on the w, the password and the
salt value are transferred securely to the manager device.

During the second subphase randomly chosen smart home devices
calculate their password share-based long-lived symmetric secret keys
Ki = H(ê(siP,Qz)), construct and also verify the user’s knowledge of
the value ê(P,Qz)

w+psw that is based on the password, the salt and the
secret, random authentication value w.

In the third subphase a secret symmetric key is exchanged between
the user and the manager device and the user verifies whether the smart
home system is able to calculate ê(P,Qz)

w+psw, i.e., whether the devices
possess the password shares and the salt.

First Subphase

In the first subphase (Figure 6.2), Jv denotes the manager device, which
manages the authentication process on the IoT side. It communicates with
the user and the other n− 1 devices. After entering the correct password
to the client software, it calculates Ki = H(ê(siP,Qz)), where ê(siP,Qz)
is stored securely and si, i = 1, . . . , n are the secret password shares.

For the Shamir Secret Sharing of a randomly chosen value w, the
client software generates a random polynomial g(x) with a degree large
enough, where w = g(0). The degree, hence also the threshold depend on
the number of devices. The larger the number of devices the larger the
threshold is. The threshold - the authentication threshold - is greater than
or equal to the password threshold. The secret shares are calculated and
denoted by wi, where i = 1, . . . , n. More details are provided in Section
2.2.1.

I creates the first message M1 and it is sent to the manager device
Jv. I computes m0 = H0(ê(P,Qz)

psw+w), where Qz = H(psw||z) and
also calculates mv = MACKv(rv ⊕ xG⊕ Jv)⊕ wv||rv||xG, where MAC is
calculated with the password share-based long-lived symmetric key Kv.
Moreover, mv comprises xG, which is an elliptic curve point represented
by a bitstring that is necessary for the key agreement and it is the client
message of the elliptic curve Diffie-Hellman key exchange and an rv ran-
dom value. The first message also contains mi = MACKi(ri⊕Ji)⊕wi||ri,
where ri is random and i = 1, . . . , n and i 6= v.
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Since w is chosen randomly, for each authentication value w and the
shares wi are different. Therefore values mi, i = 0, . . . , n are random.

Second Subphase

During the second phase (Figure 6.3) the identity of the user is verified
by the smart home system. The device manager chooses o devices ran-
domly, where k ≤ o ≤ n and k denotes the authentication threshold.
These devices - which might include the manager device as well - together
authenticate the user.

The device manager also receivesmv. If the manager device is in the set
of the chosen devices, then ô = o, i.e., o devices verifies valuem0, otherwise
ô = o+1, i.e., besides the chosen devices’ shares the manager device’s share
is also applied for the calculation. Hence, the manager device calculates
w′v = MACKv(b⊕ c⊕ Jv)⊕ a and fv = ê(P,Qz)

w′v ê(svP,Qz), where mv =
a||b||c, values ê(P,Qz), ê(siP,Qz) are stored by the manager device and
Kv is its password share-based long lived key.

After Jv receives message M1, it forwards each mi along with I to

User I Manager Jv

psw, z, G ê(svP,Qz), ê(P,Qz)

Ki = H(ê(siP,Qz)), where Qz = H(psw||z) Ki, G

g(x) chosen, where w = g(0)

shares: (xi, g(i)) = (i, wi), where i = 1, . . . , n

random x, ri, where i = 1, . . . , n

m0 = H0(ê(P,Qz)
psw+w)

mi = MACKi(ri ⊕ Ji)⊕ wi||ri, where i = 1, . . . , n

mv = MACKv(rv ⊕ xG⊕ Jv)⊕ wv||rv||xG
M1=I||m0||...||mn−−−−−−−−−−−→
public channel

Figure 6.2. Authentication - Client process
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Manager Jv Devices Ji

ê(svP,Qz), ê(P,Qz) ê(siP,Qz), ê(P,Qz)
M1−−−−→ Ki, G Ki, G

choose ij ∈ {1, . . . , n},
where j = 1, . . . , o
if v is chosen ô = o,
otherwise ô = o+ 1
k ≤ o ≤ n

I||mi−−−−−−−−−→
public channel

receives a||b||c as mv receives d||e as mi

Kv = H(ê(svP,Qz)) Ki = H(ê(siP,Qz))
w′v = MACKv(b⊕ c⊕ Jv)⊕ a w′i = MACKi(e⊕ Ji)⊕ d
fv = ê(svP,Qz)ê(P,Qz)

w′v fi = ê(siP,Qz)ê(P,Qz)
w′i

EncKi
(fi)

←−−−−−−−−−−−
public channel

tj =
∏iô
r=i1,j 6=r

xr
xr−xj

m0
?
= H0(

∏iô
r=i1

f tii )

Figure 6.3. Authentication - Devices’ process
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devices Jij , where ij ∈ {1, . . . , n} and j ∈ {1, . . . , o}. Each device calcu-
lates Ki = H(ê(siP,Qz)) and w′i = MACKi(e⊕ Ji)⊕ d, where mi = d||e.
Ji computes and transmits fi = ê(P,Qz)

w′i ê(siP,Qz) encrypted with au-
thenticated encryption to the manager device, where values ê(siP,Qz)
and ê(P,Qz) are stored by the device. Hence its message authentica-
tion and confidentiality are provided by the short-lived symmetric key Ki.
The manager device checks whether m0 = H0(

∏iô
r=i1

f tii ) holds, where

tj =
∏iô
r=i1,j 6=r

xr
xr−xj and

∏iô
r=i1

f tii = ê(P,Qz)
w+psw. If the equality holds

the manager device verifies the identity of the user and the integrity of
c = xG.

Third Subphase

Figure 6.4 demonstrates the steps of the third subphase. Jv generates a
random value y ∈ Z∗n and computes the secret session key ssk = H0(yxG).
Jv calculates response M2 = h||yG, where h = H1(ssk||yG||

∏iô
i=i1

f tii ) and
yG is the manager device message in the EC Diffie-Hellman key exchange.

I receives M2 = h||yG and calculates the secret session key ssk′ =
H0(yxG) and h′ = H1(ssk′||yG||ê(P,Qz)w+psw). If h = h′, then I confirms
that manager device Jv knows the secret session key, and the IoT devices

User I Manager Jv

y random value
ssk=H0(yc)

h = H1(ssk||yG||
∏il̂
r=i1

f tii )
M2=h||yG←−−−−−−−−−−−−−−−−
public channel

ssk’=H0(yxG)

h
?
= H1(ssk′||yG||ê(P,Qz)psw+w)

M3=H1(ssk′||yG||xG)−−−−−−−−−−−−−−−−→
public channel

M3
?
= H1(ssk||yG||c)

Figure 6.4. Authentication - Final process
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possess the password share-based long-lived secret keys, hence they are
authenticated.

Eventually, M3 = H1(ssk′||yG||xG) is computed and forwarded to Jv.
Jv verifies the message received from the client and if it is correct, Jv
confirms that I knows the secret session key.

In the authentication phase, the random value ê(P,Qz)
w+psw can be

calculated by the manager device only if the devices possess the password
share-based long-lived symmetric keys, hence the user is able to verify
the identity of multiple devices just by checking h. On the other hand,
m0 is checked by calculating ê(P,Qz)

psw+w involving keys Ki. Correct
m0 proves that the user knows psw and the client software accesses the
salt value z, hence the identity of the user is verified as well. Value ri
ensures that the MAC value mi is fresh for every authentication in order
to avoid replay attack. Basically, the secret session key is created via
an authenticated key agreement protocol based on random values (x, y)
generated by the user and the edge. These values are sent securely so the
attacker is not able to gain any information about them.

The authentication phase was also proved efficient in terms of time
complexity since there are only symmetric encryptions and one exponen-
tiation per device. Both sides use hash, MAC and xor operations, which
are also fast operations. Our protocol can be considered robust, because
l out of n IoT devices are required for authentication. If a device is not
available, the manager device will not choose it.

6.3 Security Analysis

In this section a detailed security analysis of the proposed AKC protocol
is provided. One of the indispensable security requirements is the mu-
tual authentication of the participants. Secure mutual authentication of
participants prevents adversaries from impersonating a legal user or the
device manager and gaining illegal access to sensitive data.

Another security goal is key secrecy, i.e., an adversary should not pos-
sess any information about the new key. During a protocol run, a new
randomly chosen session key should be exchanged between the partici-
pants, a protocol execution could not be successfully completed with an
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old key exchanged before. At the end, parties should be able to verify
that the other party knows and is able to use the new session key. We also
consider known-key security and forward secrecy properties. Known-key
security preserves the security of session keys after disclosure of a session
key. Disclosure of a session key should not jeopardize the security of other
session keys. Forward secrecy holds if long-term secrets of one or more
entities are compromised and the secrecy of previous session keys is not
affected.

Formal methods have been proved to be a good choice for uncovering
flaws of incorrectly designed security protocols.

6.3.1 Security Validation

In this part we analyse the security properties of our protocol. Our main
goal besides mutual authentication of participants is providing that at
the end of the protocol the attacker is not able to gain any information
about the exchanged new session key. We formalize the protocol, the
security goals and the full version of them can be checked in the appendix
(Chapter 7). The following part shows the user’s role, the user’s steps in
the protocol formalized in AVISPA. We apply the OFMC and CL-AtSe
and execute the attacker simulation. The results of the security analysis
show that the attacker cannot impersonate the legal participants or get
the session key.
init

State:=0

transition

1.State=0 /\ RCV(start) =—>

State’:=2 /\ R1’:=new() /\ R2’:=new() /\ X’:=new() /\
W1’:=new() /\W2’:=new()/

MAC1’:= H(Kac.R1’) / MAC2’:=H(Kab.R2’.exp(G,X’))/\
W’:=exp(exp(exp(P,Psw),W1’),W2’)/\
M1’:=H(W’)/

SND(xor(MAC2’,W2’).R2’.exp(G,X’).H(W’)) /\ SND(xor(MAC1’,W1’).R1’) /

\
witness(U,DM,user dm w,W’)

5.State=2 /\ RCV(exp(G,Y’)) =—>

State’:=7 /\ SSK’:=H(exp(exp(G,Y’),X))
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6.State=7 /\ RCV(HE’) /\ H(W.SSK.exp(G,Y))=HE’ =—>

State’:=9 /\ Secret’:=new() /\ M3’:=H(SSK.exp(G,Y).exp(G,X)) /\
secret(Secret’, sec:1, {U,DM}) /\ SND(M3’.{Secret’} SSK) /\
request(U,DM,user dm SSK,SSK)

Let us move on to the formalization of the key secrecy and authenti-
cation goals with the AVISPA tool. We formalize the protocol in HLPSL
(Appendix Figure 7.3 - 7.8). This language is based on roles: basic roles for
representing each participant role, and composition roles for representing
scenarios of basic roles. Each role is independent from the others, getting
some initial information by parameters, communicating with the other
roles by channels. The intruder is modeled using the Dolev-Yao model. In
AVISPA we can apply the secret, witness and request goal facts. We use
these facts to demonstrate that our protocol is secure and we verify the
m0, h, SSK values in the AVISPA model . The secret is used to show that
the session key (SSK) is secret and witness and request serve to prove
authentication of participants (m0, h). In the goal section four goals for
authentication and one goal for secrecy are specified:

� secrecy of sec 1

� authentication on user dm w

� authentication on dm user He

� authentication on dm user SSK

� authentication on user dm SSK

The m0 value contains the password and w fresh value and we try to find
an attack with the authentication on user dm w. The authentication on
dm user He goal is similar to authentication on user dm w and we would
like to check He (which we denote with h in the protocol) value. Finally,
the authentication on dm user SSK and authentication on user dm SSK
for the verification of the key confirmation requirement, therefore the mu-
tual authentication is achieved in our protocol as well. In our protocol we
have used witness and request for three purposes:

� The user authenticates the device manager on the value of He
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� Device manager authenticates the user on the value of w

� The device manager authenticates the user and vica versa on the
value of SSK. We abuse strong authentication on SSK here to
express that SSK should be generated freshly (and not replayed).

We formalized these statements:

� secret(Secret, sec 1, {U,DM})

� witness(DM,U, dm user He,HE)

� witness(U,DM,user dm w,W ′)

� request(DM,U, dm user SSK, SSK)

� request(U,DM,user dm SSK,SSK)

We describe an example of these statements. The goal fact secret(Secret,
sec 1, {U,DM}) declares the information ”Secret” as secret shared by
the agents of the set containing U and DM , moreover sec1 protocol id
identifies the secrecy goal in the goal section. We check with this fact
whether the intruder can calculate the session key SSK. The goal fact
witness(DM,U, dm user He,HE) is for a (weak) authentication prop-
erty of the device manager DM by user U on HE. The fact declares that
the device manager, who is an agent, is a witness to the information HE.
The goal will be identified by the constant dm user He in the goal sec-
tion. The goal fact request(U,DM,user dm SSK,SSK) is for a strong
authentication property of the device manager DM by user U on SSK,
it declares that agent user U requests a check of the value SSK and this
goal will be identified by the constant user dm SSK in the goal section.
The declaration witness represents that value h in the protocol is fresh and
generated by the device manager for the user and request represents the
user’s acceptance of the session key (SSK) that was created by the device
manager for the user. The other request and witness statements are work-
ing in a similar way. We need to require the strong authentication which
prevents replay attacks. Applying the back-ends model checker (OFMC,
ATSE) we check whether the intruder can execute the replay attack. Us-
ing the Dolev-Yao model the back-ends model checkers verify whether
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there is any man-in-the-middle attack possible by the intruder. If any of
the back-end tools finds a trace in which the request event is preceded by
a witness event originated by an agent other than U , an attack will be
reported.

In OFMC’s case, the total number of nodes visited is 2262, while the
depth is 4 piles with 5.48 seconds search time. The results of CL-AtSe
protocol analysis demonstrate that the number of states analyzed is 26
out of which 15 states can be reached, the translation time is 0.07 seconds
and the computation time is 0.15 seconds. The output proves that the pro-
posed protocol is safe against active and passive attacks. The known-key
and forward secrecy hold in the proposed protocol as well. The parame-
ters xG and yG of the session key are chosen independently and randomly
for every protocol run, hence the new session keys are also independent
and random. The session key can be calculated by the adversary from xG
and yG only if he or she computes ECCDH function. The adversary faces
ECCDH assumption for the previous session keys even if long-term secret
keys are compromised.

6.4 Computation and Communication Cost Anal-
ysis

Since efficiency is an important aspect, evaluation of the computation
and communication cost of the protocol is essential. Overall, the session
key is generated by ECDH key exchange, there are hash, MAC and xor
calculations, which are considered fast operations. Moreover, the device
and the device manager apply one exponentiation.

In the efficiency analysis the number of devices participating in the
identity verification is an important parameter. In order to make com-
munication secure and message size acceptable, the appropriate value has
to be specified. We propose to apply around ten to fifty devices for the
protocol, because the communication cost is still small and also ensures
security.

� The used elliptic curve: y2 = x3 +x which is a supersingular curve over Zp

with p = 7313295762564678553220399414112155363840682896273128302543
10277821058411810144462486413246228592183502383911176278505421042
5140241018649354445745491039387
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� In Z∗
q and in G,GT we use

q = 730750818665451459101842416358141509827966402561

6.4.1 Devices

We implemented the steps of the protocol in python program language in
order to test it in a real environment. We applied and focused on three
devices (PC, Raspberry PI 4, ESP32). We used a PC with the following
parameters: AMD Ryzen 5 2600 - 6 cores, 12 threads, 3.4 GHz - 3.9 GHz
16 GB RAM and an M.2 NVMe SSD with 3200 MB/s writing - 3500 MB/s
reading speed. The Raspberry Pi is a popular small on-board computer
(SBC). In a smart home, we assume that a manager device is a more
powerful device that can be matched with a Raspberry PI. Raspberry
has all the software you need for basic computing. Although Raspbian
is the OS officially recommended by the manufacturer, countless other
operating systems are available. In our case, we apply a RasPi, which
includes Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz processor. It has 2 GB RAM and a class 10 memory
card. The ESP32-WROOM-32 is a high-performance, generic Wi-Fi +
BT + BLE MCU module that targets a wide range of applications, from
low-performance sensor networks to the most demanding tasks such as
audio encoding, music streaming and MP3 decoding. The essence of the
module is the ESP32-D0WDQ6 chip. The embedded chip is scalable and
adaptive. There are two CPU cores that can be controlled separately and
the frequency of the CPU clock can be adjusted from 80 MHz to 240 MHz.

6.4.2 Communication and Computation Costs of the Pro-
tocol

In this section, we detail the communication and computation costs of the
protocol. During the identity verification, we can parallelize the operations
on the IoT side. Even if we apply more devices, the time does not increase.
Furthermore, this parameter denoted by o can be adjusted dynamically in
our protocol.

Computation Cost

Table 6.1 summarizes the computational requirements for each device:
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Operation User device Manager Device IoT Devices

Exponentation 1 1 1

SHA 256 n+6 4 0

AES 128 0 o-1 or o 1

HMAC n 1 1

EC scalar mult. n+3 2 0

Table 6.1. Number of operations

We demonstrate the execution time of the operations in seconds (Ta-
ble 6.2). The authentication protocol can be executed within 1 second
even for a large number of devices. In addition to mutual authentication,
this execution time also includes the session key exchange and the key
confirmation. This is considered acceptable for the user.

Operation PC ESP32 Raspberry

Exponentation 0,0002143 0,01582 0,001685

SHA 256 0,0000002 0,00002 0,0000008

AES 128 0,0000033 0,00155 0,0000016

HMAC 0,0000011 0,0082 0,0000059

EC scalar mult. 0,002880 0,2945 0,0205

Table 6.2. Execution time of protocol’s operations (second)

Figure 6.5 shows the execution time for the client depending on the
number of IoT devices.

Table 6.3 shows the computational performance of the authentication
phases with different devices. We have selected a threshold authentication

Threshold Raspberry+ESP32 PC+ESP32 PC

2-5 Threshold 0,233989 0,0548115 0,0294602

3-6 Threshold 0,2544973 0,0576961 0,0323448

5-10 Threshold 0,3365273 0,0692279 0,0438766

Table 6.3. Performance evaluation of our Threshold Authentication (in
seconds).

system [63] which is similar to our system. Their runtime results are
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Figure 6.5. Execution time for the client with different number of sensors

compared to our ones for the different number of devices and thresholds.
According to [53], about 500 devices will be connected per household in
2022, hence large number of devices and threshold should be considered.
Our proposition provides a better result for n ≥ 10 number of devices and
for o ≥ 5 threshold (Table 6.4).

Threshold 2-5 3-6 5-10

Işler, Küpçü - DSPP 0,00806 0,01171 0,01833

Our proposition 0,0150602 0,0150648 0,0150766

Table 6.4. Performance comparison (in seconds).

Today, achieving computing capacity and adequate security are impor-
tant considerations for IoT devices. The cost of manufacturing affects the
capabilities of these devices, however we need to ensure security. These
aspects were also taken into account during the design of our protocol.

Communication Cost

We assume that the identifiers of participants are 32-bit. In this case
4,294,967,296 (232) unique IDs are possible. During authentication, the
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hash and MAC values are 256 bits, the AES symmetric ciphertexts are
128 bits, and the elliptical curve points are 448 bits. Table 6.5 summarizes
the bits sent by the client, device manager and the devices. The manager
always participates in the authentication. If the manager is among the
randomly chosen o devices, then o − 1 IoT devices are chosen, otherwise
o. We can see that the costs of communication and computation depend

Client (n+ 1) · (32 + 256) + n · 128 + 448 + 256

Manager (o-1 or o) ·(32 + 256 + 128) + 256 + 448

IoT (o-1 or o)·128

Table 6.5. communication cost of the protocol

largely on the number of devices involved in the authentication. The com-
putation cost is negligible because the manager device and the client device
can execute these operations extremely quickly. Moreover, we emphasize
that the IoT devices compute in parallel and this phase does not increase
significantly the execution time of the protocol even if we add more devices
to the smart home. Figure 6.6 demonstrates how communication cost and
data traffic are growing on the network, where the number of devices is
growing fourteen times; however, the communication cost is growing ten
times.

Figure 6.6. Communication cost of the protocol with different number of
sensors
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Appendix

The appendix of Chapter 4.1. and Chapter 6.:

Figure 7.1. User process
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Figure 7.2. Server process
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Figure 7.3. HLPSL specification of user’s role

Figure 7.4. HLPSL specification of device manager’s role
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Figure 7.5. HLPSL specification of device’s role

Figure 7.6. HLPSL Specification of role environment
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Figure 7.7. OFMC output of the proposed protocol verified in AVISPA

Figure 7.8. CL-AtSe output of the proposed protocol verified in AVISPA



Summary

One of the essential issues during online communication is the secure
authentication between the participants. The proper authentication serves
to avoid the different attacks (e.g. impersonation attack). However, in
the case of improper authentication, user access control, confidentiality
and integrity of user data are not provided. The authentication schemes
require several security requirements, which depend on the attributes of
environments. One of the most widely used authentication methods is
based on short secrets like passwords. The registration process must be
executed before the authentication, but it receives insufficient attention in
the scientific literature.

The present dissertation demonstrates three new entity authentication
schemes and a user registration protocol, which is necessary before the
first identity verification. Distributed identity verification is carried out by
multiple participants to secure cloud computing services and smart home
environments. Via formal analysis we demonstrate that the protocols fulfil
the necessary security requirements. Our solutions are more efficient than
the current practical and theoretical schemes.

The first chapter contains the scientific background of the user authen-
tication schemes and solutions.

In the second chapter, we detail the cryptographic primitives applied
in our protocols and the necessary preliminaries.

Chapter 3 covers automated security analysis tools and gives the de-
tails of the concept of provable security.

In Chapter 4, two distributed authentication protocols are proposed
for cloud services.

In Chapter 5, a password registration scheme is demonstrated based
on the identity-based cryptography, i.e. both the user and the service
provider are authenticated by their short-lived identity-based secret key.

In Chapter 6, we present a threshold and password-based, distributed,
mutual authenticated key agreement with key confirmation protocol for a
smart home environment.

119
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Cloud Authentication Protocol Using a Merkle Tree

In Chapter 4.1, a two-factor authentication scheme for cloud comput-
ing services using a Merkle tree is demonstrated ([57]). In contrast to
[33, 40] and the practical solutions, where only one cloud server verifies
the users’ authenticity, our solution applies multiple servers for user au-
thentication. We have extended the scheme in [58] and also provided a
security analysis in applied pi calculus. In our protocol, an attack can be
successful only if the adversary possesses all password shares known by
the servers. Comparing the efficiency of our authentication phase to the
work of [33, 40], our scheme is more efficient, since only hash calculations
are performed. The results of this chapter are contained in our papers
([57, 58]). These papers are joint work with Andrea Huszti.

The user is authenticated with a static and a one-time password on
the service provider’s side at a randomly selected server that can verify
the one-time password by using a Merkle tree (Figure 8.9). A leaf of the
Merkle tree is the hash of a password share, and the root element is verified
in order to confirm the correctness of the whole one-time password.

The protocol has three phases: registration, authentication, and syn-
chronization.

In the registration phase (Figure 8.10), the secret keys are exchanged
generating a large amount of one-time passwords between the user and
the cloud servers. Each cloud server (Ci) possesses an asymmetric key
pair: SKCi = (yi, zi), PKCi = (gyi , gzi), where g is a generator element of

Figure 8.9. A Merkle tree with 8 leaves
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a cyclic group, and yi, zi ∈ Zq are random.

In the authentication phase (Figure 8.11), the mutual authentication
between the user and a randomly chosen cloud server (Cv), furthermore a
MAC key exchange are processed. A message authentication key (MAC)
exchange is also provided to guarantee data origin integrity for the latter
interactive communication.

After authentication, a synchronization step (Figure 8.12) follows and
the password of the selected server is updated with the path associated
with the tree.

For security analysis, the protocol is formatted in ProVerif and the
results of the ProVerif test show that the specified security criteria are
met. We analyse this protocol as a key exchange scheme hence the typical
security requirements for mutual entity authentication schemes, and also
the key related requirements are considered. We formalise the protocol in
ProVerif and prove four properties:

U Ci AS

ID, PW, X salt (yi, zi) secret key
(ri, si) secret (gyi , gzi) public key
(gri , gsi)
Ki1=griyi , Ki2=gsizi

Ti=(Ti1 ,Ti2)=(H(Ki1), H(Ki2))
building the Merkle tree

ID, (gri ,gsi ), H(PW ||X)−−−−−−−−−−−−−−−−−−−−−→ Ki=(griyi , gsizi)

Yi=H(H(Ki1)||H(Ki2))

Yi−−−−→ Yr
building the
Merkle tree

Yr←−−−−

< ID,Ki,H(PW ||X),Yr >

Figure 8.10. Registration
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U Cv
v ∈ {1, ..., 2n−1} random gen. v ∈ {1, ..., 2n−1} random gen.

ID,Tv1 ,Yd1 ,Yd2 ,H(Yr||H(PW ||X))
−−−−−−−−−−−−−−−−−−−−−−−−−−→ Checking:

Tv1
Yd1 , Yd2 −−−−→ Yr ver.
H(Yr||H(PW ||X)) ver.

H(SK),m←−−−−−−−−−−−−−−−−−−−−−−−−−− SK= H(Yr||Tv2), m rand.

ID, SK, m storage
H(SK) verification

ID,MAC(m,SK)−−−−−−−−−−−−−−−−−−−−−−−−−→
MAC verification

Figure 8.11. Authentication

U Cv AS
K ′v1=Kv1 ∗ g=grvyv+1 K ′v1=Kv1*g

K ′v2=Kv2 ∗ g=gsvzv+1 K ′v2=Kv2*g

T ′v1=H(K ′v1) T ′v2=H(K ′v2) T ′v1=H(K ′v1) T ′v2=H(K ′v2)

Tv path update Y ′v=H(H(T ′v1) || H(T ′v2))

ID,Y ′v−−−−−→ Yr
′

update
Y ′r←−−−−−

<ID,K ′v,H(PW ||X),Yr
′>

Figure 8.12. Synchronization
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1. Authentication of both parties

(a) Authentication of users: Adversaries must not be able to im-
personate a legal user and achieve illegal access to the user
data.

(b) Authentication of the server: Adversaries must not be able to
impersonate a legal cloud server.

2. Secrecy of the MAC key: During the key exchange the newly gen-
erated key is a confidential datum and an adversary must not have
any information about the new key.

3. Key freshness: During a protocol run a new, randomly chosen key
must be exchanged so that a protocol execution could not be suc-
cessfully finished with an old, already used key exchanged.

4. Both parties must verify that the other party knows and is able to
use the new MAC key.

We apply injective correspondences for the security analysis of the
user and server authentication. All the queries return with the value true,
which means that user and server authentications and key secrecy hold
in our model and ProVerif do not find an attack. Assuming a successful
mutual authentication, key freshness and key confirmation hold, as well.

Scalable Distributed Authentication for Cloud Services

In Chapter 4.2, we propose a multi-server password-based authenti-
cated key exchange scheme (Figures 8.13 - 8.15). In contrast to other
threshold password-based protocols applying secret-sharing algorithms
([9, 16, 27, 28, 99, 65, 63, 86, 68]), even if we share the password in-
formation among the servers, it is not reconstructed from the shares to
verify it. To show that the proposed protocol is provably secure, we intro-
duce the threshold hybrid corruption model. Unlike [27, 47] we provide a
detailed security analysis based on the Bellare and Rogaway model. Com-
pared to other schemes, we also consider the scalability property, which
is one of the main requirements for clouds. We demonstrate a new way
of generating a strong secret (e.g. long-lived key) from a password, which
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is also suitable for scalability. In the IoT environment, an authenticated
key exchange (AKE) protocol is presented ([105]) on wireless sensor net-
works. They focus on the key shares and establish the authenticated key
between Wireless sensor networks and the cloud server, which performs
a centralized authentication. Another variant of AKE is demonstrated in
[117] which includes a permanent Control Server and cloud servers on 5G
network. Our solution differs from these papers ([117, 105]) since we can
scale the generated long-lived keys on the user’s and the provider’s sides
as well. Compared to our earlier proposed protocol ([58]), we use secret
splitting technique and we also achieve the scalable property. The results
of this chapter are contained in our paper ([59]). This paper is a joint
work with Andrea Huszti.

Our protocol results in a session key, which provides the confidentiality
of the subsequent messages between the participants. The protocol has
two phases. During registration, the client sets password-based long-lived
keys with all the n servers. We propose a simple solution in which the
client accesses the long-lived keys by using a password. We assume that
a client software is running on the client device (e.g. smartcard, mobile
phone etc.) that requires a password from the user to initiate the authen-
tication process. After the client gives the password, the client software
generates the long-lived keys and the execution of authentication begins.
The correctness of the password is verified by the servers and not by the
client software, hence a client device does not store any information about
the password. The client randomly chooses k servers out of n servers for
authentication. During authentication, a server is only able to calculate
the challenge value w given by the client with the knowledge of the sym-
metric, long-lived key Ki (i ∈ {1, . . . , k}) which is generated from the
client password. KKDF denotes a Keyed Key Derivation Function that
for a message m and a key generates a secret key K. The authentication
server (Jv) authenticates the client by verifying the correctness of all the
k challenge values received from the participating servers.

In our proposed protocol, servers communicate on secure channels.
We prefer one randomly chosen server that communicates with the client,
hence the client does not need to communicate with all the k servers in
parallel and build secure channels. During the design of the protocol,
the efficiency of authentication is ensured by MAC and other fast cryp-
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tographic algorithms (hash, xor operation, symmetric encryption). The
protocol is provably secure and the necessary adversary model and the
formal proof are given. We assume that A is allowed to make the Send,

Reveal, Corrupt, Test queries.

We apply distributed authentication, thus we extend the model with
the concept of threshold hybrid corruption. We assume that the partici-
pants can be corrupt in our proposition. A model is a strong corruption
model ([13]) if long-lived keys KI,J and all the values stored by the partic-
ipant I (e.g. randomly chosen secret values) are transferred to A during
the protocol run. In the case of the weak corruption model, only the
long-lived keys KI,J are transferred or replaced, the adversary does not
completely compromise the machine. Other values generated and stored
during the protocol run are not revealed. We introduce a new threshold
hybrid corruption model.

8.0.1 Definition. We call a model threshold hybrid corruption model if
the client is uncorrupted, there are at least n− k+ 1 uncorrupted servers

I Jv
(K1,. . . , Kk), G Kv, G

Ki = KKDF c+ikey (psw), where key = H(salt||psw)

Kn = KKDFkey(psw)⊕ · · · ⊕KKDF c+n−2
key(psw)

t1, . . . , tk−1, tv ; r1, . . . , rk−1, rv, x random

w1 = H(t1), . . . , wv = H(tv)

w = H(w1|| . . . ||wk−1||wv)

m0 = H(w)

mi = (MACKi(ri ⊕ Ji)⊕ wi)||ri

mv = (MACKv(rv ⊕ xG⊕ Jv)⊕ wv)||rv||xG
M1=I||J1||...||Jk||m0||...||mk−−−−−−−−−−−−−−−−−−−→

public channel

Figure 8.13. Authentication - Client process
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Jv Servers

K1, . . . ,Kk−1 short-lived keys
I||mi−−−−−−−−−−−→ Ji

Ki, Ki

mi = p||o

w′i = p⊕MACKi(o⊕ Ji)
EncKi

(w′i)←−−−−−−−−−−−−
mv = u||s||z

w′v = u⊕MACKi(s⊕ z ⊕ Jv)

w′ = H(w′1|| . . . ||w′k−1||w′v)

m0 = H(w)
?
= H(w′)

y random value

ssk=H0(yxG)

h = H(ssk||yG||xG||w′)

Figure 8.14. Authentication - Cloud servers communication

I Jv
M2=h||yG←−−−−−−−−−−−−−−−−−−−−−

public channel

ssk’=H0(yxG)

h
?
= H(ssk′||yG||xG||w)

M3=H(ssk||yG||xG)−−−−−−−−−−−−−−−−−−−−→
public channel

M3
?
= H(ssk||yG||xG)

Figure 8.15. Authentication - Final process
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out of the n servers and k servers are chosen randomly for authenticated
key exchange with key confirmation protocol (AKC). Moreover, the server
chosen to communicate with the client is

1. uncorrupted, or

2. corrupted weakly and among the remaining servers there is at least
one uncorrupted.

In order to give the definition of a secure AKC protocol, we need to
review the definitions of conversation and matching conversation from [19].

Matching conversation formalizes real-time communication between
entities I and J , it is also necessary to be specified for the authentica-
tion property of an AKC protocol. We give the definition of the event
No-MatchingA(κ) that is a modified version of the definition given in [19].
We leave out the requirement that J ∈ Server is uncorrupted. In our
multi-server setting, each client communicates with a server that can be
weakly corrupted if there is at least one uncorrupted server from the k
servers.

8.0.2 Definition. No-MatchingA(κ) denotes an event when in a protocol
P in the presence of an adversary A assuming a threshold hybrid corrup-
tion model, there exists

1. a client oracle
∏s
I,J which is accepted, but there is no server oracle∏t

J,I having a matching conversation with
∏s
I,J , or

2. a server oracle
∏s
I,J which is uncorrupted and accepted, but there is

no client oracle
∏t
J,I having a matching conversation with

∏s
I,J , or

3. a server oracle
∏s
I,J which is weakly corrupted and accepted, but

there is no client or no uncorrupted server oracle having a matching
conversation with

∏s
I,J .

In order to give the definition of a secure AKC, it is essential to define
the notion of freshness and redefine the benign adversary.

8.0.3 Definition. A k + 1-tuple of oracles containing one client and k
server oracles is fresh if in the threshold hybrid corruption model the client
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oracle and the server oracle with which it has had a matching conversation
are unopened. We call an oracle fresh if it is an element of a fresh k + 1-
tuple.

8.0.4 Definition. An adversary is called benign if it is deterministic, and
restricts its action to choosing a k+1 tuple of oracles containing one client
and k server oracles, and then faithfully conveying each flow from one
oracle to the other, with the client oracle beginning first.

8.0.5 Definition. We introduce that a protocol is a secure AKC protocol
if

1. In the presence of the benign adversary the client oracle and the
server oracle communicating with the client oracle always accept
holding the same session key ssk, and this key is distributed uni-
formly at random on {0, 1}κ.

and if for every adversary A

2. If in a threshold hybrid corruption model there is a server oracle∏l
I,J having matching conversations with a client oracle and if

∏l
I,J

is weakly corrupted,
∏l
I,J has matching conversation with an un-

corrupted server oracle, then the client oracle and oracle
∏l
I,J both

accept and hold the same session key ssk.

3. The probability of No-MatchingA(κ) is negligible.

4. If the tested oracle is fresh, then AdvA(κ) is negligible.

8.0.6 Theorem. The proposed protocol is a secure AKC protocol in the
random oracle model, assuming MAC is universally unforgeable under
an adaptive chosen-message attack and symmetric encryption scheme is
indistinguishable under chosen plaintext attack, moreover, ECCDH as-
sumption holds in the elliptic curve group.

Efficiency is an important aspect during the design of our protocol.
In the protocol, the session key is generated by ECDH key exchange, and
the other operations are hash and xor operations, which are extremely fast.



SUMMARY 129

Provably Secure Identity-Based Remote Password Registration

In Chapter 5, we demonstrate the Certificate-Less Secure Blind Reg-
istration Protocol (CLS-BPR) on the Identity-Based Cryptography, i.e.
both the user and the service provider are authenticated by their short-
lived identity-based secret key. The proposed protocol suits our smart
home user authentication scheme where the values of the bilinear map
are stored on the IoT devices. Our cloud scheme ([58]) can also be easily
modified with the proper long-lived key setting to be compatible with our
registration scheme.

For secure storage of the password, a bilinear map with a salt is applied,
therefore in case of an offline attack the adversary is forced to calculate a
computationally expensive bilinear map for each password candidate and
salt, which slows down the attack. In contrast to traditional registration
schemes, our solution does not require a Transport Layer Security (TLS)
channel and can also omit the associated certificate management, which
can be efficiently implemented in a corporate or educational institution.
According to our implementation, our protocol is more cost-effective than
the TLS-based and the other blind solutions ([71, 72]). It is not necessary
to manage certificates or execute costly zero knowledge (ZK) proof. Unlike
other schemes ([71, 72]) besides the password hashing scheme we also
consider the interactions, when the password information is sent securely.
Consequently, we prove that our solution is secure against online attacks as
well. We introduce the definition of a secure password registration scheme,
provide an adversarial model and show that our scheme is provably secure.
Our registration is flexible, which is optimal for Single Sign-On (SSO) and
Kerberos, but it is also suitable for systems where different passwords
must be applied for each service. The bilinear map of the password and
the salt can be used as a long-lived symmetric key and applied for entity
authentication or session key generation. The results of this chapter are
contained in our paper ([17]). This paper is a joint work with Andrea
Huszti, Csanád Bertók and Szabolcs Kovács.

The protocol consists of a Setup and a Registration phase (Figure 8.16,
Figure 8.17). During the Setup, system parameters and keys are generated
for the participants. Let P be a generator of G, where G additive group
of order q for some large prime q. Choose a random α ∈ Z∗q and generate
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parameters P, αP . The master secret key for the system is α. Identities
denoted by IDC and IDS and public keys are derived, i.e. PKC = QC =
tr(IDC) and PKS = QS = tr(IDS). Since our password hashing scheme
uses bilinear pairings (ê) on elliptic curves, we need an efficient way to
map passwords first into Zp, where p is a large prime, then these points
of Zp into a point on the curve. Let denote tr this function. The Private
Key Generator calculates the participants’ secret keys SKC = αQC and
SKS = αQS . In the Registration phase, the clients send their password
information to the server and confirm that the server has received the
verification value. The protocol meets all the necessary requirements,
including password secrecy, mutual authentication and resistance against
offline attacks.

We provide a security model that considers resistance against online
attacks in addition to offline attacks. Our proposed model take the whole
registration process into account unlike [72] and [71]. We have regard
to all communication messages between the client and the server as well.
Hence mutual authentication of the participants and password secrecy
are also studied during transmission. Adversary A is allowed to make the
queries that model adversarial attacks. These queries are Send, Corrupt,

Reveal, Test, Execute and Finalise.
We define the security goals for password registration protocols and

consider the whole registration process assuming the minimum require-
ments. We introduce the definition of secure registration:

8.0.7 Definition. A protocol is a secure registration protocol if

� Online resistance:

1. In the presence of the benign adversary the client oracle and the

Client (C) PKG Server (S)
α ∈ Z∗q (msk) x ∈ Z∗q secret key

Public information:
P, αP, xαP

QC = tr(IDC) (PKC) QS = tr(IDS)(PKS)
αQC (SKC) αQS (SKS)

Figure 8.16. Setup
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server oracle communicating with the client oracle are always
accepted. The server stores the password verification value con-
firmed by the client.

and for every adversary A

2. If there is an uncorrupted client oracle having matching conver-
sations with an uncorrupted server oracle, then they are always
accepted. The server stores the password verification value con-
firmed by the client;

3. For uncorrupted server and client oracles the probability of
No-MatchingA(κ) is negligible;

4. For the tested oracle AdvA(κ) is negligible. If it is a client
oracle, then it is unopened;

� Offline resistance:

5. If for all dictionaries Dn adversary A generates at most t tuples

Client (C) Server (S)
z ∈ Z∗q random, psw password

R = tr(psw)
m = ê(QS , zxαP + αQC) · ê(zP,R)
K = H(ê(zP,R))
V = H(ê(QS , zxαP + αQC)||K)

QC ,zP,m,V−−−−−−−−−−−−−→
x · zP
K = m · ê(αQS , xzP +QC)

K ′ = H(K)

V
?
= H(ê(αQS , xzP +QC)||K ′)

r ∈ Z∗q random

MACK′(r)
QS ,MACK′ (r),r←−−−−−−−−−−−−−−−

MACK′(r)
?
= MACK(r)

Store: QC , ê(zP,R), zP

Figure 8.17. Password registration protocol
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(C, S, psw), then

Pr[Finalise(C, S, psw) = 1] ≤ t

2βDn · tpre
+ µ(κ),

where µ(κ) is negligible, t

2βDn ·tpre
denotes the probability that

A finds psw by trying t number of (C, S, psw) tuples, βDn is the
min-entropy for dictionary Dn and tpre denotes the computa-
tional cost to calculate the input value of the one-way function
from the password.

Protocol security is considered in the random-oracle model, the hash
functions and the bilinear map are supposed as random oracles. We de-
fine two security models. In the case of client-server protocols, clients
usually are assumed to be malicious, i.e. they deviate form the steps of
the protocol, they apply any type of strategy to attack. The servers pro-
viding some service are usually considered to be honest, meaning they do
not launch any attack or honest-but-curious, i.e. they initiate only pas-
sive attacks, not leaving any trace of the attack. Depending on whether
the server is honest or honest-but-curious, we differentiate honest and
honest-but-curious models. In [72] and [71] honest models are used.

8.0.8 Theorem. The proposed password registration protocol is resistant
against online attacks in the honest-but-curious model, assuming MAC is
existentially unforgeable under an adaptive chosen-message attack, solving
the Bilinear Diffie-Hellman problem is computationally infeasible, more-
over, the bilinear map is considered in the generic bilinear group model
and the hash functions are random oracles.

8.0.9 Theorem. The proposed password registration protocol is resistant
against offline attacks in the random oracle model if the bilinear map is a
one-way pairing and the client is weakly corrupted.

Our registration protocol achieves better results in term of efficiency
and Table 8.1 demonstrates this comparison.
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Scheme Client Server Full

BPR- two server 1,4 s 0,68 s 2,76 s

BPR - VPAKE 0,72 s 0,67 s 1,5 s

TLS 0,168 s

Our proposition 0,072 s 0,023s 0,095 s

Table 8.1. The execution time of the protocols

Scalable, Password-Based and Threshold Authentication for
Smart Homes

In Chapter 6, a threshold and password-based, distributed, mutual
authenticated key agreement with key confirmation protocol for a smart
home environment is presented. In our proposed cloud authentication
scheme ([59]), we assume that the cloud servers are always available.
However, the devices can be of various types in smart home systems,
which means some devices are battery-powered or resource-constrained
and might not be available. We need to consider this property of smart
homes, and we propose a new smart home user authentication scheme with
a secret sharing technique, where we require k devices to be available out
of n ones, which can be chosen dynamically. The results of this chapter
are contained in our paper ([60]). This paper is a joint work with Andrea
Huszti and Szabolcs Kovács.

The protocol is designed to achieve the password-only setting, and end-
to-end security if the chosen IoT devices are also authenticated besides
the user. The proposed protocol is a scalable and robust scheme, which
forces the adversary to corrupt k − 1 smart home devices, where k is the
threshold, in order to perform an offline dictionary attack. In the scientific
literature, a threshold Password-Protected Secret Sharing (PPSS) scheme
was formalized by Bagherzandi et. al. ([9]). Jarecki et. al. ([65]) present
the first round-optimal PPSS scheme, requiring just one message from user
to server and from server to user, and prove its security in the challenging
password-only setting where users do not have access to an authenticated
public key. However, it is not scalable. These recommendations ([63, 62])
considered similar properties to our proposition (scalability, robustness,
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password usage, etc.). However, these are more suitable in the cloud
environment and their protocols contain storage providers. Our solution
is recommended typically for a smart home environment and provided a
better result for n ≥ 10 number of devices and for o ≥ 5 thresholds.

There are two participants in our protocol. One of them is the IoT
system including the manager device and the IoT devices (J1, . . . , Jn) and
the other one is the user (I), who queries services and data. We apply
secret sharing where we use a (k, n) threshold scheme. A secret S can be
divided into n shares in a way that k ≤ n will be the threshold number
of the shares which we need to be able to compute S. Thus k − 1 or
fewer shares leave S completely undetermined. We apply Shamir’s secret
sharing threshold scheme for the IoT devices to construct the password.

During the setup phase, the user chooses a password psw, the client
software generates and securely stores a random salt value z and a random
polynomial for the Shamir secret sharing of psw. The secret shares si,
where i = 1, . . . , n are generated and values ê(P,Qz) and ê(siP,Qz) are
sent and stored by the devices, where ê(, ) denotes the bilinear map and
Qz = H(psw||z). The password share-based long-lived symmetric secret
keys Ki = H(ê(siP,Qz)) are calculated for the authentication during the
authentication phase. If a user wants to set new devices to the smart
home system, they need to give the password to the client software, which
generates new extra shares si for the same polynomial, where i > n.
This way the construction includes the property of scalability. Let E
denotes an elliptic curve defined over a finite field F and G ∈ E(F) be a
generator element. Each IoT devices possess symmetric encryption keys
(K1, . . . ,Kn) for authenticated encryption of the messages sent to the
manager device.

The authentication phase consists of three main subphases. The first
subphase (Figure 8.18) is carried out by the client software. A secret, ran-
dom authentication value w is chosen and split into shares with Shamir
secret sharing. These shares and a hash value m0 based on the authenti-
cation value w, the password and the salt value are transferred securely
to the manager device.

During the second subphase (Figure 8.19), randomly chosen smart
home devices calculate their password share-based long-lived symmetric
secret keys Ki = H(ê(siP,Qz)), construct and also verify the user’s knowl-
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User I Manager Jv

psw, z, G ê(svP,Qz), ê(P,Qz)

Ki = H(ê(siP,Qz)), where Qz = H(psw||z) Ki, G

g(x) chosen, where w = g(0)

shares: (xi, g(i)) = (i, wi), where i = 1, . . . , n

random x, ri, where i = 1, . . . , n

m0 = H0(ê(P,Qz)
psw+w)

mi = MACKi(ri ⊕ Ji)⊕ wi||ri
mv = MACKv(rv ⊕ xG⊕ Jv)⊕ wv||rv||xG

M1=I||m0||...||mn−−−−−−−−−−−→
public channel

Figure 8.18. Authentication - Client process

edge of the value ê(P,Qz)
w+psw, which is based on the password, the salt

and the secret, random authentication value w.

In the third subphase (Figure 8.20), a secret symmetric key is ex-
changed between the user and the manager device and the user checks
whether the smart home system is able to calculate ê(P,Qz)

w+psw, i.e.,
whether the devices possess the password shares and the salt.

A detailed security analysis of the proposed AKC protocol is provided.
One of the indispensable security requirements is the mutual authentica-
tion of the participants. The secure mutual authentication of participants
prevents adversaries from impersonating a legal user or the device man-
ager and gaining illegal access to sensitive data. Another security goal
is key secrecy, i.e., an adversary must not possess any information about
the new key. During a protocol run, a new randomly chosen session key
should be exchanged between the participants, a protocol execution can-
not be successfully completed with an old key exchanged before. At the
end, parties should be able to verify that the other party knows and is
able to use the new session key. Known-key security and forward secrecy
properties are also considered. Known-key security preserves the security
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Manager Jv Devices Ji

ê(svP,Qz), ê(P,Qz) ê(siP,Qz), ê(P,Qz)
M1−−−−→ Ki, G Ki, G

choose ij ∈ {1, . . . , n},
where j = 1, . . . , o
if v is chosen ô = o,
otherwise ô = o+ 1
k ≤ o ≤ n

I||mi−−−−−−−−−→
public channel

receives a||b||c as mv receives d||e as mi

Kv = H(ê(svP,Qz)) Ki = H(ê(siP,Qz))
w′v = MACKv(b⊕ c⊕ Jv)⊕ a w′i = MACKi(e⊕ Ji)⊕ d
fv = ê(svP,Qz)ê(P,Qz)

w′v fi = ê(siP,Qz)ê(P,Qz)
w′i

EncKi
(fi)

←−−−−−−−−−−−
public channel

tj =
∏iô
r=i1,j 6=r

xr
xr−xj

m0
?
= H0(

∏iô
r=i1

f tii )

Figure 8.19. Authentication - Devices’ process

of other session keys after disclosure of a session key. Disclosure of a ses-
sion key should not jeopardize the security of other session keys. Forward
secrecy holds if the long-term secrets of one or more entities are compro-
mised but the secrecy of previous session keys is not affected. The user’s
role including the user’s steps in the protocol was formalized in AVISPA.
We apply the OFMC and CL-AtSe and executed the attacker simulation.
The results of the security analysis show that the attacker is not able
to impersonate the legal participants or obtain the session key. We have
selected a threshold authentication system [63], which is similar to our sys-
tem. We compare their runtime results with ours for the different number
of devices and thresholds. According to [53], on average 500 devices will
be connected per household in 2022, hence a large number of devices and
thresholds should be considered. Our proposition provides a better result
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User I Manager Jv

y random value
ssk=H0(yc)

h = H1(ssk||yG||
∏iô
r=i1

f tii )
M2=h||yG←−−−−−−−−−−−−−−−−
public channel

ssk’=H0(yxG)

h
?
= H1(ssk′||yG||ê(P,Qz)psw+w)

M3=H1(ssk′||yG||xG)−−−−−−−−−−−−−−−−→
public channel

M3
?
= H1(ssk||yG||c)

Figure 8.20. Authentication - Final process

for n ≥ 10 number of devices and for o ≥ 5 threshold (Table 8.2). Today,
achieving computing capacity and adequate security are important consid-
erations for IoT devices. The cost of manufacturing affects the capabilities
of these devices, however, we need to ensure security. These aspects are
also taken into account during the design of our protocol.

Threshold 2-5 3-6 5-10

Işler, Küpçü - DSPP 0,00806 0,01171 0,01833

Our proposition 0,0150602 0,0150648 0,0150766

Table 8.2. Performance comparison (in seconds).



Összefoglaló

Az online kommunikáció során az egyik alapvető kérdés a résztvevők
biztonságos hiteleśıtése. Ha a hiteleśıtés megfelelően működik, akkor el-
kerülhetőek a különböző támadások (pl. megszemélyeśıtéses támadás),
ellenben az autentikáció helytelen működése esetén nem biztośıtott a fel-
használó hozzáférés-ellenőrzés, illetve a felhasználói adatok bizalmassága
és sértetlensége. A felhasználó hiteleśıtési sémák esetén számos biz-
tonsági követelményt kell figyelembe venni, amelyek függenek az alkal-
mazott környezet jellemzőitől. Az egyik leggyakrabban használt hite-
leśıtési módszer rövid titkokon, például jelszavakon alapul. Az első en-
titás hiteleśıtési fázis előtt mindig szükséges egy regisztrációs folyamat
végrehajtása, mely a tudományos irodalomban kevés figyelmet kap.

A jelen disszertáció három új felhasználó hiteleśıtési protokollt, illet-
ve egy felhasználói regisztrációs protokollt mutat be. Az autentikáció
végrehajtása osztott, vagyis több résztvevő által történik a felhőalapú
számı́tástechnikai szolgáltatások és az okos otthon környezetek magasabb
biztonsági szintjének elérése érdekében. Formális elemzéssel bizonýıtjuk,
hogy a protokollok teljeśıtik a szükséges biztonsági követelményeket. Meg-
oldásaink hatékonyabbak, mint a jelenlegi gyakorlati és elméleti sémák.

Az első fejezet a felhasználói hiteleśıtési rendszerek és megoldások tu-
dományos hátterét tartalmazza.

A második fejezetben részletezzük a protokolljainkban alkalmazott
kriptográfiai primit́ıveket és megadjuk a szükséges defińıciókat.

A 3. fejezet az automatizált biztonságelemző eszközökkel foglalkozik,
és bemutatja a bizonýıtható biztonság fogalmának részleteit.

A 4. fejezetben két, felhő környezetben alkalmazható elosztott fel-
használó hiteleśıtési rendszert mutatunk be.

Az 5. fejezetben egy Identitás Alapú Kriptográfián és jelszón alapuló
regisztrációs sémát ismertetünk, ahol a felhasználót és a szolgáltatót egy-
aránt hiteleśıti a rövid életű, identitás alapú titkos kulcsa.

A 6. fejezetben bemutatunk egy küszöbszámon és jelszón alapuló, el-
osztott, kölcsönösen hiteleśıtett kulcsmegegyezés és kulcskonfirmáció pro-
tokollt az okos otthon környezetekre.

138
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Felhasználó hiteleśıtési protokoll Merkle-fa használatával

A 4.1. fejezetben bemutatunk egy felhő környezetben alkalmazható,
Merkle fa használatán alapuló kétfaktoros hiteleśıtési sémát ([57]). Az
elméleti ([33, 40]) és a gyakorlati megoldások centralizált hiteleśıtést al-
kalmaznak, ahol egyetlen felhőszerver végzi a felhasználók hiteleśıtését.
A mi megoldásunk több szervert alkalmaz a felhasználók hiteleśıtésére.
A [58] cikkben a séma biztonsági elemzését mutatjuk be applied pi kal-
kulusban. Protokollunkban a támadás csak akkor lehet sikeres, ha az el-
lenfél rendelkezik a szerverek által ismert összes jelszórésszel. A hiteleśıtési
fázisunk hatékonyságát a [33, 40] munkájával összehasonĺıtva azt találjuk,
hogy a mi sémánk hatékonyabb, mivel a résztvevő felek főleg csak hash
számı́tásokat végeznek. A fejezet eredményeit a Huszti Anderával közös
cikkek ([57, 58]) tartalmazzák.

A felhasználó hiteleśıtése a szolgáltató oldalán egy statikus és egy egy-
szer használatos jelszóval történik egy véletlenszerűen kiválasztott szerver
seǵıtségével. A kiválasztott szerver a Merkle fát (9.21. ábra) alkalmaz-
va az egyszer használatos jelszó helyességét tudja ellenőrizni. A Merkle
fa levele egy jelszórész hash értéke, és a fa gyökérelemével, illetve a hozzá
tartozó Merkle fa útvonallal megtörténik a teljes egyszer használatos jelszó
helyességének ellenőrzése.

9.21. ábra. Merkle-fa 8 levélelemmel

A protokoll három fázisból áll: regisztráció, hiteleśıtés és szinkro-
nizálás. A regisztrációs fázisban (9.22. ábra) a titkos kulcsok cseréje során
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nagy mennyiségű egyszer használatos jelszó generálódik a felhasználó és a
felhőszerverek között. Minden felhőszerver (Ci) rendelkezik egy aszimmet-
rikus kulcspárral: SKCi = (yi, zi), PKCi = (gyi , gzi), ahol g egy ciklikus
csoport generátoreleme, és a yi, zi ∈ Zq véletlen értékek, ahol q egy nagy
pŕım.

U Ci AS

ID, PW, X salt (yi, zi) titkos kulcs
(ri, si) titok kulcs (gyi , gzi) nyilvános kulcs
(gri , gsi)
Ki1=griyi , Ki2=gsizi

Ti=(Ti1 ,Ti2)=(H(Ki1), H(Ki2))
Merkle fa éṕıtése

ID, (gri ,gsi ), H(PW ||X)−−−−−−−−−−−−−−−−−−−−−→ Ki=(griyi , gsizi)

Yi=H(H(Ki1)||H(Ki2))

Yi−−−−→ Yr
Merkle fa
éṕıtése

Yr←−−−−

< ID,Ki,H(PW ||X),Yr >

9.22. ábra. Regisztráció

A hiteleśıtési fázisban (9.23. ábra) megtörténik a felhasználó és egy
véletlenszerűen kiválasztott felhőszerver (Cv) kölcsönös hiteleśıtése, vala-
mint végrehajtódik egy MAC kulcscsere. Üzenet hiteleśıtési kulcs (MAC)
cseréje garantálja az üzenetek változatlanságát és eredetének integritását
a későbbi interakt́ıv kommunikáció során.

A hiteleśıtés után a szinkronizálás folyamata következik (9.24. ábra),
ahol a kiválasztott szerver jelszava frissül a fához tartozó útvonallal együtt.
A biztonsági elemzéshez a protokollt ProVerifben formalizáljuk. A ProVe-
rif teszt eredménye azt mutatja, hogy a megadott biztonsági kritériumok
teljesülnek. Ezt a protokollt kulcscsere sémaként elemezzük, ı́gy figye-
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U Cv
v ∈ {1, ..., 2n−1} véletlen gen. v ∈ {1, ..., 2n−1} véletlen gen.

ID,Tv1 ,Yd1 ,Yd2 ,H(Yr||H(PW ||X))
−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ellenőrzés:

Tv1
Yd1 , Yd2 −−−−→ Yr ell.
H(Yr||H(PW ||X)) ell.

H(SK),m←−−−−−−−−−−−−−−−−−−−−−−−−−− SK= H(Yr||Tv2), m vél.

ID, SK, m tárolás
H(SK) ellenőrzés

ID,MAC(m,SK)−−−−−−−−−−−−−−−−−−−−−−−−−→
MAC ellenőrzés

9.23. ábra. Autentikáció

U Cv AS

K ′v1=Kv1 ∗ g=grvyv+1 K ′v1=Kv1*g

K ′v2=Kv2 ∗ g=gsvzv+1 K ′v2=Kv2*g

T ′v1=H(K ′v1) T ′v2=H(K ′v2) T ′v1=H(K ′v1) T ′v2=H(K ′v2)

Tv útvonal frisśıtés Y ′v=H(H(T ′v1) || H(T ′v2))

ID,Y ′v−−−−−→ Yr
′

frisśıtés
Y ′r←−−−−−

<ID,K ′v,H(PW ||X),Yr
′>

9.24. ábra. Szinkronizáció

lembe vesszük a kölcsönös entitás hiteleśıtési sémák tipikus biztonsági
követelményeit, valamint a kulcsokkal kapcsolatos követelményeket. A
következő négy tulajdonságot sikerült igazolni:

1. Kölcsönös hiteleśıtés

(a) A felhasználók hiteleśıtése: A támadók nem adhatják ki magu-
kat legális felhasználónak, és nem férhetnek hozzá a felhasználói
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adatokhoz.

(b) A szerver hiteleśıtése: A támadók nem adhatják ki magukat
legális felhőszervernek.

2. A MAC kulcs titkossága: A kulcscsere során az újonnan generált
kulcs bizalmas adat, és a támadónak nem szabad információval ren-
delkeznie az új kulcsról.

3. Kulcs frissessége: A protokoll futása közben egy új, véletlenszerűen
kiválasztott kulcsot kell generálni, ı́gy a protokoll végrehajtása nem
lehet sikeres egy régi, már korábban használt kulccsal.

4. Mindkét félnek ellenőriznie kell, hogy a másik fél ismeri és tudja
használni az új MAC-kulcsot.

A felhasználó és a szerver hiteleśıtésének biztonsági elemzésére injekt́ıv
lekérdezéseket alkalmazunk. A lekérdezések mindegyike igaz értékkel tér
vissza, ami azt jelenti hogy a modellünkben a felhasználó és a szerver
kölcsönös hiteleśıtésének megsértésére, valamint a kulcs titkosságának
sérülésére nem talál támadást a ProVerif. A kölcsönös hiteleśıtés mel-
lett a kulcs frissessége és kulcskonfirmáció szempontok is teljesülnek.

Skálázható és elosztott felhasználó hiteleśıtés felhő szolgáltatások-
hoz

A 4.2. fejezetben egy többszerveres jelszó alapú hiteleśıtett kulcscse-
re sémát (9.25. - 9.27. ábrák) javasolunk. Más, küszöbszámon alapuló
titokmegosztási algoritmusokat alkalmazó és jelszó alapú protokollokkal
[9, 16, 27, 28, 99, 65, 63, 86, 68] ellentétben, habár a jelszóinformációkat
megosztjuk a szerverek között, a titkot nem kell rekonstruálni a ti-
tokrészekből, hogy ellenőrizze a felhasználó hitelességét. Annak bi-
zonýıtására, hogy a javasolt protokoll bizonýıthatóan biztonságos, be-
vezetjük a küszöbszám alapú hibrid korrupciós modellt. A [27, 47]-
tól eltérően részletes biztonsági elemzést adunk a Bellare és Rogaway
modell alapján. Más sémákkal összehasonĺıtva figyelembe vesszük a
skálázhatósági tulajdonságot is, amely az egyik fő követelmény a felhőkkel
szemben és bemutatunk egy új módot arra, hogy a jelszóból skálázható
erős titkot álĺıtsunk elő (pl. hosszú élettartamú kulcsot). A [105] cikkben
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a szerzők IoT környezetbeli vezeték nélküli szenzorhálózatokra tervezett
hiteleśıtett kulcscsere (AKE) protokollt mutatnak be. A szerzők a kulcs-
megosztásokra összpontośıtottak, és egy hiteleśıtett kulcscserét javasolnak
a vezeték nélküli szenzorhálózat (WSN) és a központi hiteleśıtést végző
felhőszerver között. Az AKE protokoll egy módośıtott változatát a [117]
publikációban ismertetik, mely 5G hálózatra tervezett, és a felhőszerverek
mellett egy rögźıtett vezérlőszervert tételez fel. A javaslatunk eltér ezektől
a megoldásoktól ([117, 105]), mivel a generált hosszú élettartamú kulcso-
kat a felhasználói és a szolgáltatói oldalon is skálázhatjuk. A korábban
javasolt protokollunkhoz ([58]) képest a skálázhatóság mellett titokmeg-
osztási technikát alkalmazunk. A fejezet eredményeit Huszti Andreával
közös [59] cikkünk tartalmazza.

Az általunk javasolt protokoll sikeres lefutása egy munkamenetkul-
csot eredményez, amely biztośıtja a résztvevők közötti későbbi üzenetek
bizalmasságát. A protokollnak két fázisa van. A regisztráció során a
kliens jelszó alapú, hosszú élettartamú kulcsokat cserél ki az összes (n
darab) szerverrel. A kliens oldalon egy egyszerű megoldást javasolunk,
amelyben a kliens jelszóval fér hozzá a hosszú élettartamú kulcsokhoz.
Feltételezzük, hogy a kliens egy klienseszközzel rendelkezik, melyen (pl.
intelligens kártya, mobiltelefon stb.) fut egy kliensszoftver, amely jelszót
kér a felhasználótól a hiteleśıtési folyamat elind́ıtásához. Miután a kliens
megadta a jelszót, a kliensszoftver legenerálja a hosszú élettartamú kulcso-
kat, és megkezdődik a hiteleśıtés végrehajtása. A jelszó helyességét nem a
kliensszoftver, hanem a szerver ellenőrzi, ı́gy a klienseszköz nem tárol sem-
milyen információt a jelszóról. A felhasználó n szerverből véletlenszerűen
kiválaszt k szervert a hiteleśıtéshez. A hiteleśıtés során a szerver csak a
szimmetrikus, hosszú élettartamú Ki kulcs (i ∈ {1, . . . , k}) ismeretében
tudja kiszámı́tani a kliens által generált w kih́ıvásértéket. A KKDF egy
Keyed Key Derivation Function-t jelöl, amely egy m és egy key üzenethez
egy K titkos kulcsot generál. A hiteleśıtési szerver (Jv) a résztvevő szer-
verektől kapott összes k darab kih́ıvás érték helyességének ellenőrzésével
hiteleśıti a klienst.

A javasolt protokollban a szerverek biztonságos csatornákon kommu-
nikálnak egymással. Egy véletlenszerűen kiválasztott szerver kommunikál
a klienssel, ı́gy a kliensnek nem kell párhuzamosan kommunikálnia az
összes k szerverrel és biztonságos csatornákat kiéṕıteni. A protokoll ter-
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vezése során a hiteleśıtés hatékonyságát MAC és egyéb gyorsnak számı́tó
kriptográfiai algoritmusok (hash, xor művelet, szimmetrikus titkośıtás)
biztośıtják. A protokoll bizonýıthatóan biztonságos. Feltételezzük, hogy
a támadó (A) számára engedélyezett a Send, Reveal, Corrupt, Test

lekérdezések végrehajtása.

Az elosztott hiteleśıtés elemzésére az alapmodellt a küszöbszám alapú
hibrid korrupciós modellel bőv́ıtjük. Feltételezzük, hogy a résztvevők kor-
ruptak lehetnek. A modell erős korrupciós modell ([13]), ha a hosszú életű
kulcsok KI,J és a résztvevő I által tárolt összes érték (pl. véletlenszerűen
kiválasztott titkos értékek) a protokoll futása során az A támadó tu-
domására jut. A gyenge korrupciós modell esetén csak a KI,J hosszú életű
kulcsok módosulnak vagy kerülnek ki, a támadó nem kompromittálja tel-
jesen a gépet. A protokollfutás során létrehozott és tárolt egyéb értékek
nem kerülnek nyilvánosságra.

1. Defińıció Egy modellt küszöbszámon alapuló hibrid korrupciós mo-
dellnek nevezünk, ha feltételezzük, hogy az autentikált kulcscsere

I Jv
(K1,. . . , Kk), G Kv, G

Ki = KKDF c+ikey (psw), ahol key = H(salt||psw)

Kn = KKDFkey(psw)⊕ · · · ⊕KKDF c+n−2
key(psw)

t1, . . . , tk−1, tv ; r1, . . . , rk−1, rv, x véletlen

w1 = H(t1), . . . , wv = H(tv)

w = H(w1|| . . . ||wk−1||wv)

m0 = H(w)

mi = (MACKi(ri ⊕ Ji)⊕ wi)||ri

mv = (MACKv(rv ⊕ xG⊕ Jv)⊕ wv)||rv||xG
M1=I||J1||...||Jk||m0||...||mk−−−−−−−−−−−−−−−−−−−→

nyilv.csatorna

9.25. ábra. Hiteleśıtés - Kliens folyamat
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Jv Szerverek

K1, . . . ,Kk−1 rövid életű kulcsok
I||mi−−−−−−−−−−−→ Ji

Ki, Ki

mi = p||o

w′i = p⊕MACKi(o⊕ Ji)
EncKi

(w′i)←−−−−−−−−−−−−
mv = u||s||z

w′v = u⊕MACKi(s⊕ z ⊕ Jv)

w′ = H(w′1|| . . . ||w′k−1||w′v)

m0 = H(w)
?
= H(w′)

y véletlen

ssk=H0(yxG)

h = H(ssk||yG||xG||w′)

9.26. ábra. Hiteleśıtés - Felhő szerverek közötti kommunikáció

I Jv
M2=h||yG←−−−−−−−−−−−−−−−−−−−−−

nyilv.csatorna

ssk’=H0(yxG)

h
?
= H(ssk′||yG||xG||w)

M3=H(ssk||yG||xG)−−−−−−−−−−−−−−−−−−−−→
nyilv.csatorna

M3
?
= H(ssk||yG||xG)

9.27. ábra. Hiteleśıtés - Végső folyamat
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kulcskonfirmációval protokoll (AKC) során n szerverből véletlenszerűen
kiválasztunk k szervert, valamint a kliens nem korrupt, n szerver közül
legalább n− k + 1 szerver nem korrupt. Ezen ḱıvül a klienssel való kom-
munikációnál a kiválasztott szerver

1. nem korrupt, vagy

2. gyengén korrupt, és a fennmaradó szerverek között van legalább egy
nem korrupt.

A biztonságos AKC protokoll defińıciójának megadásához át kell tekin-
tenünk a [19] alapján a beszélgetés és az illeszkedő beszélgetés defińıcióját.

Az illeszkedő beszélgetés az I és a J entitások közötti valós idejű
kommunikációt formalizálja. A No-MatchingA(κ) esemény defińıciója a
[19] dolgozatban megadott defińıció módośıtott változata. Többszerveres
beálĺıtásunkban minden kliens kommunikálhat gyengén korrupt szerverrel
feltéve, hogy van legalább egy nem korrupt szerver a k szerverek között.

2. Defińıció A P protokollban a No-MatchingA(κ) egy olyan esemény,
ahol egy A támadó jelenlétében küszöbszám alapú hibrid korrupciós mo-
dellt tételezünk fel és létezik

1. egy
∏s
I,J kliens orákulum, mely elfogadott állapotban van, de nincs∏t

J,I szerver orákulum, amely illeszkedő beszélgetést folytatna
∏s
I,J

orákulummal, vagy

2. egy
∏s
I,J szerver orákulum, amely nem korrupt és elfogadott, de

nincs olyan kliens orákulum, amelyik
∏t
J,I illeszkedő beszélgetést

folytatna a
∏s
I,J -vel, vagy

3. egy
∏s
I,J szerver orákulum, amely gyengén korrupt és elfogadott, de

nincs kliens vagy nem korrupt szerver orákulum, amely illeszkedő
beszélgetést folytatna a

∏s
I,J -val.

A biztonságos AKC meghatározásához szükséges a frissesség fo-
galmának meghatározása és az jóindulatú támadó újradefiniálása.

3. Defińıció Egy klienst és k szerver orákulumot tartalmazó elem k+ 1-
es friss, ha a küszöbszámon alapuló hibrid korrupciós modellben a kliens
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orákulum és a szerver orákulum, amellyel illeszkedő beszélgetést folytatott,
nem nyitott (unopened). Az orákulumot frissnek nevezzük, ha eleme egy
friss elem k + 1-esnek.

4. Defińıció Egy támadót jóindulatúnak nevezünk, ha determiniszti-
kus, és tevékenységét arra korlátozza, hogy választ egy elem k + 1-es
orákulumot, amely egy klienst és k szerver orákulumot tartalmaz, majd
minden üzenetet tisztességesen tovább́ıt egyik orákulumtól a másikig, a
kliens orákulumtól indulva.

5. Defińıció A protokoll egy biztonságos AKC protokoll, ha

1. A jóindulatú támadó jelenlétében a kliens és a klienssel kommunikáló
szerver orákulum mindig elfogadja ugyanazt az ssk munkamenetkul-
csot, mely egyenletes eloszlással generált a {0, 1}κ halmazon.

minden A támadó jelenlétében

2. Egy küszöbszám alapú hibrid korrupciós modellben van egy
kiválasztott

∏l
I,J szerver orákulum, amely illeszkedő beszélgetést

folytat a kliens orákulummal, és ha ez a
∏l
I,J szerver orákulum

gyengén korrupt, akkor a
∏l
I,J szerver orákulum illeszkedő beszélgetést

kell folytatnia egy nem korrupt szerver orákulummal. A kliens
orákulum és a

∏l
I,J szerver orákulum elfogadja és ugyanazt ssk mun-

kamenetkulcsot használja.

3. A No-MatchingA(κ) valósźınűsége elhanyagolható.

4. Ha a tesztelt orákulum friss, akkor AdvA(κ) elhanyagolható.

9.0.10 Tétel. A javasolt protokoll egy biztonságos AKC protokoll a
véletlenszerű orákulum modellben, feltételezve, hogy a MAC univerzálisan
hamiśıthatatlan adapt́ıv, választott üzenet alapú támadás esetén, a szim-
metrikus titkośıtási séma megkülönböztethetetlen a választott nýılt szöveg
alapú támadásnál, és az Elliptikus görbe Diffie-Hellman kiszámı́thatósági
(ECCDH) probléma nehéz az elliptikus görbe csoportban.

Protokollunk tervezése során fontos szempont volt a hatékonyság. A
protokollban a munkamenetkulcsot az Elliptikus görbe Diffie-Hellman
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(ECDH) kulcscsere álĺıtja elő, a többi művelet pedig a hash és xor
műveletek, amelyek rendḱıvül gyorsak.

Bizonýıthatóan biztonságos identitás alapú távoli jelszóregisztrá-
ció

Az 5. fejezetben egy Identitás Alapú Kriptográfián és jelszón alapuló
regisztrációs sémát mutatunk be, ahol a felhasználót és a szolgáltatót egy-
aránt hiteleśıti a rövid életű, identitás alapú titkos kulcsa. A javasolt pro-
tokoll illeszkedik az okos otthon környezetben alkalmazott felhasználó hite-
leśıtési sémánkhoz, ahol a bilineáris leképezés értékeit az IoT-eszközökön
tárolják. A javasolt felhősémánk ([58]) is könnyen módośıtható a meg-
felelő hosszú élettartamú kulcsbeálĺıtással, hogy kompatibilis legyen re-
gisztrációs sémánkkal.

A biztonságos tároláshoz egy salt-tal ellátott bilineáris leképezést
mutatunk be, ahol a salt egy rövid (12–48 bites) véletlenszerű adat,
amelyet a hashelés előtt összefűznek a jelszóval. Így offline támadás
esetén a támadó minden lehetséges jelszójelölthöz és salt-hoz kénytelen
számı́tásigényes bilineáris leképezést számolni, ami lasśıtja a támadást.
A megoldásunk a hagyományos regisztrációs megoldásokkal ellentétben
nem igényel Transport Layer Security (TLS) csatornát és mellőzi a hozzá
tartozó tanúśıtványkezelést is. Ez vállalati vagy oktatási intézményekben
hatékonyabb működést tesz lehetővé, ahol jellemzően az egyedi azonośıtók
használata miatt ideális az Identitás Alapú Kriptográfia alkalmazása. A
protokollunk hatékonyabb, mint a fent emĺıtett TLS-alapú és a többi vak
regisztráció [71, 72], mivel nincs szükség tanúśıtványok kezelésére vagy
költséges nulla ismeretű bizonýıtás végrehajtására. A többi rendszerrel el-
lentétben ([71, 72]) a jelszó hash-elő séma mellett figyelembe vettük az
interakciókat is a protokoll résztvevői között és a jelszót ellenőrző in-
formációt biztonságosan küldjük. Bebizonýıtottuk, hogy megoldásunk
az online támadások ellen is biztonságos. Bevezetjük a biztonságos
jelszóregisztációs rendszer defińıcióját, illetve megadjuk a támadói mo-
dellt és megmutatjuk, hogy a rendszerünk bizonýıthatóan biztonságos. A
regisztrációnk rugalmas, ami optimális a föderációs bejelentkezésnél (SSO)
vagy a Kerberos hiteleśıtéseknél, de olyan rendszereknél is alkalmas, ahol
minden egyes szolgáltatáshoz más-más jelszót kell alkalmazni. A jelszó
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és a salt bilineáris leképezése hosszú élettartamú szimmetrikus kulcsként
használható, és alkalmazható entitás hiteleśıtésre vagy munkamenetkulcs
generálásra. A fejezet eredményeit az elfogadott cikkünk tartalmazza
([17]), amely Huszti Andreával, Bertók Csanáddal és Kovács Szabolccsal
közös munka.

A protokoll egy beálĺıtási és egy regisztrációs fázisból áll (9.28. ábra,
9.29. ábra). A Beálĺıtás folyamata során legeneráljuk a rendszerpa-
ramétereket és a kulcsokat a résztvevők számára. Legyen P a G egy
generátora, ahol G egy q-adrendű addit́ıv csoport, ahol q egy nagy pŕım.
Válasszunk egy véletlen α ∈ Z∗q értéket, és generáljuk le a P, αP pa-
ramétereket. A rendszer mester titkos kulcsa az α. A IDC , IDS azo-
nośıtók, a PKC = QC = tr(IDC) és PKS = QS = tr(IDS) nyilvános
kulcsok. Mivel a jelszó hash sémánk elliptikus görbén alapuló bilineáris
párośıtásokat (ê) használ, hatékony módszerre van szükségünk ahhoz,
hogy a jelszavakat először egy Zp-beli elemre képezzük le, ahol p egy
nagy pŕım, majd a Zp-beli elemet a görbe egy pontjához rendeljük hozzá.
Jelöljük ezt a függvényt tr-rel. A privát kulcsgenerátor (PKG) kiszámı́tja
a résztvevők titkos kulcsait (SKC = αQC és SKS = αQS). A re-
gisztrációs fázisban az ügyfelek elküldik jelszóadataikat a szervernek, és
meggyőződnek arról, hogy a szerver megkapta a jelszóellenőrző értéket.
A protokoll minden szükséges követelménynek megfelel, beleértve a jelszó
titkosságával, a felek kölcsönös hiteleśıtésével és az offline támadásokkal
szembeni ellenállást.

Kliens (C) PKG Szerver (S)
α ∈ Z∗q (msk) x ∈ Z∗q titkos kulcs

nyilvános információk:
P, αP, xαP

QC = tr(IDC) (PKC) QS = tr(IDS)(PKS)
αQC (SKC) αQS (SKS)

9.28. ábra. Beálĺıtás

Olyan biztonsági modellt adunk meg, amely az offline támadások mel-
lett az online támadásokkal szembeni ellenállást is tekinti. A javasolt
modellünk a teljes regisztrációs folyamatot figyelembe veszi, ellentétben
a [72] és [71] modellekkel. Tekintetbe veszi a kliens és a szerver közötti
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Kliens (C) Szerver (S)
z ∈ Z∗q véletlen, psw jelszó

R = tr(psw)
m = ê(QS , zxαP + αQC) · ê(zP,R)
K = H(ê(zP,R))
V = H(ê(QS , zxαP + αQC)||K)

QC ,zP,m,V−−−−−−−−−−−−−−→
x · zP
K = m · ê(αQS , xzP +QC)

K ′ = H(K)

V
?
= H(ê(αQS , xzP +QC)||K ′)

r ∈ Z∗q véletlen

MACK′(r)
QS ,MACK′ (r),r←−−−−−−−−−−−−−−−−

MACK′(r)
?
= MACK(r)

Tárolás: QC , ê(zP,R), zP

9.29. ábra. Jelszó regisztrációs protokoll

összes kommunikációs üzenetet. Ezért a résztvevők kölcsönös hiteleśıtését
és a jelszó titkosságát is vizsgáljuk az átvitel során. Az A támadó
olyan lekérdezéseket végezhet, amelyek modellezik a támadásait. Ezek
a lekérdezések a következők: Send, Corrupt, Reveal, Test, Execute

és Finalise.

Meghatározzuk a jelszóregisztrációs protokollok biztonsági céljait a tel-
jes regisztrációs folyamatra vonatkozóan. Bevezetjük a biztonságos re-
gisztráció defińıcióját:

6. Defińıció A protokoll egy biztonságos regisztrációs protokoll ha

1. A jóindulatú támadó jelenlétében a kliens és a vele kommunikáló
szerver orákulum mindig elfogadott állapotba kerül. A szerver
tárolja az ügyfél által megerőśıtett jelszó ellenőrzési értéket.

és minden A támadóra
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2. Ha van egy nem korrupt kliens orákulum, amely illeszkedő
beszélgetéseket folytat egy nem korrupt szerver orákummal, akkor
mindig elfogadott. A szerver tárolja a kliens által megerőśıtett jelszó
ellenőrzési értéket;

3. Nem korrupt szerver és kliens orákulum esetén a No-MatchingA(κ)
valósźınűsége elhanyagolható;

4. A tesztelt orákulumban a AdvA(κ) elhanyagolható. Ha ez egy kliens
orákulum, akkor nem nyitott;

5. Ha az összes Dn szótárnál az A támadó legfeljebb t darab (C, S, psw)
elemhármast generál, akkor

Pr[Finalise(C, S, psw) = 1] ≤ t

2βDn · tpre
+ µ(κ),

ahol µ(κ) elhanyagolható, a tpre pedig az egyirányú függvény beme-
neti értékének kiszámı́tásához szükséges számı́tási költséget jelöli.

A protokoll biztonságát véletlen orákulum modellben vizsgáljuk, ahol
két biztonsági modellt különböztetünk meg. A kliens-szerver protokol-
lok esetében a kliensekről általában feltételezhető, hogy rosszindulatúak,
azaz eltérnek a protokoll lépéseitől és bármilyen t́ıpusú stratégiát alkal-
mazhatnak a támadás során. A szolgáltatást nyújtó szerverek általában
becsületesnek számı́tanak, vagyis nem ind́ıtanak támadást, vagy becsüle-
tes, de ḱıváncsiak, azaz csak passźıv támadásokat kezdeményeznek, nem
hagyva nyomot a támadás során. Attól függően, hogy a szerver becsületes
vagy becsületes, de ḱıváncsi, megkülönböztetünk becsületes és becsüle-
tes, de ḱıváncsi modelleket. A [72] és [71] becsületes modelleket
használnak. A javasolt protokollban becsületes, de ḱıváncsi modellt
tételezünk fel.

9.0.11 Tétel. A javasolt jelszóregisztrációs protokoll ellenáll az online
támadásoknak a becsületes, de ḱıváncsi modellben, feltételezve, hogy a
MAC egzisztenciálisan hamiśıthatatlan egy adapt́ıv választott üzenet alapú
támadás során, Bilineáris Diffie-Hellman nehéz probléma, továbbá a bi-
lineáris leképezéseket az általános bilineáris csoport modellben, illetve a
hash függvényeket véletlen orákulumnak tekintjük.
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9.0.12 Tétel. A javasolt jelszóregisztrációs protokoll ellenáll az offline
támadásoknak a véletlen orákulum modellben, ha a bilineáris leképezés
egyirányú leképezés és a kliens gyengén korrupt.

Összehasonĺıtva a hatékonyságot más regisztrációs protokollokkal (9.3.
táblazat) az eredmény azt mutatja, hogy az általunk javasolt regisztrációs
protokoll hatékonyabb a többi javaslathoz képest.

Sémák Kliens Szerver Teljes

BPR- 2 szerveres 1,4 s 0,68 s 2,76 s

BPR - VPAKE 0,72 s 0,67 s 1,5 s

TLS 0,168 s

Mi javaslatunk 0,072 s 0,023s 0,095 s

9.3. táblázat. A protokollok végrehajtási ideje (másodpercben)

Skálázható, jelszó és küszöbszámon alapuló hiteleśıtés okos ott-
honokhoz

A 6. fejezetben bemutatunk egy küszöbszámon és jelszón alapuló, el-
osztott, kölcsönösen hiteleśıtett kulcsmegegyezés és kulcskonfirmáció pro-
tokollt egy okos otthon környezetben. A javasolt felhőalapú hiteleśıtési
sémánkban ([59]) feltételezzük, hogy a felhőkiszolgálók mindig elérhetőek.
Az okos otthoni rendszerekben azonban az eszközök különféle t́ıpusúak
lehetnek, ami azt jelenti, hogy egyes eszközök akkumulátorról működnek,
mı́g mások korlátozott erőforrásokkal rendelkeznek, és előfordulhat, hogy
nem elérhetőek a felhasználó számára. Figyelembe véve az okos ottho-
nok ezen tulajdonságát egy új titokmegosztási technikával működő fel-
használói hiteleśıtési sémát javaslunk, ahol megköveteljük, hogy a dinami-
kusan választható n darab készülék közül k legyen elérhető, ahol k ≤ n.
A fejezet eredményeit a Huszti Andreával és Kovács Szabolccsal közös
cikkünk [60] tartalmazza.

A protokoll tervezése során fontos a megfelelő jelszóhasználat beálĺıtása
és a végpontok közötti biztonságos kommunikáció elérése. A javasolt pro-
tokoll egy méretezhető és robusztus séma, ahol a sikeres szótártámadáshoz
k − 1 darab okos otthoni eszközt (k a jelszó küszöbszám) kell kompro-
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mittálnia a támadónak. A tudományos irodalomban Bagherzandi a [9]
dolgozatban egy jelszóval védett titokmegosztási (PPSS) és küszöbszámon
alapuló megoldást mutat be. Jarecki a [65] publikációban javasol egy
egykörös optimális PPSS-sémát, amely mindösszesen két üzenetküldést
tartalmaz. Ezek a megoldások azonban nem skálázhatóak. Işler és
Küpçü a [62, 63] publikációiban hasonló szempontokat vesznek figye-
lembe (skálázhatóság, robusztusság, jelszóhasználat stb.), viszont job-
ban alkalmazhatóak felhő környezetben, és protokolljaik tartalmaznak
tárolószolgáltatókat. A mi megoldásunk okos otthon környezetre lett kia-
laḱıtva, ahol n ≥ 10 eszköz és o ≥ 5 küszöbszám esetén (o a hiteleśıtéshez
szükséges IoT eszközök száma) jobb hatékonysági eredményt érünk el.

Két résztvevője van a protokollunknak. Az egyik az IoT rendszer,
amely tartalmazza a eszközkezelőt és az IoT-eszközöket (J1, . . . , Jn).
A másik résztvevő a felhasználó (I), amely kéri a szolgáltatásokat és
az adatokat. A protokollban titokmegosztást alkalmazunk, ahol (k, n)
küszöbszám sémát használunk. Egy titkos S egész felosztható n részre
oly módon, hogy k ≤ n lesz a titokrészek küszöbszáma, amellyel ki kell
tudjuk számı́tani az S egészt. Így k − 1 vagy annál kevesebb titokrésszel
nem lehet meghatározni az S egészt. A jelszó létrehozásához Shamir-féle
titokmegosztást alkalmazunk az IoT-eszközökön.

A beálĺıtási fázis során a felhasználó kiválaszt egy psw jelszót, majd
a kliens szoftver generál és biztonságosan tárol egy véletlenszerű z
salt értéket és egy véletlenszerű polinomot a psw Shamir-féle titokmeg-
osztásához. Legeneráljuk az si titokrészeket, ahol i = 1, . . . , n és az
eszközök elküldik és tárolják az ê(P,Qz) és ê(siP,Qz) értékeket, ahol ê(, )
a bilineáris leképezést jelöli, Qz = H(psw||z) és P a G egy generátora,
ahol G egy q-adrendű addit́ıv csoport, ahol q egy nagy pŕım. A hite-
leśıtési fázisban a kliensszoftver kiszámolja a jelszómegosztáson alapuló,
hosszú élettartamú szimmetrikus titkos kulcsokat Ki = H(ê(siP,Qz)).
Ha a felhasználó új eszközöket akar beálĺıtani az okos otthon rendszer-
be, akkor meg kell adnia a jelszót a kliensszoftvernek, amely új extra
si megosztásokat generál ugyanarra a polinomra, ahol i > n. Így a
konstrukció tartalmazza a skálázhatóság tulajdonságát. Legyen E egy
véges F test felett definiált elliptikus görbe, G ∈ E(F) pedig egy ge-
nerátorelem. Minden IoT-eszköz rendelkezik egy szimmetrikus titkośıtási
kulccsal (K1, . . . ,Kn), amely a menedzsereszköznek küldött üzenetek bi-
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zalmasságát és hiteleśıtését biztośıtja.
A hiteleśıtési szakasz három fő szakaszból áll. Az első fázist (9.30.

ábra) a kliens szoftver hajtja végre. A rendszer egy titkos, véletlenszerű
w hiteleśıtési értéket választ, és a Shamir-féle titokmegosztással feloszt-
ja. Ezek a titokrészek, a w, a jelszó és a salt-on alapuló m0 hash érték
biztonságosan átkerül az eszközkezelőhöz.

A hiteleśıtés második fázisában (9.31. ábra) a véletlenszerűen
kiválasztott okos otthoni eszközök kiszámolják jelszó titokrészeiken ala-
puló hosszú élettartamú szimmetrikus titkos kulcsukatKi = H(ê(siP,Qz)),
összeálĺıtják és ellenőrzik az ê(P,Qz)

w+psw értéket, amely a jelszó, a salt
és a w titkos, véletlenszerű hiteleśıtési értéken alapszik.

A harmadik fázisban (9.32. ábra) egy titkos szimmetrikus kulcsot
cserél a felhasználó és az eszközkezelő, majd a felhasználó ellenőrzi, hogy
az okos otthon rendszere képes-e kiszámı́tani az ê(P,Qz)

w+psw értéket,
tehát az eszközök rendelkeznek-e a megfelelő jelszó titkokkal és salt-tal.

Részletes biztonsági elemzést nyújtunk a javasolt AKC protokollról.
Az egyik alapvető biztonsági követelmény a résztvevők kölcsönös hite-
leśıtése, amely megakadályozza, hogy a támadók érvényes felhasználónak

User I Manager Jv

psw, z, G ê(svP,Qz), ê(P,Qz)

Ki = H(ê(siP,Qz)), ahol Qz = H(psw||z) Ki, G

g(x) választott, ahol w = g(0)

titokrészek: (xi, g(i)) = (i, wi), ahol i = 1, . . . , n

x, ri véletlenek, ahol i = 1, . . . , n

m0 = H0(ê(P,Qz)
psw+w)

mi = MACKi(ri ⊕ Ji)⊕ wi||ri
mv = MACKv(rv ⊕ xG⊕ Jv)⊕ wv||rv||xG

M1=I||m0||...||mn−−−−−−−−−−−→
nyilv.csatorna

9.30. ábra. Hiteleśıtés - Kliens folyamat



ÖSSZEFOGLALÓ 155

Menedzser Jv Eszközök Ji

ê(svP,Qz), ê(P,Qz) ê(siP,Qz), ê(P,Qz)
M1−−−−→ Ki, G Ki, G

választ ij ∈ {1, . . . , n},
ahol j = 1, . . . , o
ha v kiválasztott ô = o,
egyébként ô = o+ 1
k ≤ o ≤ n

I||mi−−−−−−−−−−→
nyilv. csatorna

a||b||c kapja, mint mv d||e kapja, mint mi

Kv = H(ê(svP,Qz)) Ki = H(ê(siP,Qz))
w′v = MACKv(b⊕ c⊕ Jv)⊕ a w′i = MACKi(e⊕ Ji)⊕ d
fv = ê(svP,Qz)ê(P,Qz)

w′v fi = ê(siP,Qz)ê(P,Qz)
w′i

EncKi
(fi)

←−−−−−−−−−−−
nyilv. csatorna

tj =
∏iô
r=i1,j 6=r

xr
xr−xj

m0
?
= H0(

∏iô
r=i1

f tii )

9.31. ábra. Hiteleśıtés - Eszközök folyamat
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vagy eszközkezelőnek adják ki magukat, és illegálisan hozzáférhessenek az
érzékeny adatokhoz. Egy másik biztonsági cél a generált kulcs titkossága,
azaz a támadónak nem szabad semmilyen információval rendelkeznie
az új munkamenetkulcsról. Protokollfuttatás során egy véletlenszerűen
kiválasztott új munkamenetkulcsot kell kicserélni a résztvevők között, és
fontos, hogy a protokoll végrehajtását ne lehessen sikeresen befejezni egy
korábban kicserélt kulccsal. A feleknek képesnek kell lenniük ellenőrizni,
hogy a másik fél ismeri-e és képes-e használni az új munkamenetkulcsot.
Figyelembe vesszük az ismert kulcs biztonságot és forward secrecy tulaj-
donságokat is. Az ismert kulcs biztonság lényege, hogy megőrzi a mun-
kamenetkulcsok biztonságát abban az esetben is, ha egy munkamenetkul-
csot felfedtek. Tehát egy munkamenetkulcs nyilvánosságra hozatala nem
veszélyeztetheti más munkamenetkulcsok biztonságát. A forward secrecy
tulajdonság fennáll, ha egy vagy több entitás hosszú távú kulcsai sérülnek
és ez nincs hatással a korábbi munkamenetkulcsok titkosságára. A fel-
használó szerepét vagyis a felhasználó lépéseit a protokollban AVISPA
eszközzel formalizáltuk. Alkalmaztuk az OFMC és a CL-AtSe modellt,
és végrehajtottuk a támadószimulációt. A biztonsági elemzés az mutatja,
hogy kölcsönös hiteleśıtés megsértésére, illetve a munkamenetkulcs tit-
kosságának sérülésére nem talált támadást az AVISPA.

User I Manager Jv

y véletlen
ssk=H0(yc)

h = H1(ssk||yG||
∏iô
r=i1

f tii )
M2=h||yG←−−−−−−−−−−−−−−−−
nyilv.csatorna

ssk’=H0(yxG)

h
?
= H1(ssk′||yG||ê(P,Qz)psw+w)

M3=H1(ssk′||yG||xG)−−−−−−−−−−−−−−−−→
nyilv.csatorna

M3
?
= H1(ssk||yG||c)

9.32. ábra. Hiteleśıtés - Végső folyamat
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A hatékonysági elemzéshez kiválasztottunk egy küszöbszám hiteleśıtési
rendszert [63], amely leginkább hasonló a mi rendszerünkhöz. A futási
időket összehasonĺıtottuk a két rendszernél különböző számú eszköz és
küszöbszám esetén. A [53] szerint 2022-ben háztartásonként átlagosan
500 IoT eszköz lesz csatlakoztatva, ezért az eszközök nagy száma és a
küszöbszámok figyelembe vétele kiemelt szempont. Az általunk javasolt
rendszer jobb eredményt ad n ≥ 10 számú eszköz és o ≥ 5 küszöbszám
esetén (9.4. táblazat).

Küszöbszám 2-5 3-6 5-10

Işler, Küpçü - DSPP 0,00806 0,01171 0,01833

Javasolt megoldás 0,0150602 0,0150648 0,0150766

9.4. táblázat. Teljeśıtmény összehasonĺıtás (másodpercben).

Manapság a számı́tási kapacitás optimalizálása és a megfelelő biztonság
fontos szempont az IoT eszközöknél. A gyártási költség befolyásolja ezen
eszközök képességeit, azonban gondoskodnunk kell a biztonságról. Ezeket
a szempontokat is figyelembe vettük a protokollunk kialaḱıtása során.
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[63] D. Işler, A. Küpçü, Distributed Single Password Protocol Frame-
work., IACR Cryptol. ePrint Arch., 976., (2018),

[64] W. Iqbal, H. Abbas, B. Rauf, Y. Abbas, F. Amjad, A. Hemani,
PCSS: Privacy Preserving Communication Scheme for SDN Enabled
Smart Homes. IEEE Sensors Journal, (2021)

[65] S. Jarecki, A. Kiayias, H. Krawczyk, Round-optimal password-
protected secret sharing and T-PAKE in the password-only model, In
International Conference on the Theory and Application of Crypto-
logy and Information Security, Springer, Berlin, Heidelberg. (2014),
pp. 233–253.



BIBLIOGRAPHY 165

[66] Y. Jiang, Q. Huang, C. Zhu, Y. Wang, J. Shen, An Efficient Key
Agreement Protocol for Secure Group Communications Using Peri-
odic Array., In 2019 IEEE 13th International Conference on Anti-
counterfeiting, Security, and Identification (ASID) IEEE., (2019),
pp. 36–40.

[67] J. Katz, P. MacKenzie, G. Taban,V. Gligor, Two-server password-
only authenticated key exchange, In International Conference on
Applied Cryptography and Network Security, Springer, Berlin, Hei-
delberg. (2005), pp. 1–16.

[68] J. Katz, R. Ostrovsky, M. Yung, Efficient password-authenticated
key exchange using human-memorable passwords., In EUROCRYPT
2001. Springer, (2001), pp. 475–494.

[69] J. Kelsey, B. Schneier, C. Hall, D. Wagner, Secure applications of
low-entropy keys, In: Okamoto E., Davida G., Mambo M. (eds)
Information Security. ISW 1997. Lecture Notes in Computer Science,
vol 1396. (1998), pp. 121–134.

[70] M. A. Khan, K. Salah, IoT security: Review, blockchain solutions,
and open challenges, Future Generation Computer Systems, 82,
(2018), pp. 395–411.

[71] F. Kiefer, M. Manulis, Blind password registration for verifier-based
PAKE., In: Proceedings of the 3rd ACM International Workshop
on ASIA Public-Key Cryptography. (2016), pp. 39–48.

[72] F. Kiefer, M. Manulis, Blind password registration for two-server
password authenticated key exchange and secret sharing protocols.,
In: International Conference on Information Security. Springer,
Cham, (2016), pp. 95–114.

[73] C. Kolias, G. Kambourakis, A. Stavrou, J. Voas, DDoS in the IoT:
Mirai and other botnets, Computer, 50(7) , (2017), pp. 80–84.

[74] H. Krawczyk, P. Eronen, HMac-based extract-and-expand key deri-
vation function (HKDF), RFC 5869, (2010)



166 BIBLIOGRAPHY

[75] H. Krawczyk, The opaque asymmetric pake protocol. Internet-Draft,
(2020), https://datatracker.ietf.org/doc/pdf/draft-irtf-cfrg-opaque-
08 Accessed: 30/07/2022.

[76] W. C. Ku, S. M. Chen, Weaknesses and improvements of an effici-
ent password based remote user authentication scheme using smart
cards, IEEE Transactions on Consumer Electronics, 50(1), (2004),
pp. 204–207.

[77] G. Kurtz, D. Alperovitch, E. Zaitsev, Hacking exposed: Beyond the
Malware, RSA 2015 (slide deck), https://www.rsaconference.com/
writable/presentations/ file upload/expt10 hackingexposedbeyond-
themalware.pdf, (2015), Accessed: 30/01/2022
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sti, (25), (2021), pp. 143 – 159

[116] G. Wassermann, ZyXEL NBG-418N, PMG5318-B20A
and P-660HW-T1 routers contain multiple vulnerabilities.
http://www.kb.cert.org/vuls/id/870744, (2015)

[117] T. Wu, Z. Lee, M. S. Obaidat, S. Kumari, S. Kumar, C.
Chen, An authenticated key exchange protocol for multi-
server architecture in 5G networks. IEEE Access 8,
https://doi.org/10.1109/ACCESS.2020.2969986, (2020), pp. 28096–
28108.

[118] F. F. Yao, Y. L. Yin, Design and analysis of password-based key
derivation functions, Cryptographers’ Track at the RSA Conference.
Springer, Berlin, Heidelberg, (2005), pp. 245–261.

[119] I. Zavalyshyn, N. O. Duarte, N. Santos, HomePad: A privacy-
aware smart hub for home environments, In Proc. IEEE/ACM
Symp. Edge Comput., (2018), pp. 58–73.



A. függelék
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List of talks of the author

1. Securing cloud authentication, International Conference on Applied
Informatics, Eger, Hungary, 2017.

2. DECAP-Distributed Extensible Cloud Authentication Protocol,
Cryptacus: Workshop & MC meeting, Nijmegen, Netherlands 2017.

3. Provably Secure Authenticated Key Agreement with Key Confir-
mation for Distributed Systems, Central European Conference on
Cryptology , Smolenice, Slovakia, 2018.

4. Security Analysis of Identity-based Password Registration for Dist-
ributed Systems, OGIK 2019, Budapest, Hungary, 2019.

5. Provably Secure Authenticated Key Agreement with Key Confir-
mation for Distributed Systems, Central European Conference on
Cryptology, Telc, Czech Republic, 2019.

6. Provably Secure Authenticated Key Agreement with Key Confirma-
tion for Distributed Systems, International Conference for Internet
Technology and Secured Transaction (ICITST-2019) , London, Uni-
ted Kingdom, 2019.

7. Identity-based Password Registration for Clouds, The 11th Interna-
tional Conference on Applied Informatics, Eger, Hungary, 2020.

174



APPENDIX 175

8. Provably Secure Scalable Distributed Authentication for Clouds,
19th International Conference on Cryptology and Network Security,
Online, 2020.
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