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Abstract 

The sebaceous gland is mostly found in association with a hair follicle. Its traditional function is 

the holocrine production of sebum, a complex mixture of lipids, cell debris, and other rather poorly 

characterized substances. Due to the gland central role in acne pathogenesis, early research had 

focused on its lipogenic activity. Less-studied aspects of the sebaceous gland, such as stem cell 

biology, the regulation of cellular differentiation by transcription factors, the significance of specific 

lipid fractions, the endocrine and specially the neuroendocrine role of the sebaceous gland, and 

its contribution to the innate immunity, the detoxification of the skin and skin aging have recently 

attracted the attention of researchers from different disciplines. Here, we summarize recent, 

multidisciplinary progress in sebaceous gland research and discuss how sebaceous gland 

research may stimulate the development of novel therapeutic strategies targeting specific 

molecular pathways of the pathogenesis of skin diseases. 
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Introduction 

The human sebaceous gland (SG) is a microscopic, branched type of multiacinar gland present 

everywhere on the body except on the palms, soles, and the dorsum of the feet [1]. Most SGs are 

multilobular glands; their three-dimensional structure resembles heads of cauliflower bound to a 

hair shaft. The cells within the acini show a characteristic centripetal enlargement. The individual 

acini empty into ducts that converge to a common excretory duct and this opens inside the pilary 

canal. The gland is surrounded by a connective tissue sheath rich in collagen fibers and 

fibroblasts. This sheath generates a trabecular system that separates the individual acini and 

offers a supportive stroma. 

The SG belongs to a structure known as pilosebaceous unit (PSU), which also includes the 

hair, the hair follicle, and the arrector pili muscle [2]. Sebocytes are the major cells within SGs. 

Their purpose is the production and secretion of an oily, waxy material (sebum) via the 

differentiation and disintegration of fully mature cells, a unique process termed holocrine secretion 

[3-8]. Sebum is a group of complex lipids including triglycerides and fatty acid breakdown 

products, wax esters, squalene, cholesterol esters and cholesterol [9-13] (Fig. 1). Histologically, 

sebocytes are most commonly identified by lipophilic dyes such as Oil Red O, Nile Red and 

Sudan IV or immunostaining against lipogenic enzymes, specific keratins, and lipid-droplet 

associated proteins such as the perilipins [14-17] (Table 1). 

There are also several examples of “free” (not associated with hair follicles) lipid producing 

glands. Examples include the Meibomian glands (eyelids), Fordyce’s spots (oral epithelium), and 

the ceruminous glands (ears). The accumulation in uncovered skin area probably represents a 

reminiscence of the major SG task during species development: to coat the fur with sebum as a 

hydrophobic protection against overwetting and for heat insulation [5, 18]. In the modern Homo 

sapiens, this functions as well as the responsibility for the release of pheromones used for 

territorial marking and sexual attraction [5, 8] are of limited importance. This fact and the tight 

association of increased SG activity with a common disease, acne vulgaris, led to the former 

suggestion that the SG itself is a reminiscence of human development, a “living fossil with a past 

but no future” [5]. This pessimistic approach made the SG an overall limited and less attractive 

field to work in. 

The composition of sebum and the functions of SG are species-specific, making the human 

SG an organ with a unique role. The lack of an ideal animal model compatible to human SGs was 

surmounted in the last 10 years by the development of experimental models for the in vitro study 

of human SGs [14-16, 19]. The latter have led to the identification of several, unknown or 

disregarded functions and finally to the complete revision of the SG role in human skin [20, 21]. 

On the other hand, several medical conditions have been associated with the SG [14, 18, 22] 

(Table 2). Currently, the SG has come to the center of attention for researchers in order to both 

develop new treatment strategies targeting the molecular mechanisms and pathways involved in 

the pathogenesis of SG and SG-associated diseases and to understand sebaceous lipogenesis 



and differentiation [23]. Moreover, attention has lately been focused on identifying and 

understanding the complex endocrine properties of the SG and the role of the several hormone 

receptors present on sebocytes [24, 25] (Figs. 2, 3). 

Sebaceous lipids contribute to a normally functional skin barrier. Alterations in the synthesis 

and composition, may contribute in the pathogenesis of inflammatory skin manifestations. A 

marked reduction of sebaceous lipids, but also a significant increase in keratinocyte lipids, have 

been demonstrated in pediatric and adult patients with atopic dermatitis correlated with a 

decrease of sebocyte proliferation and prolongation of the S- phase in SG [26]. Moreover, in acne 

patients the incidence of constitutional eczema is significant lower than that occurring in the 

general population [27]. 

Here, we will review basic aspects of sebocyte molecular genetics and development and focus 

on new developments on the regulation of sebocyte differentiation beyond acne. 

 

Wnt and hedgehog signals govern the sebaceous lineage fate 

While several molecular networks and signalling pathways are important in balancing epidermal 

growth and differentiation [28], the signals for sebocyte development are only partially 

understood. Among them, β-catenin, transcription factor 3 (Tcf3) and lymphoid enhancer-binding 

factor-1 (Lef-1) seem to be of key importance. High levels of β-catenin stimulate the formation of 

hair follicles and low levels that of epidermis and sebaceous glands [29-31].. Lef-1 and Indian 

hedgehog (IHH) seem to cooperate to control proliferation and differentiation of sebocyte 

progenitors [32]. In contrast, SHH/Gli-signaling has been suggested to be specifically required for 

sebocyte development [33]. Therefore, more experimental data for normal sebocyte lineages are 

required to resolve the role and functional contribution of individual hedgehogs for sebocyte 

progenitor cell development and the interaction between Wnt and hedgehog signaling. Other 

molecules implicated in sebocyte development include c-Myc, peroxisome proliferator-activating 

receptors (PPAR) and cyclooxygenase-2 [4, 23, 34] (Table 3). 

 

Unipotent resident progenitor cells may be responsible for the continuous sebocyte 

turnover 

The constant sebocyte turnover requires a continuous source of cells to maintain the gland, 

suggesting the involvement of stem cells. Currently available data on the epidermal stem cell 

compartment are consistent with the existence of a discrete population of SG stem cells in 

addition to those of the interfollicular epidermis and hair follicle bulge [35-37]. Of the different 

populations of epithelial stem cells of the skin, that of the SG is the least well characterized. There 

is good evidence for interdependence of the SG and hair follicle: in response to injury or other 

appropriate stimuli, stem cells in each location can generate all differentiated epithelial lineages 

[38] and in situations in which one organ collapses the other is also often lost [39]. The 



development of androgenetic alopecia [38] and of chemotherapy-induced effluvium [39] could be 

well explained by this mechanism.  

While hair follicle bulge stem cells have the capacity to differentiate and produce SGs, there is 

evidence suggesting that under steady state conditions local environmental cues restrict the 

lineages selected by stem cell progeny and that a resident pool of progenitor cells exists within 

the SG [35, 40]. For example, retroviral lineage tracing experiments in mouse skin revealed that 

the SG can be marked specifically over multiple hair cycles, supporting the notion that a 

population of long-living cells can maintain the SG independent of the hair follicle bulge [41]. 

Pulse-chase experiments in mouse skin further suggested the existence of slow-cycling cells in 

the gland [34]. Genetic lineage tracing experiments showed that cells expressing the 

transcriptional repressor Blimp1 [42] are progenitors that give rise to all cells within the sebaceous 

gland. Research in this field is still ongoing as evidenced by current contradictory findings [23, 

35], whereby Blimp1 is not selectively expressed in sebaceous gland progenitor cells, but is also 

expressed by terminally differentiating cells in the interfollicular epidermis, sebaceous gland and 

hair follicle[40, 43]. While Blimp1 binds to and negatively regulates the c-Myc promoter [42], there 

is no correlation between Blimp1 and c-Myc levels in individual human sebaceous cells, 

suggesting that additional factors regulate levels of c-Myc protein in sebocytes [40]. 

 

Sebaceous differentiation is a continuous process of stage repetition 

The earliest sebaceous differentiation is observable at 13-15 weeks of gestation in humans 

fetuses [18]. Sox9 is the earliest known signal necessary for SG and HF development [23, 44]. In 

its absence, cells expressing the putative sebocyte stem cell marker Blimp1 fail to appear. SGs at 

this early stage are already functional, contributing to the vernix caseosa. It has in fact been 

proposed that sebum is the first demonstrable glandular product of the human body [23]. While 

sebocyte differentiation is a continuous process, up to five distinct morphologic stages, reflecting 

the different differentiation steps, have been recognized [23, 45]. Another classical classification 

distinguishes three different zones. The peripheral zone is composed of flattened or cuboidal cells 

and forms about 40% of the gland [23, 46, 47]. These undifferentiated cells have a high nucleo-

cytoplasmic ratio, are in contact with the basal lamina, and are mitotically active. Their cytoplasm 

is rich in tonofilaments, free ribosomes and mitochondria, but smooth endoplasmatic reticulum 

and Golgi complex are rare. Cells in the maturation zone contain enlarged cells bearing lipid 

droplets, well-developed smooth endoplasmatic reticulum and Golgi apparatus, and increasing 

numbers of lysosomes. The maturation zone also represents ~40% of the SG [23, 47]. As 

differentiation advances, cells progressively accumulate lipids and experience an extraordinary 

increase in volume of up to 150 times [23, 45]. The necrosis zone represents ~20% of the SG. Its 

cells are distorted due to the lipid load. The nuclei are substantially reduced in size, organelles 

are generally unrecognizable, and the cells are shortly before or already in the process of 

degeneration and release of their cellular contents [23, 47]. 



 

Sebum is characterized by specific lipid fractions of sebaceous origin 

Human sebum contains mainly triglycerides, diglycerides and free fatty acids (40-60% of  total 

lipids), followed by wax esters (25-30%), squalene (12-15%), cholesterol esters (3-6%) and 

cholesterol (1.5-2.5%) [6, 9, 12]. The lipid content of sebum is species specific. In addition, the 

relative amount of the components also vary greatly among humans at different ages. Wax esters 

and squalene are typical for sebocytes and are normally not produced elsewhere in the body. 

Sebocytes possess a competent enzymatic machinery for the synthesis of all the lipid classes 

present in the sebum [48] (Table 4) but can also take up preformed lipids or remodel lipids from 

the bloodstream. The synthesis starts by the incorporation of different precursors including 

acetate, glucose, and aminoacids. Enzymes that form part of the cholesterol synthesis pathway, 

and of long chain fatty acids and their ester derivatives have been characterized as well as the 

regulation by the supply of exogenous lipids [9, 10]. 

 

Fatty acids 

Sebum fatty acids are characterized by a large diversity including linear and branched species 

with odd or even carbon number, long chain and unusual unsaturations [9, 49, 50]. Acetate, 

proprionate, isobutyrate, isovalerate, and 2-methyl-butyrate are used to produce the different fatty 

acids by extension with the addition of 2-carbon moieties derived from the malonyl-CoA. 

Desaturation occurs by the activity of the Δ6 and Δ9 desaturase. Δ6-desaturase is a functional 

marker of differentiated sebocytes [51]. It is detectable in cells with a full lipid synthetic capacity 

occupying the suprabasal layers of the SG. This pathway is unique to the human sebum and 

leads to the formation of specific fatty acids of sebum such as sapienic acid (16:1, Δ6) and 

sebaleic acid (18:2, Δ5,8) [10, 23, 51]. Altered Δ6-desaturase activity has been associated with 

acne [10] leading to an increase of the sapienic acid content in both free and esterified moieties. 

Accumulation of Δ9 isoforms of monounsaturated fatty acids may occur in undifferentiated cells in 

the basal layer of the SG [52]. During the process of differentiation, Δ6 unsaturated fatty acids 

progressively accumulate and lead to a reduction of the Δ9 lipid content to less than 0.5%. 

Linoleic acid is considered to be directly involved in the sebaceous lipid synthesis and 

incorporated in the epidermal lipids of the infundibulum. Through the activation of β-oxidation, 

linoleic acid is transformed into two-carbon precursors which yields acetyl-CoA, the starter of the 

biosynthetic pathway, which leads to squalene and wax esters formation [53]. Since linoleic acid 

is an essential fatty acid, its plasma levels likely regulate its concentration in the sebocytes. Fatty 

acids are subsequently used to synthesize triglycerides, cholesterol and wax esters. 

 

Cholesterol and squalene 

Cholesterol and squalene share the initial steps of their biosynthesis. Squalene synthase 

catalyzes head-to-head condensation of two molecules of farnesyl pyrophosphate to yield 



squalene that must be converted to squalene 2,3-epoxide by the enzyme squalene oxidocyclase 

for cholesterol synthesis to continue. Squalene is the last linear intermediate in cholesterol 

biosynthesis, and in other tissues it is rapidly converted to lanosterol and finally to cholesterol by 

squalene oxidocyclase. Oxygen is needed to catalyze the reaction, and because the SG has an 

anaerobic environment this may be a rate-limiting step for the conversion to cholesterol and a 

possible reason of squalene accumulation. The amount of skin cholesterol has no apparent 

relation with plasma level [10] but is affected by the cholesterol levels in the SG environment. 

SGs respond to higher levels of lipoproteins by lowering the lipogenic capacity through inhibition 

of the HMG-CoA reductase activity. Moreover, the decline in production of sebum with age can be 

at least in part due to a lower activity of HMG-CoA reductase in older subjects. 

 

Glycerol, wax and sterol esters 

Triglycerides are synthesized from fatty acids and glycerol. Acyl CoA:diacylglycerol 

acyltransferases (DGAT) 1 and 2 are the key enzymes that catalyze the final step in the 

synthesis. Wax esters are produced in a two-step process involving a fatty-acyl-CoA reductase 

and wax synthase enzymes. Saturated fatty acids are preferentially included over its 

monounsaturated. Two acyl-CoA wax alcohol acyltransferase (AWAT 1 and 2) have been 

identified, the latter one primarily expressed in the cytoplasm of undifferentiated peripheral 

sebocytes. Esterification of cholesterol seems to be an evolutionary mechanism favoring the 

storage of sterols in the cytoplasm. The enzymes acyl-CoA cholesterol acyltransferase 1 (ACAT 

1) is highly expressed in the SG, where it allows for the incorporation of cholesteryl esters into 

cytoplasmic lipid droplets [10]. 

 

Complex lipid fractions can be identified by sebum lipidomics  

The lipidomic analysis represents a new approach for understanding the complex lipid matrix of 

the sebum with a broad range of chemical functionalities and expression levels. The identification 

of the composing species as intact molecules is a suitable analytical approach to find variations in 

the sebum composition [9, 53, 54]. Information regarding preferential arrangement of fatty acids in 

complex lipids can be collected and contribute to the understanding of the role of alterations of 

sebum composition in the pathologies of the PSU [10]. 

 

Sebaceous duct (SD) cells are bimodal epithelial cells 

The sebum released from sebocytes drains into the SD. The SD encompasses sebocytes and is 

lined by keratinizing stratified squamous epithelium. As SD cells keratinize, they produce horny 

materials in the lumen with relatively low numbers of lipid droplets, which do not coalesce [55]. 

The boundary between undifferentiated sebocytes and SD cells is unclear. The SD is a 

transitional zone between infundibulum (interfollicular epidermis) and sebocytes, suggesting that 

a bimodality of these cells to differentiate into both directions exists [56]. In wounds, 



undifferentiated ductal cells migrate to the surface and differentiate into epidermal keratinocytes, 

and some undergo conversion into sebocytes [57]. A recent study identified keratin 6 as a marker 

of duct fate in SGs [58]. 

 

Sebum composition and production are controlled by multiple factors 

PPAR 

PPAR are members of the nuclear hormone receptor (NHR) family and act as transcriptional 

regulators of a variety of genes including those involved in lipid metabolism in adipose tissue, liver 

and skin [59]. PPAR bind to cognate DNA elements called PPAR response elements in the 5′-

flanking region of target genes. Like many other NHR, they bind DNA as obligate heterodimers by 

partnering with one of the retinoid X receptors (RXRs) [59]. PPARγ / RXRα and Liver-X receptor 

(LXR) / RXRα promoter interactions are of crucial importance for the regulation of key genes of 

lipid metabolism. While various fatty acids, eicosanoids and prostanoids activate PPARs, 

oxysterols and intermediate products of the cholesterol biosynthetic pathway activate LXRs. 

There are three subclasses of PPAR in humans: α, δ, and γ, which differ in their tissue 

localization and in their transcriptional activities. PPARs are expressed in human SGs [24, 60] 

and in human SZ95 sebocytes [14, 60, 61]. Treatment of these cells with linoleic acid, a ligand for 

PPARδ and γ, increases the intracellular content of lipids [60]. Arachidonic acid couples to 

PPARγ to induce differentiation and lipid production in human sebocytes [62, 63]. However, the 

activity of PPAR agonists seems to be complex: PPARγ agonists have been shown to increase 

sebum production in adults with diabetes and hyperlipidemia [64]. In contrast, PPARα agonists 

seem to inhibit sebaceous lipogenesis [65] through prevention of the activation of the 

proinflammatory leukotriene pathway [66]. Moreover, PPAR agonists, especially that for PPARδ, 

exhibit anti-apoptotic activity on human sebocytes by inducing the activation of PKB/Akt and 

p44/42, two kinases involved in anti-apoptosis and proliferation, respectively and by suppressing 

histone-associated DNA fragments [67]. These data indicate that PPARα agonists and PPARγ 

antagonists may reduce sebaceous lipid synthesis and, as such, may be useful in the treatment 

of acne. On the other hand, PPARγ agonists may be beneficial in ageing skin, while PPARδ 

agonists may be involved in sebaceous tumorigenesis. 

 

LXR 

LXRs, which are members of the NHR family play a critical role in cholesterol homeostasis and 

lipid metabolism [24, 68]. Treatment of SZ95 sebocytes with the LXR ligands TO901317 or 22(R)-

hydroxycholesterol enhanced accumulation of lipid droplets in the cells which could be explained 

through induction of the expression of the LXRα receptor and known LXR targets, such as fatty 

acid synthase and sterol regulatory element-binding protein-1 (SREBP-1) [49, 69]. 

 

FoxO1 



FoxO1 is expressed in most lipid metabolizing cells, including prostate, liver, fat tissue, and the 

skin [70]. While human sebocytes may also express FoxO1, few relevant data exist until now [71, 

72]. In adipocytes, FoxO1 directly interacts with PPARγ to inhibit adipocyte differentiation and 

substantial evidence indicate a pivotal role FoxO1 in lipid homeostasis, regulation of oxidative 

stress, cell differentiation and apoptosis [70]. It has been proposed that acne and increased 

sebaceous lipogenesis are associated with a relative nuclear deficiency of FoxO1 caused by 

increased growth hormone (GH)/insulin/IGF-1/or FGFR2 signaling [72]. 

 

Histamin 

Sebaceous function can be also significantly modified by histamin and antihistamines [68]. 

Immunohistochemical analysis of frozen sections from normal human SGs revealed the presence 

of H1 receptors, demonstrating the potential for histamine receptor-mediated acne treatment 

through receptor antagonist activity in sebocytes [73]. In the same study diphenhydramine, a H1 

receptor antagonist, significantly decreased squalene levels in human SG cells as determined by 

means of high-performance chromatography. 

 

Retinoids 

Retinoids influence on the biological function of sebocytes is well known. Retinoic acid receptors 

(RAR; isotypes α and γ) and retinoid X receptors (RXR; isotypes α, β, γ) are expressed in human 

sebocytes [74]. The natural ligands for RAR and RXR are all-trans retinoic acid and 9-cis retinoic 

acid. In SZ95 sebocytes, 13-cis retinoic acid may unfold its action through a marked isomerisation 

to all-trans retinoic acid. All three compounds, all-trans retinoic acid, 13-cis retinoic acid and 9-cis 

retinoic acid exhibit anti-proliferative effects [74] and inhibit sebocyte differentiation and lipid 

synthesis [75]. RXR agonists stimulate sebocyte differentiation and proliferation [76]. RXR agonist 

in combination with specific PPAR agonists may exhibit a limited cooperation in affecting 

differentiation and growth in cultured primary sebocyte-like rat preputial cells [77]. 

 

Structural proteins 



During sebogenesis lipids are stored in vesicles called Lipid droplets (LD) are limited by a 

membrane containing phospholipids protein and enzymes. The most relevant membrane proteins 

are the perilipin (PLIN) family, which possesses structural and regulatory properties. In particular, 

PLIN2, the major form expressed during the differentiation process, regulates the gland size in 

vivo and regulates sebaceous lipid accumulation [78]. Experimental down-modulation of the 

expression significantly modify the composition of neutral lipids with a significant decrease in the 

unsaturated fatty acid component due to a marked decrease in the expression of specific 

lipogenic enzymes. On the other hand, PLIN3 has currently been shown to modulate specific 

lipogenic pathways in human sebocytes [79]. Another structural protein, angiopoietin-like 4, is 

strongly induced during sebocyte differentiation and regulates sebaceous lipogenesis [80]. 

 

The function of sebaceous glands is controlled by various factors in health and disease 

Sex steroids 

Three components of sebocyte function - differentiation, proliferation and lipid synthesis - are 

controlled by complex endocrinologic mechanisms. The skin, and especially the SG, are 

important sites of formation of actives androgens [81]. Enhanced SG activity is attributed to the 

potent androgen 5α-dihydrostestosterone (5α-DHT), since SG cells possess all necessary 

enzymes for conversion of testosterone to 5α-DHT [81]. The isoenzyme 5α-reductase type I, 

which catalyses the conversion from testosterone to 5α-DHT in peripheral tissues by a NADPH-

dependent reaction is expressed predominantly in the skin. It is present in the cytoplasm and cell 

membrane compartment in skin cells[82] and particularly in facial sebocytes [81], illustrating the 

key role of SG cells in androgen metabolism.  

Testosterone and 5α-DHT regulate SG function through binding to the nuclear androgen 

receptor (AR) [83]. AR is a member of the steroid superfamily of ligand-dependent transcription 

factors. 5α-DHT binds to the AR with greater affinity than testosterone and the 5α-DHT/androgen 

receptor complex appears to be more stable and, therefore, more effective. AR is stabilized and 

upregulated by ligand binding; its downregulation reduces sebocyte proliferation [83, 84]. A dose-

dependent induction of sebocyte proliferation by testosterone treatment and no effect on lipid 

stimulation has been demonstrated [15]. The effect of androgens on sebaceous lipids is mediated 

by PPAR ligands [85, 86]. Estrogens exhibit an inhibitory effect on excessive SG activity in vivo 

[87]. 

The AR is not exclusively regulated by androgens which interact with the ligand binding 

domain of the AR. The N-terminal AF-1 function of AR is most important for the transcriptional 

control of the AR and mediates the impact of most coregulatory proteins on AR transactivation. 

More than 150 coregulatory proteins modulating AR transcriptional activity have been identified 

[88]. 

 



Growth factors 

GH and IGF-I: The increased serum GH levels in acromegaly are associated with enhanced 

sebum secretion [88], an observation that was confirmed by GH treatment of human sebocytes in 

vitro [89]. In acne vulgaris, increased sebum production peaks in mid-adolescence at a time when 

GH and IGF-I reach their highest serum levels [89]. Increased serum levels of IGF-I have been 

observed in adult women and men with acne and the number of total acne lesions, inflammatory 

lesions, serum levels of 5α-DHT and dehydroepiandrosterone sulphate (DHEAS), each correlated 

with serum IGF-I levels in women with acne [90]. IGF-I plays a key role in the induction of lipid 

synthesis in human sebocytes [91, 92]. IGF-I increases lipogenesis by inducing SREBP-1 [50] 

through activation of PI3K/Akt and MAPK/ERK-signal transduction pathway [93]. SREBP-1 

preferentially regulates genes of fatty acid synthesis [93]. In addition, an interaction between IGF-I 

and estradiol has been described in SZ95 sebocytes, implicating that estrogens may have an 

indirect effect on the pathogenesis of sebaceous gland diseases [91]. 

Fibroblast growth factor receptor-2b (FGFR-2b) signaling: Androgen-mediated upregulation of 

FGFR-2b signaling in acne-prone skin has been proposed in the pathogenesis of acne vulgaris 

[94]. Acneiform nevus, which is a variant of nevus comedonicus, has been shown to be 

associated with Ser252Trp-gain-of-function mutation of FGFR2, which also explains acne in Apert 

syndrome [95]. In organotypic skin cultures, keratinocyte-derived interleukin-1α stimulated 

fibroblasts to secrete FGF7 which stimulated FGFR2b-mediated keratinocyte proliferation. 

Postnatal deletion of FGFR2b in mice resulted in SG atrophy [96]. The importance of FGFR2b in 

SG physiology is further supported by the mode of action of several anti-acne agents which have 

been proposed to attenuate FGFR2b-signaling [97]. 

 

Nerves and neuropeptides regulate sebocyte function, inflammation and innate immunity 

Little is known about the innervation of the SG 

To synthesize large amounts of lipids and other substances such as hormones, the SG depends 

on a rich nutrient supply by blood vessels. Accordingly, rich vascularization and micro-circulation 

of  SGs have been demonstrated in the past [98, 99]. In contrast, the innervation of the SG has 

been the subject of controversy. Although a network of nerve fibers encircle the hair follicle and is 

tangent to the SG, the presence of nerve fibers actually entering the SG has only once been 

convincingly demonstrated in association with acne-involved SG [98-100]. 

 

Neuropeptides 

Neuropeptides (NP) form a heterogeneous group of biologically active peptides that are present 

in neurons of both the central and peripheral nervous systems. However, human skin and in 

particular the SG have been shown to express functional receptors for neuropeptides, such as 

corticotropin-releasing hormone (CRH), melanocortins, β-endorphin, vasoactive intestinal 

polypeptide, neuropeptide Y and calcitonin gene-related peptide [68, 74]. Circadian secretion of 



CRH from the hypothalamus affects the pituitary gland. The latter synthesizes propiomelanocortin 

(POMC) and decomposes it into corticotropin (ACTH), β-endorphin as well as α-melanocyte-

stimulating hormone (α-MSH, melanocortin) [68]. 

 

CRH 

Activation of the CRH receptor 1 (CRHR-1) affects immune- and inflammatory processes and is 

involved in the development and the stress-induced exacerbation of acne. CRH-binding protein 

(CRHBP) has a buffering role in response to the stress attack in acne by serving as a negative 

regulator of local CRH availability. CRHR-1 seems to be an important receptor for the eccrine 

sweat glands and may have a direct role in the regulation of local dermal secretory activity. On 

the other hand, CRHR-2 exhibits the most significant expression within SGs and possibly 

regulates local SG functions by having a direct influence on sebum production [101]. In addition, 

CRH significantly induces sebaceous lipids production, IL-6 and -8 synthesis and may up-regulate 

mRNA levels of 3β- hydroxysteroid dehydrogenase/Δ5–4 isomerase [102, 103]. 

 

Melanocortin 

α–MSH was identified not only as sebotropin and pigmentation hormone but also as a modulator 

of inflammatory and immune tissue responses within the PSU [104-106]. The effects of α–MSH 

are mediated via binding to melanocortin receptors (MC-R), which belong to the superfamily of G-

protein coupled receptors. The presence of both MC-1R and MC-5R, which bind α–MSH, was 

detected in primary cell cultures of facial human sebocytes and in SZ95 sebocytes. The 

expression of MC-5R is weaker than that of MC1-R but it has been shown to be a marker of 

human sebocyte differentiation, since its expression increases in lipid-containing sebocytes [106, 

107]. As proinflammatory cytokines are up-regulated in acne lesions, sebocytes may respond to 

these signals with increased MC-1R expression, thereby generating a negative feedback 

mechanism for α-MSH which exerts direct anti-inflammatory actions, i.e. inhibition of IL-1-

mediated IL-8 secretion [105, 106]. 

A connection between MC-1R activation by α-MSH and PPAR-γ has been reported in cultured 

melanoma cells, dependent on the phosphatidylinositol signaling pathway [108]. Lipids generated 

in this signal pathway, such as linoleic acid and arachidonic acid and their lipoxigenase by-

products are the principal in mediators of signal transduction. The activation of the lipid mediated 

pathway through PPAR could subtend the capacity of α-MSH to influence cell proliferation and 

differentiation in sebocytes and melanocytes as well as lipogenesis and the inflammatory process 

in sebocytes. Interestingly, sebocytes are likely to modulate melanocyte functions and may 

contribute to skin colour variation in sebaceous glands-rich body regions [109]. Moreover, 

variation of MC-1R expression may be associated with different rate of sebogenesis in the 

different skin phototypes [110]. 

 



Cannabinoid receptors, substance P 

Cannabinoid receptors 1 and 2 are expressed in human SGs [111], whereas the CB2 and other 

prototypic endocannabinoids are present in SZ95 sebocytes and may induce lipid production and 

cell death in a dose-dependent manner [112]. These actions are selectively mediated by CB2-

coupled signaling involving the MAPK pathway. 

Substance P, expressed in small nerves around the acne-involved SGs [100, 113], promotes 

the development of cytoplasmic organelles in sebocytes, stimulates proliferation and induces a 

significant increase of sebocyte size and SG volume. Substance P expression has also been 

associated with increased innervation around the acne-involved SGs [100]. The latter is related to 

increased expression of nerve growth factor in acne-prone SGs. The abundant IL-6 expression in 

inflammatory sebaceous glands is directly regulated by nerve growth factor [113]. Neutral 

endopeptidase, an ectopeptidase (see below) that degrades substance P, is highly expressed in 

the SGs of acne patients [100]. 

 

Ectopeptidases 

Ectopeptidases dipeptidyl peptidase IV (DP IV or CD 26) and aminopeptidase N (APN or CD13), 

which have been shown to be involved in the degradation of several NPs, especially substance P 

[114], have been found to be highly expressed in human sebocytes in vivo and in vitro [115]. 

Inhibitors of DP IV and APN can suppress proliferation and slightly decrease neutral lipids, but 

can also enhance terminal differentiation in SZ95 sebocytes. 

 

Antimicrobial peptides 

In addition to sebum production, SG also secrete antimicrobial peptides (AMPs) including human 

defensins (hBD-1 and hBD-2) [116], cathelicidin [117] and demcidin [118]. In particular, hBD-2 is 

expressed intensely in suprabasal layers, especially in pustules [119]. Certain Propionibacterium 

acnes species induce hBD-2 in human sebocytes [120]. Interestingly, hBD-1 and hBD-2 as well 

as bacterial antigens may play key roles in protecting the PSU from microbial invasion [121, 122]. 

indeed, the physiologic skin microflora is essential for the inhibition of virulent bacterial invasion 

[122]. Histone H4 may be a major component of the antimicrobial action of human sebocytes; its 

release may play an important role in skin innate immunity [123]. On the other hand, sebaceous 

fatty acids exhibit antibacterial and antifungal properties [121, 124-126] and enhance the innate 

immune defence of human sebocytes by upregulating hBD-2 expression [121, 127]. 

 

Adipokines 

Adipokines, i.e. proteins that are synthesized and secreted primarily by adipocytes in response to 

various stimuli are responsible for mediating the inflammatory effects of the adipose tissue in the 

local tissue environment as well as to different organs via circulation. Importantly, SGs were 

identified also as a potential source for these proteins as histochemical studies revealed that in 



vivo SGs of healthy skin expressed adiponectin, IL-6, leptin, serpin E1 (also known as 

plasminogen activator inhibitor-1 [PAI-1] and endothelial plasminogen activator inhibitor), resistin 

and visfatin (also known as nicotinamide phosphoribosyltransferase). Notably, such adipokine 

expression pattern was observed also in acne involved skin as well as in other skin diseases 

suggesting that their relevance in the context of acne is most likely in the ability of sebocytes to 

secrete them in a stimulus dependent manner, such as TLR activators or potential therapeutically 

applied stimuli like retinoic acid. Moreover, considering the various biological roles for adipokines 

in skin homeostasis sebocytes could contribute to a wide range of functions such as hair growth, 

wound healing, tissue matrix formation and regulation of inflammation via these secreted 

adipokines. Taking into account the high amount of SG throughout the body, it is also intriguing to 

suppose that SG-derived adipokines could contribute not only to a local but also to a possible 

systemic inflammation and perhaps metabolic effects (similarly to that of seen in the case of the 

adipose tissue) [128]. Importantly, sebocytes were proved not just to be the source of but also to 

be potential targets for adipokines. Detecting the functionally active full-length form of the leptin 

receptor (Ob-Rb) on SGs suggests that sebocytes could respond also to leptin, the key adipokine 

which links nutritional status with neuroendocrine and immune functions. While leptin deficient 

(ob/ob) mice were found to exhibit an increased sebaceous gland size suggesting that leptin is 

involved in the lipid production/secretion of sebocytes [152], leptin treatment of SZ95 sebocytes 

led to a “pro-acne” change in the sebaceous lipid profile via increasing the amounts of 

unsaturated FAs, especially the FA 16:1/16:0 ratio which largely resembles the changes in the 

composition of sebum found in acne patients, in association with the enlargement of intracellular 

lipid droplets and the activation of various inflammatory signalling pathways such as STAT3 and 

NFκB. These results all support that leptin could be a possible contributor in linking nutrition with 

acne, however the conditions and the possible pathways still need to be confirmed in more details 

[129]..   

In addition to sex steroid hormones and growth factors sebocytes express and secrete adipokines 

[128]. Steroid hormones fulfill their paracrine / autocrine roles by regulating keratinocyte 

proliferation and apoptosis, as well as inducing sebocytes to produce adiponectin, IL-6, resistin, 

leptin, serpin E1 and visfatin, which contribute to maintain skin homeostasis and regulate the 

inflammatory process [128, 129]. The cross-talk evidence for keratinocytes with sebocytes has 

been corroborated by the longer maintainance of epidermal integrity and proliferation potential of 

basal keratinocytes as well as reduction of the apoptosis under ex vivo co-culture of skin explants 

and SZ95 sebocytes [130]. Interestingly, during sebaceous lipogenesis differentially regulated 

microRNAs could be detected [131]. 

 

Sebaceous glands and skin skin detoxification 



In its role as a barrier to environmental stress, including environmental toxic agents and UV light 

[132], the skin is supported by the SGs. Recent studies provided evidence that human SGs may 

play a key role in regulating skin detoxification. 

UV radiation and natural and artificial chemicals induce oxidative stress, which regulates major 

signaling pathways of extrinsic skin aging and of certain skin diseases [133]. The skin surface 

lipid (SSL) film, a mixture of sebum and keratinocyte membrane lipids, is the first barrier against 

environmental stress [134]. Among the ingredients of SSL, squalene, a key biosynthetic precursor 

of cholesterol secreted by SGs, and α-tocopherol (vitamin E) secreted together with lipids from 

sebaceous gland, provide collaboratively antioxidant protection to the skin surface [135-137]. In 

addition, the by-products, squalene peroxides, produce during squalene oxidation, are considered 

to be involved in inflammatory and immunologically determined skin diseases, such as acne, 

atopic and seborrheic dermatitis as well as in skin cancerogenesis [138]. A recent study in China 

showed that the urban polulation has a lower squalene/lipid ratio than the rural one, which may 

mean that reduction of squalene is induced by environmental pollutants [137]. Moreover, 

squalene peroxides are proposed as a reliable marker of environmental pollutants in the skin 

[138]. 

Clinically, marked volume reduction or absence of SGs was observed in patients with dioxin-

induced chloracne; the latter been the marker of dioxin intoxication in humans [139]. Similar 

changes in SGs were also found in patients with hidradenitis suppurativa/acne inversa, in whom 

cigarette smoking is a high risk factor [140]. In addition, ex vivo studies also reported that dioxins 

and benzo(a)pyrene (BaP), representative toxicants found in environmental pollutants and 

cigarette smoke, strongly inhibited lipogenesis in human SZ95 sebocytes and reduced the size of 

SGs via activation of the aryl hydrocarbon receptor (AhR) signaling pathway [141, 142]. AhR is a 

ligand-activated transcription factor that mediates a spectrum of toxic and biological effects of 

dioxins and related compounds [143] and SGs have been proposed to play a predominant role in 

the cutaneous metabolism of xenobiotics via the AhR signaling pathway. 

The expression of AhR and its classical downstream gene CYP1A1, the metabolizing and 

activating enzyme for dioxins and related compounds, were stronger in the SGs than in the 

epidermis [144, 145]. CYPs contribute to a metabolic "shield" protecting the host from all kinds of 

chemicals not only in liver and intestine, but also in the skin, where they contribute to xenobiotics 

metabolism in the sebocytes [145, 146]. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

diminished the size of SGs and lipid synthesis by switching the sebocyte lineage into a 

keratinocyte one [141]. This lineage switch is likely to be induced via AhR activation [141], since 

sebaceous lipid content and expression of markers of markers of sebaceous differentiation were 

found markedly induced in AhR-knockdown SZ95 sebocytes [142]. Therefore, AhR may 

considered as a bilateral modulator of sebaceous/keratinocyte differentiation pathways (Fig. 4). 

 



Tools for studying sebocytes in vitro and in vivo 

Cell lines / Ex vivo models 

Undoubtfully, an organ culture including intact SGs would represent the best model for the study 

of sebocytes in vitro. Unfortunately, available approaches show major shortcomings such as 

limited availability of material and limited maintenance in culture over time. On the other hand, 

while primary human sebocytes preserve key sebaceous characteristics, they can only be 

cultivated for a few passages and a large number of donors is required for obtaining a reasonable 

amount of material [16]. To overcome these drawbacks, the immortalized SG cell line SZ95 [15], 

as well as later ones, SEB-1 [48] and Seb-E6E7 [40], were developed. While these cell lines fulfill 

many criteria of a good SG model (androgen-responsiveness, production of lipids including wax 

esters and squalene, expression of typical sebocyte markers), they only undergo partially 

spontaneous complete differentiation. However, they are able to fully differentiate under certain 

circumstances in vitro [63] or ex vivo [130]. In spite of these drawbacks, these lines, and 

especially the newly developed human skin/SZ95 sebocytes ex vivo co-culture model, contribute 

decisively to the study of SG activity and its regulation. 

 

Mouse models 

Several spontaneous mutant mice with SG alterations have been of considerable value in 

studying SG biology and epidermal lipid production. A classical example is the asebia mouse, a 

strain with highly hypoplastic SGs and almost absent sebum production, originally described in 

the 1960s. In 1999, it could be demonstrated that the asebia phenotype is due to the genomic 

deletion of Scd1, a gene encoding a key enzyme for the synthesis of monounsaturated fatty acids 

[147]. The widespread generation of transgenic and knockout mice after 1980 produced a large 

number of mouse lines with alterations in SG development and function. Some particularly 

interesting examples are summarized in Table 3. 

 

Conclusions and prospects 

Stenn and colleagues suggested the “sebogenic hypothesis” of pilosebaceous development 

[148]. This hypothesis postulates that SGs were the first mammalian skin appendages to develop 

during the evolution (after nails) and that the hair shaft, at least initially, solely served as a wick to 

draw sebum to the skin surface and disperse it there to enhance skin epidermal barrier. This 

hypothesis illustrates the increasing importance attributed to this gland and may explain why the 

hair shaft cannot survive without an active SG [39, 122, 148]. In addition, SGs are likely to play a 

key role in regulating skin detoxification stimulated by external chemical and physical stimuli, 

which is realized not only by peroxided squlalene and vitamin E secreted by SGs, but also 

interfering into an abnormal sebocyte differentiation via activation of the AhR signaling pathway. 

At last the detection of the proteom and the secretom of human sebocytes opens new horizons in 

understanding sebaceous lipidogenesis [149, 150]. Indeed, the SG has abandoned its traditional 



role as a battlefield of acne and has advanced towards an attractive model for studying highly 

topical aspects such as stem cell biology, cell differentiation, lipidomics, skin endocrinology and 

neuroendocrinology, and the innate immunity of the skin. 

At the same time, several basic phenomena of SG biology remain unexplored. How does the 

SG maintain its stem cell population and how does the commitment towards differentiation take 

place? Are the lipid droplets of sebocytes perfect counterparts of these structures in adipocytes? 

Are specific microRNAs involved in the regulation of sebocyte differentiation and lipogenesis as 

shown for epidermal keratinocytes and adipocytes, respectively? Is the composition of sebum 

influenced by nutrition and does FoxO1 play a role in sebaceous differentiation? Further studies 

will also be necessary to evaluate the relevance of the many receptors localized on the surface of 

sebocytes and their true contribution to the gland function. New insights into these basic aspects 

of sebocyte biology may lead to the development of new therapeutical strategies for treating not 

only SG diseases but also several common skin diseases. 
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Figure Legends 

 

 

Figure 1. Biosynthetic pathways involved in sebum production. Abbreviations: FA, fatty acids; 

WE, wax esthers; TG, DG, MG, tri-, di-, and monoglycerides; CE, cholesterol esthers. 

 

Figure 2. Hormonal receptors in human skin. Human sebocytes express a wide range of 

hormone receptors, such as receptors for peptide hormones, neurotransmitters, steroid and 

thyroid hormones, which are found in the cytoplasm or nuclear compartment and thus, constitute 

appealing pharmaceutical targets to be approached. Modified from (54). 

 

Figure 3. Interaction between enzymes, membrane and nuclear receptors as well as their ligands 

in human sebocytes: their influence on lipid accumulation is displayed. The release of various 

hormones and inflammatory mediators are also seen. In red, future prospective drugs targeting 

elements of acne pathogenesis. R receptor, CRH corticotrophin releasing hormone, α-MSH α-

melanocyte stimulating hormone, ACTH adrenocotricotropic hormone, IL interleukin, TNFα tumor 

necrosis factor- α, 9cisRA 9-cis retinoic acid, atRA all-trans retinoic acid, LTB leukotriene, AA 

arachidonic acid, LA linoleic acid, GH growth hormone, NY neuropeptide Y, IGF-1 insulin like 

growth factor-1, PG prostaglandin, DHT 5α-dihydrotestosterone, ER estrogen receptor, AR 

androgen receptor, RXR retinoid X receptor, RAR retinoic acid receptor, PPAR peroxisome 

proliferators-activated receptor, LOX lipoxygenase, LTA4 hydrolase leukotriene A4 hydrolase, 

COX cyclooxygenase. 

 

Figure 4. Bilateral modulation of sebocyte differentiation by AhR. The  activation of AhR induces 

sebocyte differentiation towards a terminal keratinocyte lineage. In contrast, absence of AhR 

expression leads epithelial cells to an immature sebocyte status. 

 

 


