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The opportunistic pathogen Candida albicans has a single protein phosphatase Z candidate 

gene termed CaPPZ1 which shows significant allele variability. We demonstrate here that 

bacterially expressed CaPpz1 protein exhibits phosphatase activity which can be inhibited by 

recombinant Hal3, a known inhibitor of S. cerevisiae Ppz1. Site-directed mutagenesis 

experiments based on natural polymorphisms allowed the identification of three amino acid 

residues affecting enzyme activity or stability. The expression of CaPPZ1 in ppz1 S. 

cerevisiae and pzh1 S. pombe cells partially rescued the salt and caffeine phenotypes of the 

deletion mutants. CaPpz1 also complemented the slt2 S. cerevisiae mutant that is crippled in 

the MAP kinase mediating the cell wall integrity signalling pathway. Collectively, our results 

suggest that the orthologous PPZ enzymes have similar but not identical functions in different 

fungi. The deletion of the CaPPZ1 gene in C. albicans resulted in a mutant that was sensitive 

to salts like LiCl and KCl, to caffeine, and to agents affecting cell wall biogenesis like 

Calcofluor White and Congo Red, but was tolerant against spermine and hygromycin B. 

Reintegration of the CaPPZ1 gene into the deletion mutant alleviated all of the mutant 

phenotypes tested. Thus CaPpz1 is involved in cation homeostasis, cell wall integrity and the 

regulation of the membrane potential of C. albicans. In addition, the germ tube growth rate 

and the virulence in the BALB/c mice model was reduced in the null mutant, suggesting a 

novel function for CaPpz1 in the yeast to hypha transition that may have a medical relevance. 
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The Ppz Ser/Thr protein phosphatases constitute a family of enzymes that are 

structurally related to the type-1 protein phosphatases, and are restricted to fungal species 

(Arino, 2002). In Saccharomyces cerevisiae, where these proteins were discovered (Lee et al., 

1993;Posas et al., 1992;Posas et al., 1993), there exist two genes, namely PPZ1 and PPZ2. To 

avoid confusion, these two phosphatase genes will be referred to ScPPZ1 and ScPPZ2 in the 

present paper. The encoded proteins contain C-terminal catalytic domains, which are highly 

similar to each other, while their N-terminal moieties are much less related (Fig. 1a). Deletion 

of ScPPZ2 does not result in a detectable phenotype. However, strains lacking ScPpz1 exhibit 

increased tolerance to NaCl and LiCl (Posas et al., 1995), altered K+ influx, and 

hypersensitivity to caffeine (Posas et al., 1993;Yenush et al., 2002). On the other hand, 

overexpression of ScPPZ1 results in slow growth and cell cycle blockage at the G1-S 

transition (Clotet et al., 1999). The effect of the Scppz1 mutation on cation homeostasis is due 

to the elevated expression of the Na+-ATPase ENA1 gene (Posas et al., 1995;Ruiz et al., 

2003) and to the increased influx of potassium ions mediated by the high-affinity K+-

transporter Trk1 (Yenush et al., 2002). ScPPZ1 exhibits genetic interactions with SLT2, 

encoding a MAP kinase required for signalling in the cell wall integrity (CWI) pathway 

(reviewed in (Levin, 2005)). slt2 cells are prone to lysis and are very sensitive to high 

temperature, caffeine, or cell wall damaging compounds. Overexpression of ScPPZ1 

suppresses the lytic phenotype of a slt2 mutant, whereas deletion of the ScPPZ1 gene, or 

inhibition of its phosphatase activity results in a phenotype additive to that of the slt2 strain 

(de Nadal et al., 1998;Lee et al., 1993). The functional interaction between ScPpz1 and the 

CWI pathway has been explained on the basis of the combination of increased internal turgor 

pressure in Ppz-deficient strains and cell wall instability observed in strains lacking Slt2 

(Merchan et al., 2004). Therefore, in budding yeast the Ppz proteins play key roles in cation 

homeostasis, which is likely to affect cell cycle regulation. The Hal3 and Vhs3 regulatory 

subunits bind to the catalytic domain of ScPpz1 and inhibit its activity (de Nadal et al., 

1998;Ruiz et al., 2004). The overexpression of these inhibitors mimics the effects of the 

scppz1 mutation. 

 The PPZ phosphatases have been only partially characterized in other yeasts or fungi. 

Schizosaccharomyces pombe contains the pzh1 gene, encoding a protein that is similar to 

budding yeast Ppz (Fig. 1a), but has a shorter and rather divergent N-terminal domain 

(Balcells et al., 1997). In S. pombe, the deletion of pzh1+ results in cells hypertolerant to Na+ 
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and hypersensitive to K+ (Balcells et al., 1997). However, the mechanisms of action of Pzh1 

in fission yeast are probably different from that observed for ScPpz1 in budding yeast, since 

cells lacking Pzh1 have no altered sodium or lithium efflux, rather they display decreased 

influx for these cations, together with a reduced K
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+ efflux (Balcells et al., 1999). A PPZ 

phosphatase gene from the filamentous fungus Neurospora crassa, named Pzl-1, has been 

identified by (Szoor et al., 1998). The PZL-1 protein (Fig. 1a) was expressed in S. cerevisiae 

and was shown to fulfil every known function carried out by its S. cerevisiae counterpart, 

despite the marked sequence divergence within their N-terminal moieties (Vissi et al., 2001). 

The expression of PZL-1 in the pzh1 mutant S. pombe resulted in a less efficient 

complementation. Recently, a PPZ orthologous, termed DhPpz1, has been characterized in the 

extremely halotolerant yeast species Debariomyces hansenii (Minhas et al., 2012). This 

phosphatase also has a disordered N-terminal segment that includes a short conserved Ser/Arg 

rich motif which is important in salt tolerance but not in CWI. Interestingly, this fungus 

utilises a Na+/H+ antiporter to evade the toxic effects of cations. The comparison of known 

PPZ enzymes suggests that although their major functions are retained across fungi, the 

underlying mechanisms can be different. 

 Candida albicans is an opportunistic pathogen with considerable medical significance. 

This organism contains a single PPZ candidate gene, termed CaPPZ1, that has at least four 

distinct alleles (Kovacs et al., 2010). The allele combinations in the diploid organism together 

with individual point mutations result in a great genetic variability. The CaPPZ1 gene codes 

for a protein whose primary structure is similar to the better characterized fungal counterparts 

(Figs. 1a and S1). Homologous modelling suggests that the three dimensional structure of the 

CaPpz1 catalytic domain is reminiscent to that of the protein phosphatase 1 catalytic subunit 

(Fig. 1b). The physiological significance of the C. albicans PPZ phosphatase has not been 

uncovered yet. The only available information extracted from large scale genetic screens tells 

that the disruption of either one (Xu et al., 2007) or both (Hanaoka et al., 2008) of the alleles 

is not detrimental. In the present work we characterize the function of this enzyme by 

biochemical assays of the recombinant protein, by expressing the CaPPZ1 gene in Ppz-

deficient S. cerevisiae and S. pombe strains, as well as by studying the relevant C. albicans 

mutant. Our work reveals that despite of structural similarities; CaPpz1 only partially 

complements the lack of its orthologs in other fungi and has a novel function in controlling 

the germ tube formation of C. albicans.  
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DNA cloning. The cloning of C. albicans CaPPZ1 gene was described before (Kovacs et al., 

2010). The CaPPZ1-3 allele (accession number: GQ487308) was used to insert the ORF into 

a pET28a+ expression vector (Novagen) in two steps. The two halves of the coding region 

were amplified by PCR with the UPPZ-NdeI / LPPZ-NdeI and UPPZ-PstI- / LPPZ-XhoI 

primer pairs (Table S1a), and were ligated together resulting in the CaPPZ1-pET28a+ 

plasmid. In order to confirm the predicted gene structure, we also cloned the corresponding 

cDNA from the ATCC 10231 reference strain. Total RNA was prepared with SV Total RNA 

Isolation System (Promega), and the mRNA was reverse-transcribed with the 5’/3’ RACE Kit 

(Roche). The cDNA was amplified by PCR using the 2U and 2L primers (Table S1a) and was 

placed into a pGEM-T Easy vector (Promega) to yield the CaPPZ1-pGEM-T plasmid whose 

sequence was deposited into the NCBI database under the accession number JF330253.  

 For the expression in S. cerevisiae under the control of the ScPPZ1 promoter, first the   

-525/-10 segment of the promoter region was amplified by PCR from S. cerevisiae FY1679 

genomic DNA with ScPromSacI and ScPromXbaI primers  (Table S1a) according to (Vissi et 

al., 2001) and the amplicon was cloned into pGEM-T Easy plasmid. Next, the promoter 

region was released with SacI and XbaI and was cloned into the plasmids YCplac111 and 

YEplac181. Then the coding region of the CaPPZ1-3 allele was amplified from the CaPPZ1-

pGEM-T cDNA clone by PCR with C1XbaI and C2HindIII primers (Table S1a) and was 

placed after the promoter to generate the YCp-CaPPZ1 and YEp-CaPPZ1 plasmids. The 

construction of the control plasmid YCp111-ScPPZ1 was described previously (Clotet et al., 

1996).  

For the expression in S. pombe, the coding region of CaPPZ1-3 was amplified from 

the CaPPZ1-pGEM-T construct by PCR with C3BamHI and C4BamHI primers (Table S1a) 

and was inserted into the expression vector pREP41 (Basi et al., 1993;Maundrell, 1993) 

producing the pREP41-CaPPZ1 plasmid. All of the vector constructs were confirmed by 

DNA sequencing. 

 

In vitro mutagenesis. The positions of the mutated amino acids are shown in Figs. 1(b) and 

S1. The homologous model of the CaPpz1 catalytic domain was built on the crystal structure 

of rabbit muscle PP1 catalytic subunit fragment (amino acid residues 7-300; (Goldberg et al., 

1995); PDB accession number: 1FJM) using the Modeller7 program (Sali & Blundell, 1993). 

Sequence alignment was done by ClustalW (Thompson et al., 1994). Mutations resulting in 

 5



single or double amino acid exchanges were introduced into the CaPPZ1-3 sequence with the 

aid of the QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies). PCR 

of the CaPPZ1-pET28a+ plasmid target with the oligonucleotide primers described in Table 

S1(b) resulted in the R262L, D261N, G333E, and C337R mutations, while the double mutant 

encompassing both G333E and C337R replacements was generated from the G333E mutant 

by a second round of mutagenesis.  
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Expression of CaPPZ1 in E. coli. Wild type and mutated CaPpz1-3 was expressed in E. coli 

BL21 (DE3)-RIL (Stratagene) after the  addition of 0.4 mM isopropyl-β-D-thiogalactoside 

(IPTG) (Sigma-Aldrich) followed by 16 h incubation at 18 ºC (Fig. S2a). The recombinant 

proteins were purified from the supernatant of the bacterial extract with Ni-NTA Agarose 

(Qiagen) affinity chromatography. The fractions eluted from the columns were analyzed by 

SDS-PAGE (Fig. S2b). The protein concentration of the fractions was assayed with the 

Bradford method (Bradford, 1976). The CaPpz1 content in the peak fractions was estimated 

by scanning of the electrophoretograms. The phosphatase activity of the fractions was assayed 

in triplicate samples containing 1to 2 µg of recombinant phosphatase with p-

nitrophenylphosphate (Sigma-Aldrich) substrate in the presence or in the absence of Hal3 as 

reported before (Munoz et al., 2004). Recombinant S. cerevisiae Hal3 was expressed in E. 

coli and was purified according to (Garcia-Gimeno et al., 2003).  

 

Expression of CaPPZ1 in S. cerevisiae. The genotypes and origin of the S. cerevisiae strains 

used in this work are listed in Table 1. Single kanMX deletion mutants in the BY4741 

background were generated in the context of the Saccharomyces Genome Deletion Project 

(Winzeler et al., 1999). The mutants were transformed with different rescue plasmids as in 

(Vissi et al., 2001). S. cerevisiae cells were grown at 28 °C in YPD medium (10 g/l yeast 

extract, 20 g/l peptone and 20 g/l dextrose) or, when carrying plasmids, in synthetic complete 

drop-out medium (lacking leucine). Sensitivity of yeast cells to LiCl, NaCl, caffeine (Merck) 

or Calcofluor White (Sigma) was evaluated by growth on agar plates (drop tests) as 

previously described (Posas et al., 1995).  
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Expression of CaPPZ1 in S. pombe. The genotypes and origin of the S. pombe strains are 

summarized in Table 1. The pzh1+ control strain was isolated from a cross between the S. 

pombe h+ wild type strain and S. pombe 117 strain (h- ade6-M210 leu 1-32 ura4-D18). For 

cultivation of S. pombe a standard complete medium: yeast extract agar (YEA), yeast extract 
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liquid (YEL) (Gutz et al., 1974) and Edinburgh minimal medium 2 (EMM2, US Biological) 

plates or liquid cultures were used with appropriate supplements (100 mg/l adenine, uracil, 

leucine). Fission yeast strains were transformed by the lithium-acetate method (Ito et al., 

1983). Transformed cells grew on EMM2+ade medium which contained 400 µmol/l thiamine 

to repress the nmt1 (

190 
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no message in thiamine) promoter of the vectors. In our assays first the 

transformants were grown in EMM2+ade (without thiamine) overnight (for the expression of 

pREP construct) and these pre-cultures were used to inoculate EMM2+ade liquid media 

supplemented with different salts or caffeine in the following concentrations: 300, 350, and 

400 mM KCl; 150, 200, and 250 mM NaCl, 5, 8, and 10 mM LiCl, as well as 5, 10, and 15 

mM caffeine. The starting OD
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595 values were set to 0.2 and cell growth was characterized by 

measuring the optical density of the cultures after 24 h incubations.  

 

Disruption of the CaPPZ1 gene in C. albicans. The SN87 strain was used for gene 

disruption (Table 1). By cloning and sequencing of the CaPPZ1 gene according to (Kovacs et 

al., 2010) we proved that this strain was homozygous for the CaPPZ1-1 allele. C. albicans 

strains were cultivated in YPD medium at 37 ºC, while the transformants were selected and 

grown on SD solid medium (6.7 g/l yeast nitrogen base with ammonium sulphate, 20 g/l 

glucose, 15 g/l agar with or without the amino acids 100 mg/l leucine and 20 mg/l histidine, as 

needed).  

The CaPPZ1-1 gene was deleted by using a PCR-based procedure with primers 

harbouring approximately 100-bp regions from the 5’- and 3’-flanking sequences of the target 

gene (Gola et al., 2003). The cappz1 strain was generated by successive transformations with 

two disruption cassettes containing the HIS1 and LEU2 auxotrophic markers. The cassettes 

were amplified from the pFA-CdHIS1 and pFA-CmLeu2 plasmids (Schaub et al., 2006) with 

the primers described in Table S1(c), and were transformed into the SN87 strain by 

electroporation in two steps (Noble & Johnson, 2005).  

 

Characterization of the C. albicans strains. For the validation of gene disruption, genomic 

DNA was extracted from C. albicans as described (Lee et al., 1988). The integration of the 

disruption cassettes was tested by PCR using “diagnostic” primers (Table S1d, Figs. S3a and 

S3b). Southern hybridizations were performed with cassette specific probes generated by PCR 

(Table S1e) to verify the deletions and to exclude the possibility of the ectopic integration of 

disruption cassettes (Fig. S3c). The absence of CaPPZ1 transcripts from the cappz1 strain was 

confirmed by RT-PCR with the primers given in Table S1f (Fig. S3b).  
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One functional CaPPZ1 gene copy was reintegrated into the cappz1 mutant with the 

aid of the SAT1 flipper containing pSFS2A vector (Reuss et al., 2004) as described in Fig. 

S3d. The presence of the CaPPZ1 gene and either of the HIS1 or LEU2 cassettes in the 

heterozygous transformants was demonstrated by PCR. It was also shown that the CaPPZ1-

HIS1 strain exhibited His
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+ and Leu- phenotype, while the CaPPZ1-LEU2 strain was His- and 

Leu+. The genotypes of the C. albicans strains investigated in the present study are described 

in Table 1. 

The sensitivity of the C. albicans cells to salts (LiCl, NaCl, and KCl), toxic cations 

(spermine and hygromycin B), cell wall damaging agents (Calcofluor White, Congo Red) and 

caffeine, was evaluated in YPD medium. The relative growth of the liquid cultures was 

measured in 96 well plates using a Multiskan RC ELISA reader (Thermo Labsystems) at 

OD620 after 18 h incubations at 37 ºC. The starting OD620 was 0.0005 in all experiments.  

Hyphal growth was induced by the addition of 90% sheep serum and the germination 

capacity of the cells was determined microscopically (Gyetvai et al., 2007). More than 100 

cells were counted in each experiment. For the better visualisation of hyphae the fungal 

samples were stained with Calcofluor White (CFW) according to the manufacturer’s 

recommendation 

(http://www.sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/18909dat.Par.0001.File.tm

p/18909dat.pdf), and were analysed under an Olympus BX40 immersion microscope.  

The virulence of the C. albicans strains was analyzed in immunocompetent female 

BALB/c mice essentially as in (Noble & Johnson, 2005) with the exception that less pathogen 

was used for inoculation. Higher doses of fungi led to 80-90 % lethality within 2-3 days. To 

prevent bacterial infections all mice received ceftazidime (5 mg/day subcutaneously) every 

day after infection. Ten mice/Candida strains were inoculated through the lateral tail vein with 

1.8-2.4 x 105 CFU/mouse in three independent experiments. Mice were followed up for 14 

days and the survival rate was analyzed by Kaplan-Meyer test (GraphPad Prism v4.03 

software). The animal experiments were approved by the Animal Care Committee of the 

University of Debrecen, Debrecen, Hungary (permission no. 12/2008). 

 

RESULTS 

 

Biochemical characterization of the CaPpz1 protein 

First we tested the phosphatase activity of the CaPPZ1 gene product. We 

demonstrated that the bacterially expressed and purified recombinant CaPpz1-3 
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dephosphorylated p-nitrophenylphosphate, and that this phosphatase activity was inhibited by 

recombinant S. cerevisiae Hal3 (Fig. 2). Thus the enzymatic properties of the wild type 

CaPpz1 are similar to those of ScPpz1.  

Next the functional significance of four selected amino acid residues in the catalytic 

domain of CaPpz1 (Fig. 1b) was analyzed by site directed mutagenesis. Expression in E. coli 

and purification of the mutated proteins were accomplished with the same efficiency as the 

control wild type enzyme (Fig. S1), suggesting that the mutations did not affect either the 

production or the solubility of the phosphatase. As a proof of the principle we replaced an 

essential amino acid in the catalytic cleft and found that the R262L mutation resulted in an 

inactive protein (Fig. 2), as expected from a previous publication (Clotet et al., 1996), 

reporting that an analogous point mutation in S. cerevisiae ScPpz1 eliminated phosphatase 

activity. Then the effects of naturally occurring polymorphisms (Kovacs et al., 2010) were 

investigated in the same way. The D261N mutation caused a moderate reduction in the 

phosphatase activity. When G333 was modified to E the phosphatase reaction rate doubled. 

On the other hand, the C337R replacement completely eradicated the catalytic reaction. 

Likewise, the G333E/C337R double mutation rendered the recombinant phosphatase inactive. 

 

Complementation of the phenotypes of mutant yeasts by the expression of CaPPZ1 

 Based on the structural and biochemical similarities between CaPpz1 and the ScPpz1 

(Figs. 1a, 2, and S1), we examined if the C. albicans protein was able to complement the 

phenotypes of the S. cerevisiae scppz1 deletion mutant. CaPpz1-3 was expressed in the 

mutant budding yeast cells under the control of the ScPPZ1 promoter from either a low copy 

number centromeric YCp-CaPPZ1, or a high copy number episomal YEp-CaPPZ1 plasmid 

(Fig. 3a). The heterologous C. albicans phosphatase partially normalized the tolerance to LiCl 

of the S. cerevisiae scppz1 mutant, but was rather ineffective when cells were challenged with 

1 M NaCl. In contrast, the CaPPZ1 markedly rescued the growth defect of the ppz1 mutant in 

the presence of caffeine and, when in high copy, resulted in a near wild type phenotype. 

 A strain lacking the SLT2 MAP kinase gene shows strong hypersensitivity to 

compounds that affect cell wall synthesis, such as caffeine or CFW. Overexpression of 

ScPPZ1 in the S. cerevisiae slt2 mutant is known to attenuate these defects. As shown in Fig. 

3b, high-copy number expression of CaPPZ1 was able to markedly improve tolerance of the 

slt2 mutant when cells were grown in the presence of caffeine or CFW. Therefore, CaPpz1 is 

able to reproduce the genetic interaction with the SLT2 MAP kinase. 
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Since the primary structures of CaPpz1 and Pzh1 proteins are similar to each other 

(Figs. 1a and S1), the functional competence of CaPpz1-3 was analyzed in the genetically 

distant fission yeast. The C. albicans phosphatase was expressed from the pREP41 plasmids 

in the S. pombe pzh1 deletion mutant cells (Fig. 4). The C. albicans protein rescued, at least in 

part, the salt and caffeine sensitivity of the mutant. Similar results were obtained at three 

different LiCl, NaCl, KCl, and caffeine concentrations (data not shown). Thus, CaPpz1 can 

perform similar but not completely identical physiological functions as its S. cerevisiae and S. 

pombe counterparts.  

 

Dissection of CaPpz1 functions in C. albicans by gene inactivation 

 In order to identify the physiological functions of CaPpz1 in C. albicans, we disrupted 

both copies of the corresponding gene in the diploid organism. The efficiency and specificity 

of the gene deletion were proven by PCR, RT-PCR, and Southern blot experiments (Figs. 

S3a-c). The mutant C. albicans did not exhibit any easily recognizable phenotype when 

cultivated in YPD medium. Therefore, the viability of the ∆CaPPZ1 strain was compared to 

that of the parental SN87 strain under different stress conditions. There was practically no 

difference between the two strains in the presence of NaCl, however, the disrupted strain was 

more tolerant against LiCl, spermine and hygromycin B and was more sensitive to KCl, 

caffeine, CFW and Congo Red treatments (Fig. 5). In order to verify that these phenotypes 

were indeed related to the absence of the target gene, we reintegrated one functional CaPPZ1 

copy into its original locus. Both of the heterozygous transformants that carried a single copy 

of CaPPZ1 in a different genetic background behaved more similarly to the parental SN87 

strain under selected stress conditions (Fig. 5e-h). Reintegration partially compensated 

sensitivity to CFW and Congo Red, and complemented spermine as well as hygromycin B 

tolerance.  Our biochemical and genetic data collectively suggest that CaPpz1 has similar but 

not identical functions as the well characterized ScPpz1.  

Beside the typical stress treatments, we also analyzed the germ tube formation, a 

biological process that is supposed to be related to the virulence of this pathogenic fungus. 

The germination frequency was determined for the parental as well as for the homozygous 

and heterozygous mutant strains (Table 2). At 30 min after the addition of sheep serum a 

significant delay was detected in the germ tube formation of the C. albicans that had no 

functional CaPPZ1. The difference between the null mutant and the other strains gradually 

diminished with the time of incubation and disappeared after 90 minutes. CFW staining of the 
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cells demonstrated that all of the tested strains produced regular hyphae (Sudbery et al., 2004) 

during the incubation period. 
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The virulence of the disrupted strain was directly tested in BALB/c mice (Fig. 6). It 

turned out that the cappz1 mutant was a less effective pathogen than the parental SN87 strain, 

while both of the heterozygous strains were more virulent than the null mutant. The Kaplan-

Meyer analysis of the combined survival data proved that the virulence of the four strains 

analyzed was significantly different (p=0.0115). Pair-wise comparisons revealed that the 

SN87 and the CaPPZ1-LEU2 strains were significantly more pathogenic than the null mutant 

(p=0.078 and p=0.0343, respectively), but the difference between the CaPPZ1-HIS1 and 

cappz1 cells did not reach the level of significance. In fact, CaPPZ1-LEU2 was even more 

pathogenic than SN87, probably because it grew somewhat faster than the other strains. The 

reversion to the more pathogenic phenotype by gene reintegration suggests that the disruption 

of the CaPPZ1 was responsible for the reduced virulence. 

 

DISCUSSION 

 

The heterogeneity of the CaPPZ1 gene is an inherent property of C. albicans (Kovacs 

et al., 2010) that has some impact on the structure-function investigations. The natural alleles 

used in the present study (CaPPZ1-1 and CaPPZ1-3) encode the same amino acid sequence in 

the catalytic domain (Fig. S1) and are expected to have the same catalytic properties. In 

addition, due to the different codon usage of C. albicans vs. other organisms (Omaha et al., 

1993) five CUG triplets were translated as Leu instead of Ser in S. cerevisiae, S. pombe, and 

E. coli (Fig. S1). Only one of these (L452) is in the catalytic domain, where it is found in an 

external loop (Fig. 1b). We suppose that these surplus mutations (that are present in all of the 

recombinant enzymes tested) have no significant effect on the enzyme activity. We proved in 

biochemical assays that, in agreement with the structural conservation of its catalytic domain 

the CaPpz1 protein exhibits phosphatase activity. This activity was inhibited by the ScHal3 

protein that is a specific inhibitor of PPZ phosphatases and, at the same time, one of the 

putative subunits of the phosphopantothenoylcysteine decarboxylase (Ruiz et al., 2009). It 

should be noted that in C. albicans there are two distantly related Hal3 orthologs (orf19.7378 

and orf19.3260). Interestingly, in orf19.7378, all of the known amino acid residues required 

for Ppz1 binding and phosphatase inhibition (Munoz et al., 2004) have been conserved. 

Therefore, it is likely that orf19.7378 encodes the inhibitory component of the C. albicans 

Ppz1/Hal3 system.  
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 With the help of the inactivating R262L mutagenesis we proved the validity of the 

phosphatase assay. According to our structural model, the conserved R262 residue is essential 

for activity because it is coordinating the metal ions which are indispensable for the catalytic 

reaction (Fig. 1b). After proving the principle we investigated the effects of allele-specific 

amino acid polymorphisms on the enzymatic activity (Figs. 1b and 2). Despite of its 

proximity to the essential R262, the D261N replacement, characteristic to the CaPPZ1-4 

allele of the C. albicans WO-1 strain, had only a moderate effect. Obviously, N fits well into 

the place of D and the loss of a negative charge has no dramatic effect as the D side chain is 

pointing outwards from the active site. Unexpectedly, the G333E exchange (that is present in 

the CaPPZ1-2 allele) significantly activated the phosphatase. The homologous modelling of 

the catalytic domain predicts that G333 is at the surface of the protein and is not supposed to 

influence the structure of the catalytic cleft. The C337R polymorphism (that is also found in 

the CaPPZ1-2 allele) caused the inactivation of the enzyme. C337 is in the middle of the 

central beta sheet and may have important functions in the stability of the catalytic domain. Its 

replacement with a bulky charged residue can interfere with the proper folding of the tertiary 

structure. Indeed, the C337R mutation eliminated the activating effect of the G333E exchange 

and resulted in an inactive double mutant (Fig. 2). Previously we identified these two amino 

acid exchanges together in the heterozygous ATCC 10231 strain harbouring alleles CaPPZ1-2 

and CaPPZ1-3 (Kovacs et al., 2010). In addition, we isolated several clinical samples that 

were homozygous for the CaPPZ1-2 allele according to the RFLP of the PCR fragment 

encompassing the hypervariable 3’-noncoding region (Kovacs et al., 2010). We tested one of 

them (number 10934) under several stress conditions and found that it did not show the 

characteristic phenotypes of the null mutant. In order to reveal the molecular bases of this 

unexpected behaviour we amplified and sequenced the CaPPZ1 gene from the clinical 

sample. It turned out that both copies of the gene exhibited the typical characteristic DNA 

sequence of the CaPPZ1-2 allele, but in both alleles the triplets GAG and TGT coding for 

E333 and R337, respectively, reverted to GGG and CGU coding for the G333 and C337, that 

is for the amino acids of the active CaPpz1 isoenzymes! Our finding indicates that the 

destabilizing C337R replacement is not tolerated in a homozygous organism, and indirectly 

supports the notion that the phosphatase activity is important for the survival of this 

pathogenic fungus in its natural habitat.   

The functions of CaPpz1 were first tested in complementation experiments. If CaPpz1 

was expressed in S. cerevisiae ppz1 cells it partially complemented the salt sensitivity and 

rescued the caffeine sensitivity of the mutant. In addition, the caffeine and CFW sensitivity of 
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a strain lacking the Slt2 MAP kinase were also alleviated. The observation that the presence 

of the CaPpz1 protein can, at least in part, reverse the effects of the absence of ScPpz1 or 

mimic its overexpression in both cation homeostasis and cell wall integrity is coherent, since 

it was shown that these two phenotypes are interrelated (Merchan et al., 2004). The partial 

complementation of the S. pombe pzh1 deletion mutant by the expression of CaPPZ1 revealed 

that, albeit the heterologous protein can replace the authentic S. pombe enzyme, it is clearly 

less efficient. Similar conclusions were previously drawn from the functional study of N. 

crassa Pzl-1 (Vissi et al., 2001). 

 The functions of CaPpz1 were directly assessed by the disruption of the gene in the C. 

albicans SN87 strain. In accord with earlier reports (Hanaoka et al., 2008;Xu et al., 2007) the 

deletion of the gene was not lethal, thus it has no essential roles under the common cultivation 

conditions. However, when the C. albicans cells were challenged by various stress treatments, 

the lack of the phosphatase became detectable. We also demonstrated that the reintegration of 

CaPPZ1 into the deletion mutant alleviated the typical mutant phenotypes. We found that the 

null mutant was tolerant against LiCl, and was sensitive to KCl. According to these properties 

it behaves like the S. cerevisiae ppz1 mutant (Posas et al., 1995;Ruiz et al., 2003;Yenush et 

al., 2002). However, there was a clear-cut difference between the two mutants when the 

sensitivity against NaCl was tested. It is known that S. cerevisiae ppz1 tolerates this saline 

treatment, but we found no significant differences between the parental and mutated C. 

albicans strains in the presence of NaCl. It was previously suggested that the tolerance against 

NaCl (and LiCl) of the S. cerevisiae mutant can be explained by the overexpression of the 

ENA1 sodium transporter (Posas et al., 1995;Ruiz et al., 2003). Sequence comparisons 

revealed that in C. albicans the orf19.6070 protein is an ENA1 ortholog, however its function 

and regulation is not known at the moment. On the other hand, in the highly salt-tolerant 

fungus, D. hansenii the hypertolerance to toxic cations caused by deletion of DhPPZ1 is not 

due to the increased expression of the DhENA1 Na+-ATPase, but of the DhEHA1 Na+/H +- 

antiporter, which appears as the likely functional target for the phosphatase in this organism 

(Minhas et al., 2012). Consequently, different fungi may utilize distinct molecular 

mechanisms to elicit similar physiological responses. 

As the cappz1 mutant was sensitive against cell wall damaging agents like caffeine, 

CFW, and Congo Red, we suggest that CaPpz1 interacts with the CWI pathway, like its S. 

cerevisiae counterpart. Furthermore, the C. albicans mutant was tolerant against toxic cations 

(spermine and hygromycin B) indicating that the absence of CaPpz1 resulted in cell 

membrane potential depolarization that decreased uptake of the toxic agents, as previously 
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found for budding yeast ppz mutants (Yenush et al., 2002). These experiments underline 

again the similarity between the C. albicans and S. cerevisiae PPZ phosphatases. In 

conclusion, our data collectively indicate that PPZ phosphatases have similar but not identical 

functions in different yeasts. 
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In addition, we identified a novel function for this enzyme that operates in the 

filamentous form of C. albicans. We observed that after serum stimulation the onset of germ 

tube growth was significantly reduced in the cappz1 mutant relative to the parental SN87 

strain or to the heterozygous mutants that had one reintegrated CaPPZ1 copy. The size and 

the shape of the tubes were similar in all of the strains tested (Fig. S4), suggesting that the 

phosphatase affected the initiation and not the rate of hyphal outgrowth in liquid cultures. 

Previously, we reported that two phosphatase inhibitors, cantharidin and calyculin A, 

hindered the hyphal growth in the filamentous fungus N. crassa (Yatzkan et al., 1998). 

Genetic evidence indicated that protein phosphatase 2A (pph-1) was involved in the process; 

however the role of additional phosphatases was not excluded. Now we found that 220 µM 

cantharidin completely blocked, while 250 nM calyculin A significantly reduced the 

phosphatase activity of recombinant CaPpz1 (data not shown). The genetic and biochemical 

data together support the hypothesis that (besides PP2A) CaPpz1 can also contribute to the 

regulation of hypha formation. Since filament formation is considered as a critical element of 

C. albicans pathogenesis we tested the virulence of the mutated C. albicans in BALB/c mice, 

and we found that the cappz1 mutant was somewhat less virulent than its parental strain. This 

result differs from those reported in a previous paper (Hanaoka et al., 2008) indicating that a 

cappz1 strain displays wild type virulence in a silkworm infection model. It is conceivable 

that the difference in the model employed could explain the contradictory results. The rescue 

of the less virulent phenotype with the reintegration of a single copy of the CaPPZ1 gene 

indicates that the phosphatase gene is involved in the virulence of the pathogen. The finding 

that the absence of CaPpz1 function moderately reduces virulence in a mammalian model 

may be of importance since Ppz phosphatases are fungi-specific. Therefore, CaPpz1 could be 

considered as a possible target for antifungal treatments and CaPpz1-specific inhibitors may 

act as antifungal drugs.  
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Fig. 1. The structure of the CaPpz1 protein. (a) The scheme represents the amino acid 

sequence of CaPpz1 as compared to that of S. cerevisiae, N. crassa, and S. pombe orthologs. 

The N-terminal moiety including a myristoylation site (asterisk) is green, the conserved 

catalytic domain is red and the variable, disordered segments are represented by white boxes. 

(b) The homologous model of the CaPpz1 catalytic domain. Alpha helices are red, beta sheets 

are blue, and loops are yellow. Two essential metal ions in the catalytic centre are gray and 

the amino acid side chains involved in catalysis are in violet. Three amino acid residues that 

are affected by natural polymorphisms are highlighted in light brown and one replacement 

caused by the specific codon usage of C. albicans is yellow. The amino acid exchanges 

analyzed in the present study are labelled with arrows.  

 

Fig. 2. Biochemical properties of C. albicans CaPpz1. The specific activity of wild-type and 

mutated CaPpz1 phosphatases was determined with p-nitrophenylphosphate. S. cerevisiae 

Hal3 protein was added to the wild-type enzyme in a 1:1 molar ratio (+Hal3). The means and 

standard deviations of 3 to 5 independent experiments performed with two independent 

preparations are shown.  

 

Fig. 3. Expression of C. albicans CaPpz1 protein in S. cerevisiae. (a) Wild-type BY4741 

(ScPPZ1) strain and its isogenic derivative BY4741 Scppz1 were transformed with the 

indicated plasmids. Cells (two dilutions of approx. 3×103 and 3×102 cells) were spotted on 

YPD plates containing the indicated concentrations of lithium chloride, sodium chloride or 

caffeine and growth was monitored after 48 h of incubation at 28 ºC (except for cells growing 

in 15 mM caffeine which were scored for growth after 60 h). (b) The strains BY4741 (SLT2) 

and BY4741 slt2 were transformed with the indicated plasmids and cultures were spotted on 

YPD plates containing the indicated concentrations of the drugs. Growth was monitored after 

72 h while the plate containing 20 mM caffeine was incubated for 96 h. 

 

Fig. 4. Expression of C. albicans CaPpz1 protein in S. pombe. The relative growth rate of 

the pzh1+ control cells transformed with the empty pREP1 vector (filled bars), the pzh1 

disrupted LB2 cells transformed with the empty pREP1 vector (open bars), and with the 

CaPPZ1-pREP41 (horizontally stripped bars) was compared in the presence of (a) 8 mM 

LiCl, (b) 150 mM NaCl, (c) 300 mM KCl, and (d) 5 mM caffeine. The relative growth rate of 
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the cells was determined after 24 h incubations in the liquid cultures, and was expressed as the 

percentage to the growth of the same strain without additions. The means and SD of 9 

experiments are shown. The significances of the changes relative to the LB2 control cell are 

given according to the T-test analysis (***, p < 0.0005). 

 

Fig. 5. Comparison of relative growth of the parental SN87 ( ), the homozygous null 

mutant cappz1 (∆), as well as the heterozygous CaPPZ1-LEU2 (■) and CaPPZ1-HIS1 

( ) reintegrant C. albicans strains under various stress conditions. The effects of (a) 

LiCl, (b) NaCl, (c) KCl, (d) caffeine, (e) Calcofluor White (CFW), (f) Congo Red (CR), (g) 

spermine, and (h) hygromycin B (Hyg. B) were tested after 18 h incubations at 37 ºC. The 

means and standard deviations of three independent experiments are shown. 

 

Fig. 6. The role of CaPpz1 in the virulence of C. albicans. The survival of BALB/c mice 

was tested after the administration of 1.8-2.0x105 SN87 ( ), cappz1 (∆), CaPPZ1-LEU2 (■) 

and CaPPZ1-HIS1 ( ) C. albicans cells. Representative results of one out of three 

experiments are shown.
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Table 1. Fungal strains used in the present study 

Strain Genotype Origin/reference 

Saccharomyces cerevisiae 

FY1679 

MATa/α ura3-52/ ura3-52 trp1∆63/TRP1 leu2∆1/LEU2 

his3∆200/HIS3 GAL2/GAL2 
(Winston et al., 1995) 

Saccharomyces cerevisiae 

BY4741 
MATa his3∆1 leu2∆ met15∆ ura3∆ (Winzeler et al., 1999) 

Saccharomyces cerevisiae 

BY4741 ppz1::KanMX4 
MATa his3∆1 leu2∆ met15∆ ura3∆ ppz1::kanMX4  (Winzeler et al., 1999) 

Saccharomyces cerevisiae 

BY4741 slt2::KanMX4 
MATa his3∆1 leu2∆ met15∆ ura3∆ slt2::kanMX4  (Winzeler et al., 1999) 

Schizosaccharomyces pombe 

LB2 
h¯ ade6-M210 leu1-32 pzh1::ura4+ ura-D18 (Balcells et al., 1997) 

Schizosaccharomyces pombe 

pzh1+ h¯ ade6-M210 leu1-32 This study 

Candida albicans 

SN87 
ura3∆-iro1∆::imm434/URA3-IRO1, his1∆ /his1∆, leu2∆ /leu2∆ (Noble & Johnson, 2005) 

Candida albicans 

cappz1 

ura3∆-iro1∆::imm434/URA3-IRO1, his1∆ /his1∆, leu2∆ /leu2∆ 

ppz1∆::HIS1/ppz1∆::LEU2 
This study 

Candida albicans 

CaPPZ1-HIS1 

ura3∆-iro1∆::imm434/URA3-IRO1, his1∆ /his1∆, leu2∆ /leu2∆ 

ppz1∆::HIS1/ppz1∆::LEU2::PPZ1 
This study 

Candida albicans 

CaPPZ1-LEU2 

ura3∆-iro1∆::imm434/URA3-IRO1, his1∆ /his1∆, leu2∆ /leu2∆ 

ppz1∆::LEU2/ppz1∆::HIS1::PPZ1 
This study 
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Table 2. The role of CaPpz1 in the germination of C. albicans  

Strain/Time 30 min 60 min 90 min 

SN87 23.5 ± 3.1 63.3 ± 4.4 96.1 ± 3.2 

cappz1   6.0 ± 2.1*** 42.6 ± 3.6** 95.7 ± 2.5 

CaPPZ1-LEU2 25.6 ± 6.2 64.0 ± 2.1 97.9 ± 1.2 

CaPPZ1-HIS1 23.8 ± 5.4 59.2 ± 5.6 97.2 ± 1.7 

  

The ratio of cells producing germ tubes in sheep serum is given as % of all cells. The 

averages of three independent experiments ± standard deviations are shown. The significance of 

the changes relative to SN87 were calculated by T-test (**, p < 0.01; ***, p < 0.001). 
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(485 aa)
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Figure 4
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